что такое гены, ДНК, в каком году расшифровали
Принципы наследственности были обозначены впервые в 1900-х годах, когда естественные науки получили развитие и ввели в обиход (с полным определением) понятия геном человека и ген, в частности. Их исследование дало возможность ученым открыть секрет наследственности, и стало толчком для изучения наследственных болезней и их природы.
…
Вконтакте
Google+
Мой мир
Геном человека: общие понятия
Чтобы разобраться, что такое гены и процессы наследования организмом определенных свойств и качеств, следует знать и понимать термины и основные положения. Краткое изложение основных понятий даст возможность более глубоко вникнуть в данную тему.
Гены человека – это части цепи ДНК (дезоксирибонуклеиновая кислота в виде макромолекул), которая задает последовательность определенных полипептидов (семейства аминокислот) и
Говоря простым языком, определенный ген содержит информацию о строении белка и несет ее от родительского организма к детскому, повторяя строение полипептидов и передавая наследственность.
Геном человека – это обобщающее понятие, обозначающее некоторое количество определённых генов. Впервые его ввел Ганс Винклер в 1920-м, однако спустя время несколько изменилось его изначальное значение.
Вначале он обозначал определенное количество хромосом (непарных и одинарных), а спустя время выяснилось, что в геноме 23 парных хромосомы и митохондриальная дезоксирибонуклеиновая кислота.
Генетическая информация – это данные которые заключены в ДНК, и несущие порядок построения белков в виде кода из нуклеотидов. Стоит также упомянуть, что подобная информация находится внутри и вне границ клетки.
Гены человека исследовались на протяжении многих лет, за которые было претворено в жизнь множество экспериментов. До сих пор проводятся опыты, которые дают ученым новую информацию.Благодаря последним исследованиям стало ясно, что не всегда четкая и последовательная структура наблюдается в дезоксирибонуклеиновых кислотах.
Существуют так называемые прерывистые гены, связи которых прерываются, что делает неверными все предыдущее теории о постоянстве этих частиц. В них время от времени происходят изменения, которые влекут за собой изменения и в структуре дезоксирибонуклеиновых кислот.
История открытия
Впервые научный термин был обозначен только в 1909 году ученым Вильгельмом Иогансеном, который был выдающимся ботаником в Дании.
Важно! В 1912 году появилось слово «генетика», которое стало названием целого отдела биологии. Именно он занимается изучением генов человека.Исследование частицы началось
- В 1868 году известный ученый Дарвин выдвинул гипотезу о пангенезе. В ней он описывал отделение геммулы. Дарвин считал, что геммула – это определенная часть клетки, из которой затем образовываются половые клетки.
- Через несколько лет Гуго де Фриз сформировал свою собственную теорию, отличную от дарвиновской, в которой описал процесс пангенеза внутри клеток. Он считал, что в каждой клетке есть частица, и она ответственна за некоторые свойства наследования вида. Он обозначил эти частицы как «пангены». Отличия двух гипотез заключается в том, что Дарвин считал геммулы частями тканей и внутренних органов, независимо от вида животного, а де Фриз представлял свои пангены как признаки наследования внутри конкретного вида.
- В. Иогансен в 1900 году определил наследственный фактор как ген, взяв вторую часть от термина, использованного де Фризом. Он использовал слово для определения «зачатка», той частицы, которая является наследственной. При этом ученый подчеркивал независимость термина от ранее выдвинутых теорий.
Изучением наследственного фактора уже достаточно давно занимались биологи и зоологи, но только с начала 20-го века генетика начала развиваться с огромной скоростью, открывая для людей тайны наследования.
Это интересно! Как мы произошли от обезьяны: теория Дарвина о происхождении человека
Расшифровка генома человека
С того момента, как ученые открыли наличие в организме человека гена, они стали исследовать вопрос информации, заключенной в нем. Уже более 80 лет ученые пытаются расшифровать ее. На сегодняшний день они добились в этом значительных успехов, что дало возможность влиять на наследственные процессы и менять структуру клеток у следующего поколения.
История расшифровки ДНК состоит из нескольких определяющих моментов:
- 19 век – начало изучения нуклеиновых кислот.
- 1868 год – Ф. Мишер впервые выделяет из клеток нуклеин или ДНК.
- В середине 20 века О. Эвери и Ф. Гриффит выясняют при помощи опыта, проведенного на мышах, что за процесс трансформации бактерий отвечает именно нуклеиновая кислота.
- Первый человеком, кто показал миру ДНК стал Р. Франклин. Спустя несколько лет после открытия нуклеиновой кислоты он делает фотографию ДНК, случайным образом используя рентген при исследовании структуры кристаллов.
- В 1953 году дано точное определение принципу воспроизводства жизни у всех видов.
Внимание! С того времени, как впервые общественности предоставили двойную спираль ДНК, произошло множество открытий, давших возможность понять природу ДНК и механизмы ее работы.
Человеком, который открыл ген, принято считать Грегора Менделя, впервые обнаружившего определенные закономерности в наследственной цепи.
А вот расшифровка ДНК человека произошла на основе открытия другого ученого – Фредерика Сенгера, который разработал методы чтения последовательностей белковых аминокислот и последовательность построения самой ДНК.
Благодаря работе множества ученых за три последних века были выяснены процессы формирования, особенности, и сколько генов находится в геноме человека.
Содержание программы «Геном человека»
В 1990 году начался международный проект «Геном человека», которым руководил Джеймс Уотсон. Его целью было выяснить, в какой последовательности выстраиваются нуклеотиды в ДНК, и выявить около 25 000 генов в человеке. Благодаря этому проекту человек должен был получить полное представление о формировании ДНК и расположению всех его составляющих частей, а также механизм построения гена.
Стоит уточнить, что программа не ставила своей задачей определить всю последовательность нуклеиновой кислоты в клетках, а лишь только некоторых областей. Началась она в 1990 году, но только в 2000 был выпущен черновик работы, а полное исследование
Цели и задачи
Как любой научный проект, «Геном человека» ставил перед собой конкретные цели и задачи. Изначально ученые собирались выявить последовательности 3 млрд нуклеотидов и более. Затем отдельные группы исследователей выразили желание попутно определить также последовательность биополимеров, которая бывает аминокислотной или нуклеотидной. В итоге главные цели проекта выглядели следующим образом:
- Создать карту генома;
- Создать карту человеческих хромосом;
- Выявить последовательность формирования полипептидов;
- Сформировать методологию хранения и анализа собранной информации;
- Создать технологию, которая поможет в достижении всех указанных выше целей.
Данный список задач упускает не менее важную, но не такую очевидную – это изучение этических, правовых и социальных последствий подобных исследований. Вопрос наследственности может вызывать разногласия среди людей и повлечь серьезные конфликты, поэтому ученые поставили за цель обнаружить решения этих конфликтов до их возникновения.
Достижения
Наследственные последовательности – это уникальное явление, которое наблюдается в организме каждого человека в той или иной форме.
Именно поэтому все данные, которые опубликовали исследователи проекта, не имеют точной и определенной последовательности. Несмотря на это, главным достижением является выполнение всех поставленных целей.
Проект достиг всех поставленных задач раньше, чем исследователи предполагали. К концу проекта они расшифровали около 99,99 % ДНК, хотя ученые ставили перед собой задачу секвенировать только 95% данных. Сегодня, несмотря на успех проекта, остаются все еще неисследованные участки
В итоге исследовательской работы было определено сколько генов в организме человека (около 20—25 тыс. генов в геноме), и все они охарактеризованы:
- количество;
- расположение;
- структурно-функциональные особенности.
Геном человека — исследования, расшифровка
Расшифровка человеческого генома
Вывод
Все данные будут подробно изложены в генетической карте человеческого организма. Претворение в жизнь такого сложного научного проекта дало не только колоссальные теоретические знания для фундаментальных наук, но и оказало невероятное влияние на само понимание наследственности. Это в свою очередь, не могло не отразиться на процессах предупреждения и лечения наследственных болезней.
Данные, полученные учеными, помогли ускорить другие молекулярные исследования и способствовать эффективному поиску генетической основы в заболеваниях, передающихся по наследству, и предрасположенности к ним. Результаты смогут повлиять на обнаружение соответствующих лекарств для профилактики множества заболеваний: атеросклероза, сердечной ишемии, болезней психического и онкологического характера.
uchim.guru
Гены человека — Что нужно знать про геном?
Что такое геном человека? Как давно используется этот термин в науке и медицине, и почему данное понятие имеет такое большое значение в наше время?
Геном человека — совокупность наследственного материала, заключенного в клетке человека. Он состоит из 23 пар хромосом.
Гены – это отдельные части ДНК. Каждый из них отвечает за какой-то признак или часть тела: рост, цвет глаз и т.п.
Когда ученым удастся полностью «расшифровать» записанную на ДНК информацию, люди смогут бороться с теми болезнями, которые передаются по наследству. Более того, возможно тогда удастся решить проблему старения.
Ранее считалось, что количество генов в нашем организме составляет более сотни тысяч. Однако международные исследования последнего времени подтвердили, что в нашем организме приблизительно 28 000 генов. На сегодняшний день из них исследовано только несколько тысяч.
Гены неравномерно распределены по хромосомам. Отчего это так – ученые пока не знают.
Клетки тела все время считывают информацию, которая записана в ДНК. Каждая из них выполняет свою работу: разносит по телу кислород, уничтожает вирусы и бактерии и т.п.
Но существуют и особые клетки – половые. У мужчин это сперматозоиды, а у женщин – яйцеклетки. В них содержится не 46 хромосом, а ровно половина – 23.
Когда половые клетки сливаются, в новом организме оказывается полный набор хромосом: половина от отца и половина от матери.
Вот почему дети в чем-то похожи на каждого из своих родителей.
За один и тот же признак обычно отвечают несколько генов. Например, наш рост зависит от 16 единиц ДНК. В то же время некоторые гены влияют сразу на несколько признаков (так, обладатели рыжих волос имеют светлый оттенок кожи и веснушки).
Цвет глаз у человека определяется двумя генами, и тот, который отвечает за карие глаза – доминантный. Это означает, что у него больше шансов проявиться при «встрече» с другим геном.
Поэтому у кареглазого папы и голубоглазой мамы малыш, скорее всего, будет кареглазым. Темные волосы, густые брови, ямочки на щеках и подбородке – тоже доминантные признаки.
А вот ген, отвечающий за голубые глаза – рецессивный. Такие гены проявляются значительно реже, если есть у обоих родителей.
Надеемся, что теперь вы знаете, что собой представляет геном человека. Конечно, в ближайшее время наука может удивить нас новыми открытиями в этой области. Но это дело будущего.
Если вам нравятся интересные факты обо всем – подписывайтесь на InteresnyeFakty.org в любой социальной сети. С нами всегда интересно!
Понравился пост? Нажми любую кнопку:
Интересные факты:
interesnyefakty.org
Реферат Геном человека
скачатьРеферат на тему:
План:
- Введение
- 1 Особенности
- 1.1 Хромосомы
- 1.2 Гены
- 1.3 Регуляторные последовательности
- 1.4 Прочие объекты в геноме
- 1.4.1 Псевдогены
- 2 Список литературы Примечания
Введение
Графическое представление нормального человеческого кариотипа.
Геном человека — геном биологического вида Homo sapiens. В большинстве нормальных клеток человека содержится полный набор составляющих геном 46 хромосом: 44 из них не зависят от пола (аутосомные хромосомы), а две — X-хромосома и Y-хромосома — определяют пол (XY — у мужчин или ХХ — у женщин). Хромосомы в общей сложности содержат приблизительно 3 миллиарда пар оснований нуклеотидов ДНК, образующих 20000—25000 генов. [1] В ходе выполнения проекта «Геном человека» содержимое хромосом находящихся в стадии интерфаза в клеточном ядре (вещество эухроматин), было выписано в виде последовательности символов. В настоящее время эта последовательность активно используется по всему миру в биомедицине. В ходе исследований выяснилось, что человеческий геном содержит значительно меньшее число генов, нежели ожидалось в начале проекта. Только для 1,5 % всего материала удалось выяснить функцию, остальная часть составляет так называемую мусорную ДНК. [2] В эти 1,5 % входят гены, которые кодируют РНК и белки, а также их регуляторные последовательности, интроны и, возможно, псевдогены).
1. Особенности
1.1. Хромосомы
Геном человека состоит из 23 пар хромосом (в сумме 46 хромосом), где каждая хромосома содержит сотни генов разделённых межгенным пространством. Межгенное пространство содержит регуляторные участки и ничего не кодирующую ДНК.
В геноме присутствует 23 пары различных хромосомы: 22 из них не влияют на пол, а две хромосомы (X и Y) задают пол. Хромосомы с 1-ой по 22-ую пронумерованы в порядке уменьшения их размера. Соматические клетки обычно имеют 23 хромосомных пары: по одной копии хромосом с 1-ой по 22-ую от каждого родителя соответственно, а также X хромосому от матери и Y или X хромосому от отца. В общей сложности получается, что в соматической клетке содержится 46 хромосом.
1.2. Гены
По результатам проекта Геном человека, количество генов в геноме человека составляет около 28000 генов. Начальная оценка была более чем 100 тысяч генов. В связи с усовершенствованием методов поиска генов (предсказание генов) предполагается дальнейшее уменьшение числа генов.
Интересно,что число генов человека не намного превосходит число генов у более простых модельных организмов, например, круглого червя Caenorhabditis elegans или мухи Drosophila melanogaster. Так происходит из-за того, что в человеческом геноме широко представлен альтернативный сплайсинг. Альтернативный сплайсинг позволяет получить несколько различных белковых цепочек с одного гена. В результате человеческий протеом оказывается значительно больше протеома рассмотренных организмов. Большинство человеческих генов имеют множественные экзоны, и интроны часто оказываются значительно более длинными, чем граничные экзоны в гене.
Гены неравномерно распределены по хромосомам. Каждая хромосома содержит богатые и бедные генами участки. Эти участки коррелируют с хромосомными бандами (полосы поперёк хромосомы, которые видно в микроскоп) и с CG-богатыми участками. В настоящий момент значимость такого неравномерного распределения генов не вполне изучена.
Кроме кодирующих белок генов человеческий геном содержит тысячи РНК-генов, включая транспортную РНК (tRNA), рибосомную РНК, микро РНК (microRNA) и прочие не кодирующие белок РНК последовательности.
1.3. Регуляторные последовательности
В человеческом геноме найдено множество различных последовательностей, отвечающих за регуляцию гена. Под регуляцией понимается контроль экспрессии гена (процесс построения матричной РНК по участку молекулы ДНК). Обычно это короткие последовательности, находящиеся либо рядом с геном, либо внутри гена. Иногда они находятся на значительном расстоянии от гена (энхансеры). Систематизация этих последовательностей, понимание механизмов работы, а также вопросы взаимной регуляции группы генов группой соответствующих ферментов на текущий момент находятся только на начальной стадии изучения. Взаимная регуляция групп генов описывается с помощью сетей регуляции генов. Изучение этих вопросов находится на стыке нескольких дисциплин: прикладной математики, высокопроизводительных вычислений и молекулярной биологии. Знания появляются из сравнений геномов различных организмов и благодаря достижениям в области организации искусственной транскрипции гена в лабораторных условиях.
Идентификация регуляторных последовательностей в человеческом геноме частично была произведена на основе эволюционной консервативности (свойства сохранения важных фрагментов хромосомной последовательности, которые отвечают примерно одной и той же функции). Согласно некоторой гипотезе, в эволюционном дереве ветвь разделяющая человека и мышь появилась приблизительно 70-90 миллионов лет назад [3]. Для двух геномов компьютерными методами были выявлены консервативные последовательности (последовательности идентичные или очень слабо отличающиеся в сравниваемых геномах) в не кодирующей части и оказалось, что они активно участвуют в механизмах регуляции генов для обоих организмов [4].
Другой подход получения регуляторных последовательностей основан на сравнении генов человека и рыбы фугу. Последовательности генов и регуляторные последовательности у человека и рыбы фугу существенно схожи, однако геном рыбы фугу содержит в 8-раз меньший объём «мусорной ДНК». Такая «компактность» рыбьего генома позволяет значительно легче искать регуляторные последовательности для генов [5].
1.4. Прочие объекты в геноме
Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома [2]. Не учитывая известные регуляторные последовательности, в человеческом геноме содержится масса объектов, которые выглядят как нечто важное, но функция которых, если она вообще существует, на текущий момент не выяснена. Фактически эти объекты занимают до 97 % всего объёма человеческого генома. К таким объектам относятся:
- повторы
- тандемные повторы
- сателлитная ДНК
- минисателлиты
- микросателлиты
- диспергированные повторы
- SINE-ы (short interspersed nuclear element)
- LINE-ы (long interspersed nuclear element)
- тандемные повторы
- транспозоны
- Ретротранспозоны
- LTR-ы (long terminal repeat)
- Не LTR-ы
- ДНК транспозоны
- Ретротранспозоны
- псевдогены
Представленная классификация не является исчерпывающей. Большая часть объектов вообще не классифицирована мировой научной общественностью на текущий момент.
Соответствующие последовательности, скорее всего, являются эволюционным артефактом. В современной версии генома их функция выключена, и на эти участки генома многие ссылаются как на «мусорную ДНК». Однако существует масса свидетельств, которая говорит о том, что эти объекты обладают некоторой функцией, которая не вполне понятна на текущий момент.
1.4.1. Псевдогены
Эксперименты с ДНК-микрочипами показали, что достаточно серьёзный объём участков генома, не являющихся генами, вовлечён в процесс транскрипции [6].
2. Список литературы
- Тарантул В. З. Геном человека. Энциклопедия, написанная четырьмя буквами. — Языки славянской культуры, 2003. — 396 с. — ISBN 5-94457-108-X.
- Ридли Мэтт. Геном: автобиография вида в 23 главах. — М.: Эксмо, 2008. — 432 с. — ISBN 5-699-30682-4
Примечания
- International Human Genome Sequencing Consortium (2004). «Finishing the euchromatic sequence of the human genome.». Nature 431 (7011): 931-45. PMID 15496913 — www.ncbi.nlm.nih.gov/pubmed/15496913?dopt=Abstract. [1] — www.nature.com/nature/journal/v431/n7011/full/nature03001.html
- ↑ 12International Human Genome Sequencing Consortium (2001). «Initial sequencing and analysis of the human genome.». Nature 409 (6822): 860-921. PMID 11237011 — www.ncbi.nlm.nih.gov/pubmed/11237011?dopt=Abstract. [2] — www.nature.com/nature/journal/v409/n6822/full/409860a0.html
- Nei M, Xu P, Glazko G (2001). «Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. — www.pnas.org/cgi/content/full/051611498». Proc Natl Acad Sci U S A 98 (5): 2497-502. PMID 11226267 — www.ncbi.nlm.nih.gov/pubmed/11226267?dopt=Abstract.
- Loots G, Locksley R, Blankespoor C, Wang Z, Miller W, Rubin E, Frazer K (2000). «Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons.». Science 288 (5463): 136-40. PMID 10753117 — www.ncbi.nlm.nih.gov/pubmed/10753117?dopt=Abstract. Summary — www.lbl.gov/Science-Articles/Archive/mouse-dna-model.html
- Meunier, Monique Genoscope and Whitehead announce a high sequence coverage of the Tetraodon nigroviridis genome — www.cns.fr/externe/English/Actualites/Presse/261001_1.html (англ.). Genoscope.
- Claverie J (2005). «Fewer genes, more noncoding RNA.». Science 309 (5740): 1529-30. PMID 16141064 — www.ncbi.nlm.nih.gov/pubmed/16141064?dopt=Abstract.
wreferat.baza-referat.ru
Геном человека: общие сведения
Геном человека: общие сведения
Геном человека состоит из приблизительно 3-х миллиардов пар оснований и содержит от 50000 до100000 генов.
Последние годы на рубеже двух столетий ознаменованы стремительным прогрессом в области молекулярной генетики человека. Это связано, прежде всего, с работами по расшифровке генома человека, проведенными в рамках международных и национальных программ Геном человека.
Первый (черновой) вариант первичной структуры генома человека (в котором была приведена информация о первичной структуре 90% генома) был опубликован в 2001 г. ( Lander et al, 2001 , Venter et al, 2001 ), и стало очевидно, что многие представления об особенностях организации генома являются неверными. Так, даже это черновое секвенирование генома человека резко снизило оценку числа генов в геноме - с восьмидесяти — ста тысяч ( Киселев ЛЛ, 2000 , Fields et al, 1994 , Liang et al, 2000 ) до чуть более чем 30000 генов. Дальнейшее развитие работ по секвенированию генома (с публикацией, как считается, окончательного варианта его последовательности) позволило уточнить первичную структуру ряда участков ДНК, но не решило окончательно вопрос о числе белок-кодирующих генов в геноме человека. Сопоставление различных баз данных по первичной структуре ДНК и экспрессирующихся последовательностей генома человека (таких как UCSC, RefSeq, Ensembl) говорит о том, что число белок-кодирующих генов составляет около 30000. Так, в базе данных RefSeq (4 версия) приведена информация о 27000 транскриптах, а в базе данных Ensembl — о 29800 транскриптах. Около 10% транскриптов представлено только в одной из баз данных. Кроме того, необходимо учитывать тот факт, что примерно у половины всех описанных транскриптов в настоящее время не известна функция.
Определение последовательности генома человека послужило основой для развития как структурной геномики (в рамках которой исследуется собственно первичная структура генома), так и новых областей геномики — таких как функциональная геномика, посвященная всем аспектам работы генома — в первую очередь анализу транскриптома (изучение спектра мРНК в разных типах клеток) и протеома (исследование белкового набора в разных тканях). В последнее время все более активно развиваются исследования метаболома - набора клеточных метаболитов. Совместный анализ транскриптома, протеома и метаболома в разных типах тканей и клеток в процессе онтогенеза в норме и при различных заболеваниях — ключевая задача сегодняшнего этапа развития геномики человека. Структурную и функциональную геномику можно рассматривать как аналог нормальной анатомии и нормальной физиологии в классической медицине. И так же как в медицине нормальная анатомия является основой для изучения патологической анатомии, так и структурная геномика является основой для патологической анатомии генома — изучения роли в патологии человека различных изменений в структуре генома.
Ссылки:
medbiol.ru
Геном человека — это… Что такое Геном человека?
Графическое представление нормального человеческого кариотипа.Геном человека — совокупность наследственного материала, заключенного в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две аутосомные хромосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований[1].
В ходе выполнения проекта «Геном человека» была определена последовательность ДНК всех хромосом и митохондриальной ДНК. В настоящее время эти данные активно используется по всему миру в биомедицинских исследованиях. Полное секвенирование выявило, что человеческий геном содержит 20 000—25 000 генов[2], что значительно меньше, чем ожидалось в начале проекта. Только 1,5 % всего генетического материала кодирует белки или функциональную РНК. Остальная часть является некодирующей ДНК, которую часто называют мусорной ДНК[3].
Особенности
Хромосомы
Геном человека состоит из 23 пар хромосом (в сумме 46 хромосом), где каждая хромосома содержит сотни генов, разделённых межгенным пространством. Межгенное пространство содержит регуляторные участки и ничего не кодирующую ДНК.В геноме присутствует 23 пары хромосом: 22 пары аутосомных хромосом, а также пара половых хромосомы X и Y. У человека мужской пол является гетерогаметным и определяется наличием Y хромосомы. Нормальные диплоидные соматические клетки имеют 46 хромосом.
Гены
По результатам проекта Геном человека, количество генов в геноме человека составляет около 28000 генов. Начальная оценка была более чем 100 тысяч генов. В связи с усовершенствованием методов поиска генов (предсказание генов) предполагается дальнейшее уменьшение числа генов.
Число генов человека не намного превосходит число генов у более простых организмов, например, круглого червя Caenorhabditis elegans или мухи Drosophila melanogaster. Так происходит из-за того, что в человеческом геноме широко представлен альтернативный сплайсинг. Альтернативный сплайсинг позволяет получить несколько различных белковых цепочек с одного гена. В результате человеческий протеом оказывается значительно больше протеома рассмотренных организмов. Большинство человеческих генов имеют множественные экзоны, и интроны часто оказываются значительно более длинными, чем граничные экзоны в гене.
Гены неравномерно распределены по хромосомам. Каждая хромосома содержит богатые и бедные генами участки. Эти участки коррелируют с хромосомными бандами (полосы поперёк хромосомы, которые видно в микроскоп) и с CG-богатыми участками. В настоящий момент значимость такого неравномерного распределения генов не вполне изучена.
Кроме кодирующих белок генов человеческий геном содержит тысячи РНК-генов, включая транспортную РНК (tRNA), рибосомную РНК, микро РНК (microRNA) и прочие не кодирующие белок РНК последовательности.
Регуляторные последовательности
В человеческом геноме найдено множество различных последовательностей, отвечающих за регуляцию гена. Под регуляцией понимается контроль экспрессии гена (процесс построения матричной РНК по участку молекулы ДНК). Обычно это короткие последовательности, находящиеся либо рядом с геном, либо внутри гена. Иногда они находятся на значительном расстоянии от гена (энхансеры). Систематизация этих последовательностей, понимание механизмов работы, а также вопросы взаимной регуляции группы генов группой соответствующих ферментов на текущий момент находятся только на начальной стадии изучения. Взаимная регуляция групп генов описывается с помощью сетей регуляции генов. Изучение этих вопросов находится на стыке нескольких дисциплин: прикладной математики, высокопроизводительных вычислений и молекулярной биологии. Знания появляются из сравнений геномов различных организмов и благодаря достижениям в области организации искусственной транскрипции гена в лабораторных условиях.
Идентификация регуляторных последовательностей в человеческом геноме частично была произведена на основе эволюционной консервативности (свойства сохранения важных фрагментов хромосомной последовательности, которые отвечают примерно одной и той же функции). Согласно некоторой гипотезе, в эволюционном дереве ветвь разделяющая человека и мышь появилась приблизительно 70-90 миллионов лет назад[4]. Для двух геномов компьютерными методами были выявлены консервативные последовательности (последовательности идентичные или очень слабо отличающиеся в сравниваемых геномах) в не кодирующей части и оказалось, что они активно участвуют в механизмах регуляции генов для обоих организмов[5].
Другой подход получения регуляторных последовательностей основан на сравнении генов человека и рыбы фугу. Последовательности генов и регуляторные последовательности у человека и рыбы фугу существенно схожи, однако геном рыбы фугу содержит в 8-раз меньший объём «мусорной ДНК». Такая «компактность» рыбьего генома позволяет значительно легче искать регуляторные последовательности для генов[6].
Прочие объекты в геноме
Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома[3]. Не учитывая известные регуляторные последовательности, в человеческом геноме содержится масса объектов, которые выглядят как нечто важное, но функция которых, если она вообще существует, на текущий момент не выяснена. Фактически эти объекты занимают до 97 % всего объёма человеческого генома. К таким объектам относятся:
Представленная классификация не является исчерпывающей. Большая часть объектов вообще не классифицирована мировой научной общественностью на текущий момент.
Соответствующие последовательности, скорее всего, являются эволюционным артефактом. В современной версии генома их функция выключена, и на эти участки генома многие ссылаются как на «мусорную ДНК». Однако существует масса свидетельств, которая говорит о том, что эти объекты обладают некоторой функцией, которая не вполне понятна на текущий момент.
Псевдогены
Эксперименты с ДНК-микрочипами показали, что много участков генома, не являющихся генами, вовлечены в процесс транскрипции[7].
Вирусы
Около 1 % в геноме человека занимают встроенные гены ретровирусов (эндогенные ретровирусы). Эти гены обычно не приносят пользы хозяину, но существуют и исключения. Так, около 43 млн. лет назад в геном предков обезьян и человека попали ретровирусные гены, служившие для построения оболочки вируса. У человека и обезьян эти гены участвуют в работе плаценты.
Большинство ретровирусов встроились в геном предков человека свыше 25 млн. лет назад. Среди более молодых человеческих эндогенных ретровирусов полезных на настоящий момент не обнаружено[8],[9].
См. также
Примечания
- ↑ Talking glossary of genetic terms: genome (англ.). National Human Genome Research Institute. Архивировано из первоисточника 4 ноября 2012. Проверено 1 ноября 2012.
- ↑ International Human Genome Sequencing Consortium (2004). «Finishing the euchromatic sequence of the human genome.». Nature 431 (7011): 931-45. PMID 15496913. [1]
- ↑ 1 2 International Human Genome Sequencing Consortium (2001). «Initial sequencing and analysis of the human genome.». Nature 409 (6822): 860-921. PMID 11237011. [2]
- ↑ Nei M, Xu P, Glazko G (2001). «Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms.». Proc Natl Acad Sci U S A 98 (5): 2497-502. PMID 11226267.
- ↑ Loots G, Locksley R, Blankespoor C, Wang Z, Miller W, Rubin E, Frazer K (2000). «Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons.». Science 288 (5463): 136-40. PMID 10753117. Summary
- ↑ Meunier, Monique Genoscope and Whitehead announce a high sequence coverage of the Tetraodon nigroviridis genome (англ.). Genoscope.(недоступная ссылка — история) Проверено 12 сентября 2006.
- ↑ Claverie J (2005). «Fewer genes, more noncoding RNA.». Science 309 (5740): 1529-30. PMID 16141064.
- ↑ Eugene D. Sverdlov. Retroviruses and primate evolution. BioEssays Volume 22, Issue 2, pages 161–171, February 2000
- ↑ Anders L Kjeldbjerg, Palle Villesen, Lars Aagaard, Finn Skou Pedersen. Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution // BMC Evolutionary Biology. 2008. V. 8. P. 266.
Список литературы
- Тарантул В. З. Геном человека. Энциклопедия, написанная четырьмя буквами. — Языки славянской культуры, 2003. — 396 с. — ISBN 5-94457-108-X.
- Ридли Мэтт. Геном: автобиография вида в 23 главах. — М.: Эксмо, 2008. — 432 с. — ISBN 5-699-30682-4
Ссылки
dic.academic.ru
Геном человека
Одна из задач международной программы «Геном человека»(HUGO) — определить последовательность 3.3х109 нуклеотидов ДНК всего генома человека, представленного 22 аутосомами и двумя половыми хромосомами: X и Y.
Координационный центр HUGO находится в американском городе Бетесда, недалеко от Вашингтона, и относится к системе национальных институтов здоровья (National Institutes of Health). Возглавляет его Фрэнсис Коллинз — директор Института геномных исследований в Бетесде. Центр координировал научную работу в шести странах — Германии, Англии, Франции, Японии, Китае и США. Но национальные программы по геномике сегодня имеют более 20 стран, а членами HUGO являются представители более 50 стран. Национальные программы есть в развивающихся странах, например в Китае и Бразилии, где правительства понимают важность геномной программы. Сейчас Россию в научном совете представляет профессор Н. К. Янковский
Методический аспект проблемы отлично отработан и сегодня представляет собой заводскую технологию — дорогостоящую ( По не вполне официальным данным, на государственные программы под эгидой HUGO было истрачено более трех миллиардов долларов США, то есть в среднем по одному доллару на одну нуклеотидную пару из генома человека. «Селера» истратила примерно столько же. Правда, она их истратила за шесть лет. Государственные же программы примерно ту же сумму использовали за 10 лет. То есть интенсивность использования денег в частной компании оказалась выше.), очень тонкую, но технологию.
Дезоксирибонуклеиновая кислота, или ДНК, впервые была выделена из клеточных ядер. Поэтому ее и назвали нуклеиновой (греч. nucleus — ядро). ДНК состоит из цепочки нуклеотидов с четырьмя различными основаниями: аденином (А), гуанином (G), цитозином (С) и тимином (Т). ДНК почти всегда существует в виде двойной спирали, то есть она представляет собой две нуклеотидные цепи, составляющие пару. Вместе их удерживает так называемая комплементарность пар оснований. «Комплементарность» означает, что когда А и Т в двух цепях ДНК расположены друг против друга, между ними спонтанно образуется связь. Аналогично комплиментарную пару образуют G и С. В клетках человека содержится 46 хромосом. Длина генома человека (все ДНК в хромосомах) может достигать двух метров и состоит из трех миллиардов нуклеотидных пар. Ген — это единица наследственности. Он представляет собой часть молекулы ДНК и содержит закодированную информацию об аминокислотной последовательности одного белка или рибонуклеиновой кислоты (РНК).
Расшифровка ДНК стала реальностью после того, как в середине 70-х годов были разработаны два различных метода расшифровки нуклеотидной последовательности ДНК.
Хронологически первым был метод Максама — Гилберта заключающийся в том, что молекулу ДНК разбивают на кусочки, затем эти кусочки подвергают химическим воздействиям, а потом специальным образом обрабатывают. Ученые смотрят, что при этом происходит с нуклеотидной последовательностью, и на основании этого делают вывод о порядке расположения нуклеотидов друг за другом в каждом фрагменте ДНК.
Английский ученый Фред Сэнгер предложил другой способ расшифровки структуры ДНК. Согласно методу Сэнгера молекулу ДНК с помощью специальной обработки ферментами не только расщепляют на фрагменты, но и «расплетают» ее двойную спираль на две нити. Потом по каждому из полученных обрывков, состоящих из отдельных нуклеотидных «нитей», с помощью специальных химических «затравок» восстанавливается недостающая вторая нить нуклеотидов. Но не полностью — ее синтез обрывают на разных нуклеотидах. При этом получался набор цепей ДНК с непрерывно изменяющейся длиной — «лесенка». Фрагменты разной длины помечены на концах флуоресцентной меткой, чтобы их было легко обнаружить.
За разработку этих методов Гилберт и Сэнгер получили Нобелевскую премию. Интересно, что для Сэнгера эта премия уже вторая, первую он получил за расшифровку аминокислотной последовательности белка инсулина. Случай в науке уникальный — один и тот же человек первым расшифровал структуру и белка и ДНК!
Все автоматы-секвенаторы построены по принципу метода Сэнгера, поскольку он оказался более удобным для автоматизации и комьютерной регистрации. Выпущено огромное количество автоматов и стандартных наборов реактивов для анализа. По сути, секвенирование (то есть определение нуклеотидной последовательности ДНК) стало рутинной лаборантской работой. А метод Максама-Гилбера имеет скорее историческое, чем практическое значение.
Еще 15-20 лет назад расшифровка нуклеотидной последовательности в 1000 нуклеотидов считалась почти научным подвигом, за это можно было сразу получить степень доктора наук. Но уже к 1990 году секвенирование ДНК стало массовой технологией. А сейчас квалифицированный лаборант проделывает такую работу меньше, чем за один день
К настоящему времени Проект практически выполнен, причем 85% информации абсолютно достоверны, т.е. последовательность ДНК в этом объеме перепроверена не один раз и разночтения больше не выявляются. Примерное число генов человека — 30 000 ( а не 80000, как считалось еще год назад) Что удивляет самих ученых — насколько малая часть человеческого генома напрямую участвует в построении организма: 23 пары хромосом содержат весь чертеж человеческой жизни. Генетические инструкции по формированию личности занимают меньше 2,5 сантиметра на двухметровой ленте ДНК, заключенной практически внутри каждой клетки тела. Удивило и малое количество генов, несущих эти инструкции, — всего в пять раз больше, чем нужно для взращивания мухи.
Обнаружилось, что из 3 миллиардов генетических букв, составляющих человеческие гены, которые образуют ДНК, 99,9 процента одни и те же. Очевидно, всего одна десятая процента и делает нас теми, кто мы есть, — умными или глупыми, добрыми или, наоборот, жестокими и так далее. Причем основную ответственность за генетические ошибки несет мужская сперма, в которой содержится вдвое больше мутаций, чем в женской яйцеклетке, но она же является и главным источником эволюционных инноваций.
В 80-е годы ученые брались за расшифровку только коротких молекул ДНК: вирусных, митохондриальных или плазмидных. (Плазмида — кольцевая молекула ДНК, находящаяся в цитоплазме бактерий и состоящяя из небольшого количества генов.) Но первые шаги были сделаны. И вот тогда в 1988 году наиболее отчаянные исследователи выступили с предложением — расшифровать геном человека.
В Америке таким пионером стал Джеймс Уотсон — один из двух «отцов» двойной спирали ДНК, а в России — академик Александр Александрович Баев, известный специалист в области генной инженерии. В обеих странах реакция ученых на эти предложения была неоднозначной.
Оппоненты расшифровки генома считали поставленную задачу нереальной, ведь ДНК человека в десятки тысяч раз длиннее молекул ДНК вирусов или плазмид. Второй аргумент против: проект потребует миллиарды долларов, которых недосчитаются другие области науки, поэтому геномный проект затормозит развитие науки в целом. И наконец, если все-таки деньги найдутся и геном человека будет расшифрован, то полученная в результате информация не оправдает затрат.
Но вот здесь и сыграли свою роль научный авторитет и неутомимая энергия Уотсона. В науке он считается полубогом и был и остается очень яркой личностью. Он объехал пол-Америки, выступая в научных коллективах, написал много статей в газетах, полемизировал с противниками. После того как Уотсон встретился с президентом США, проблему генома вынесли на обсуждение в конгресс, и была принята национальная программа США «Геном человека«.
Над этой программой работали учёные многих стран мира, но по сути дела в азартной игре под названием «Кто первый крикнет ура?», то есть сообщит об успешной расшифровке генома, играли две команды ученых — из частной американской корпорации из штата Мериленд Celera Genomics и Human Genome Project, финансируемого из правительственных фондов.
В распоряжении Celera находится суперкомпьютер , который позволяет складывать выявляемые «кирпичики» ДНК в значимую последовательность, но, как отмечали некоторое время назад российские эксперты, «Celera стоит на плечах у Генома Человека», то есть использует то, что уже сделано по глобальному проекту. Дело в том, что «Селера» подключилась к программе не сначала, а когда проект уже шел полным ходом. Спохватились крупные фармацевтические компании, осознавшие, что, если вся информация о геноме окажется в открытом доступе, они могут лишиться интеллектуальной собственности — нечего будет патентовать. Озабоченные этим, они вложили миллиарды долларов в «Селеру Геномикс». Во главе ее встал Крейг Вентер, который имел огромный опыт научной работы по государственной программе «Геном человека». Кроме того, он оказался выдающимся организатором.
Появление «Селеры» сыграло позитивную роль, потому что те, кто был занят в государственных программах, почувствовали жесткую конкуренцию. Кроме того, после создания компании остро встал вопрос об эффективности использования государственных капиталовложений. Ведь Вентер заявил, что все публичные программы малоэффективны и что в его фирме геномсеквенируют быстрее и дешевле. Научному сообществу срочно пришлось повышать эффективность работы по расшифровке генома. Сначала работа шла несогласованно, потом были достигнуты определенные формы сосуществования
Конкурирующие организации по взаимной договоренности одновременно объявили о завершении работ по расшифровке. Но разница во времени между Америкой и Англией вывела на первое место Human Genome Project.
Следует заметить что использование одного метода может давать систематическую ошибку, которую трудно «поймать». А «Селера Геномикс» и международный консорциум использовали разные методические подходы к секвенированию.
«Селера» применяла так называемое дробление — shotgun. ДНК дробили на маленькие фрагменты и у всех полученных «кусочков» определяли нуклеотидную последовательность. Одни и те же «кусочки» попадали в секвенатор по 10-20 раз. Компьютер потом «выстраивал» полученные данные в одну цепочку. Таким образом ученые колоссально экономили время и деньги на подготовке генетического материала — раздробить ДНК на фрагменты легко, — но теряли на том, что по много раз секвенировали одни и те же фрагменты.
У международного консорциума была противоположная тактика: «кусочки» молекул ДНК выстраивали друг за другом — делали карту, а потом по ней «шли». Таким образом ученые теряли время на подготовке материала, но выигрывали в секвенировании — не нужно было по многу раз делать одно и то же.
Именно потому, что разные стратегии дают во многом совпадающие результаты, им можно верить
Все жалуются: «Селера» не все публикует». Какое это имеет значение, если на то, чтобы описать полученные данные уйдут скорее всего годы и годы. Море информации, которой никогда не было в биологической науке…
Сегодня геном — это на 95% нечто, чего мы не понимаем. Возникли огромные «ножницы» между знанием и пониманием. В отношении значительной доли генома мы много знаем, но мало что понимаем. Вот в 5% генома, где находятся те самые 32 тысячи генов, мы знаем многое о структуре и немногое о функциях. По-научному «бессмысленные» участки называют некодирующими. Некоторые американские ученые называют их «junk» — барахлом, мусором или «эгоистической ДНК». Однако Если мы не понимаем, для чего нужны какие-то участки ДНК, сие еще не значит, что они — мусор.
У бактерии «бессмысленных» участков вообще нет. У дрожжей почти нет. По мере повышения уровня организации живого организма накапливается все больше некодирующей ДНК. Я думаю, что некодирующие последовательности ДНК могут оказаться резервуаром эволюции, складом «запчастей». Если с каким-либо геном что-то не в порядке, возможно, клетка использует фрагменты некодирующей ДНК для ремонта поврежденного.
Следует отметить, что сделан лишь первый шаг. Расшифровать нуклеотидную последовательность — это все равно, что читать книгу, просто произнося названия букв подряд. Найти ген, значит понять, как буквы складываются в слова. Но нужно ещё понять и смысл фразы. Так, что основная работа впереди.
То, что мы можем получить в результате решения этой задачи, можно продемонстрировать на примере расшифрованных хромосом …
22
Или еще одного интересного аспекта, который начал развиваться два-три года назад и особенно бурно в многонациональной России. Ее населяют разные этнические группы. Оказывается, чтогеном у разных народностей слегка различается. Можно в ДНК выделить определенный «рисунок» нуклеотидов (особое расположение), который будет говорить о том, что этот человек — башкир, а этот — татарин. Геномы представителей разных этнических групп не идентичны, но различия между ними чрезвычайно незначительны, хотя и абсолютно достоверны, и поэтому возможно сравнивать разные этнические группы.
Такой подход связывает геномику с историей, лингвистикой, археологией, палеонтоло гией, этнографией. И возникают поразительно интересные находки. Так Славяне близки по материнской линии (поскольку изучается митохондриальная ДНК, передающаяся ребенку от матери) к нашим западным соседям: немцам, угро-финнам.
Продолжение следует …
— Правда ли, что международная программа «Геном человека» прекращена и в связи с этим государственные средства на нее в США больше не выделяются?
— Основные цели структурной части программы уже в целом выполнены, хотя какие-то участки генома ученые будут «дорасшифровывать» еще долго. Программа «Геном человека» не прекращает существование, она меняет ориентацию: из структурной геномики превращается в функциональную, чтобы понять функции тех генов, которые ученые узнали. Например, американцы только что выделили 300 миллионов долларов на биоинформатику, потому что без нее ничего нельзя выяснить. Программа наконец-то начнет возвращать человечеству затраченные на нее миллиарды долларов.
Знаете, как говорят англичане: «This is the end of the beginning» — «Это конец начала». Вот именно эта фраза точно отражает нынешнюю ситуацию. Начинается самое главное и, я совершенно уверен, самое интересное.
Развитие науки идет таким образом, что мы все точнее и точнее знаем, чего не знаем. Теперь стало совершенно ясно — мы не понимаем, для чего нужна основная часть генома. «Что» — известно, «как» — предстоит узнать. Сейчас уже возможно сформулировать задачу, а это в науке самое трудное. Поставлен вопрос, который до расшифровки генома корректно поставить было просто невозможно.
По материалам журнала Наука и Жизнь (интервью с , председателем научного совета российской программы «Геном человека» профессором Л. Киселевым)
Добавить комментарий
istorii-x.ru
Геномика. Проект «Геном человека». Использование и применение генетических исследований (кратко) | Биология. Реферат, доклад, сообщение, краткое содержание, лекция, шпаргалка, конспект, ГДЗ, тест
Раздел: Наследственность
Изучением ДНК организма в целом занимается наука геномика. Проект «Геном человека», стартовавший в 1990 году и ещё не завершённый, стал одной из самых грандиозных научных программ. Главная цель этого проекта — определить последовательности нуклеотидов ДНК человека (таблица).
Таблица. Степень сходства геномов человека и живых организмов других видов Материал с сайта http://worldofschool.ru
Сравниваемые виды | Степень сходства геномов |
Человек — человек | 99,9 % |
Человек — шимпанзе | 98,7 % |
Человек — горилла | 98,38 % |
Человек — собака | 95% |
Человек— круглый червь | 74% |
Человек — банан | 50% |
Человек — нарцисс | 35% |
В современной генетике применяют большое количество методов исследований, однако основным как был, так и остаётся гибридологический метод. Именно он позволяет наблюдать, каким образом наследуются признаки.
Современные генетики широко пользуются физическими и химическими методами в молекулярных исследованиях, позволяющих изучить тонкую структуру генетического аппарата организмов. Результаты генетических исследований используются в медицине, зоологии, ботанике, эволюционной биологии, криминалистике, селекции пород животных и сортов растений, биотехнологиях.
На этой странице материал по темам:Сравнение генетики человека и гориллы материалы исследований
Проект геном человека кратко
Каким требованиям должен отвечать модельный объект генетических исследований
Применение генетики в организме человека краткое сообщение
В каких сферах жизни можно использовать результаты генетических исследований?
worldofschool.ru