Наследственная изменчивость — Pro-Psixology.ru
Наследственная изменчивость — это форма изменчивости, вызванная изменениями генотипа, которые могут быть связаны с мутационной либо комбинативной изменчивостью.
Мутационная изменчивость
Гены время от времени подвергаются изменениям, которые получили название мутаций. Эти изменения имеют случайный характер и появляются спонтанно. Причины возникновения мутаций могут быть самыми разнообразными. Имеется целый ряд факторов, воздействие которых повышает вероятность возникновения мутаций. Это может быть воздействие определенных химических веществ, радиации, температуры и т. д. С помощью этих средств можно вызывать мутации, однако случайный характер их возникновения сохраняется и предсказать появление той или иной мутации невозможно.
Возникшие мутации передаются потомкам, т. е. определяют наследственную изменчивость, с одной важной оговоркой, связанной с тем, где произошла мутация. Если мутация произошла в половой клетке, то у нее есть возможность передаться потомкам, т. е. быть унаследованной. Если мутация произошла в соматической клетке, то она передается только тем клеткам, которые возникают из этой соматической клетки. Такие мутации называются соматическими, они не передаются по наследству.
Различают несколько основных типов мутаций:
- Генные мутации, при которых изменения происходят на уровне отдельных генов, т. е. участков молекулы ДНК. Это может быть утрата нуклеотидов, замена одного основания на другое, перестановка нуклеотидов или добавление новых.
- Хромосомные мутации, связанные с нарушением структуры хромосом. Они приводят к серьезным изменениям, которые могут быть обнаружены даже при помощи микроскопа. К таким мутациям относятся утраты участков хромосом (делеции), добавление участков, поворот участка хромосомы на 180°, появление повторов.
- Геномные мутации, вызванные изменением числа хромосом. Мо гут появляться лишние гомологичные хромосомы, в хромосом ном наборе на месте двух гомологичных хромосом оказывают ся три — трисомия. В случае моносомии наблюдается утрата одной хромосомы из пары. При полиплоидии происходит кратное увеличение генома. Еще один вариант геномной мутации — га-плоидия, при которой остается только одна хромосома из каждой пары.
На частоту возникновения мутаций влияют, как уже было сказано, самые разнообразные факторы. При возникновении ряда геномных мутаций большое значение имеет, в частности, возраст матери.
Наследственность и изменчивость. Комбинативная изменчивость
Данный тип изменчивости определяется характером полового процесса. При комбинативной изменчивости возникают новые генотипы из-за новых комбинаций генов. Этот тип изменчивости проявляется уже на стадии образования половых клеток. Как уже было сказано, в каждой половой клетке (гамете) представлена только одна гомологичная хромосома из каждой пары. Хромосомы попадают в гамету абсолютно случайным образом, поэтому половые клетки одного человека могут довольно сильно отличаться по набору генов в хромосомах. Еще более важная стадия для возникновения комбинативной изменчивости — это оплодотворение, после которого у вновь возникшего организма 50% генов унаследовано от одного родителя, а 50% — от другого.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
pro-psixology.ru
Наследственность и изменчивость. Хромосомная теория наследственности
Наследственность — это важнейшая особенность живых организмов, заключающаяся в способности передавать свойства и функции родителей потомкам. Эта передача осуществляется с помощью генов.
Ген — единица хранения, передачи и реализации наследственной информации. Ген представляет собой специфический участок молекулы ДНК, в структуре которого закодирована структура определенного полипептида (белка). Вероятно, многие участки ДНК не кодируют белки, а выполняют регулирующие функции. Во всяком случае в структуре генома человека только около 2% ДНК представляют собой последовательности, на основе которых идет синтез информационной РНК (процесс транскрипции), которая затем определяет последовательность аминокислот при синтезе белков (процесс трансляции). В настоящее время полагают, что в геноме человека имеется около 30 тыс. генов.
Гены расположены на хромосомах, которые находятся в ядрах клеток и представляют собой гигантские молекулы ДНК.
Половые клетки (гаметы) образуются с помощью особого типа деления — мейоза. В результате мейоза в каждой половой клетке остается только по одной гомологичной хромосоме из каждой пары т.е. 23 хромосомы. Такой одинарный набор хромосом называется гаплоидным. При оплодотворении, когда сливаются мужская и женская половые клетки и образуется зигота, двойной набор, который называется диплоидным, восстанавливается. В зиготе у организма который из нее развивается, одна хромосома из каждой нары получена от отцовского организма, другая — от материнского.
Генотип — это совокупность генов, полученных организмом от родителей.
Другое явление, которое изучает генетика — изменчивость. Под изменчивостью понимают способность организмов приобретать новые признаки — различия в пределах вида. Выделяют две формы изменчивости:
— модификационную (ненаследственную).
Наследственная изменчивость — это форма изменчивости вызванная изменениями генотипа, которые могут быть связаны с мутационной либо комбинативной изменчивостью.
Мутационная изменчивость.
Гены время от времени подвергаются изменениям, которые получили название мутаций. Эти изменения имеют случайный характер и появляются спонтанно. Причины возникновения мутаций могут быть самыми разнообразными. Имеется целый ряд факторов воздействие которых повышает вероятность возникновения мутации. Это может быть воздействие определенных химических веществ радиации, температуры и т.д. С помощью этих средств можно вызывать мутации, однако случайный характер их возникновения сохраняется, и предсказать появление той или иной мутации невозможно.
Возникшие мутации передаются потомкам, т. е. определяют наследственную изменчивость, которая связанна с тем, где произошла мутация. Если мутация произошла в половой клетке то у нее есть возможность передаться потомкам, т.е. быть унаследованной. Если же мутация произошла в соматической клетке, то она передается только тем из них, которые возникают из этой соматической клетки. Такие мутации называются соматическими, они не передаются по наследству.
Различают несколько основных типов мутаций.
— Генные мутации, при которых изменения происходят на уровне отдельных генов, т. е. участков молекулы ДНК. Это может быть у трата нуклеотидов, замена одного основания на другое, перестановка нуклеотидов или добавление новых.
— Хромосомные мутации, связанные с нарушением структуры хромосом, приводят к серьезным изменениям, которые могут быть обнаружены при помощи микроскопа. К таким мутациям относятся утраты участков хромосом (делеции), добавление участков, поворот участка хромосомы на 180°, появление повторов.
На частоту возникновения мутаций влияют, как уже было сказано, самые разнообразные факторы. При возникновении ряда геномных мутаций большое значение имеет, в частности, возраст матери.
Комбинативная изменчивость.
Данный тип изменчивости определяется характером полового процесса. При комбинативной изменчивости возникают новые генотипы из-за новых комбинаций генов. Этот тип изменчивости проявляется уже на стадии образования половых клеток. Как уже было сказано, в каждой половой клетке (гамете) представлена только одна гомологичная хромосома из каждой пары. Хромосомы попадают в гамету случайным образом, поэтому половые клетки одного человека могут довольно сильно отличаться по набору генов в хромосомах. Еще более важная стадия для возникновения комбинативной изменчивости — это оплодотворение, после которого у вновь возникшего организма 50% генов унаследовано от одного родителя, и 50% — от другого.
Модификационная изменчивость не связана с изменениями генотипа, а вызвана влиянием среды на развивающийся организм.
Наличие модификационной изменчивости очень важно для понимания сущности наследования. Наследуются не признаки. Можно взять организмы с абсолютно одинаковым генотипом, например вырастить черенки от одного и того же растения, но поместить их при этом в разные условия (освещенность, влажность, минеральное питание) и получить достаточно сильно отличающиеся растения с разными признаками (рост, урожайность, форма листьев и т. п.). Для описания реально сформировавшихся признаков организма используют понятие «фенотип».
Фенотип — это весь комплекс реально возникших признаков организма, который формируется как результат взаимодействия генотипа и влияний среды в ходе развития организма. Таким образом, сущность наследования заключается не в наследовании признака, а в способности генотипа в результате взаимодействия с условиями развития давать определенный фенотип.
Так как модификационная изменчивость не связана с изменениями генотипа, то модификации не передаются по наследству. Обычно это положение почему-то с трудом принимается. Кажется, что если, скажем, родители на протяжении нескольких поколений тренируются в поднятии тяжестей и обладают развитой мускулатурой, то эти свойства должны обязательно передаться детям. Между тем, это типичная модификация, а тренировки — это и есть то воздействие среды, которое повлияло на развитие признака. Никаких изменений генотипа при модификации не происходит и приобретенные в результате модификации признаки не наследуются. Дарвин называл этот вид изменчивости — ненаследственной.
Для характеристики пределов модификационной изменчивости применяется понятие норма реакции. Некоторые признаки у человека невозможно изменить за счет средовых влияний, например группу крови, пол, цвет глаз. Другие, напротив, очень чувствительны к воздействию среды. К примеру, в результате длительного пребывания на солнце цвет кожи становится темнее, а волосы светлеют. На вес человека сильно влияют особенности питания, болезни, наличие вредных привычек, стресс, образ жизни.
Средовые воздействия могут приводить не только к количественным, но и к качественным изменениям фенотипа. У некотррь« видов примулы при пониженной температуре воздуха(15-20 С) появляются цветы красного цвета, если же растения поместить во влажную среду с температурой 30°С, то образуются белые цветки.
причем, хотя норма реакции характеризует ненаследственную форму изменчивости (модификационную изменчивость), она тоже определяется генотипом. Это положение очень важно: норма реакции зависит от генотипа. Одно и то же воздействие среды на генотип может привести к сильному изменению одного его признака и никак не повлиять на другой.
psyera.ru
особенности и значение :: SYL.ru
В нашей статье речь пойдет об уникальном свойстве всех живых организмов, которое обеспечило возникновение огромного количества видов живых существ. Это наследственная изменчивость. Что это такое, каковы ее особенности и механизм осуществления? На эти и многие другие вопросы вы сейчас найдете ответы.
Что изучает генетика
Сравнительно молодая наука генетика в 19-м веке открыла человечеству многие тайны его происхождения и развития. А предметом ее изучения являются только два свойства живых организмов: наследственность и изменчивость. Благодаря первому обеспечивается преемственность поколений и осуществляется точная передача генетической информации в целом ряду поколений. А вот изменчивость обеспечивает возникновение новых признаков.
Значение изменчивости
Зачем же организму приобретать эти новые признаки? Ответ достаточно прост: для возможности адаптации. На фото ниже перед вами представители нескольких рас одного биологического вида — Человек Разумный. Их морфологические различия на данном этапе не имеют, естественно, никакого приспособительного значения. А вот их далеким предкам новые черты помогали выжить в тяжелых условиях. Так, представители монголоидной расы имеют узкий разрез глаз, поскольку в степях часто были пыльные бури. А негроиды имеют темную кожу в качестве защиты от палящих солнечных лучей.
Виды изменчивости
Изменчивостью называют свойство организмов приобретать новые признаки в процессе их исторического и индивидуального развития. Она бывает двух видов. Это модификационная и наследственная изменчивость. Их объединяет ряд признаков. Например, неизбежно возникают изменения во внешнем строении организмов. Но вот по продолжительности существования модификаций и степени действия они абсолютно отличаются.
Модификационная изменчивость
Этот вид изменчивости является ненаследственным. Он не закрепляется в генотипе, не носит постоянный характер и возникает под воздействием изменений условий окружающей среды. Ярким примером модификационной изменчивости может служить известный опыт с кроликом. Ему сбривали небольшой участок серой шерсти. А на голый участок кожи прикладывали лед. Через некоторое время на этом месте вырастала шерсть белого цвета, которую также сбривали. Но лед в этом случае не прикладывали. В результате на данном участке снова вырастали волосы темного цвета.
Наследственная изменчивость
Данный вид изменчивости носит постоянный характер, поскольку затрагивает структуру генотипа до уровня нуклеотидов ДНК. При этом новые признаки передаются новым поколениям. Наследственная изменчивость, в свою очередь, также бывает двух типов: комбинативная и мутационная. Первая возникает в случае появления нового сочетания генетического материала. Ее самым простым примером служит слияние гамет в ходе полового размножения. В результате организм, получая по половине генетической информации от мужского и женского организма, приобретает новые признаки.
Второй вид — это мутационная наследственная изменчивость. Она заключается в возникновении резких ненаправленных изменений генотипа под воздействием различных факторов. Ими могут быть ионизирующее и ультрафиолетовое излучение, высокая температура, азотсодержащие химические вещества и другие.
В зависимости от уровня структуры генетического аппарата, в котором происходят изменения, различают несколько типов таких наследственных модификаций. При геномных изменяется число хромосом в общем наборе. Это ведет к анатомическим и морфологическим изменениям в организме. Так, появление третьей хромосомы в 21-й паре вызывает болезнь Дауна. При хромосомных мутациях возникает перестройка этой структуры. Они встречаются гораздо реже, чем геномные. Участки хромосом могут дублироваться или отсутствовать, перекручиваться, изменять свое положение. А вот генные мутации, которые также называют точечными, нарушают последовательность мономеров в структуре нуклеиновых кислот.
Независимо от вида мутаций, все они, как правило, не несут для организма полезных признаков. Поэтому человек учится управлять ими искусствено. Так, в селекции часло используется полиплоидия — кратное увеличение числа хромосом в наборе. В результате растение становится более мощным и дает крупные плоды в большом количестве. Никого уже не удивишь инжирным персиком и другими вкусными растительными гибридами. А ведь они являются результатом искусственно проведенной наследственной изменчивости.
Наследственная изменчивость в процессе эволюции
Развитие генетики помогло сделать значительный шаг вперед и в развитии эволюционного учения. Тот факт, что человека и обезьяну отличает лишь одна пара хромосом, стал существенным доказательством теории Дарвина. У растений и животных в историческом развитии можно проследить наследование прогрессивных черт, которые передавались и закреплялись в генотипе. К примеру, водоросли вышли на сушу благодаря тому, что в генотипе закрепился признак наличия механической и проводящей тканей. Каждое последующее поколение оставляло для себя только нужные, полезные признаки, которые корректировались в зависимости от условий обитания и окружающей среды. Так появились господствующие виды растений и животных, обладающие самыми прогрессивными чертами строения.
Итак, наследственная изменчивость — это способность организмов приобретать новые признаки, которые закрепляются в генотипе. Такие изменения носят продолжительный характер, не исчезают при изменении условий среды и передаются по наследству.
www.syl.ru
Наследственная изменчивость
Наследственная изменчивость
Комбинативная изменчивость. Наследственную, или геноти-пическую, изменчивость подразделяют на комбинативную и мутационную.
Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.
В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:
- Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.
- Взаимный обмен участками гомологичных хромосом, или кроссинговер (см. рис. 3.10). Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.
- Случайное сочетание гамет при оплодотворении.
Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.
Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.
Мутационная изменчивость. Мутационной называется изменчивость самого генотипа. Мутации — это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.
Основные положения мутационной теории разработаны Г. Де Фризом в 1901—1903 гг. и сводятся к следующему:
- Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.
- В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.
- Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.
- Вероятность обнаружения мутаций зависит от числа исследованных особей.
- Сходные мутации могут возникать повторно.
- Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.
Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.
Генные, или точковые, мутации— результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена. Такое изменение в гене воспроизводится при транскрипции в структуре иРНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.
Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене. Это дупликации (повторение участка гена), вставки (появление в последовательности лишней пары нуклеотидов), делеции («выпадение одной или более пар нуклеотидов), замены нуклеотид-ных пар (AT -> ГЦ; AT ->; ЦГ; или AT -> ТА), инверсии (переворот участка гена на 180°).
Эффекты генных мутаций чрезвычайно разнообразны. Большая часть из них фенотипически не проявляется, поскольку они рецессивны. Это очень важно для существования вида, так как в большинстве своем вновь возникающие мутации оказываются вредными. Однако их рецессивный характер позволяет им длительное время сохраняться у особей вида в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.
Вместе с тем известен ряд случаев, когда изменение лишь одного основания в определенном гене оказывает заметное влияние на фенотип. Одним из примеров служит такая генетическая аномалия, как серповидноклеточная анемия. Рецессивный аллель, вызывающий в гомозиготном состоянии это наследственное заболевание, выражается в замене всего одного аминокислотного остатка в (B-цепи молекулы гемоглобина (глутаминовая кислота —» —> валин). Это приводит к тому, что в крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. При этом развивается острая анемия и наблюдается снижение количества кислорода, переносимого кровью. Анемия вызывает физическую слабость, нарушения деятельности сердца и почек и может привести к ранней смерти людей, гомозиготных по мутантному аллелю.
Хромосомные мутации (перестройки, или аберрации) — это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.
Известны перестройки разных типов (рис. 3.13):
- нехватка, или дефишенси, — потеря концевых участков хромосомы;
- делеция — выпадение участка хромосомы в средней ее части;
- дупликация — двух- или многократное повторение генов, локализованных в определенном участке хромосомы;
- инверсия — поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;
- транслокация — изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.
При дефишенси, делециях и дупликациях изменяется количество генетического материала. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание —синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами), обусловлен гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается сильным нарушением роста и умственной отсталостью. Обычно дети с таким синдромом рано умирают, но некоторые доживают до зрелого возраста.
3.13. Хромосомные перестройки, изменяющие расположение генов в хромосомах.
Геномные мутации — изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом (анеуплоидия).
Полиплоидия — кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (Зn), тетраплоидными (4n), гексанло-идными (6n), октаплоидными (8n) и т. д.
Чаще всего полиплоиды образуются при нарушении порядка расхождения хромосом к полюсам клетки при мейозе или митозе. Это может быть вызвано действием физических и химических факторов. Химические вещества типа колхицина подавляют образование митотического веретена в клетках, приступивших к делению, в результате чего удвоенные хромосомы не расходятся и клетка оказывается тетрагшоидной.Для многих растений известны так называемые полиплоидные ряды. Они включают формы от 2 до 10n и более. Например, полиплоидный ряд из наборов в 12, 24, 36, 48, 60, 72, 96, 108 и 144 хромосомы составляют представители рода паслен (Solanum). Род пшеница (Triticum) представляет ряд, члены которого имеют 34, 28 и 42 хромосомы.
Полиплоидия приводит к изменению признаков организма и поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений. Это связано с тем, что у растительных организмов весьма широко распространены гермафродитизм (самоопыление), апомиксис (партеногенез) и вегетативное размножение. Поэтому около трети видов растений, распространенных на нашей планете, — полиплоиды, а в резко континентальных условиях высокогорного Памира произрастает до 85% полиплоидов. Почти все культурные растения тоже полиплоиды, у которых, в отличие от их диких сородичей, более крупные цветки, плоды и семена, а в запасающих органах (стебель, клубни) накапливается больше питательных веществ. Полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Именно поэтому они широко распространены в северных и высокогорных районах.
В основе резкого увеличения продуктивности полиплоидных форм культурных растений лежит явление полимерии (см. § 3.3).
Анеуплоидия, или гетероплодия, — явление, при котором клетки организма содержат измененное число хромосом, не кратное гаплоидному набору. Анеуплоиды возникают тогда, когда не расходятся или теряются отдельные гомологичные хромосомы в митозе и мейозе. В результате нерасхождения хромосом при гамето-генезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготу 2n + 1 (трисомик) по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приводит к образованию зиготы 1n — 1 (моносомик) по какой-либо из хромосом. Кроме того, встречаются формы 2n — 2, или нуллисомики, так как отсутствует пара гомологичных хромосом, и 2n + х, или полисомики.
Анеуплоиды встречаются как у растений и животных, так и у человека. Анеуплоидные растения обладают низкой жизнеспособностью и плодовитостью, а у человека это явление нередко приводит к бесплодию и в этих случаях не наследуется. У детей, родившихся от матерей старше 38 лет, вероятность анеуплоидии повышена (до 2,5%). Кроме того, случаи анеуплоидии у человека вызывают хромосомные болезни.
У раздельнополых животных как в естественных, так и в искусственных условиях полиплоидия встречается крайне редко. Это обусловлено тем, что полиплоидия, вызывая изменение соотношения половых хромосом и аутосом, приводит к нарушению конъюгации гомологичных хромосом и тем самым затрудняет определение пола. В результате такие формы оказываются бесплодными и маложизнеспособными.
Спонтанные и индуцированные мутации. Спонтанными называют мутации, возникающие под влиянием неизвестных природных факторов, чаще всего как результат ошибок при воспроизведении генетического материала (ДНК или РНК). Частота спонтанного мутирования у каждого вида генетически обусловлена и поддерживается на определенном уровне.
Индуцированный мутагенез — это искусственное получение мутаций с помощью физических и химических мутагенов. Резкое увеличение частоты мутаций (в сотни раз) происходит под воздействием всех видов ионизирующих излучений (гамма- и рентгеновские лучи, протоны, нейтроны и др.), ультрафиолетового излучения, высоких и низких температур. К химическим мутагенам относятся такие вещества, как формалин, азотистый иприт, колхицин, кофеин, некоторые компоненты табака, лекарственных препаратов, пищевых консервантов и пестицидов. Биологическими мутагенами являются вирусы и токсины ряда плесневых грибов.
В настоящее время ведутся работы по созданию методов направленного воздействия различных мутагенов на конкретные гены. Такие исследования очень важны, поскольку искусственное получение мутаций нужных генов может иметь большое практическое значение для селекции растений, животных и микроорганизмов.
Закон гомологических рядов в наследственной изменчивости. Крупнейшим обобщением работ по изучению изменчивости в начале XX в. стал закон гомологических рядов в наследственной изменчивости. Он был сформулирован выдающимся русским ученым Н. И. Вавиловым в 1920 г. Сущность закона заключается в следующем: виды и роды, генетически близкие, связанные друг с другом единством происхождения, характеризуются сходными рядами наследственной изменчивости. Зная, какие формы изменчивости встречаются у одного вида, можно предвидеть нахождение аналогичных форм у родственного ему вида.
В основе закона гомологических рядов фенотипической изменчивости у родственных видов лежит представление о единстве их происхождения от одного предка в процессе естественного отбора. Поскольку общие предки имели специфический набор генов, то их потомки должны обладать примерно таким же набором.
Более того, у родственных видов, имеющих общее происхождение, возникают и сходные мутации. Это означает, что у представителей разных семейств и классов растений и животных со сходным набором генов можно встретить параллелизм — гомологические ряды мутаций по морфологическим, физиологическим и биохимическим признакам и свойствам. Так, у разных классов позвоночных встречаются сходные мутации: альбинизм и отсутствие перьев у птиц, альбинизм и бесшерстность у млекопитающих, гемофилия у многих млекопитающих и человека. У растений наследственная изменчивость отмечена по таким признакам, как пленчатое или голое зерно, остистый или безостый колос и др.
Закон гомологических рядов, отражая общую закономерность мутационного процесса и формообразования организмов, представляет широкие возможности для его практического использования в сельскохозяйственном производстве, селекции, медицине. Знание характера изменчивости нескольких родственныхх видов дает возможность поиска признака, который отсутствует у одного из них, но характерен для других. Таким путем были собраны и изучены голозерные формы злаков, односемянные сорта сахарной свеклы, не нуждающиеся в прорывке, что особенно важно при механизированной обработке почв. Медицинская наука в качестве моделей для изучения болезней человека получила возможность использовать животных с гомологическими заболеваниями: это сахарный диабет крыс; врожденная глухота мышей, собак, морских свинок; катаракта глаз мышей, крыс, собак и др.
Закон гомологических рядов позволяет также предвидеть возможность появления мутаций, еще неизвестных науке, которые могут использоваться в селекции для создания новых ценных для хозяйства форм.
sbio.info
Изменчивость в биологии — это… Виды изменчивости
Изменчивость в биологии — это возникновение индивидуальных различий между особями одного вида. Благодаря изменчивости популяция становится разнородной, а у вида появляется больше шансов приспособиться к меняющимся условиям окружающей среды.
В такой науке, как биология, наследственность и изменчивость идут рука об руку. Существуют два вида изменчивости:
- Ненаследственная (модификационная, фенотипическая).
- Наследственная (мутационная, генотипическая).
Ненаследственная изменчивость
Модификационная изменчивость в биологии — это способность единичного живого организма (фенотипа) подстраиваться под факторы внешней среды в пределах своего генотипа. Благодаря такому свойству особи приспосабливаются к изменениям климата и других условий существования. Фенотипическая изменчивость лежит в основе адаптационных процессов, протекающих в любом организме. Так, у беспородных животных при улучшении условий содержания увеличивается продуктивность: надои молока, яйценоскость и прочее. А животные, завезенные в горные районы, вырастают низкорослыми и с хорошо развитым подшерстком. Изменение факторов внешней среды и обуславливают изменчивость. Примеры этого процесса можно легко найти в повседневной жизни: кожа человека под воздействием ультрафиолетовых лучей становится темной, в результате физических нагрузок развиваются мышцы, растения, выросшие в затененных местах и на свету, имеют разную форму листьев, а зайцы меняют окрас шерсти зимой и летом.
Для ненаследственной изменчивости характерны следующие свойства:
- групповой характер изменений;
- не наследуется потомством;
- изменение признака в пределах генотипа;
- соотношение степени изменения с интенсивностью воздействия внешнего фактора.
Наследственная изменчивость
Наследственная или генотипическая изменчивость в биологии — это процесс, в результате которого изменяется геном организма. Благодаря ей особь приобретает признаки, ранее несвойственные ее виду. По Дарвину, генотипическая изменчивость является основным двигателем эволюции. Различают следующие виды наследственной изменчивости:
- мутационная;
- комбинативная.
Комбинативная изменчивость возникает в результате обмена генами при половом размножении. При этом признаки родителей по-разному комбинируются в ряду поколений, повышая разнообразие организмов в популяции. Комбинативная изменчивость подчиняется правилам наследования Менделя. Пример такой изменчивости – инбридинг и аутбридинг (близкородственное и неродственное скрещивание). Когда черты отдельного производителя хотят закрепить в породе животных, то применяют близкородственное скрещивание. Таким образом, потомство становится более однообразным и закрепляет качества основателя линии. Инбридинг ведет к проявлению рецессивных генов и может приводить к вырождению линии. Для повышения жизнеспособности потомства применяют аутбридинг – неродственное скрещивание. При этом нарастает гетерозиготность потомства и увеличивается разнообразие внутри популяции, и, как следствие, возрастает устойчивость особей к неблагоприятным воздействиям факторов внешней среды.
Мутации, в свою очередь, разделяются на:
- геномные;
- хромосомные;
- генные;
- цитоплазматические.
Изменения, затрагивающие половые клетки, передаются по наследству. Мутации в соматических клетках могут передаваться потомству, если особь размножается вегетативным способом (растения, грибы). Мутации могут быть полезными, нейтральными или вредными.
Геномные мутации
Изменчивость в биологии посредством геномных мутаций может быть двух видов:
- Полиплоидия — мутация часто встречается у растений. Она вызвана кратным увеличением всего числа хромосом в ядре, образуется в процессе нарушения их расхождения к полюсам клетки при делении. Полиплоидные гибриды широко используются в сельском хозяйстве – в растениеводстве насчитывают более 500 полиплоидов (лук, гречка, сахарная свекла, редис, мята, виноград и другие).
- Анеуплоидия – увеличение или уменьшение числа хромосом по отдельным парам. Такой вид мутации характеризуется низкой жизнеспособностью особи. Широко распространенная мутация у человека – одна лишняя хромосома по 21-ой паре вызывает синдром Дауна.
Хромосомные мутации
Изменчивость в биологии путем хромосомных мутаций появляется при изменении структуры самих хромосом: потери концевого участка, повторение набора генов, поворот отдельного фрагмента, перенос сегмента хромосомы в другое место или к другой хромосоме. Такие мутации часто возникают под воздействием радиации и химического загрязнения окружающей среды.
Генные мутации
Значительная часть таких мутаций не проявляется внешне, так как является рецессивным признаком. Обусловлены генные мутации изменением последовательности нуклеотидов – отдельных генов – и приводят к появлению молекул белка с новыми свойствами. Генные мутации у человека обуславливают проявление некоторых наследственных заболеваний – серповидно-клеточная анемия, гемофилия.
Цитоплазматические мутации
Цитоплазматические мутации связаны с изменениями в структурах цитоплазмы клетки, содержащих ДНК-молекулы. Это митохондрии и пластиды. Передаются такие мутации по материнской линии, так как зигота получает всю цитоплазму от материнской яйцеклетки. Пример цитоплазматической мутации, вызвавшей изменчивость в биологии – это перистолистность растений, которая вызывается изменениями в хлоропластах.
Для всех мутаций характерны следующие свойства:
- Они возникают внезапно.
- Передаются по наследству.
- У них нет какой-либо направленности. Мутации может подвергнуться как незначительный участок, так и жизненно важный признак.
- Возникают у отдельных особей, то есть индивидуальны.
- По своему проявлению мутации могут быть рецессивными или доминантными.
- Одна и та же мутация может повторяться.
Каждая мутация вызывается определенными причинами. В большинстве случаев точно установить ее не удается. В экспериментальных условиях для получения мутаций используют направленный фактор воздействия внешней среды – радиационное облучение и тому подобное.
fb.ru
Наследственная изменчивость, ее виды. Виды мутаций, их причины. Роль мутаций в эволюции органического мира и селекции.
Изменчивостью называют общее свойство всех живых организмов приобретать различия между особями одного вида.
Ч. Дарвин выделял следующие основные виды изменчивости: определенную (групповую, ненаследственную, модификационную), неопределенную (индивидуальную, наследственную, мутационную) и комбинированную. К наследственной изменчивости относят такие изменения признаков живых существ, которые связаны с изменениями в генотипе (т.е. мутациями) и передаются из поколения в поколение. Передача генетического материала от родителей к потомству должна происходить очень точно, иначе виды сохраниться не могут. Однако, иногда происходят количественные или качественные изменения в ДНК, и дочерние клетки получают искаженный по сравнению с родительскими генами. Такие ошибки в наследственном материале передаются следующему поколению и называются мутациями. Организм, получивший в результате мутаций новые свойства, называют мутантом. Иногда эти изменения хорошо заметны фенотипически, например, отсутствие пигментов в коже и волосах – альбинизм. Но чаще всего мутации бывают рецессивными и в фенотипе проявляются только в том случае, когда они присутствуют в гомозиготном состоянии. Существование наследственных изменений было известно Дарвину. Вся его теория эволюции вытекает из учения о естественном отборе наследственных изменений. Наследственная изменчивость – необходимая предпосылка естественного и искусственного отбора. Однако во времена Дарвина еще отсутствовали опытные данные о наследственности и законы наследования не были известны. Это не давало возможности строго различать разные формы изменчивости.
Мутационная теория была разработана в начале ХХ века голландским цитологом Гуго де Фризом. Мутации имеют ряд свойств:
Мутации возникают внезапно, и мутировать может любая часть генотипа.
Мутации чаще бывают рецессивными и реже – доминантными.
Мутации могут быть вредными, нейтральными и полезными для организма.
Мутации передаются из поколения в поколение.
Мутации могут проходить под влиянием как внешних, так и внутренних воздействий.
Мутации подразделяются на несколько видов:
Точечные (генные) мутации представляют собой изменения в отдельных генах. Это может произойти при замене, выпадении или вставке одной или нескольких нуклеотидных пар в молекуле ДНК.
Хромосомные мутации являются изменениями частей хромосомы или целых хромосом. Такие мутации могут происходить в результате делеции – утрате части хромосомы, дупликации – удвоения какого-либо участка хромосомы, инверсии – поворота участка хромосомы на 1800, транслокации – отрыва части хромосомы и перемещения ее в новое положение, например, присоединения к другой хромосоме.
Геномные мутации заключаются в изменении числа хромосом в гаплоидном наборе. Это может происходить за счет выпадения хромосомы из генотипа, или, наоборот, увеличения числа копий какой-либо хромосомы в гаплоидном наборе с одной до двух и более. Частный случай геномных мутаций – полиплоидия – увеличение числа хромосом в генотипе кратно. Понятие о мутациях было введено в науку голландским ботаником де Фризом. У растения ослинник (энотера) он наблюдал появление резких, скачкообразных отклонений от типичной формы, причем эти отклонения оказались наследственными. Дальнейшие исследования на различных объектах – растениях, животных, микроорганизмах показали, что явление мутационной изменчивости свойственно всем организмам.
Материальной основой генотипа являются хромосомы. Мутации – это изменения, происходящие в хромосомах под влиянием факторов внешней или внутренней среды. Мутационная изменчивость – это вновь возникающие изменения в генотипе, тогда как комбинации – новые сочетания родительских генов в зиготе. Мутации затрагивают разнообразные стороны строения и функций организма. Например, у дрозофилы известны мутационные изменения формы крыльев (вплоть до полного их исчезновения), окраски тела, развития щетинок на теле, формы глаз, их окраски (красные, желтые, белые, вишневые), а также многих физиологических признаков (продолжительность жизни, плодовитость).
Мутации совершаются в разных направлениях и сами по себе не являются приспособительными, полезными для организма изменениями.
Многие возникающие мутации неблагоприятны для организма и даже могут вызвать его гибель. Большинство таких мутаций рецессивно.
Большинство мутантов имеют сниженную жизнеспособность и отсеиваются в процессе естественного отбора. Для эволюции или селекции новых пород и сортов необходимы те редкие особи, которые имеют благоприятные или нейтральные мутации. Эволюционное значение мутаций состоит в том, что именно они создают наследственные изменения, являющиеся материалом для естественного отбора в природе. Мутации необходимы также для искусственного отбора особей с новыми, ценными для человека свойствами. Для получения новых пород животных, сортов растений и штаммов микроорганизмов широко используются искусственные мутагенные факторы.
Комбинативная изменчивость также относится к наследственным формам изменчивости. Она обусловлена перегруппировкой генов в процессе слияния гамет и образования зиготы, т.е. при половом процессе.
ebiology.ru
Сайт учителей биологии МБОУ Лицей № 2 города Воронежа
В природе трудно найти двух абсолютно одинаковых особей даже в потомстве одной и той же пары родителей. Как вы уже знаете, свойство организмов существовать в разных формах или состояниях называется изменчивостью.
Изменчивость – общее свойство всех организмов. Она проявляется у них в целом ряде признаков. Например, даже два рядом растущих растения одного вида различаются между собой количеством побегов и плодов, размерами листьев и другими свойствами. Однако простыми наблюдениями не всегда можно определить, является изменчивость результатом нарушения генотипа (наследственно обусловленной) или она не вызвана нарушением генотипа. Установить это можно только путем эксперимента (например, скрещиванием).
Любой признак – это видимый результат реализации наследственности (генотипа) в данных условиях. Поэтому признаки зависят, с одной стороны, от генетических особенностей организма, а с другой – от условий его жизни.
Следовательно, изменчивость отражает взаимосвязь организма с окружающей средой и затрагивает любые его признаки и генетические структуры: гены, хромосомы и генотип в целом.
Окружающая среда непрерывно воздействует на организм, изменяя, ослабляя или усиливая проявление его наследственных признаков. В то же время в процессе размножения исходные организмы всегда производят потомство, подобное себе, осуществляя непрерывность жизни по принципу «клетка – от клетки», т. е. «подобное рождает подобное». Потомство пары кошек – всегда кошки, так же как потомством одноклеточной водоросли хлореллы всегда будет хлорелла. Путем наследования свойств родителей потомству передается сходство с ними.
Однако потомство наследует лишь генетический материал, сосредоточенный в хромосомах. Поэтому дети наследуют от родителей не признаки и свойства, а гены, которые контролируют эти признаки и свойства. Причем сами гены (и хромосомы) в процессе мейоза и жизни особи претерпевают ряд изменений, которые обусловлены: действием сцепленного наследования признаков, а также наследования, сцепленного с полом; локализацией генов в хромосомах; доминированием аллельных генов и др. Это приводит к тому, что у потомства появляются свойства, которых не было у родителей и их предков. Возникшая таким путем изменчивость обеспечивает непохожесть потомков и родителей.
Изменчивость, которая появляется в связи с изменением генетического материала, называется наследственной или генотипической.
Одним из результатов наследственной изменчивости является образование новых организмов (новых генотипов), обеспечивающее разнообразие жизни, ее продолжение и эволюционное развитие.
Изменение генотипа приводит, как правило, к изменению фенотипа.
В основе генотипической (наследственной) изменчивости обычно лежат новые комбинации аллелей, образующиеся в процессе мейоза, при оплодотворении или мутации. Поэтому наследственную (генотипическую) изменчивость подразделяют на два вида: комбинативную и мутационную. В обоих случаях нарушается структура гена и структура хромосом, т. е. изменяется последовательность нуклеотидов в ДНК, число хромосом, а также происходит расщепление пар аллелей генов; иными словами, меняется генотип. Все это и приводит к появлению новых наследуемых признаков.
Комбинативная изменчивость представляет собой результат перераспределения наследственного материала родителей среди их потомства. Перекомбинация, или рекомбинация, генов и хромосом обычно происходит при мейозе (в процессе кроссинговера, при расхождении гомологичных хромосом) и при оплодотворении. Комбинативная наследственная изменчивость является универсальным свойством всех организмов – от бактерий до высших растений и животных. Наблюдается она и у вирусов. Этот вид наследственной изменчивости имеет важное значение при эволюционных преобразованиях.
Мутационная изменчивость является результатом мутаций. Мутации (лат. mutatio – «изменение», «перемена») – это изменения наследственного материала, приводящие к появлению новых признаков организма, способных передаваться последующему потомству. Мутации могут быть естественно и искусственно вызванными.
В природе они возникают чаще всего под влиянием мутагенов – факторов, порождающих мутации.
Большинство мутаций нейтральны, однако бывают мутации, вредные для организма, некоторые (летальные) даже вызывают его гибель. Очень редко возникают полезные для организма мутации, которые улучшают какие–то свойства особи, но именно они, закрепленные в потомстве, дают ей некоторые преимущества в естественном отборе перед другими.
Генотипическая изменчивость присуща всем живым организмам. Она является основным источником генетического разнообразия особей внутри вида, чем обусловливает эволюцию видов в природе и отбор лучших форм в селекции.
Важная закономерность наследственной изменчивости была выявлена выдающимся отечественным ученым – ботаником, генетиком и селекционером, Н. И. Вавиловым. Он установил, что по наследственным изменениям одного вида можно предсказать сходные изменения у сходных видов и даже родов. Открытую им закономерность называют законом гомологических рядов в наследственной изменчивости или законом Вавилова.
Изучая изменчивость признаков у многочисленных видов и родов семейства злаков, Вавилов обнаружил, что у близкородственных видов и родов злаков процесс наследственной изменчивости идет параллельно и сопровождается появлением сходных признаков с такой правильностью, что, зная ряд форм у одного вида, можно прогнозировать появление подобных форм и у других родственных видов и родов. Эта закономерность хорошо прослеживалась также у бобовых, тыквенных, пасленовых, крестоцветных и других видов. Оказалось, что сходные ряды наследственной изменчивости обнаруживаются и на уровне родственных семейств.
Н. И. Вавилов писал: «Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды, составляющие семейство».
Теоретической основой установления рядов изменчивости признаков является представление о единстве происхождения родственных видов от общих предков, обладавших определенным набором генов, которые проявляются (или должны проявляться) у потомков в разных родах и видах. Исследования Вавилова касались непосредственно растений, но сформулированный им закон гомологических рядов наследственной изменчивости оказался применим и к животным.
< Предыдущая страница «Взаимодействие генов»
Следующая страница «Мутации» >
biolicey2vrn.ru