перечислите функции неорганических веществ, входящих в состав клетки
Органические вещества клеткиУглево́ды (сахара, сахариды) — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира
Липи́ды — широкая группа органических соединений, включающая жирные кислоты, а также их производные.
Жиры, или триглицериды — природные органические соединения, полные сложные эфиры глицеринаи одноосновных жирных кислот; входят в класс липидов.
Белки́ — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью.
Нуклеи́новаякисло́та — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.
Дезоксирибонуклеи́новая кислота́ (ДНК ) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов.
Рибонуклеи́новаякисло́та (РНК ) — одна из трёх основных макромолекул, которые содержатся в клетках всех живых организмов. РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.
Аденозинтрифосфа́т (АТФ) — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах.
Полимеры — это органические соединения, входящие в состав клеток живых организмов и продуктов их жизнедеятельности. Свойства биополимеров зависят от строения их молекул: от числа и разнообразия мономерных звеньев, образующих полимер.
Мономеры – простое вещество, составляющая полимера
Аминокисло́ты — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Служат строительным материалом для синтеза белков.
Ферменты — обычно белковые молекулыили молекулы РНК или их комплексы, ускоряющие химические реакции в живыхсистемах.
Нуклеотиды – структурные элементы нуклеиновых кислот.
Репликация –метод удвоения ДНК, при котором генетический материал, который хранится в ДНК, удваивается и делится между дочерними клетками.
Фотосинтез — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов
Световая фаза —этап фотосинтеза, в течение которого за счёт энергии света образуются богатые энергией соединения АТФ и молекулы — носители энергии.
Темновая фаза – с участием АТФ и НАДФН происходит восстановление CO2 до глюкозы (C6h22O6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.
Трансляция — процесс синтеза белка из аминокислот на матрице иРНК, осуществляемый рибосомой.
Транскри́пция — процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.
Пластический обмен или Анаболизм — совокупность химических процессов, составляющих одну из сторон обмена веществ в организме, направленных на образование клеток и тканей.
Энергетический обмен или Катаболизм — процесс разложения на более простые веществаили окисления какого-либо вещества, обычно протекающий с высвобождением энергии в виде тепла и в видеАТФ.
Метаболи́зм или обмен веществ — наборхимических реакций, которые возникают в живом организме для поддержания жизни.
Кодо́н — единица генетического кода, тройка нуклеотидных о
otvet.mail.ru
Функции воды и других неорганических веществ в клетке
Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того, что она входит в их состав, для многих организмов это еще и среда обитания. Роль воды в клетке определяется ее свойствами. Свойства эти довольно уникальны и связаны главным образом с малыми размерами молекул воды, с полярностью ее молекул и с их способностью, соединяться друг с другом водородными связями.
Молекулы воды имеют нелинейную пространственную структуру. Атомы в молекуле воды удерживаются посредством полярных ковалентных связей, которые связывают один атом кислорода с двумя атомами водорода. Полярность ковалентных связей (т.е. неравномерное распределение зарядов) объясняется в данном случае сильной электроотрицательностью атомов кислорода по отношению к атому водорода; атом кислорода оттягивает на себя электроны из общих электронных пар.
Вследствие этого на атоме кислорода возникает частично Отрицательный заряд, а на атомах водорода — частично положительный. Между атомами кислорода и водорода соседних молекул возникают водородные связи.
Благодаря образованию водородных связей молекулы воды им одна с другой, что и обусловливает ее исходное состояние при нормальных условиях.
Вода является превосходным растворителем для полярных веществ, например солей, сахаров, спиртов, кислот и др. Вещества хорошо растворимые в воде, называются гидрофильными.
Абсолютно неполярные вещества типа жиров или масел вода не растворяет и не смешивается с ними, поскольку она не может образовывать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными.
Вода обладает высокой удельной теплоемкостью. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство обеспечивает поддержание теплового баланса организма при значительных перепадах температуры в окружающей среде. Кроме того, вода обладает высокой теплопроводностью, что позволяет организму поддерживать одинаковую температуру во всем его объеме.
Вода обладает также высокой теплотой парообразования, т.е. способностью молекул уносить с собой значительное количество тепла, охлаждая организм. Это свойство воды используется при потоотделении у млекопитающих, тепловой одышке у крокодилов и транспирации у растений, предотвращая их перегрев.
Для воды характерно исключительно высокое поверхностное натяжение. Это свойство имеет очень важное значение для адсорбционных процессов, для передвижения растворов по тканям (кровообращение, восходящий и нисходящий токи в теле растений). Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: оно позволяет им удерживаться на воде или скользить по ее поверхности.
Биологические функции воды
Транспортная. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.
Метаболическая. Вода является средой для всех биохимических реакций в клетке. Ее молекулы участвуют во многих химических реакциях, например при образовании или гидролизе полимеров. В процессе фотосинтеза вода является донором электронов и источником атомов водорода. Она же является источником свободного кислорода.
Структурная. Цитоплазма клеток содержит от 60 до 95 % воды. У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).
Вода участвует в образовании смазывающих жидкостей (синовиальная в суставах позвоночных; плевральная в плевральной полости, перикардиальная в околосердечной сумке) и слизей (которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез, спермы и др.
Минеральные соли
Молекулы солей в водном растворе диссоциируют на катионы и анионы. Наибольшее значение имеют катионы: К+, Na+, Ca2+, Mg2+ и анионы: Cl—, H2PO4—, HPO42-, HCO3—, NO3—, SO42-. Существенным является не только содержание, но и соотношение ионов в клетке.
Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения. С разностью концентрации ионов по разные стороны мембраны связывают активный перенос веществ через мембрану, а также преобразование энергии.
Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую pH внутриклеточной среды организма на уровне 6,9.
Угольная кислота и ее анионы создают бикарбонатную буферную систему, которая поддерживает рН внеклеточной среды (плазма крови) на уровне 7,4.
Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке, в процессах мышечного сокращения, свертывании крови и др.
Некоторые катионы и анионы могут включаться в комплексы с различными веществами (например, анионы фосфорной кислоты входят в состав фосфолипидов, АТФ, нуклеотидов и др.; ион Fe2+ входит в состав гемоглобина и т.д.).
Читать далее
ed-lib.ru
Функции воды и других неорганических веществ в клетке
Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того, что она входит в их состав, для многих организмов это еще и среда обитания. Роль воды в клетке определяется ее свойствами. Свойства эти довольно уникальны и связаны главным образом с малыми размерами молекул воды, с полярностью ее молекул и с их способностью, соединяться друг с другом водородными связями.
Молекулы воды имеют нелинейную пространственную структуру. Атомы в молекуле воды удерживаются посредством полярных ковалентных связей, которые связывают один атом кислорода с двумя атомами водорода. Полярность ковалентных связей (т.е. неравномерное распределение зарядов) объясняется в данном случае сильной электроотрицательностью атомов кислорода по отношению к атому водорода; атом кислорода оттягивает на себя электроны из общих электронных пар.
Вследствие этого на атоме кислорода возникает частично Отрицательный заряд, а на атомах водорода — частично положительный. Между атомами кислорода и водорода соседних молекул возникают водородные связи.
Благодаря образованию водородных связей молекулы воды им одна с другой, что и обусловливает ее исходное состояние при нормальных условиях.
Вода является превосходным растворителем для полярных веществ, например солей, сахаров, спиртов, кислот и др. Вещества хорошо растворимые в воде, называются
Абсолютно неполярные вещества типа жиров или масел вода не растворяет и не смешивается с ними, поскольку она не может образовывать с ними водородные связи. Нерастворимые в воде вещества называютсягидрофобными.
Вода обладает высокой удельной теплоемкостью. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство обеспечивает поддержание теплового баланса организма при значительных перепадах температуры в окружающей среде. Кроме того, вода обладает высокой теплопроводностью, что позволяет организму поддерживать одинаковую температуру во всем его объеме.
Вода обладает также высокой теплотой парообразования, т.е. способностью молекул уносить с собой значительное количество тепла, охлаждая организм. Это свойство воды используется при потоотделении у млекопитающих, тепловой одышке у крокодилов и транспирации у растений, предотвращая их перегрев.
Для воды характерно исключительно высокое поверхностное натяжение. Это свойство имеет очень важное значение для адсорбционных процессов, для передвижения растворов по тканям (кровообращение, восходящий и нисходящий токи в теле растений). Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: оно позволяет им удерживаться на воде или скользить по ее поверхности.
Биологические функции воды
Транспортная. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.
Метаболическая. Вода является средой для всех биохимических реакций в клетке. Ее молекулы участвуют во многих химических реакциях, например при образовании или гидролизе полимеров. В процессе фотосинтеза вода является донором электронов и источником атомов водорода. Она же является источником свободного кислорода.
Структурная. Цитоплазма клеток содержит от 60 до 95 % воды. У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).
Вода участвует в образовании смазывающих жидкостей (синовиальная в суставах позвоночных; плевральная в плевральной полости, перикардиальная в околосердечной сумке) и слизей (которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез, спермы и др.
Минеральные соли. Молекулы солей в водном растворе диссоциируют на катионы и анионы. Наибольшее значение имеют катионы: К+, Na+, Са2+, Mg2+ и анионы: Cl—, H2PO4—, HPO42-, HCO3—, NO3—, SO4
2-. Существенным является не только содержание, но и соотношение ионов в клетке.Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения. С разностью концентрации ионов по разные стороны мембраны связывают активный перенос веществ через мембрану, а также преобразование энергии.
Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую pH внутриклеточной среды организма на уровне 6,9.
Угольная кислота и ее анионы создают бикарбонатную буферную систему, которая поддерживает рН внеклеточной среды (плазма крови) на уровне 7,4.
Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке, в процессах мышечного сокращения, свертывании крови и др.
Некоторые катионы и анионы могут включаться в комплексы с различными веществами (например, анионы фосфорной кислоты входят в состав фосфолипидов, АТФ, нуклеотидов и др.; ион Fe
jbio.ru
Вещества живых организмов. Неорганические соединения » mozok.click
Вспомните вещества, необходимые организмам для их жизнедеятельности. Какую роль играют водные растворы в природе и в жизни человека? Какой тип химической связи существует в молекуле воды? Что такое ионы и как они образуются?
Химические элементы живых организмов
В состав растительных и животных клеток входит более 70 химических элементов. Но в клетке нет каких-либо особенных элементов, характерных только для живой природы. Те же элементы встречаются и в неживой природе.
Все химические элементы по содержанию в живой клетке разделяют на три группы: макроэлементы, микроэлементы и ультрамикроэлементы.
Содержание химических элементов в живых клетках
Элементы O, C, H, N иногда рассматривают как отдельную группу органогенных элементов ввиду того, что они входят в состав всех органических веществ и составляют до 98 % массы живой клетки.
Неорганические вещества живых организмов
Изучая химию, вы узнали о таких группах веществ, как кислоты, соли, оксиды и др. Все они распространены в неживой природе, вне живых организмов. Поэтому их и называют неорганическими веществами. Но это не означает, что в живых организмах их вообще нет. Они есть и играют очень важную роль в процессах жизнедеятельности.
Неорганические вещества обычно попадают в живые организмы из внешней среды с пищей (у животных) или с раствором воды через поверхность организма (у растений, грибов и бактерий). Но в некоторых случаях живые организмы могут синтезировать их самостоятельно. Например, клетки желудка у позвоночных синтезируют хлоридную кислоту. Это позволяет более эффективно переваривать пищу, так как многие пищеварительные ферменты работают в кислой среде. Также самостоятельно вырабатывают сульфатную кислоту многие хищные моллюски в своих слюнных железах. Эта кислота может разрушать раковины и внешние покровы их жертв.
Функции неорганических веществ в клетке
Неорганические вещества |
Функции в клетке |
Катионы Гидрогена (H+) |
Обеспечивают кислотно-щелочной баланс (поддерживают постоянство внутриклеточной среды) |
Катионы и анионы растворимых солей (Na+, K+, Cl) |
Создают разность потенциалов между содержимым клетки и внеклеточной средой, обеспечивая проведение нервного импульса |
Слаборастворимые соли Кальция и Фосфора |
Образуют опорные структуры (например, в костях позвоночных) |
Ионы металлических элементов |
Являются компонентами многих гормонов, ферментов и витаминов или участвуют в их активации |
Сложные неорганические соединения Нитрогена, Кальция и Фосфора |
Участвуют в синтезе органических молекул |
Неорганические соединения могут находиться в живых организмах как в растворенном (в виде ионов), так и в нерастворенном виде. Растворенными формами представлены многие соли.
Нерастворимые неорганические соединения также важны для живых организмов. Например, соли Кальция и Фосфора входят в состав скелета животных и обеспечивают его прочность (рис. 2.1, с. 10). Без таких веществ невозможно формирование здоровых зубов у человека.
Из неорганических веществ также могут быть образованы различные структуры организмов животных (рис. 2.2).
Свойства воды
Свойства воды обусловлены особенностями строения ее молекулы, а также связями молекул друг с другом.
Как вы уже знаете, в молекуле воды (химическая формула — H2O) между атомами Гидрогена и Оксигена существует ковалентная полярная связь (рис. 2.3). Это значит, что на атоме Оксигена формируется частичный отрицательный заряд (S—), а на атомах Гидрогена — положительный (S+). Положительно заряженный атом Гидрогена одной молекулы воды притягивается к отрицательно заряженному атому Оксигена другой молекулы воды. Такая связь называется водородной.
Водородная связь примерно в 15-20 раз слабее ковалентной. Поэтому водородная связь относительно легко разрывается, что происходит, например, при испарении воды. В жидком состоянии водородные связи между молекулами воды все время то разрываются, то образуются заново.
Биологическая роль воды
В живых организмах вода выполняет много функций: среды-растворителя, транспортную, метаболическую, терморегуляторную, структурную.
Вода является универсальным растворителем. Вещества, участвующие в большинстве биологических реакций, находятся в организме в водном растворе.
Транспортная роль воды очень важна для клеток и организмов в целом. Растворенные вещества вместе с водой могут переноситься из одних частей клетки в другие. А между различными частями многоклеточных организмов они переносятся в составе специальных жидкостей (например, в составе крови). Испарение воды листьями растений вызывает ее движение от корней вверх. При этом перемещаются и вещества, растворенные в воде.
Молекулы воды выполняют метаболическую функцию, когда участвуют в реакциях обмена веществ (их называют биохимическими реакциями). Терморегуляторная функция воды чрезвычайно важна для поддержания температуры тела организмов. Когда, например, человек потеет, то вода испаряется, снижая температуру его тела.
Структурная функция воды хорошо видна на примере растений и некоторых беспозвоночных животных. Растения поддерживают форму листьев и травянистых стеблей благодаря повышенному давлению в клетках, наполненных водой. А у многих червей форма тела поддерживается повышенным давлением воды в полостях тела.
В живых организмах содержатся как органические, так и неорганические вещества. Неорганические вещества — это вода, соли, кислоты и другие соединения. Они играют важную роль в жизнедеятельности живых организмов. Вода создает среду, в которой происходят реакции обмена веществ. Другие неорганические вещества участвуют в формировании скелета, работе нервной, пищеварительной и других систем организма.
Проверьте свои знания
1. Какие неорганические вещества встречаются в живых организмах? 2. Докажите на примерах, что свойства воды имеют большое значение для живых клеток. 3. Какие функции могут выполнять кислоты в живых организмах? 4*. К каким последствиям для организма человека может привести потеря солей Na?
Это материал учебника Биология 9 класс Задорожный
mozok.click
Функции питательных неорганических веществ в растении
Наша планета покрыта ковром зеленых растений. Растения встретишь в любом уголке земли: в жаркой безводной пустыне и в холодной арктической тундре. И везде, где бы ни вырос зеленый росток, он своими корнями углубляется в почву и добывает оттуда питательные вещества.
Почва является основным источником обеспечения растений питательными веществами (Приложение I). Растения своей корневой системой поглощают из почвенных растворов и затем усваивают необходимые ему питательные вещества. Для всех растений необходимы 13 элементов, которые принимают участие в обмене веществ: азот, фосфор, калий, кальций, магний, сера, железо, марганец, медь, цинк, молибден, бор, хлор. Азот, фосфор, калий, кальций, сера и магний содержатся в растениях в значительных количествах, и называются макроэлементами, остальные в ничтожных количествах и называются микроэлементами, но и они очень важны для растения.
Так, например, листья здорового растения огурца содержат следующие элементы:
Макроэлементы Микроэлементы
Азот – 3,9% Железо – 0,015%
Фосфор – 0,38% Бор – 0,008%
Калий – 4% Марганец – 0,005%
Кальций – 7% Молибден – 0,0004%
Магний – 0,7 %
Это наводит на мысль о том, что при отсутствии в почве одного из этих элементов происходят резкие изменения основных жизненных функций растений: тормозится рост, нарушается нормальный ход фотосинтеза. Мы обратили внимание на то, что во многих кабинетах и рекреациях школы растения имеют нездоровый внешний вид. А ведь для нас, жителей Севера, где восемь месяцев в году человек лишен общения с растениями, разведение комнатных растений и правильный уход за ними, просто необходимо. Мы заинтересовались и решили провести исследование.
В 1563 г. во Франции опубликовано сочинение Палисси, где он высказывает мысль о том, что почти во всех растениях и животных находятся соли, поэтому именно они необходимы для питания растений. По некоторым причинам Палисси был заточен в Бастилию, где и скончался в 1589 г. На два с половиной столетия его труды были забыты.
В XVII в. ученые полагали, что для питания растений нужна только вода, а вещества, образующиеся в процессе роста, растение создает само внутри своего тела загадочной и мистической «силой жизни», вложенной в него творцом.
Весомый вклад в учение о питании растений внес немецкий ученый-химик Юстас Либих (1803–1873) . В 1840 г. Либих ввел в науку понятие «лимитирующие факторы». Он изучал влияние содержания различных химических элементов в почве на рост растений и сформулировал принцип: «Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени». Сформулированный им закон хорошо иллюстрируется «бочкой Добенека», клепки которой условно обозначают факторы жизни растений. Фактический урожай определяется высотой самой низкой клепки, т. е. количеством фактора, находящегося в минимуме. Если заменить данную клепку (например, восполнить недостающий элемент питания), то уровень воды в бочке (урожай растений) будет определять другая клепка, оказавшаяся в изменившихся условиях самой короткой.
В плеяде имен русских исследователей минерального питания растений особое место занимает академик Дмитрий Николаевич Прянишников (1865–1948) . Его исследования показали, что каждый вид растения предъявляет специфические требования к количествам и сочетаниям отдельных элементов. Кроме того, потребность растения в отдельных элементах изменяется на разных фазах его развития.
2. Минеральное питание растений
Функции питательных неорганических веществ в растении
Растения должны получать из окружающей среды определенные вещества, вовлекаемые в сложные биохимические реакции, в результате которых поддерживаются структура и рост клеток. Помимо света высшим растениям для метаболизма и роста нужны вода и некоторые химические элементы. Многие эволюционные приобретения растений связаны со структурными и функциональными специализированными приспособлениями для эффективного поглощения этих веществ и для распределения их по живым клеткам своего тела.
По сравнению с животными пищевые потребности растений относительно просты. При благоприятных внешних условиях большинство зеленых растений может использовать энергию света для превращения СО2 и Н2О в органические соединения, служащие источником энергии. Растения могут синтезировать и все необходимые аминокислоты и витамины, используя неорганические питательные вещества, поступающие из окружающей среды.
Питание растений включает поглощение из среды всех исходных веществ, необходимых для биохимических реакций, распределение этих веществ по растению и использование в процессах метаболизма и роста.
В середине 1800-х годов было выяснено, что по крайней мере 10 химических элементов, присутствующих в растениях, необходимы для нормального роста. В отсутствии любого из них наблюдаются характерные нарушения роста или симптомы повреждения. Часто такие растения не могут нормально размножаться. Эти десять элементов – углерод, водород, кислород, калий, кальций, магний, азот, фосфор, сера и железо – были определены как химические элементы, необходимые для роста растений. Они, таким образом, относятся к необходимым минеральным, или необходимым неорганическим питательным веществам.
Неорганические ионы влияют на осмотическое давление и таким образом помогают регулировать водный баланс. Поскольку некоторые из ионов в этой роли взаимозаменяемы, то потребность растений в них можно назвать неспецифической. С другой стороны неорганический компонент может функционировать как часть незаменимой биологической молекулы. В этом случае потребность в нем высокоспецифичная. Например, специфическую функцию выполняет магний, входящий в состав молекулы хлорофилла. Некоторые неорганические вещества входят в состав клеточных мембран, другие – контролируют их проницаемость. Ряд элементов – это обязательные компоненты ферментных систем, катализирующих биологические реакции в клетке. Другие формируют ту особую ионную среду, в которой могут протекать биологические реакции.
Вследствие того, что питательные неорганические элементы необходимы для удовлетворения основных потребностей организма и вовлечены в фундаментальные процессы, их недостаток вызывает разнообразные структурные и функциональные изменения растений.
Очень важна роль питательных неорганических элементов как катализаторов некоторых ферментативных реакций в растительной клетке. В одних случаях они представлены необходимой составной частью ферментов. В других – выступают как активаторы или регуляторы ферментов. Считается, например, что калий, влияющий на активность 50 или 60 ферментов, регулирует конформацию некоторых из них. В результате изменения конформации молекулы фермента ее реакционный центр становится более или менее доступным для связывания субстрата.
Многие из биохимических процессов, в том числе фотосинтез и дыхание, представляют собой систему окислительно-восстановительных реакций. В этих реакциях электроны передаются молекулам, функционирующим в качестве акцепторов. К переносчикам электронов относятся цитохромы, в состав которых входит железо.
Некоторые минеральные компоненты входят в состав различных клеточных компонентов, в том числе физических и химических структур, участвующих в метаболизме. Кальций соединяется с пектиновой кислотой в срединной пластинке клеточной оболочки. Фосфор встроен в «остов» спиралей ДНК и РНК, а также входит в состав фосфолипидов клеточных мембран. Азот – обязательный компонент аминокислот, хлорофилла и нуклеотидов. Сера присутствует в нескольких аминокислотах, являясь, таким образом, важным структурным элементом многих белков.
Поступление воды в растительную клетку и из нее, в значительной степени зависит от концентрации растворенных веществ в клетке и в окружающей среде. Возникающее тургорное давление, направленное на клеточную оболочку, приводит к растяжению и, следовательно, росту незрелых клеток и поддержанию тургор зрелых. Это пример превращения одной формы энергии в другую, осуществляемого живой системой (химическая энергия, затраченная на активное поглощение ионов растительными клетками, переходит в физическую энергию движения воды).
Кальций оказывает непосредственное влияние на физические свойства клеточных мембран. Его недостаток приводит к тому, что мембраны теряют свою целостность и растворенные вещества начинают выходить из клеток.
Влияние химических элементов на растения
Азот необходим для всех процессов роста. Выделяют две формы азота, каждая из которых в той или иной мере необходима растениям: нитратная (окисленная) и аммонийная (восстановленная). Азот нитратов накапливается в сочных органах растений, помогая им регулировать водный баланс.
Азот усиливает ростовые процессы у растений, но при его избытке задерживается развитие растений и сроки созревания урожая, особенно у томата и бахчевых культур, в овощах повышается содержание нитратов.
При перекормке растения возможно буйное развитие вегетативной массы в ущерб цветению (далеко не у всех растений).
Избыток азота в сочетании с постоянной высокой влажностью и плохой аэрацией корней может привести к загниванию растений или к интоксикации. При этом понижается устойчивость растений к заболеваниям. Никогда не вносите азот, если вы видите, что растение поражено грибной или бактериальной инфекцией.
Фосфор необходим растениям в начальный период вегетации. Он ускоряет развитие растений, повышает устойчивость их к болезням, способствует улучшению качества и сохранности продукции.
Потребность в фосфоре велика в период образования соцветий, цветения и формирования семян. Фосфор не препятствует переходу растения в состояние покоя, поэтому его смело можно вносить и во второй половине лета. Под влиянием фосфора побеги древесных растений лучше вызревают.
Фосфор повышает сопротивляемость растений к неблагоприятным условиям и болезням. Он полезен как раз перед переводом их в состояние покоя.
Калий способствует ускорению созревания овощных культур, улучшению качества продукции, увеличению сроков ее хранения в осенне-зимний период. Он необходим растениям в период образования цветков и плодов, улучшает сопротивляемость их к инфекциям и стрессам. Калий, как и фосфор, растение не станет использовать себе во вред.
Калий не входит в состав органических соединений растения, но принимает участие в процессах образования сахара, крахмала, белков.
Калий служит проводником в растении, при его участии строит растение сосудистые пучки и происходит движение растительных соков. Но работа калия этим не ограничивается. Калий делает растение более выносливым, помогает ему бороться с болезнями и непогодой. Если растение получает достаточно калия, оно легче переносит весенние заморозки и зимние морозы. Хлеба меньше полегают во время ветров и бурь, лучше противостоит грибковым заболеваниям, если они обеспечены калием.
Проявление недостатков макроэлементов
При недостатке азотного питания растения отстают в росте. Главный симптом преждевременное пожелтение нижних листьев. Листья бледно зеленые, желтоватые сначала на нижних частях побега, а потом и на верхних. Стремясь восполнить недостаток азота, растение перемещает его из нижних старых листьев в точки роста и молодые листья. Побеги тонкие, короткие, рост их слабый. При остром голодании прекращается рост листьев, и они опадают раньше времени. Цветение слабое, плоды мелкие, осыпаются. Для луковичных обеспеченность азотом означает хорошую подготовку луковиц к цветению в будущем году.
При сильном недостатке фосфора растение приостанавливает рост стеблей и листьев, происходит задержка цветения и созревания. Листочки с краев скручиваются, на черешках и стеблях появляются фиолетовые и красноватые пятна. На месте этих пятен ткань высыхает. Растение болеет. Побеги тонкие, оголенные, листья зеленые, тусклые. У листьев на нижних частях побегов ненормальная окраска жилок: бронзовая или пурпурная. Листопад начинается рано, засыхающие листья темного, почти черного цвета.
При резком недостатке калия листопад растянут: опадают сначала верхние листья на побеге, а потом нижние. Калий из старых листьев растения передвигается к верхушкам роста и идет на образование молодых побегов. Края листьев имеют обожженный вид: появляется полоска отмершей ткани по краю листовой пластинки, она резко выделяется на фоне остальной части листа. Такие признаки появляются на нижних (старых) листьях. Старые листья при этом отмирают, засыхают.
www.hintfox.com