Таблица химия основания – Учебно-методический материал по химии (8, 9, 10, 11 класс) на тему: Таблица-памятка в цвете «Основные классы неорганических соединений (классификация и химические свойства)» | скачать бесплатно

Основания: классификация и химические свойства

Основания (гидроксиды) – сложные вещества, молекулы которых в своём составе имеют одну или несколько гидрокси-групп OH. Чаще всего основания состоят из атома металла и группы OH. Например, NaOH – гидроксид натрия, Ca(OH)2 – гидроксид кальция и др.

Существует основание – гидроксид аммония, в котором гидрокси-группа присоединена не к металлу, а к иону NH4+ (катиону аммония). Гидроксид аммония образуется при растворении аммиака в воде  (реакции присоединения воды к аммиаку):

NH3 + H2O = NH4OH (гидроксид аммония).

Валентность гирокси-группы – 1. Число гидроксильных групп в молекуле основания зависит от валентности металла и равно ей. Например, NaOH, LiOH, Al (OH)3, Ca(OH)2,  Fe(OH)3 и т.д.

Все основания – твёрдые вещества, которые имеют различную окраску. Некоторые основания хорошо растворимы в воде (NaOH, KOH и др.). Однако большинство из них в воде не растворяются.

Растворимые в воде основания называются щелочами. Растворы щелочей «мыльные», скользкие на ощупь и довольно едкие. К щелочам относят гидроксиды щелочных и щелочноземельных металлов (KOH, LiOH, RbOH, NaOH, CsOH, Ca(OH)2, Sr(OH)2, Ba(OH)2 и др.). Остальные являются нерастворимыми.

Нерастворимые основания – это амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью ведут себя, как кислоты.

Разные основания отличаются разной способностью отщеплять гидрокси-группы, поэтому признаку они делятся на сильные и слабые основания.

Сильные основания

Слабые основания

 NaOH гидроксид натрия (едкий  натр)

 KOH гидроксид калия (едкое кали)

 LiOH гидроксид лития

 Ba(OH)2 гидроксид бария

 Ca(OH)2 гидроксид кальция (гашеная известь)

 Mg(OH)2 гидроксид магния

 Fe(OH)2 гидроксид железа (II)

 Zn(OH)2 гидроксид цинка

 NH4OH гидроксид аммония

 Fe(OH)3 гидроксид железа (III)

 и т.д. (большинство гидроксидов  металлов)

Сильные основания в водных растворах легко отдают свои гидрокси-группы, а слабые – нет.

Химические свойства оснований

Химические свойства оснований характеризуются отношением их к кислотам, ангидридам кислот и солям.

1.  Действуют на индикаторы. Индикаторы  меняют свою окраску в зависимости от взаимодействия с разными химическими веществами. В нейтральных растворах – они имеют одну окраску, в растворах кислот – другую. При взаимодействии с основаниями они меняют свою окраску: индикатор метиловый оранжевый окрашивается в жёлтый цвет, индикатор лакмус – в синий цвет, а фенолфталеин становится цвета фуксии.

2. Взаимодействуют с кислотными оксидами с образованием соли и воды:

2NaOH + SiO2 → Na2SiO3 + H2O.

3. Вступают в реакцию с кислотами, образуя соль и воду. Реакция взаимодействия основания с кислотой называется реакцией нейтрализации, так как после её окончания среда становится нейтральной:

2KOH + H2SO4  → K2SO4 + 2H2O.

4. Реагируют с солями, образуя новые соль и основание:

2NaOH + CuSO4 → Cu(OH)2 + Na2SO4.

5.

Способны при нагревании разлагаться на воду и основной оксид:

Cu(OH)2 = CuO + H2O.

Остались вопросы? Хотите знать больше об основаниях?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Химические свойства оснований — урок. Химия, 8–9 класс.

Химические свойства гидроксида металла во многом зависят от того, к какой группе он принадлежит — к щелочам или к нерастворимым основаниям.

Общие химические свойства щелочей

1. Кристаллы щелочей при растворении в воде полностью диссоциируют, то есть распадаются на положительно заряженные ионы металла и отрицательно заряженные гидроксид-ионы.

 

A) Например, при диссоциации гидроксида натрия образуются положительно заряженные ионы натрия и отрицательно заряженные гидроксид-ионы:

NaOH→Na++OH−.

 

Б) Процесс диссоциации гидроксида кальция отображается следующим уравнением:

Ca(OH)2→Ca2++2OH−.

 

2. Растворы щелочей изменяют окраску индикаторов.

 

Фактически с индикатором взаимодействуют гидроксид-ионы, содержащиеся в растворе любой щёлочи. При этом протекает химическая реакция с образованием нового продукта, признаком протекания которой является изменение окраски вещества.

 

Изменение окраски индикаторов в растворах щелочей

 

Индикатор

Изменение окраски индикатора

Лакмус

Фиолетовый лакмус становится синим

Фенолфталеин

Беcцветный фенолфталеин становится

малиновым

Универсальный

индикатор

Универсальный индикатор становится

синим

 

Видеофрагмент:

Действие щелочей на индикаторы

 

3. Щёлочи взаимодействуют с кислотами, образуя соль и воду.

Реакции обмена между щелочами и кислотами называют реакциями нейтрализации.

А) Например, при взаимодействии гидроксида натрия с соляной кислотой образуются хлорид натрия и вода: NaOH+HCl→NaCl+h3O.

 

Видеофрагмент:

Взаимодействие гидроксида натрия с соляной кислотой

 

Б) Если нейтрализовать гидроксид кальция азотной кислотой, образуются нитрат кальция и вода:

Ca(OH)2+2HNO3→Ca(NO3)2+2h3O.

 

4. Щёлочи взаимодействуют с кислотными оксидами, образуя соль и воду.

  

А) Например, при взаимодействии гидроксида кальция с оксидом углерода(\(IV\)) т. е. углекислым газом, образуются карбонат кальция и вода:

Ca(OH)2+CO2→CaCO3↓+h3O.

 

Обрати внимание!

При помощи этой химической реакции можно доказать присутствие оксида углерода(\(IV\)): при пропускании углекислого газа через известковую воду (насыщенный раствор гидроксида кальция) раствор мутнеет, поскольку выпадает осадок белого цвета — образуется нерастворимый карбонат кальция.

Б) При взаимодействии гидроксида натрия с оксидом фосфора(\(V\)) образуются фосфат натрия и вода:

6NaOH+P2O5→2Na3PO4+3h3O.

 

5. Щёлочи могут взаимодействовать с растворимыми в воде солями.

 

Обрати внимание!

Реакция обмена между основанием и солью возможна в том случае, если оба исходных вещества растворимы, а в результате образуется хотя бы одно нерастворимое вещество (выпадает осадок).

А) Например, при взаимодействии гидроксида натрия с сульфатом меди(\(II\)) образуются сульфат натрия и гидроксид меди(\(II\)):

2NaOH+CuSO4→Na2SO4+Cu(OH)2↓.

 

Б) При взаимодействии гидроксида кальция с карбонатом натрия образуются карбонат кальция и гидроксид натрия:

Ca(OH)2+Na2CO3→CaCO3↓+2NaOH.

 

6. Малорастворимые щёлочи при нагревании разлагаются на оксид металла и воду.

  

Например, если нагреть гидроксид кальция, образуются оксид кальция и водяной пар:

Ca(OH)2⟶t°CaO+h3O↑.

 

Общие химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с кислотами, образуя соль и воду.

 

А) Например, при взаимодействии гидроксида меди(\(II\)) с серной кислотой образуются сульфат меди(\(II\)) и вода:

Cu(OH)2+h3SO4→CuSO4+2h3O.

 

Б) При взаимодействии гидроксида железа(\(III\)) с соляной (хлороводородной) кислотой образуются хлорид железа(\(III\)) и вода:

Fe(OH)3+3HCl→FeCl3+3h3O.

 

Видеофрагмент:

Взаимодействие гидроксида железа(\(III\)) с соляной кислотой

 

2. Некоторые нерастворимые основания могут взаимодействовать с некоторыми кислотными оксидами, образуя соль и воду.

  

Например, при взаимодействии гидроксида меди(\(II\)) с оксидом серы(\(VI\)) образуются сульфат меди(\(II\)) и вода:

Cu(OH)2+SO3⟶t°CuSO4+h3O.

 

3. Нерастворимые основания при нагревании разлагаются на оксид металла и воду.

  

А) Например, при нагревании гидроксида меди(\(II\)) образуются оксид меди(\(II\)) и вода:

 Cu(OH)2⟶t°CuO+h3O.

 

Видеофрагмент:

Разложение гидроксида меди(\(II\))

 

Б) Гидроксид железа(\(III\)) при нагревании разлагается на оксид железа(\(III\)) и воду:

2Fe(OH)3⟶t°Fe2O3+3h3O.

www.yaklass.ru

Свойства оснований

Основания – сложные вещества, состоящие из атома металла и одной или нескольких гидроксильных групп. Общая формула оснований Ме(ОН)n. Основания (с точки зрения теории электролитической диссоциации) – это электролиты, диссоциирующие при растворении в воде с образованием катионов металла и гидроксид-ионов ОН

–.

Классификация. По растворимости в воде основания делят на щелочи (растворимые в воде основания) и нерастворимые в воде основания. Щелочи образуют щелочные и щелочно-земельные металлы, а также некоторые другие элементы-металлы. По кислотности (числу ионов ОН, образующихся при полной диссоциации, или количеству ступеней диссоциации) основания подразделяют на однокислотные (при полной диссоциации получается один ион ОН; одна ступень диссоциации) и многокислотные (при полной диссоциации получается больше одного иона ОН; более одной ступени диссоциации). Среди многокислотных оснований различают  двухкислотные (например, Sn(OH)

2), трехкислотные (Fe(OH)3) и четырехкислотные (Th(OH)4). Однокислотным является, например, основание КОН.

Выделяют группу гидроксидов, которые проявляют химическую двойственность. Они взаимодействую как с основаниями, так и с кислотами. Это амфотерные гидроксиды (см. таблицу 1).

 

Таблица 1 — Амфотерные гидроксиды

Амфотерный гидроксид (основная и кислотная форма)

Комплексный ион

Zn(OH)2 / H2ZnO2

ZnO2 (II)

[Zn(OH)4]2–

Al(OH)3 / HAlO2

AlO2 (I)

[Al(OH)4], [Al(OH)6]3–

Be(OH)2 / H2BeO2

BeO2 (II)

[Be(OH)4]2–

Sn(OH)2 / H2

SnO2

SnO2 (II)

[Sn(OH)4]2–

Pb(OH)2 / H2PbO2

PbO2 (II)

[Pb(OH)4]2–

Fe(OH)3 / HFeO2

FeO2 (I)

[Fe(OH)4], [Fe(OH)6]3–

Cr(OH)3 / HCrO2

CrO2 (I)

[Cr(OH)4], [Cr(OH)6]3–

 

Физические свойства. Основания — твердые вещества различных цветов и различной растворимости в воде.

 

Химические свойства оснований

 

1) Диссоциация: КОН + nН2О  К+×mН2О + ОН×dН2О или сокращенно: КОН К+ + ОН.

Многокислотные основания диссоциируют по нескольким ступеням (в основном диссоциация протекает по первой ступени). Например, двухкислотное основание Fe(OH)

2диссоциирует по двум ступеням:

 

Fe(OH)2FeOH+ + OH (1 ступень);

FeOH+Fe2+ + OH (2 ступень).

 

2) Взаимодействие с индикаторами (щелочи окрашивают фиолетовый лакмус в синий цвет, метилоранж – в желтый, а фенолфталеин – в малиновый):

 

индикатор + ОН(щелочь)  окрашенное соединение.

 

3) Разложение с образованием оксида и воды (см. таблицу 2). Гидроксиды щелочных металлов устойчивы к нагреванию (плавятся без разложения). Гидроксиды щелочно-земельных и тяжелых металлов обычно легко разлагаются. Исключение составляет Ba(OH)

2
, у которого tразл  достаточно высока (примерно 1000 °C).

 

Zn(OH)2 ZnO + H2O.

 

Таблица 2 — Температуры разложения некоторых гидроксидов металлов

Гидроксид tразл, °C Гидроксид tразл, °C Гидроксид tразл, °C
LiOH 925 Cd(OH)2 130 Au(OH)3 150
Be(OH)2 130 Pb(OH)2 145 Al(OH)3 >300
Ca(OH)2 580 Fe(OH)2 150 Fe(OH)3 500
Sr(OH)2 535 Zn(OH)2 125 Bi(OH)3 100
Ba(OH)2 1000 Ni(OH)2 230 In(OH)3 150

 

4) Взаимодействие щелочей с некоторыми металлами (например, Al и Zn):

 

В растворе: 2Al + 2NaOH + 6H2O  ® 2Na[Al(OH)4] + 3H2­

2Al + 2OH+ 6H2О ® 2[Al(OH)4] + 3H2­.

При сплавлении: 2Al + 2NaOH + 2H2O   2NaAlО2 + 3H2­.

 

5) Взаимодействие щелочей с неметаллами:

 

6NaOH + 3Cl2 5NaCl + NaClO3 + 3H2O.

 

6) Взаимодействие щелочей с кислотными и амфотерными оксидами:

 

2NaOH + СО2® Na2CO3 + H2O                2OH+ CO2 ® CO32– + H2O.

В растворе: 2NaOH + ZnO + H2O ® Na2[Zn(OH)4]              2OH+ ZnO + H2О ® [Zn(OH)4]2–.

При сплавлении с амфотерным оксидом: 2NaOH + ZnO Na2ZnO2 + H2O.

 

7) Взаимодействие оснований с кислотами:

 

H2SO4+ Ca(OH)2 ® CaSO4¯ + 2H2O            2H+ + SO42–+ Ca2+ +2OH ® CaSO4¯ + 2H2O

H2SO4+ Zn(OH)2 ® ZnSO4 + 2H2O            2H+ + Zn(OH)2 ® Zn2+ + 2H2O.

 

8) Взаимодействие щелочей с амфотерными гидроксидами (см. таблицу 1):

 

В растворе: 2NaOH + Zn(OH)2 ® Na2[Zn(OH)4]                 2OH  +  Zn(OH)2 ® [Zn(OH)4]2–

При сплавлении: 2NaOH + Zn(OH)2 Na2ZnO2 + 2H2O.

 

9) Взаимодействие щелочей с солями. В реакцию вступают соли, которым соответствует нерастворимое в воде основание:

 

CuSО4 + 2NaOH ® Na2SO4 + Cu(OH)2¯               Cu2++ 2OH  ® Cu(OH)2¯.

 

Получение. Нерастворимые в воде основания получают путем взаимодействия соответствующей соли со щелочью:

 

2NaOH + ZnSО4 ® Na2SO4 + Zn(OH)2¯              Zn2++ 2OH ® Zn(OH)2¯.

 

Щелочи получают:

1) Взаимодействием оксида металла с водой:

 

Na2O + H2O ® 2NaOH                     CaO + H2O ® Ca(OH)2.

 

2) Взаимодействием щелочных и щелочно-земельных металлов с водой:

 

2Na + H2O ® 2NaOH + H2­                    Ca + 2H2O ® Ca(OH)2 + H2­.

 

3) Электролизом растворов солей:

 

2NaCl + 2H2O H2­ + 2NaOH + Cl2­.

 

4) Обменным взаимодействием гидроксидов щелочно-земельных металлов с некоторыми солями. В ходе реакции должна обязательно получаться нерастворимая соль.

 

Ba(OH)2+ Na2CO3® 2NaOH + BaCO3¯                    Ba2+ + CO32 ® BaCO3¯.

 

Л.А. Яковишин

www.sev-chem.narod.ru

Учебные таблицы Химия

             
  Химия
             
Периодическая система химических элементов
Д.И. Менделеева расширенная и доработанная
(атомная масса, электронное строение, электро-отрицательность, температура плавления,
температура кипения)
Растворимость солей, кислот
и оснований в воде
Растворимость солей и оснований в воде
     
Сравнение понятий изомер
и гомолог
Химические свойства металлов Окраска индикаторов
в различных средах
 
 

Электрохимический ряд напряжений металлов

 

Плотность и температура плавления металлов

 
Растворимость солей и электрохимический ряд Ряд электроотрицательности элементов
   
Электрохимический ряд напряжений металлов
Ряд электроотрицательности неметаллов (2 x 0.6 m)
 
Растворимость некоторых веществ в воде (при t=25°C)
и их молекулярные или формульные массы

Электрохимический ряд напряжений металлов
Ряд электроотрицательности неметаллов (2 x 0.45 m)

   
Обобщение сведений о группах
углеводородов
Относительные или молярные массы
неорганических соединений
Химические свойства кислот,
солей и оснований
       
Углеводороды Органические соединения Решение задач по химическим
уравнениям
Физические величины, используемые при решении задач
       
Алгоритм описания свойств
элемента по положению в периодической системе
Алгоритм описания
реакции
Алгоритм характеристики вещества Относительные электроотрицательности
элементов
       
Химические знаки и округленные атомные массы важнейших элементов Принцип электронного строения атомов химических элементов Стандартные электродные потенциалы материалов Выполняйте опыты только по инструкции
       
Классификация
химических реакций
Химическая связь Строение атома Перенапряжение выделения водорода и ионизации кислорода при плотности тока 1 мА/см2 на различных металлах
       
Общие константы нестойкости
некоторых комплексных ионов
Константы диссоциации воды
и некоторых cлабых кислот
и оснований в водных растворах
Стандартные термодинамические величины некоторых веществ
 
Стандартные электродные
потенциалы металлов
Электродные потенциалы металлов
в различных средах, В
Правила безопасности
на уроке химии
 
 
Плотность растворов кислот, щелочей
и солей различных концентраций
при 15° C
Произведение растворимости
малорастворимых в воде
электролитов при 25°с
Электрохимические системы
Электроды первого рода, обратимые относительно катиона
 
       
Генетические связи органических веществ Генетические связи неорганических веществ
 

Классификация органических соединений и их свойства
(Комплект из трёх таблиц)

 
< назад
 

www.ma-ko.ru

Основания — классификация, получение и свойства » HimEge.ru

Основаниями называют гидроксиды, которые диссоциируют (распадаются) на гидроксильную группу и положительно заряженный катион.

Общая формула оснований — Э(OН)m, где m –  степень окисления металла.

Классификация оснований

Взаимодействие активных металлов с водой (только щелочи)

2Na + 2H2O = 2NaOH + H2,

Ba + 2H2O = Ba(OH)2 + H2,

Взаимодействие основных оксидов с водой (только щелочи)

Na2O + H2O = 2NaOH,

Взаимодействие солей со щелочами (малорастворимые основания)

CuSO4 + 2NaOH = Cu(OH)2↓+ Na2SO4,

Cu2+ + 2OH = Cu(OH)2,

AlCl3 + 3NaOH = Al(OH)3↓ + 3NaCl,

Al3+ + 3OH = Al(OH)3.

Электролиз водных растворов солей (промышленный способ)

2NaCl + 2H2O = 2NaOH + H2 + Cl2.

1) Растворы оснований мыльные на ощупь, изменяют окраску индикаторов:  лакмуса – в синий цвет, бесцветного фенолфталеина – в малиновый.

В водном растворе растворимые основания диссоциируют, образуя катион металла и гидроксогруппу:

NaOH = Na+ + OH.

Многоосновные основания диссоциируют ступенчато:

Ba(OH)2 = BaOH+ + OH,

BaOH+ = Ba2+ + OH,

суммарное уравнение:

Ba(OH)2 = Ba2+ + 2OH.

2) Взаимодействие с кислотами (реакция нейтрализации)
NaOH + HCl = NaCl + H2O,

OH + H+ = H2O.

При реакции нейтрализации взаимодействие сводится к взаимодействию ионов водорода и гидроксогруппы с образованием малодиссоциирующего вещества – воды.

Многоосновные основания образуют основные и средние соли:

Ba(OH)2 + HCl = BaOHCl + H2O,

Ba(OH)2 + 2HCl = BaCl2 + 2H2O.

3) Взаимодействие с кислотными оксидами
 Ca(OH)2 + CO2 = CaCO3 + H2O,

4) Взаимодействие с солями

Fe2(SO4)3 + 6NaOH = 2Fe(OH)3 + 3Na2SO4,

2Fe3+ + 6OH = 2Fe(OH)3.

5) Термическое разложение

Cu(OH)2 = CuO + H2O,

2Fe(OH)3 = Fe2O3 + 3H2O .

Щелочи термическому разложению не подвергаются, например, гидроксид натрия кипит при 1400°С без разложения, из всех растворимых оснований разлагается только гидроксид лития:

2LiOH = Li2O + H2O.

6)Взаимодействие с неметаллами

6KOH + 3S = K2SO3 + 2K2S + 3H2O,

2NaOH + Cl2 = NaCl + NaOCl + H2O (на холоде).


himege.ru

Физические и химические свойства оснований

Все неорганические основания классифицируют на растворимые в воде (щелочи) – NaOH, KOH и нерастворимые в воде (Ba(OH)2, Ca(OH)2). В зависимости от проявляемых химических свойств среди оснований выделяют амфотерные гидроксиды.

Химические свойства оснований

При действии индикаторов на растворы неорганических оснований происходит изменение их окраски, так, при попадании в раствор основания лакмус приобретает синюю окраску, метилоранж – жёлтую, а фенолфталеин – малиновую.

Неорганические основания способны реагировать с кислотами с образованием соли и воды, причем, нерастворимые в воде основания взаимодействуют только с растворимыми в воде кислотами:

Cu(OH)2↓ + H2SO4 = CuSO4 +2H2O;

NaOH + HCl = NaCl + H2O.

Нерастворимые в воде основания термически неустойчивы, т.е. при нагревании они подвергаются разложению с образованием оксидов:

2Fe(OH)3 = Fe2O3 + 3 H2O;

Mg(OH)2 = MgO + H2O.

Щелочи (растворимые в воде основания) взаимодействуют с кислотными оксидами с образованием солей:

NaOH + CO2 = NaHCO3.

Щелочей также способны вступать в реакции взаимодействия (ОВР) с некоторыми неметаллами:

2NaOH + Si + H2O → Na2SiO3 +H2↑.

Некоторые основания вступают в реакции обмена с солями:

Ba(OH)2 + Na2SO4 = 2NaOH + BaSO4↓.

Амфотерные гидроксиды (основания) проявляют также свойства слабых кислот и реагируют с щелочами:

Al(OH)3 + NaOH = Na[Al(OH)4].

К амфотерным основаниям относятся гидроксиды алюминия, цинка. хрома (III) и др.

Физические свойства оснований

Большинство оснований – твердые вещества, которые характеризуются различной растворимостью в воде. Щелочи – растворимые в воде основания – чаще всего твердые вещества белого цвета. Нерастворимые в воде основания могут иметь различную окраску, например, гидроксид железа (III)- твердое вещество бурого цвета, гидроксид алюминия – твердое вещество белого цвета, а гидроксид меди (II) – твердое вещество голубого цвета.

Получение оснований

Основания получают разными способами, например, по реакции:

— обмена

CuSO4 + 2KOH → Cu(OH)2↓ + K2SO4;

K2CO3 + Ba(OH)2 → 2KOH + BaCO3↓;

— взаимодействия активных металлов или их оксидов с водой

2Li + 2H2O→ 2LiOH +H2↑;

BaO + H2O→ Ba(OH)2↓;

— электролиза водных растворов солей

2NaCl + 2H2O = 2NaOH + H2 ↑+ Cl2↑.

Примеры решения задач

ru.solverbook.com

Свойства оснований и кислот | Дистанционные уроки

24-Май-2013 | Нет комментариев | Лолита Окольнова

Задание А10  ЕГЭ по химии —

 

Характерные химические свойства оснований и амфотерных гидроксидов. Характерные химические свойства кислот

 

 

Темы, которые нужно знать:

 

И опять определять основные химические свойства оснований и кислот мы будем по таблице:

 

 

Химические свойства оснований:

 

1. Взаимодействие с неметаллами (идем по желтым стрелочкам):

 

при нормальных условиях гидроксиды не взаимодействуют с большинством неметаллов, исключение — взаимодействие щелочей с хлором:

 

Эту реакцию мы уже рассматривали много раз, например, в контексте свойств простых веществв.

 

2. Взаимодействие с кислотными оксидами с образованием солей:

 

2NaOH + SO2 = Na2SO3 + H2O

 

3. Взаимодействие с кислотами — реакция нейтрализации:

 

  • с образованием средних солей: 3NaOH + H3PO4 = Na3PO4 + 3H2O
    условие образования средней соли — избыток щелочи;
  • с образованием кислых солей: NaOH + H3PO4 = NaH2PO4 + H2O
    условие образования кислой соли — избыток кислоты;
  • с образованием основных солей: Cu(OH)2 + HCl = Cu(OH)Cl + H2O
    условие образования основной соли — избыток основания.

 

4. С солями основания реагируют при выпадении осадка в результате реакции, выделения газа или образования малодиссоциирующего вещества:

2NaOH + CuCl2 = Cu(OH)2 ↓+ 2NaCl

NaOH + NH4Cl = NaCl + NH4OH — малодисс.

 

Амфотерные гидроксиды:

 

Ко всем свойствам оснований добавляются взаимодействие с основаниями:

 

Al(OH)3 + NaOH = Na[Al(OH)4]

 

Zn(OH)2 + NaOH = Na2[Zn(OH)4]

 

Основные свойства кислот

 

1.  Кислоты взаимодействуют с металлами с выделением водорода, если металл стоит в ряду напряжений до водорода H:

 

2Na + 2HCl =2 NaCl + H2

 

с металлами после водорода Н взаимодействуют только кислоты — окислители и уже без выделения водорода:

Cu +2 H2SO4 = CuSO4 + SO2 +2 H2O

 

Кислоты — окислители могут взаимодействовать и с неметаллами:

 

S +2H2SO = 3SO2 +2 H2O

 

Какие кислоты являются окислителями? Те, в которых элемент кислотного остатка проявляет высшую (или близкую к высшей) степень окисления (соответствует номеру группы элемента):

 

Кислота — окислительСтепень окисления элемента
H2SO4степень окисления серы  S= +6
HNO3степень окисления азота N= +5
HClO4степень окисления хлора Cl= +7
HMnO4степень окисления марганца Mn= +7
h3Cr2O7степень окисления хрома Cr= +6

2. С основными и амфотерными оксидами и основаниями кислоты дают соли:

Na2O + 2HCl = 2NaCl + H2O

 

2Al(OH)3 +3 H2SO4 = Al2(SO4)3 + H2O

 

3. C солями кислоты реагируют, если образуется осадок, газ или малодиссоциирующее вещество:

 

AgNO3 + HCl = AgCl ↓ + HNO3

 

Na2CO + H2SO4= Na2SO + CO2 ↑+ H2O

 

Свойства оснований и кислот определяются самыми простыми реакциями обмена и замещения, дополнительно — различные окислительно-восстановительные с участием кислот — окислителей.

 

Кстати, в нашем вопросе с гидроксидом калия:

 

1) Осадок. газ или малодиссоциирующее вещество не образуется — не подходит;

 

2) С гидроксидом алюминия реакция пойдет, а вот с нитратом серебра — нет;

 

3) С гидроксидом цинка реакция пойдет, с оксидом — нет, т.к. он основной;

 

4) 2KOH + ZnCl2 = Zn(OH)2 ↓+ 2KCl  — выпадает осадок

 

6KOH + P2O5 (кислотный оксид) = 2K3PO4 + 3H2O

 

Ответ: 4)

Еще на эту тему:

Обсуждение: «Свойства оснований и кислот»

(Правила комментирования)

distant-lessons.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *