Фосфор в химии – Урок №34. Фосфор. Аллотропия фосфора. Физические и химические свойства фосфора.

Содержание

Фосфор химический элемент

Еще история о фосфоре

Более трехсот лет отделяют нас от того момента, когда гамбургский алхимик Геннинг Бранд открыл новый элемент — фосфор. Подобно другим алхимикам, Бранд пытался отыскать эликсир жизни или философский камень, с помощью которых старики молодеют, больные выздоравливают, а неблагородные металлы превращаются в золото. Не забота о благе людском, а корысть руководила Брандом. Об этом свидетельствуют факты из истории единственного настоящего открытия, сделанного этим алхимиком.

В ходе одного из опытов он выпарил мочу, смешал остаток с углем, песком и продолжил выпаривание. Вскоре в реторте образовалось вещество, светившееся в темноте. Правда, kaltes Feuer (холодный огонь), или «мой огонь», как Бранд его называл, не превращал свинец в золото и не изменял облика старых людей, но то, что полученное вещество светилось без подогрева, было необычно и ново.

Этим свойством нового вещества Бранд не замедлил воспользоваться. Он стал показывать фосфор различным привилегированным лицам, получая от них подарки и деньги. Хранить тайну получения фосфора было нелегко, и вскоре Бранд продал ее дрезденскому химику И. Крафту. Число демонстраторов фосфора увеличилось, когда рецепт его изготовления стал известен И. Кункелю и К. Кирхмейеру. В 1680 г. независимо от предшественников новый элемент был получен знаменитым английским физиком и химиком Робертом Бойлем. Но вскоре Бойль умер, а его ученик А. Ганквиц изменил чистой науке и вновь возродил «фосфорную спекуляцию». Лишь в 1743 г. А. Маркграф отыскал более совершенный способ получения фосфора и опубликовал свои данные для всеобщего сведения. Это событие положило конец брандовскому бизнесу и послужило началом серьезного изучения фосфора и его соединений. Вот в какой скверной истории оказался замешан элемент № 15.

Фосфор в литературе

«…Да! Это была собака, огромная, черная, как смоль. Но такой собаки еще никто из нас, смертных, не видывал. Из ее отверстой пасти вырывалось пламя, глаза метали искры, по морде и загривку переливался мерцающий огонь. Ни в чьем воспаленном мозгу не могло возникнуть видение более страшное, более омерзительное, чем это адское существо, выскочившее на нас из тумана. Страшный пес, величиной с молодую львицу. Его огромная пасть все еще светилась голубоватым пламенем, глубоко сидящие дикие глаза были обведены огненными кругами.

Я дотронулся до этой светящейся головы и, отняв руку, увидел, что мои пальцы тоже засветились в темноте. Фосфор, — сказал я».

Узнали? Артур Конан-Дойл. «Собака Баскервилей».

История открытия фосфора

На первом, пятидесятилетием этапе истории фосфора, кроме открытия Бойля, лишь одно событие отмечено историей науки: в 1715 г. Генсинг установил наличие фосфора в мозговой ткани. После опытов Маркграфа история элемента, приобретшего много лет спустя номер 15, стала историей многих больших открытий.

Хронология открытий фосфора

В 1769 г. Ю. Ган доказал, что в костях содержится много фосфора. То же самое подтвердил через два года знаменитый шведскии химик К. Шееле, предложивший способ получения фосфора из золы, образующейся при обжиге костей.

Еще несколькими годами позже Ж. Л. Пруст и М. Клапрот, исследуя различные природные соединения, доказали, что фосфор широко распространен в земной коре, главным образом в виде фосфата кальция.

Больших успехов в изучении свойств фосфора достиг в начале 70-х годов XVIII в. великий французский химик Антуан Лоран Лавуазье. Сжигая фосфор с другими веществами в замкнутом объеме воздуха, Лавуазье доказал, что фосфор — самостоятельный элемент, а воздух имеет сложный состав и слагается по крайней мере из двух компонентов — кислорода и азота. «Таким образом он впервые поставил на ноги всю химию, которая в своей флогистической форме стояла на голове». Так Ф. Энгельс писал о работах Лавуазье в предисловии ко второму тому «Капитала».

В 1799 г. Дондональд доказал, что соединения фосфора необходимы для нормального развития растений.

В 1839 г. другой англичанин, Лауз, впервые получил суперфосфат — фосфорное удобрение, легко усвояемое растениями.

В 1847 г. немецкий химик Шреттер, нагревая белый фосфор без доступа воздуха, получил новую разновидность (аллотропную модификацию) элемента № 15 — красный фосфор, а уже в XX в., в 1934 г., американский физик П. Бриджмен, изучая влияние высоких давлений на разные вещества, выделил похожий на графит черный фосфор. Таковы основные вехи в истории элемента № 15. Теперь проследим, что последовало за каждым из этих открытий.

«В 1715 году Генсинг установил наличие фосфора в мозговой ткани… В 1769 году Ган доказал, что в костях содержится много фосфора»

Фосфор — аналог азота. Хотя физические и химические свойства этих элементов очень сильно различаются, есть у них и общее, в частности то, что оба эти элемента совершенно необходимы животным и растениям. Академик А. Е. Ферсман называл фосфор «элементом жизни и мысли», и это определение вряд ли можно отнести к категории литературных преувеличений. Фосфор обнаружен буквально во всех органах зеленых растений: в стеблях, корнях, листьях, но больше всего его в плодах и семенах. Растения накапливают фосфор и снабжают им животных.

В организме животных фосфор сосредоточен главным образом в скелете, мышцах и нервной ткани. Из продуктов человеческого питания особенно богат фосфором желток куриных яиц.

Тело человека содержит в среднем около 1,5 кг элемента № 15. Из этого количества 1,4 кг приходится на кости, около 130 г — на мышцы и 12 г — на нервы и мозг. Почти все важнейшие физиологические процессы, происходящие в нашем организме, связаны с превращениями фосфорорганических веществ. В состав костей фосфор входит главным образом в виде фосфата кальция. Зубная эмаль — это тоже соединение фосфора, которое по составу и кристаллическому строению соответствует важнейшему минералу фосфора апатиту Ca5(PO4)3(F, Cl).

Естественно, что, как и всякий жизненно необходимый элемент, фосфор совершает в природе круговорот. Из почвы его берут растения, от растений этот элемент попадает в организмы человека и животных. В почву фосфор возвращается с экскрементами и при гниении трупов. Фосфоробактерии переводят органический фосфор в неорганические соединения. Однако в единицу времени из почвы выводится значительно больше фосфора, чем поступает в почву. Мировой урожай сейчас ежегодно уносит с полей больше 3 млн. т фосфора.

Естественно, что для получения устойчивых урожаев этот фосфор должен быть возвращен в почву, и потому нет ничего удивительного в том, что мировая добыча фосфоритной руды сейчас составляет значительно больше 100 млн. т в год.

«…Пруст и Клапрот доказали, что фосфор широко распространен в земной коре, главным образом в виде фосфата кальция»

В земной коре фосфор встречается исключительно в виде соединений. Это главным образом малорастворимые соли ортофосфорной кислоты; катионом чаще всего служит ион кальция. На долю фосфора приходится 0,08% веса земной коры. По распространенности он занимает 13-е место среди всех элементов. Фосфор содержится не менее чем в 190 минералах, из которых главнейшие: фторапатит Ca

5(PO4)3F, гидроксилапатит Ca5(PO4)3OH, фосфорит Ca3(PO4)2 с примесями.

Реже встречаются вивианит Fe3(PO4)2*8H2O, монацит (Ce, La)PO4, амблигонит LaAl(PO4)F, трифилит Li(Fe, Mn)PO4 и еще реже ксенотим YPO4 и торбернит Cu(UO2)2[PO4]2*12H2O.

Минералы фосфора делятся на первичные и вторичные. Из первичных особенно распространены апатиты, часто встречающиеся среди пород магматического происхождения. Эти минералы образовались в момент становления земной коры.

В отличие от апатитов фосфориты залегают среди пород осадочного происхождения, образовавшихся в результате отмирания живых существ. Это вторичные минералы. В виде фосфидов железа, кобальта, никеля фосфор встречается в метеоритах. Разумеется, этот распространенный элемент есть и в морской воде (6*10

-6%).

«Лавуазье доказал, что фосфор — самостоятельный химический элемент…»

Фосфор — неметалл (то, что раньше называли металлоид) средней активности. На наружной орбите атома фосфора находятся пять электронов, причем три из них не спарены. Поэтому он может проявлять валентности 3-, 3+ и 5+.

Для того чтобы фосфор проявлял валентность 5+, необходимо какое-либо воздействие на атом, которое бы превратило в неспаренные два спаренных электрона последней орбиты. Фосфор часто называют многоликим элементом. Действительно, в разных условиях он ведет себя по-разному, проявляя то окислительные, то восстановительные свойства. Многоликость фосфора — это и его способность находиться в нескольких аллотропных модификациях.

Пожалуй, самая известная модификация элемента № 15 — мягкий, как воск, белый или желтый фосфор. Это ее открыл Бранд, и благодаря ее свойствам элемент получил свое имя: по-гречески «фосфор» значит светящийся, светоносный. Молекула белого фосфора состоит из четырех атомов, построенных в форме тетраэдра. Плотность 1,83, температура плавления 44,1°С. Белый фосфор ядовит, легко окисляется. Растворим в сероуглероде, жидких аммиаке и SO2, бензоле, эфире. В воде почти не растворяется.

При нагревании без доступа воздуха выше 250°С белый фосфор превращается в красный. Это уже полимер, но не очень упорядоченной структуры. Реакционная способность у красного фосфора значительно меньше, чем у белого. Он не светится в темноте, не растворяется в сероуглероде, не ядовит. Плотность его намного больше, структура мелкокристаллическая.

Менее известны другие, еще более высокомолекулярные модификации фосфора — фиолетовый, коричневый и черный, отличающиеся одна от другой молекулярным весом и степенью упорядоченности макромолекул. Черный фосфор, впервые полученный П. Бриджменом в условиях больших давлений (200 тыс. атм при температуре 200°С), скорее напоминает графит, чем белый или красный фосфор. Эти модификации — лабораторная экзотика и в отличие от белого и красного фосфора практического применения пока не нашли.

Кстати, о применениях элементного фосфора; главные его потребители — производство спичек, металлургия, химические производства. В недавнем прошлом часть получаемого элементного фосфора расходовалась на военных предприятиях, его использовали для приготовления дымовых и зажигательных составов.

Металлурги обычно стремятся избавиться от примеси фосфора в металле — он ухудшает механические свойства, но иногда фосфор вводят в сплавы умышленно. Это делается, когда нужно, чтобы при затвердевании металл немного расширился и точно воспринял очертания формы. Широко используется фосфор и в химии. Часть его идет на приготовление хлоридов фосфора, нужных при синтезе некоторых органических препаратов; стадия производства элементного фосфора есть и в некоторых технологических схемах производства концентрированных фосфорных удобрений.

Теперь о его соединениях
  • Фосфорный ангидрид P2O5 — превосходный осушитель, жадно поглощающий воду из воздуха и других веществ. Содержание P2O5 — основной критерий ценности всех фосфорных удобрений.
  • Фосфорные кислоты, в первую очередь ортофосфорная H3PO4, используются в основной химической промышленности. Соли фосфорных кислот — это прежде всего фосфорные удобрения (о них разговор особый) и фосфаты щелочных металлов, необходимые для производства моющих средств.
  • Галогениды фосфора (главным образом хлориды PCl3 и PCl5) используются в промышленности органического синтеза.
  • Из соединений фосфора с водородом наиболее известен фосфин Ph4 — сильно ядовитый бесцветный газ с чесночным запахом.
  • Среди соединений    фосфора особое место    принадлежит фосфорорганическим соединениям. Большинство их обладает биологической активностью. Поэтому одни фосфорорганические соединения используются как лекарства, другие — как средства борьбы с сельскохозяйственными вредителями.

Самостоятельный класс веществ составили фосфонитрилхлориды — соединения фосфора с азотом и хлором. Мономер фосфонитрилхлорида способен к полимеризации. С ростом молекулярного веса меняются свойства веществ этого класса, в частности заметно уменьшается их растворимость в органических жидкостях. Когда молекулярный вес полимера достигает нескольких тысяч, получается каучукоподобное вещество — единственный пока каучук, в составе которого совсем нет углерода. Дальнейший рост молекулярного веса приводит к образованию твердых пластмассоподобных веществ. «Безуглеродный каучук» обладает значительной термостойкостью: он начинает разрушаться лишь при 350°С.

«В 1839 г. англичанин Лауз впервые получил суперфосфат — фосфорное удобрение, легко усвояемое растениями» Чтобы растения могли усваивать фосфор, он должен находиться в составе растворимого соединения. Чтобы получить эти соединения, фосфат кальция и серную кислоту смешивают в таких соотношениях, чтобы на одну грамм-молекулу фосфата приводилось две грамм-молекулы кислоты. В результате взаимодействия образуются сульфат и растворимый дигидрофосфат кальция: Ca3(PO4)2 + 2H2SO4  →  2CaSO4 + Ca(H2PO4)2.

Смесь этих двух солей известна под названием суперфосфата. В этой смеси сульфат кальция с точки зрения агрохимии — балласт, однако его обычно не отделяют, так как эта операция требует больших затрат и сильно удорожает удобрение. В простом суперфосфате содержится всего 14-20% P2O5. Более концентрированное фосфорное удобрение — двойной суперфосфат. Его получают при взаимодействии фосфата кальция с фосфорной кислотой: Ca3(PO4)2 + 4Н3РO4 3Са(Н2РO4)2.

В двойном суперфосфате содержится 40-50% P2O5. По сути, его правильнее было бы называть тройным: он в три раза богаче фосфором, чем простой суперфосфат. Иногда в качестве фосфорного удобрения используется преципитат CaHPO4*H2O, который получается при взаимодействии фосфорной кислоты с гидроокисью или с карбонатом кальция. В этом удобрении 30-35% P2O5.

Фосфор содержат и некоторые комбинированные удобрения, например диамофос (NH4)2HPO4, содержащий также и азот.

С разведанными запасами фосфорного сырья в нашей стране, как и во всем мире, дело обстоит не совсем благополучно. Академик С. И. Вольфкович с трибуны IX Менделеевского съезда по общей и прикладной химии говорил: «Если сырьевая база азотной промышленности — воздушный океан, вода и природный газ — не ограничивает масштабов нового строительства, а разведанные к настоящему времени залежи калийных солей обеспечивают развитие производства калийных удобрений более чем на тысячелетие, то изученных к настоящему времени запасов отечественного фосфорного сырья при намеченных больших объемах, производства удобрений хватит всего на несколько десятилетий».

В целом, это утверждение справедливо и для наших дней, несмотря на то, что масштабы производства фосфорных удобрений значительно выросли: в 1980 г. в СССР произведено больше 30 млн. т фосфатных удобрений и 4,4 млн. т фосфоритной муки — в 1965 г. было соответственно 8,04 и 3,24 млн. т.

Фосфор и сегодня остается лимитирующим элементом агрохимии, хотя возможности для дальнейшего расширения производства фосфорных удобрений есть. Много дополнительного фосфора можно будет получить при комплексной переработке минерального сырья, донных морских отложений и более детальной геологической разведке. Следовательно, особых, оснований для пессимизма у нас нет, тем более что по учтенным запасам фосфорных руд Россия занимает первое место в мире. Тем не менее, искать новые месторождения, разрабатывать способы получения фосфорных удобрений из более бедных руд необходимо. Необходимо для будущего, потому что фосфор — «элемент жизни и мысли» — будет нужен человечеству всегда.

natural-museum.ru

Фосфор | Наука | FANDOM powered by Wikia

https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%81%D1%84%D0%BE%D1%80


Фосфор(P)
Атомный номер 15
Внешний вид Белый фосфор-
белый, восковидный,
слегка фосфорецирующий
Свойства атома
Атомная масса
(молярная масса)
30,973762 а. е. м. (г/моль)
Радиус атома 128 пм
Энергия ионизации
(первый электрон)
1011,2(10,48) кДж/моль (эВ)
Электронная конфигурация [Ne] 3s2 3p3
Химические свойства
Ковалентный радиус 106 пм
Радиус иона 35 (+5e) 212 (-3e) пм
Электроотрицательность
(по Полингу)
2,19
Электродный потенциал 0
Степени окисления 5, 3, -3
Термодинамические свойства
Плотность (белый фосфор)1,82 г/см³
Удельная теплоёмкость 0,757 Дж/(K·моль)
Теплопроводность (0,236) Вт/(м·K)
Температура плавления 317,3 K
Теплота плавления 2,51 кДж/моль
Температура кипения 553 K
Теплота испарения 49,8 кДж/моль
Молярный объём 17,0 см³/моль
Кристаллическая решётка
Структура решётки кубическая
Период решётки 7,170 Å
Отношение c/a n/a
Температура Дебая n/a K

Фосфор — один из самых распространенных элементов земной коры, его содержание в земной коре составляет 0,1 % массы . В свободном состоянии не встречается из-за своей химической активности, образует около 190 минералов, важнейшими из которых являются апатит Ca5(PO4)3F, фосфорит Ca3(PO4)2 и флюорит CaF2. Фосфор содержится во всех частях зеленых растений, еще больше его в плодах и семенах. Содержится в животных тканях, входит в состав белков и других важнейших органических соединений, является необходимым элементом жизни.

    Фосфор открыт гамбургским алхимиком Хеннингом Брандом в 1669 г. Подобно другим алхимикам, Бранд пытался отыскать эликсир жизни или философский камень, а получил светящееся вещество. Существуют данные, что фосфор умели получать еще арабские алхимики в XII в. То, что фосфор – простое вещество доказал Лавуазье.

    Происхождение названия Править

    В 1669 г. немецкий алхимик Хеннинг Бранд при нагревании смеси белого песка и выпаренной мочи получил светящееся в темноте вещество, названное сначала «холодным огнём», вторичное название «фосфор» происходит от греческих слов «фос» – свет и «феро» – несу.

    Фосфор получают из апатитов или фосфоритов в результате взаимодействия с коксом и песком при температуре 1500 °С:

    • 2Ca3(PO4)2 + 10C + 6SiO2 = 4P + 10CO + 6CaSiO3.

    Образующиеся пары белого фосфора конденсируются в приемнике под водой. Вместо фосфоритов восстановлению можно подвергнуть и другие соединения, например, метафосфорную кислоту:

    • 4HPO3 + 12C = 4P + 2H2 + 12CO.

    Физические свойства Править

    Элементарный фосфор в обычных условиях представляет собой несколько устойчивых аллотропических модификаций и вопрос аллотропии фосфора сложен и до конца не решен. Обычно выделяют три модификации простого вещества – белую, красную, черную и металлический фосфор. Иногда их еще называют главными аллотропными модификациями, подразумевая при этом, что все остальные являются разновидностью указанных четырех. В обычных условиях существует только три аллотропических модификации фосфора и в условиях сверхвысоких давлений также металлическая форма элементарного фосфора. Все модификации различаются по цвету, плотности и другим физическим характеристикам, а также заметна тенденция к резкому убыванию химической активности при переходе от белого к металлическому фосфору и нарастанию металлических свойств.

    Белый фосфор:

    Белый фосфор представляет собой белое вещество с желтоватым оттенком (из-за примесей) с температурой плавления 44,1° С. По внешнему виду он очень похож на очищенный воск или парафин, легко режется ножом и деформируется от небольших усилий. Отливаемый в инертной атмосфере ввиде палочек или слитков иной формы, он сохраняется в отсутствии воздуха под слоем очищенной воды или в специальных инертных средах. Химически белый фосфор чрезвычайно активен. Например белый фосфор медленно окисляется кислородом воздуха уже при комнатной температуре, и светится (бледно-зеленое свечение). Явление такого рода свечения вследствие химических реакций окисления называется хемолюминесценцией или устаревшим термином — фосфоресценцией. Белый фосфор не только активен химически, но и весьма ядовит (вызывает поражение костей, костного мозга, некроз челюстей) и легкорастворим в органических растворителях. Летальная доза белого фосфора для взрослого мужчины состовляет 0,05-0,1 грамма. Растворимостью белого фосфора в сероуглероде пользуются для промышленной очистки его от примесей. Плотность белого фосфора из всех его модификаций наименьшая и состовляет около 1823 кг/м3.

    Красный фосфор:

    Красный фосфор, или также называемый фиолетовым фосфором, это более термодинамически стабильная модификация элементарного фосфора. Впервые он был получен А. Шреттером при нагревании белого фосфора при 500°С в атмосфере «угарного газа» (СО) в запаянной стеклянной ампуле в 1847 году в Швеции. Красный фосфор имеет формулу Р4 и представляет собой полимер со сложной структурой. В зависимости от способа получения и степени дробления красного фосфора, ему присущи оттенки от пурпурно-красного до фиолетового, а в литом состоянии присущ темно-фиолетовый с медным оттенком металлический блеск. Химическая активность красного фосфора значительно ниже чем у белого, и присуща исключительно малая растворимость в растворителях. Растворить красный фосфор возможно лишь в некоторых расплавленных металлах (свинец и висмут), чем иногда пользуются для получения крупных его кристаллов. Так например немецкий ученый-физик И.В.Гитторф в 1865 году впервые получил прекрасно построенныено небольшие по размеру кристаллы (фосфор Гитторфа). На воздухе он воспламеняется при высоких температурах (при переходе в белую форму во время возгонки) и у него полностью отсутствует явление хемолюминесценции. Ядовитость его в тысячи раз меньше чем у белого и в этом отношении он полностью соответствует например для применения его при производстве спичек. Плотность красного фосфора также выше чем у белого и достигает 2400 кг/м3 в литом виде. При хранении на воздухе красный фосфор в присутствии влаги окисляется и ему присуще явление «отмокания», поэтому его хранят в герметичной таре и при отмокании промывают водой от остатков фосфорных кислот, высушивают и используют по-назначению.

    Черный фосфор:

    Черный фосфор – это наиболее стабильная термодинамически и химически наименее активная форма элементарного фосфора. Впервые черный фосфор был получен П.У.Бриджменом из белого фосфора в 1914 году в виде черных блестящих кристаллов имеющих высокую (2690 кг/м3) плотность. Для проведения синтеза черного фосфора Бриджмен применил давление в 2·109Па (20 тысяч атмосфер) и температуру около 200° С. Начало быстрого перехода лежит в области 13000 атмосфер и температуре около 230°С. Черный фосфор представляет собой черное вещество с металлическим блеском, жирное на ощупь и весьма похожее на графит, и полностью отсутствующей растворимостью в воде или органических растворителях. Поджечь черный фосфор можно только предварительно сильно раскалив в атмосфере чистого кислорода до 400°С. Удивительным свойством черного фосфора является его способность проводить электрический ток и свойства полупроводника. Температура плавления черного фосфора 1000°С под давлением 18 · 105Па.

    Металлический фосфор: При 8,3 · 1010Па черный фосфор переходит в новую, еще более плотную и инертную металлическую фазу с плотностью 3,56г/см3, а при дальнейшем повышении давления до 1,25 · 1011Па металлический фосфор еще более уплотняет приобретает кубическую кристаллическую решетку, при этом его плотность возрастает до 3,83г/см3. Металлический фосфор очень хорошо проводит электрический ток.

    Химические свойства Править

    Химическая активность фосфора значительно выше, чем у азота. Химические свойства фосфора во многом определяются его аллотропной модификацией. Белый фосфор очень активен, в процессе перехода к красному и черному фосфору химическая активность резко снижается. Белый фосфор на воздухе светится в темноте, свечение обусловлено окислением паров фосфора до низших оксидов.

    В жидком и растворенном состоянии, а также в парах до 800 °С фосфор состоит из молекул Р4. При нагревании выше 800 °С молекулы диссоциируют: Р4 = 2Р2. При температуре выше 2000 °С молекулы распадаются на атомы.

    Взаимодействие с простыми веществами

    Фосфор легко окисляется кислородом:

    • 4P + 5O2 = 2P2O5,
    • 4P + 3O2 = 2P2O3.

    Взаимодействует со многими простыми веществами – галогенами, серой, некоторыми металлами, проявляя окислительные и восстановительные свойства:

    с металлами – окислитель, образует фосфиды:

    с неметаллами – восстановитель:

    Не взаимодействует с водородом.

    Взаимодействие с водой:

    Взаимодействует с водой, при этом диспропорционирует:

    Взаимодействие со щелочами:

    В растворах щелочей диспропорционирование происходит в большей степени:

    • 4Р + 3KOH + 3Н2О = РН3 + 3KН2РО2 .

    Восстановительные свойства:

    Сильные окислители превращают фосфор в фосфорную кислоту:

    • 3P + 5HNO3 + 2H2O = 3H3PO4 + 5NO;
    • 2P + 5H2SO4 = 2H3PO4 + 5SO2 + 2H2O.

    Реакция окисления также происходит при поджигании спичек, в качестве окислителя выступает бертолетова соль:

    • 6P + 5KClO3 = 5KCl + 3P2O5

    Фосфор является важнейшим биогенным элементом и в то же время находит очень широкое применение в промышленности.

    Элементарный фосфорПравить

    Пожалуй одним из первых свойств фосфора которое человек поставил себе на службу — это горючесть. Горючесть фосфора очень велика и зависит от аллотропической модификации.

    Наиболее активен химически, токсичен и горюч белый («жёлтый») фосфор, потому он очень редко применяется (в зажигательных бомбах и пр.).

    Красный фосфор — основная модификация производимая и потребляемая промышленностью. Он применяется в производстве спичек, взрывчатых веществ, зажигательных составов, топлив, а также противозадирных смазочных материалов.

    Соединения фосфора в сельском хозяйстве Править

    Фосфор (в виде фосфатов) — один из трех важнейших биогенных элементов (NPK), участвует в синтезе АТФ.

    Большая часть производимой фосфорной кислоты идёт на получение фосфорных удобрений — суперфосфата, преципитата, аммофоски и др.

    Промышленность Править

    Биологическая роль соединений фосфораПравить

    Токсикология элементарного фосфораПравить

    af:Fosfor

    ar:فسفور ast:Fósforu az:Fosfor bg:Фосфор bs:Fosfor ca:Fòsfor co:Fosfaru cs:Fosfor cy:Ffosfforws da:Fosfor de:Phosphor el:Φωσφόρος en:Phosphorus eo:Fosforo es:Fósforo (elemento) et:Fosfor fa:فسفر fi:Fosfori fr:Phosphore gl:Fósforo (elemento) he:זרחן hr:Fosfor hu:Foszfor hy:Ֆոսֆոր id:Fosfor io:Fosfo is:Fosfór it:Fosforo ja:リン jbo:sackycmu ko:인 la:Phosphorus lb:Phosphor lt:Fosforas lv:Fosfors mi:Pūtūtae-whetū mk:Фосфор ml:ഫോസ്ഫറസ് nds:Phosphor nl:Fosfor nn:Fosfor no:Fosfor nov:Fosfore oc:Fosfòr pl:Fosfor pt:Fósforo ro:Fosfor sh:Fosfor simple:Phosphorus sk:Fosfor sl:Fosfor sq:Fosfori sr:Фосфор sv:Fosfor tg:Фосфор th:ฟอสฟอรัส tr:Fosfor ug:Fosfor uk:Фосфор uz:Fosfor vi:Phốtpho zh:磷



    • Страница 0 — краткая статья
    • Страница 1 — энциклопедическая статья
    • Разное — на страницах: 2 , 3 , 4 , 5
    • Прошу вносить вашу информацию в «Фосфор 1», чтобы сохранить ее

    ru.science.wikia.com

    Фосфор в химии — Справочник химика 21

        Но у фосфора, как элемента 3-го периода, роль валентных играют также З -орбитали. Поэтому наряду с общностью свойств в химии этих типических элементов V группы проявляются существенные различия. Для фосфора возможны зрЧ -, зрЧ- и 5р -типы гибридизации валентных орбиталей. Максимальное координационное число фосфора равно 6. В отличие от азота для фосфора характерно л — рл-связывание за счет акцептирования свободными Зй(-орбиталями электронных пар соответствующих атомов [c.408]
        Аналогичное поведение обнаруживается и у элементов группы VA, но граница между металлами и неметаллами в этой группе проходит ниже. Азот и фосфор являются неметаллами, химия их ковалентных соединений и возможные состояния окисления определяются наличием пяти валентных электронов в конфигурации Азот и фосфор чаще всего имеют степени окисления — 3, -Ь 3 и +5. Мыщьяк As и сурьма Sb-семи-металлы, образующие амфотерные оксиды, и только висмут обладает металлическими свойствами. Для As и Sb наиболее важным является состояние окисления + 3. Для Bi оно единственно возможное, если не считать степеней окисления, проявляемых в некоторых чрезвычайно специфических условиях. Висмут не может терять все пять валентных электронов требуемая для этого энергия слишком велика. Однако он теряет три бр-электро-на, образуя ион Bi .  [c.455]

        Дальтон использовал данные Гей-Люссака для доказательства того, что равные объемы газов не содержат равного числа молекул это было еще одной его ошибкой, подобно правилу простоты. Рассуждения Дальтона иллюстрируются при помощи рис. 6-6,я. По иному пути пошел итальянский физик Амедео Авогадро (1776-1856). Он исходил из предположения, что равные объемы любых газов (при одинаковых температуре и давлении) содержат равное число молекул. Как показывает рис. 6-6,6, это предположение требует, чтобы газы таких реагирующих между собой элементов, как водород, кислород, хлор и азот, состояли из двухатомных молекул, а не просто из изолированных атомов. Если бы идеи Авогадро, опубликованные им в 1811 г., сразу же получили признание, это избавило бы химию от полувекового периода путаницы. Однако для большинства ученых идеи Авогадро представлялись всего лишь шатким предположением (равное число молекул в равных объемах), основанным на еще более шатком допущении (о двухатомных молекулах). В те времена представления о химической связи почти всецело основывались на учете сил электрического притяжения или отталкивания, и ученые с трудом могли представить себе, чтобы между двумя одинаковыми атомами могло возникнуть какое-либо другое взаимодействие, кроме отталкивания. Но если они все же притягиваются друг к другу, почему же тогда не образуются более сложные молекулы, как, например, Н3 или Н4 Шведский химик Йенс Якоб Берцелиус (1779-1848) пытался использовать данные о парах серы и фосфора, чтобы опровергнуть идеи Авогадро. Однако Берцелиус не понимал, что в этих случаях он имел дело как раз с примерами еще более сложных агрегатов (8 и Р4). Сам Авогадро не мог помочь делу он пользовался настолько путаной терминологией, что иногда казалось, будто он говорит о расщеплении атомов водорода (атомы он называл простыми молекулами ), а не [c.285]

        Диогенов Г. Г., Фосфор, Химия и жизнь, № 2, 17 (1968). [c.478]

        До сих пор речь шла о органических соединениях, молекулы которых состоят из атомов углерода, водорода, галогенов и кислорода. Мы выяснили, что такие соединения весьма многообразны — от природного газа и бензина до каучуков И пластмасс. Однако органические соединения могут быть еще более разнообразными, экзотическими и не менее важными веществами такими, как витамины, лекарственные препараты, моющие и взрывчатые вещества, соединения, придающие окраску, наконец, соединения, входящие в состав живых тканей, которые управляют химией живых организмов, передают детям свойства родителей, благодаря которьш живая ткань отличается от неживой материи. Все это — производные углеводородов, но в них огромную роль играют атомы азота (прежде всего), серы и фосфора. Перейдем к рассмотрению таких соединений. [c.125]

        Объединения Союз- Союз- Союз- Союз- Союз- Союз- Союз-МХП хлор орг- азот анил- хим- фосфор хим- [c.13]

        Производства азотное, полимерных материалов, продуктов органического синтеза, основной химии — расходуют более 70% электрической и более 80% тепловой энергии, потребляемых химической промышленностью. Наиболее энергоемкими из химических продуктов являются аммиак, аммиачная селитра, азотная кислота, желтый фосфор, синтетический каучук, химические волокна, пластмассы и некоторые другие. [c.303]

        Очистка газов в производстве фосфора и фосфорных удобрений. Л. Химия, 1979. 208 с. [c.286]

        Очистка газов в производстве фосфора и фосфорных удобрений/Под ред. Э. Я. Тарата. Л., Химия, 1979. 208 с. [c.288]

        Скорость превращения индивидуальных н-бутенов при их окислительном дегидрировании на фосфор-висмут-молибденовом катализаторе. Хим. пром., № 10, 731 (1966). [c.543]

        Анализ для определения отдельных элементов, составляющих соединения органической массы угля, т. е. количество углерода, водорода, кислорода, азота, серы и т. д., осуществляют методами, подобными методам, применяемым в органической химии. Некоторые из перечисленных элементов представляют больший или меньший интерес в отношении того, что касается процесса коксования и конечного качества получаемого кокса. Знание содержания серы представляется важным ввиду ее влияния на качество произведенного кокса, используемого в доменной печи. Содержание фосфора должно быть ограниченным при производстве определенных сортов электрометаллургических коксов. Напротив, азот, присутствующий в угле, не оказывает особого влияния, так же как и хлор, на производство кокса. Тем не менее опишем вкратце порядок нормального анализа для каждого из этих элементов для того, чтобы составить более полное представление об исследовании углей с помощью методов их элементного анализа. [c.48]

        Химия гидроксо- и оксокомплексов сурьмы и висмута характеризуется сильной склонностью к конденсации, приводящей к образованию сложных каркасных структур. Это свойство начинает проявляться уже у кислородных соединений фосфора. [c.530]

        Приведите примеры, показывающие близость химии фосфора и мышья- а в отличие от химии азота и фосфора. В чем причины сходства и различия в химии этих элементов  [c.553]

        Азот и фосфор широко распространены в природе и являются важными составными частями нашего окружения. Азот, как известно, является главным компонентом земной атмосферы и в значительных количествах присутствует в биологических системах. Фосфор входит в состав некоторых минералов, например фосфатов этот элемент то же является важной составной частью биологических систем. Мышьяк, сурьма и висмут распространены гораздо меньше, но все же без особого труда добываются из некоторых минералов. Висмут занимает интересное место в химии. Единственный природный изотоп этого элемента ° Bi имеет самый высокий атомный номер среди [c.313]

        Для получения монодисперсных золей золота этим способом в раствор перед восстановлением вводят зародышевый золь золота (т.е. очень высокодисперсный), приготовленный отдельно путем восстановления хлорида золота фосфором. Золото, выделяющееся при восстановлении аурата калия в присутствии зародышевого золя, равномерно распределяется на зародышах, что и обеспечивает монодисперсность конечного золя. Все выделяющееся золото отлагается на зародышах, и в полученном золе образуется столько частиц, сколько было введено зародышей. Размер частиц такогО золя, очевидно, тем больше, чем меньше зародышей было введен в раствор перед восстановлением. Зародышевый способ получения монодисперсных коллоидных систем с частицами желаемого размера широко, используется при проведении ряда исследований в коллоидной химии. [c.247]

        Элементоорганические соединения р-элементов. Среди органических соединений р-элементов лучше изучены и нашли наибольшее применение соединения кремния, фосфора, бора, алюминия и некоторых других элементов. Химия этих соединений в значительной мере развивалась благодаря успешному поиску практически важных вешеств. [c.591]

        Органическая химия — это химия углеводородов п их производных, содержащих атомы так называемых элементов-органогенов кислорода, азота, фосфора, серы или галогенов. [c.7]

        Важное место в химии фосфора занимает реакция Арбузова  [c.109]

        Еще не изжито до конца мнение, согласно которому теория химического строения сводится к формальной схеме, позволяющей рисовать органические молекулы, приписав атому водорода одну черточку валентности, кислороду и сере — две, азоту и фосфору — три, а углероду — четыре. Бутлеров был бесконечно далек от такого подхода к делу и считал валентность атома углерода, как и других элементов, переменной. Труды Бутлерова сохранили свое значение до сего времени, поскольку он верно решил коренные методологические проблемы органической химии, над которыми безуспешно бились его современники. [c.9]

        Для факультетов водоснабжения и процессов очистки промышленных и сточных вод следует глубже, чем для других, рассмотреть вопросы химии соединений азота, фосфора и серы, а также процессы ионного обмена. [c.4]

        Учитель и лаборант должны всегда следить за тем, чтобы по окончании кружковых занятий и вечеров занимательной химии учащиеся не захватили с собой такие вещества калий, натрий, магний, красный фосфор, кристаллический иод, марганцовокислый калий, алюминиевую пудру, серный цвет и селитру. [c.74]

        Химия инертных элементов быстро развивается. В настоящее время уже получены многочисленные соединения инертных элементов с элементами платиновой группы, со ртутью, фосфором, йодом и рядом других элементов. Работа в этой области интенсивно продолжается. [c.542]

        Укажите сходные и отличительные черты в химии азота и фосфора. [c.221]

        Приведите для каждого способа получения оксокислот конкретные примеры из химии хлора, иода, серы, азота и фосфора. [c.158]

        До сих пор рассматривались только связи, образованные (в нашем орбитальном представлении) из s- и р-АО. Однако элементы третьего и следующих периодов периодической системы имеют в валентных оболочках и d-AO, которые также могут быть использованы для образования связей. Поэтому необходимо рассмотреть здесь некоторые вопросы, связанные с возникновением связей за счет d-орбиталей, но мы коснемся лишь тех аспектов, которые сушественны для органической химии. Мы совершенно не будем затрагивать проблемы, относящиеся к химии переход ных металлов, и сосредоточим наше внимание только на органических соединениях, включающих такие неметаллы, как сера и фосфор. Химия переходных металлов вобще и их элементоорганических соединений в значительной мере определяется особенностями участвующих в них d-AO. Это, однако, очень обширная область, которая не может быть освещена здесь без очень большого расширения объема, тогда как в ряде появившихся недавно монографий она рассмотрена вполне удовлетворительно. [c.530]

        Секция А, В и С правил органической номенклатуры ШРАС 1969 г. [2], которые заменяют опубликованные ранее [3], охватывают большую часть органической химии, но с трудом применимы к некоторым специальным областям. Номенклатура органических производных фосфора, мышьяка, сурьмы, висмута, органометаллических соединений, координационных комплексов (см. также с. 33 и 46) опубликована в 1978 г. лишь в виде временных правил [4], изданных совместно комиссиями по номенклатуре органической и неорганической химии. Этому посвящена гл. 9. Ряд областей, представляющих большой интерес как для биохимии, так и для органической химии, рассмотрен совместно Комиссиями ШРАС и ШВ (ШВ — Международный союз биохимии) и выработаны некоторые ценные предписания (см. гл. 8). [c.61]

        Смесь иодистоводородной кислоты с красным фосфором имеет в органической химии большое значение как сильный восстановитель. [c.32]

        Ретортные печи нашли прим-енан ие в хим-ической и нефтехими чес-ыой промышленности (в производствах синтетического каучука, фосфора, углеводорода и других продуктов). [c.268]

        Стабильные и нестабильные (радиоактивные) изотопы часто применяются в органической химии. Этими изотопами элемеитоа, в особенности изотопами водорода, углерода, кислорода, азота, фосфора и т. д., пользуются при исследовательских работах в органической и биологической химии для того, чтобы охарактеризовать или, как говорят, отметить (по-английски — label) определенные атомы органических молекул и таким путем с точностью проследить судьбу этих атомов ири химических и биологических превращениях соответствующих веществ. [c.1142]

        Если ири нуклеофильном катализе происходит подача электронов от катализатора к субстрату, то при электрофильном катализе происходит оттягивание электронов, или перенос электронной плотности, от субстрата к катализатору. Ионы металлов — отличные электрофильные катализаторы. Электрофильный катализ особенно существен для химии фосфатов, поскольку отрицательные заряды атомов фосфора стремятся оттолкнуть нуклеофилы. Например, синтез 3, 5 -гуанозинциклофосфата (сОМР, разд. 3.4.2) из гуанозинтрифосфата заметно ускоряется в присутствии двухзарядиых катионов металлов (например, Mg2+, Мп2+, Ва2+, 2п=+, Са2+). [c.195]

        Приведенные примеры использования радикальных и ион-радика]п,ных реакций I) органическом синтезе,конечно же, не могут полностью отразить все направления развжия этой области химии, но позволяют шире взглянуть на си1ггетичсские возможности химии свободных радикалов. В рамках данного учебного пособия не представляется возможным подробно рассмотреть кинетику и стереохимию радикальных и ион-радикальных реакций, а также такие важные аспекты химии свободных радикалов, как реакции замещения при атомах кислорода, серы, фосфора [4,29-32]. Заинтересованый читатель сможет найти ответы на эти вопросы в цитируемой литературе. [c.55]

        С4НвО)зРО — бесцветная маслянистая жидкость, т. кип. 289 С малорастворим в воде, хорощо — в органических растворителях получают взаимодействием нормального бутилового спирта с хлорокси-дом фосфора. Т. широко применяют в аналитической химии, радиохимии, при переработке ядерного топлива, для разделения элементов методом экстракции, в производстве пластмасс, в лабораторной практике и т. п. Из-за большой вязкости Т. для экстракции разбавляют бензолом, керосином и др. [c.253]

        Соединения углерода составляют основу чрезвычайно обширной области химии. Этот факт объясняется прочностью углерод-углерод ных связей и способностью углерода образовыиать длинные цепи причем, в отличие от соединений других элементов (бора, кремния фосфора и др.), связи углерода остаются прочными в тех случаях когда углерод одновременно связан с разными элементами. [c.7]

        У фосфора в образовании связей могут принимать участие rf-орбитали, что приводит к существенному различию химии фосфора и азота. Наиболее устойчивые координационные числа фосфора 4 и 6, характерно гибридное р -состояиие и реже Из возможных степеней окисления фосфора (- —5, +3, +1 и —3) наиболее характерна -] 5. [c.303]

        Кольцов С. И. и др. Изменение структуры силикагеля при образовании на его поверхности слоя иятиоки.п фосфора. — Журн. прикл. химии, 1974, т. 47, с. 1254—1258. [c.129]

        Химические свойства фосфора во многом близки к свойствам мышьяка, но реэко отличаются от химических свойств азота. В чем заключается главная причина сходства и различия химии элементов N, Р и As  [c.96]


    chem21.info

    Фосфор — это… Что такое Фосфор?

    Внешний вид простого вещества

    Белый, красный, жёлтый, черный фосфор
    Свойства атома
    Имя, символ, номер

    Фосфор/ Phosphorus (P), 15

    Атомная масса
    (молярная масса)

    30,973762 а. е. м. (г/моль)

    Электронная конфигурация

    [Ne] 3s2 3p3

    Радиус атома

    128 пм

    Химические свойства
    Ковалентный радиус

    106 пм

    Радиус иона

    35 (+5e) 212 (-3e) пм

    Электроотрицательность

    2,19 [1] (шкала Полинга)

    Электродный потенциал

    0

    Степени окисления

    5, 3, 1, 0, −1, −3[2]

    Энергия ионизации
    (первый электрон)

    1011,2(10,48) кДж/моль (эВ)

    Термодинамические свойства простого вещества
    Плотность (при н. у.)

    (белый фосфор)1,82 г/см³

    Температура плавления

    317,3 K

    Температура кипения

    553 K

    Теплота плавления

    2,51 кДж/моль

    Теплота испарения

    49,8 кДж/моль

    Молярная теплоёмкость

    21,6[3] (ромбич.) Дж/(K·моль)

    Молярный объём

    17,0 см³/моль

    Кристаллическая решётка простого вещества
    Структура решётки

    кубическая, объёмноцентрированная

    Параметры решётки

    18,800 Å

    Прочие характеристики
    Теплопроводность

    (300 K) (0,236) Вт/(м·К)

    Фо́сфор (от др.-греч. φῶς — свет и φέρω — несу; φωσφόρος — светоносный; лат. Phosphorus) — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) третьего периода периодической системы; имеет атомный номер 15. Один из распространённых элементов земной коры: его содержание составляет 0,08—0,09 % её массы. Концентрация в морской воде 0,07 мг/л[4]. В свободном состоянии не встречается из-за высокой химической активности. Образует около 190 минералов, важнейшими из которых являются апатит Ca5(PO4)3(F,Cl,OH), фосфорит и другие. Фосфор содержится во всех частях зелёных растений, ещё больше его в плодах и семенах (см. фосфолипиды). Содержится в животных тканях, входит в состав белков и других важнейших органических соединений (АТФ, ДНК), является элементом жизни.

    История

    Фосфор открыт гамбургским алхимиком Хеннигом Брандом в 1669 году. Подобно другим алхимикам, Бранд пытался отыскать философский камень, а получил светящееся вещество. Бранд сфокусировался на опытах с человеческой мочой, так как полагал, что она, обладая золотистым цветом, может содержать золото или нечто нужное для добычи. Первоначально его способ заключался в том, что сначала моча отстаивалась в течение нескольких дней, пока не исчезнет неприятный запах, а затем кипятилась до клейкого состояния. Нагревая эту пасту до высоких температур и доводя до появления пузырьков, он надеялся, что, сконденсировавшись, они будут содержать золото. После нескольких часов интенсивных кипячений получались крупицы белого воскоподобного вещества, которое очень ярко горело и к тому же мерцало в темноте. Бранд назвал это вещество phosphorus mirabilis (лат. «чудотворный носитель света»). Открытие фосфора Брандом стало первым открытием нового элемента со времён античности.

    Несколько позже фосфор был получен другим немецким химиком — Иоганном Кункелем.

    Независимо от Бранда и Кункеля фосфор был получен Р. Бойлем, описавшим его в статье «Способ приготовления фосфора из человеческой мочи», датированной 14 октября 1680 года и опубликованной в 1693 году.

    Усовершенствованный способ получения фосфора был опубликован в 1743 году Андреасом Маргграфом.

    Существуют данные, что фосфор умели получать ещё арабские алхимики в XII в.

    То, что фосфор — простое вещество, доказал Лавуазье.

    Происхождение названия

    В 1669 году Хеннинг Бранд при нагревании смеси белого песка и выпаренной мочи получил светящееся в темноте вещество, названное сначала «холодным огнём». Вторичное название «фосфор» происходит от греческих слов «φῶς» — свет и «φέρω» — несу. В древнегреческой мифологии имя Фосфор (или Эосфор, др.-греч. Φωσφόρος) носил страж Утренней звезды.

    Получение

    Фосфор получают из апатитов или фосфоритов в результате взаимодействия с коксом и кремнезёмом при температуре 1600 °С:

    Образующиеся пары белого фосфора конденсируются в приёмнике под водой. Вместо фосфоритов восстановлению можно подвергнуть и другие соединения, например, метафосфорную кислоту:

    Физические свойства

    Элементарный фосфор в обычных условиях представляет собой несколько устойчивых аллотропических модификаций; вопрос аллотропии фосфора сложен и до конца не решён. Обычно выделяют четыре модификации простого вещества — белый, красный, чёрный и металлический фосфор. Иногда их ещё называют главными аллотропными модификациями, подразумевая при этом, что все остальные являются разновидностью указанных четырёх. В обычных условиях существует только три аллотропических модификации фосфора, а в условиях сверхвысоких давлений — также металлическая форма. Все модификации различаются по цвету, плотности и другим физическим характеристикам; заметна тенденция к резкому убыванию химической активности при переходе от белого к металлическому фосфору и нарастанию металлических свойств.

    Аллотропные модификации фосфора

    Белый фосфор

    Белый фосфор представляет собой белое вещество (из-за примесей может иметь желтоватый оттенок). По внешнему виду он очень похож на очищенный воск или парафин, легко режется ножом и деформируется от небольших усилий.

    Белый фосфор имеет молекулярное строение; формула P4. Отливаемый в инертной атмосфере в виде палочек (слитков), он сохраняется в отсутствие воздуха под слоем очищенной воды или в специальных инертных средах.

    Легкорастворим в органических растворителях. Растворимостью белого фосфора в сероуглероде пользуются для промышленной очистки его от примесей. Плотность белого фосфора из всех его модификаций наименьшая и составляет около 1823 кг/м³. Плавится белый фосфор при 44,1 °C. В парообразном состоянии происходит диссоциация молекул фосфора.

    Химически белый фосфор чрезвычайно активен. Например, он медленно окисляется кислородом воздуха уже при комнатной температуре и светится (бледно-зелёное свечение). Явление такого рода свечения вследствие химических реакций окисления называется хемилюминесценцией (иногда ошибочно фосфоресценцией).

    Белый фосфор не только активен химически, но и весьма ядовит (вызывает поражение костей, костного мозга, некроз челюстей). Летальная доза белого фосфора для взрослого мужчины составляет 0,05—0,1 г.

    Жёлтый фосфор

    Неочищенный белый фосфор обычно называют «жёлтый фосфор». Сильно ядовитое (ПДК в атмосферном воздухе 0,0005 мг/м³), огнеопасное кристаллическое вещество от светло-жёлтого до тёмно-бурого цвета. Удельный вес 1,83 г/см³, плавится при +34 °C, кипит при +280 °C. В воде не растворяется, на воздухе легко окисляется и самовоспламеняется. Горит ослепительным ярко-зеленым пламенем с выделением густого белого дыма — мелких частичек декаоксида тетрафосфора P4O10[5]. Несмотря на то, что в результате реакции между фосфором и водой выделяется ядовитый газ фосфин (РН3)

    для тушения фосфора используют воду в больших количествах (для снижения температуры очага возгорания и перевода фосфора в твердое состояние) или раствор сульфата меди (медного купороса), после гашения фосфор засыпают влажным песком. Для предохранения от самовозгорания жёлтый фосфор хранится и перевозится под слоем воды (раствора хлорида кальция).

    Красный фосфор

    Красный фосфор

    Красный фосфор — это более термодинамически стабильная модификация элементарного фосфора. Впервые он был получен в 1847 году в Швеции австрийским химиком А. Шрёттером при нагревании белого фосфора при 500 °С в атмосфере угарного газа (СО) в запаянной стеклянной ампуле.

    Красный фосфор имеет формулу Рn и представляет собой полимер со сложной структурой. В зависимости от способа получения и степени дробления, красный фосфор имеет оттенки от пурпурно-красного до фиолетового, а в литом состоянии — тёмно-фиолетовый с медным оттенком, имеет металлический блеск. Химическая активность красного фосфора значительно ниже, чем у белого; ему присуща исключительно малая растворимость. Растворить красный фосфор возможно лишь в некоторых расплавленных металлах (свинец и висмут), чем иногда пользуются для получения крупных его кристаллов. Так, например, немецкий физико-химик И. В. Гитторф в 1865 году впервые получил прекрасно построенные, но небольшие по размеру кристаллы (фосфор Гитторфа). Красный Фосфор на воздухе не самовоспламеняется, вплоть до температуры 240—250 °С (при переходе в белую форму во время возгонки), но самовоспламеняется при трении или ударе, у него полностью отсутствует явление хемилюминесценции. Нерастворим в воде, а также в бензоле, сероуглероде и других, растворим в трибромиде фосфора. При температуре возгонки красный фосфор превращается в пар, при охлаждении которого образуется в основном белый фосфор.

    Ядовитость его в тысячи раз меньше, чем у белого, поэтому он применяется гораздо шире, например, в производстве спичек (составом на основе красного фосфора покрыта тёрочная поверхность коробков). Плотность красного фосфора также выше, и достигает 2400 кг/м³ в литом виде. При хранении на воздухе красный фосфор в присутствии влаги постепенно окисляется, образуя гигроскопичный оксид, поглощает воду и отсыревает («отмокает»), образуя вязкую фосфорную кислоту; поэтому его хранят в герметичной таре. При «отмокании» — промывают водой от остатков фосфорных кислот, высушивают и используют по назначению.

    Чёрный фосфор

    Чёрный фосфор — это наиболее стабильная термодинамически и химически наименее активная форма элементарного фосфора. Впервые чёрный фосфор был получен в 1914 году американским физиком П. У. Бриджменом из белого фосфора в виде чёрных блестящих кристаллов, имеющих высокую (2690 кг/м³) плотность. Для проведения синтеза чёрного фосфора Бриджмен применил давление в 2·109 Па (20 тысяч атмосфер) и температуру около 200 °С. Начало быстрого перехода лежит в области 13 000 атмосфер и температуре около 230 °С.

    Чёрный фосфор представляет собой чёрное вещество с металлическим блеском, жирное на ощупь и весьма похожее на графит, и с полностью отсутствующей растворимостью в воде или органических растворителях. Поджечь чёрный фосфор можно, только предварительно сильно раскалив в атмосфере чистого кислорода до 400 °С. Чёрный фосфор проводит электрический ток и имеет свойства полупроводника. Температура плавления чёрного фосфора 1000 °С под давлением 18·105 Па.

    Металлический фосфор

    При 8,3·1010 Па чёрный фосфор переходит в новую, ещё более плотную и инертную металлическую фазу с плотностью 3,56 г/см³, а при дальнейшем повышении давления до 1,25·1011 Па — ещё более уплотняется и приобретает кубическую кристаллическую решётку, при этом его плотность возрастает до 3,83 г/см³. Металлический фосфор очень хорошо проводит электрический ток.

    Химические свойства

    Химическая активность фосфора значительно выше, чем у азота. Химические свойства фосфора во многом определяются его аллотропной модификацией. Белый фосфор очень активен, в процессе перехода к красному и чёрному фосфору химическая активность резко снижается. Белый фосфор на воздухе светится в темноте, свечение обусловлено окислением паров фосфора до низших оксидов.

    В жидком и растворенном состоянии, а также в парах до 800 °С фосфор состоит из молекул Р4. При нагревании выше 800 °С молекулы диссоциируют: Р4 = 2Р2. При температуре выше 2000 °С молекулы распадаются на атомы.

    Взаимодействие с простыми веществами

    Фосфор легко окисляется кислородом:

    (с избытком кислорода)
    (при медленном окислении или при недостатке кислорода)

    Взаимодействует со многими простыми веществами — галогенами, серой, некоторыми металлами, проявляя окислительные и восстановительные свойства:

    с металлами — окислитель, образует фосфиды:

    фосфиды разлагаются водой и кислотами с образованием фосфина

    с неметаллами — восстановитель:

    Не взаимодействует с водородом.

    Взаимодействие с водой

    Взаимодействует с водой, при этом протекает реакция диспропорционирования с образованием фосфина и фосфорной кислоты:

    Взаимодействие со щелочами

    В растворах щелочей также протекает реакция диспропорционирования:

    Восстановительные свойства

    Сильные окислители превращают фосфор в фосфорную кислоту:

    Реакция окисления фосфора происходит при поджигании спичек, в качестве окислителя выступает бертолетова соль:

    Применение

    Фосфор является важнейшим биогенным элементом и в то же время находит очень широкое применение в промышленности. Красный фосфор применяют в производстве спичек. Его вместе с тонко измельчённым стеклом и клеем наносят на боковую поверхность коробки. При трении спичечной головки, в состав которой входят хлорат калия и сера, происходит воспламенение.

    Элементарный фосфор

    Пожалуй, первое свойство фосфора, которое человек поставил себе на службу, — это горючесть. Горючесть фосфора очень велика и зависит от аллотропической модификации.

    Наиболее активен химически, токсичен и горюч белый («жёлтый») фосфор, потому он очень часто применяется (в зажигательных бомбах и пр.).

    Красный фосфор — основная модификация, производимая и потребляемая промышленностью. Он применяется в производстве спичек, взрывчатых веществ, зажигательных составов, различных типов топлива, а также противозадирных смазочных материалов, в качестве газопоглотителя в производстве ламп накаливания.

    Соединения фосфора в сельском хозяйстве

    Фосфор (в виде фосфатов) — один из трёх важнейших биогенных элементов, участвует в синтезе АТФ. Большая часть производимой фосфорной кислоты идёт на получение фосфорных удобрений — суперфосфата, преципитата, аммофоски и др.

    Соединения фосфора в промышленности

    Фосфаты широко используются:

    • в качестве комплексообразователей (средства для умягчения воды),
    • в составе пассиваторов поверхности металлов (защита от коррозии, например, т. н. состав «мажеф»).

    Фосфатные связующие

    Способность фосфатов формировать прочную трёхмерную полимерную сетку используется для изготовления фосфатных и алюмофосфатных связок

    Биологическая роль соединений фосфора

    Фосфор присутствует в живых клетках в виде орто- и пирофосфорной кислот, входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, коферментов, ферментов. Кости человека состоят из гидроксилапатита 3Са3(РО4)3·Ca(OH)2. В состав зубной эмали входит фторапатит. Основную роль в превращениях соединений фосфора в организме человека и животных играет печень. Обмен фосфорных соединений регулируется гормонами и витамином D. Суточная потребность человека в фосфоре 800—1500 мг. При недостатке фосфора в организме развиваются различные заболевания костей.

    Токсикология элементарного фосфора

    • Красный фосфор практически нетоксичен (токсичность ему придают примеси белого фосфора). Пыль красного фосфора, попадая в легкие, вызывает пневмонию при хроническом действии.
    • Белый фосфор очень ядовит, растворим в липидах. Смертельная доза белого фосфора — 50—150 мг. Попадая на кожу, тлеющий белый фосфор даёт тяжелые ожоги.

    Острые отравления фосфором проявляются жжением во рту и желудке, головной болью, слабостью, рвотой. Через 2—3 суток развивается желтуха. Для хронических форм характерны нарушение кальциевого обмена, поражение сердечно-сосудистой и нервной систем. Первая помощь при остром отравлении — промывание желудка, слабительное, очистительные клизмы, внутривенно растворы глюкозы. При ожогах кожи обработать пораженные участки растворами медного купороса или соды. ПДК паров фосфора в воздухе производственных помещений — 0,03 мг/м³, временно допустимая концентрация в атмосферном воздухе — 0,0005 мг/м³, ПДК в питьевой воде — 0,0001 мг/дм³.[6]

    Токсикология соединений фосфора

    Некоторые соединения фосфора (фосфин) очень токсичны. Боевые отравляющие вещества зарин, зоман, табун, V-газы являются соединениями фосфора.

    Примечания

    Ссылки

    ushakov.academic.ru

    Фосфор — Циклопедия

    Фосфор

    Химический элемент

    Красный фосфор
    Символ, номерP, 15
    Атомная масса30,973762 а.е.м.
    Электронная конфигурация[Ne] 3s2 3p3
    Электроотрицательность2,19 по шкале Полинга
    Плотность1,82 г/см3 (белый фосфор)
    Температура плавления44,15 °C
    Температура кипения279,85 °C
    Структура кристаллической решеткикубическая, объёмноцентрированная
    Теплопроводность(300 K) (0,236) Вт/(м·К)

    Фосфор — химический элемент главной подгруппы пятой группы третьего периода периодической системы, неметалл. В свободном состоянии не встречается из-за высокой химической активности. Содержится в тканях животных, входит в состав белков и других важнейших органических соединений (АТФ, ДНК), является биогенным элементом.

    [править] История открытия

    Открытие фосфора

    Фосфор открыл гамбургский алхимик Хенниг Бранд в 1669 году. Подобно другим алхимикам, Бранд пытался отыскать эликсир жизни или философский камень, а получил вещество, которое светится. Этим открытием Бранд не обогатился и продал способ получения Даниэлю Крафту (Johann Daniel Kraft), заработавшему на этом состояние. Чуть позже фосфор получил другой немецкий химик — Иоганн Кункель. Независимо от Бранда и Кункеля фосфор получил Роберт Бойль, который описал его в статье «Способ приготовления фосфора из человеческой мочи», датированной 14 октября 1680 года и опубликованной в 1693 году. Усовершенствованный способ получения фосфора был опубликован Андреасом Маргграфом через 50 лет. Существуют данные, что фосфор умели получать арабские алхимики в XII веке.

    [править] Распространение в природе

    Фосфор достаточно распространенный элемент (0,08 % массы земной коры). Концентрация в морской воде 0,07 мг/л.[1] В природе он встречается исключительно в связанном состоянии. Важнейшими природными соединениями фосфора являются минералы фосфорит Са3(PO4)2 и апатит, который в своем составе содержит, кроме фосфата кальция, его хлорид.

    Богатые месторождения апатита является на Кольском полуострове, а также в южном Казахстане (горы Каратау), на Урале, в Эстонии, Ленинградской и Московской областях Российской Федерации, на Украине и в других местах.

    Фосфор является также постоянной составной частью живых организмов — растений и животных. Особенно значительные его количества содержатся в костях животных (и человека) в виде фосфата кальция. Кроме того, фосфор входит в состав нуклеиновых кислот и белков.

    [править] Физические свойства

    Горение белого фосфора Чёрный фосфор Белый фосфор Фиолетовый фосфор

    Фосфор легко окисляется кислородом воздуха до оксидов, галогенами — до галогенидов, при сплавлении с серой образует сульфиды, а при нагревании с металлами — фосфиды. Белый фосфор (в действительности, вследствие наличия примесей, имеет желтоватый оттенок и поэтому называется также желтым фосфором) легко самовоспламеняется, светится в темноте, очень ядовит, вызывает сильные ожоги; красный фосфор (смесь нескольких модификаций, в которой преобладает фиолетовый) менее активен, не ядовит; черный фосфор — наименее активный, по внешнему виду похож на графит, в отличие от белого и красного фосфора, которые являются изоляторами, черный фосфор — полупроводник.

    В свободном состоянии фосфор бывает в нескольких аллотропических модификациях. Наибольшее значение имеют так называемые белый и красный фосфор.

    Белый фосфор — бесцветное восковидное вещество с желтоватым оттенком, из-за чего его называют также желтым фосфором. Образуется при быстром охлаждении паров фосфора. Его плотность 1,82 г/см³. Температура плавления 44,1° C, температура кипения 280° C. В воде практически не растворяется, но хорошо растворяется в сероуглероде.

    Белый фосфор очень ядовит — на коже оставляет болезненные ожоги. Доза его в 0,1 г — смертельная для человека. Работать с ним следует очень осторожно.

    На воздухе белый фосфор легко окисляется. При этом часть химической энергии превращается в свет. Поэтому белый фосфор в темноте светится.

    Белый фосфор — легковоспламеняющееся вещество. Температура его воспламенения 40° C, а в очень размельченном состоянии он самовоспламеняется на воздухе даже при обычной температуре. Поэтому белый фосфор хранят под водой.

    Красный фосфор — порошкообразное вещество красно-бурого цвета. Образуется при длительном нагревании белого фосфора в герметично закрытой посуде при температуре около 250° C. Красный фосфор не ядовит и не растворяется в сероуглероде. Плотность 2,20 г/см³. Воспламеняется красный фосфор лишь при температуре 240° C. При нагревании не плавится, а переходит непосредственно из твердого в газообразное состояние (сублимирует). При охлаждении пары фосфора переходят в белый фосфор.

    Черный фосфор — вещество, похожее на графит, имеет слоистую структуру. Жирный на ощупь, с металлическим блеском, имеет свойства полупроводников. Образуется также из белого фосфора при длительном нагревании (200° C) под большим давлением (1220 МПа).

    [править] Химические свойства

    Фосфор относится к пятой группе третьего периода периодической системы элементов. Порядковый номер 15. Имея на внешней электронной оболочке пять электронов: (15 = 2 + 8 + 5), атомы фосфора имеют свойства окислителя и, присоединяя от атомов других элементов три электрона, недостающие для заполнения внешней оболочки, превращаются в отрицательно трехвалентные ионы. Фосфор менее активный окислитель, чем азот, поскольку его валентные электроны находятся дальше от ядра атома и слабее с ним связаны, чем валентные электроны атомов азота.

    Атомы фосфора могут также терять свои валентные электроны, превращаясь при этом в положительно заряженные ионы. В связи с большим удаленностью валентных электронов от ядра атома фосфор гораздо легче отдает эти электроны, чем азот. Поэтому металлические свойства фосфора проявляются более отчетливо, чем у азота.

    С кислородом фосфор соединяется довольно энергично, особенно белый, выделяя значительное количество тепла и образуя оксид фосфора (V):

    Фосфор довольно легко реагирует и с другими неметаллами, особенно с хлором, с которым он даже при небольшом нагревании энергично взаимодействует с образованием бесцветных кристаллов пентахлорида фосфора PCl5:

    При очень высокой температуре фосфор, подобно азоту, может соединяться со многими металлами, образуя фосфиды:

    С водородом фосфор непосредственно не взаимодействует. Но посредственным путем можно получить соединения фосфора с водородом. Например, при воздействии на фосфид кальция разведенной соляной кислоты образуется фосфин PH3, который по своим свойствам напоминает аммиак:

    • Ca3P2+6HCl = 3CaCl2 + 2PH3
    Фосфор — элемент жизни и мысли

    В свободном состоянии фосфор получают восстановлением фосфата кальция угля в присутствии диоксида кремния:

    • Са3(PO4)2 + 3SiO2 = 3CaSiO3 + P2O5
    • P2O5 + 5C = 2P + 5CO↑

    Процесс восстановления осуществляют в специальных электрических печах при температуре около 1500° C. Диоксид кремния (песок) добавляется для снижения температуры реакции, вытеснение фосфатного ангидрида из фосфата кальция и удаления из печи твердых продуктов в виде расплавленного шлака CaSiO3. Получаемый фосфор выделяется в парообразном состоянии, затем его охлаждают и собирают в приемнике с водой.

    На практике применяется преимущественно красный фосфор, главным образом в спичечном производстве. В смеси с толченым стеклом и клеем красный фосфор наносят на боковые поверхности спичечных коробков. В состав головок спичек фосфор не входит. Они изготавливаются из смеси хлората калия KClO3, диоксида марганца, серы, толченого стекла и клея. При трении головки спички о боковую поверхность спичечного коробка зажигается фосфор, который поджигает головку спички, а от головки воспламеняется и дерево спички.

    Красный фосфор применяют в металлургии как компонент некоторых металлических сплавов, соединения фосфора — как удобрения (суперфосфат) и в медицине. Искусственный радиоактивный изотоп 32Р — как меченый атом (Т1/2 = 14,22 суток, β-излучатель).

    [править] Токсикология и первая помощь

    Хроническое отравление белым фосфором может привести к вырождению жировой ткани и загниванию нижней челюсти. При попадании на кожу или в глаза немедленно промывают 5-% ным раствором CuSO4 · 5H2O и накладывают повязку пропитанную этим же раствором. Этим же раствором тушат белый фосфор, при этом он покрывается металлической медью, изолирующей его от воздуха:

    • P4 + 10 CuSO4 +16H2O → 10Cu↓ + 4H3PO4 + 10H2SO4

    При попадании внутрь дают рвотное: 20г CuSO4 · 5H2O на 2-3л теплой воды.

    1. ↑ JP Riley and Skirrow G. Chemical Oceanography V. 1, 1965
    • Глоссарий терминов по химии // Й.Опейда, О.Швайка. Ин-т физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Донецкий национальный университет — Донецк: «Вебер», 2008. — 758 с. ISBN 978-966-335-206-0
    • Деркач Ф. А. Химия. — Львов: Львовский университет, 1968. — 312 с.
    • Василега М. Д. Занимательная химия. — Киев: Радянська школа, 1980.
    • Горный энциклопедический словарь: в 3 т. / Под ред. В. С. Белецкого. — Донецк: Восточный издательский дом, 2001—2004.

    cyclowiki.org

    Фосфор — это… Что такое Фосфор?

    Внешний вид простого вещества

    Белый, красный, жёлтый, черный фосфор
    Свойства атома
    Имя, символ, номер

    Фосфор/ Phosphorus (P), 15

    Атомная масса
    (молярная масса)

    30,973762 а. е. м. (г/моль)

    Электронная конфигурация

    [Ne] 3s2 3p3

    Радиус атома

    128 пм

    Химические свойства
    Ковалентный радиус

    106 пм

    Радиус иона

    35 (+5e) 212 (-3e) пм

    Электроотрицательность

    2,19 [1] (шкала Полинга)

    Электродный потенциал

    0

    Степени окисления

    5, 3, 1, 0, −1, −3[2]

    Энергия ионизации
    (первый электрон)

    1011,2(10,48) кДж/моль (эВ)

    Термодинамические свойства простого вещества
    Плотность (при н. у.)

    (белый фосфор)1,82 г/см³

    Температура плавления

    317,3 K

    Температура кипения

    553 K

    Теплота плавления

    2,51 кДж/моль

    Теплота испарения

    49,8 кДж/моль

    Молярная теплоёмкость

    21,6[3] (ромбич.) Дж/(K·моль)

    Молярный объём

    17,0 см³/моль

    Кристаллическая решётка простого вещества
    Структура решётки

    кубическая, объёмноцентрированная

    Параметры решётки

    18,800 Å

    Прочие характеристики
    Теплопроводность

    (300 K) (0,236) Вт/(м·К)

    Фо́сфор (от др.-греч. φῶς — свет и φέρω — несу; φωσφόρος — светоносный; лат. Phosphorus) — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) третьего периода периодической системы; имеет атомный номер 15. Один из распространённых элементов земной коры: его содержание составляет 0,08—0,09 % её массы. Концентрация в морской воде 0,07 мг/л[4]. В свободном состоянии не встречается из-за высокой химической активности. Образует около 190 минералов, важнейшими из которых являются апатит Ca5(PO4)3(F,Cl,OH), фосфорит и другие. Фосфор содержится во всех частях зелёных растений, ещё больше его в плодах и семенах (см. фосфолипиды). Содержится в животных тканях, входит в состав белков и других важнейших органических соединений (АТФ, ДНК), является элементом жизни.

    История

    Фосфор открыт гамбургским алхимиком Хеннигом Брандом в 1669 году. Подобно другим алхимикам, Бранд пытался отыскать философский камень, а получил светящееся вещество. Бранд сфокусировался на опытах с человеческой мочой, так как полагал, что она, обладая золотистым цветом, может содержать золото или нечто нужное для добычи. Первоначально его способ заключался в том, что сначала моча отстаивалась в течение нескольких дней, пока не исчезнет неприятный запах, а затем кипятилась до клейкого состояния. Нагревая эту пасту до высоких температур и доводя до появления пузырьков, он надеялся, что, сконденсировавшись, они будут содержать золото. После нескольких часов интенсивных кипячений получались крупицы белого воскоподобного вещества, которое очень ярко горело и к тому же мерцало в темноте. Бранд назвал это вещество phosphorus mirabilis (лат. «чудотворный носитель света»). Открытие фосфора Брандом стало первым открытием нового элемента со времён античности.

    Несколько позже фосфор был получен другим немецким химиком — Иоганном Кункелем.

    Независимо от Бранда и Кункеля фосфор был получен Р. Бойлем, описавшим его в статье «Способ приготовления фосфора из человеческой мочи», датированной 14 октября 1680 года и опубликованной в 1693 году.

    Усовершенствованный способ получения фосфора был опубликован в 1743 году Андреасом Маргграфом.

    Существуют данные, что фосфор умели получать ещё арабские алхимики в XII в.

    То, что фосфор — простое вещество, доказал Лавуазье.

    Происхождение названия

    В 1669 году Хеннинг Бранд при нагревании смеси белого песка и выпаренной мочи получил светящееся в темноте вещество, названное сначала «холодным огнём». Вторичное название «фосфор» происходит от греческих слов «φῶς» — свет и «φέρω» — несу. В древнегреческой мифологии имя Фосфор (или Эосфор, др.-греч. Φωσφόρος) носил страж Утренней звезды.

    Получение

    Фосфор получают из апатитов или фосфоритов в результате взаимодействия с коксом и кремнезёмом при температуре 1600 °С:

    Образующиеся пары белого фосфора конденсируются в приёмнике под водой. Вместо фосфоритов восстановлению можно подвергнуть и другие соединения, например, метафосфорную кислоту:

    Физические свойства

    Элементарный фосфор в обычных условиях представляет собой несколько устойчивых аллотропических модификаций; вопрос аллотропии фосфора сложен и до конца не решён. Обычно выделяют четыре модификации простого вещества — белый, красный, чёрный и металлический фосфор. Иногда их ещё называют главными аллотропными модификациями, подразумевая при этом, что все остальные являются разновидностью указанных четырёх. В обычных условиях существует только три аллотропических модификации фосфора, а в условиях сверхвысоких давлений — также металлическая форма. Все модификации различаются по цвету, плотности и другим физическим характеристикам; заметна тенденция к резкому убыванию химической активности при переходе от белого к металлическому фосфору и нарастанию металлических свойств.

    Аллотропные модификации фосфора

    Белый фосфор

    Белый фосфор представляет собой белое вещество (из-за примесей может иметь желтоватый оттенок). По внешнему виду он очень похож на очищенный воск или парафин, легко режется ножом и деформируется от небольших усилий.

    Белый фосфор имеет молекулярное строение; формула P4. Отливаемый в инертной атмосфере в виде палочек (слитков), он сохраняется в отсутствие воздуха под слоем очищенной воды или в специальных инертных средах.

    Легкорастворим в органических растворителях. Растворимостью белого фосфора в сероуглероде пользуются для промышленной очистки его от примесей. Плотность белого фосфора из всех его модификаций наименьшая и составляет около 1823 кг/м³. Плавится белый фосфор при 44,1 °C. В парообразном состоянии происходит диссоциация молекул фосфора.

    Химически белый фосфор чрезвычайно активен. Например, он медленно окисляется кислородом воздуха уже при комнатной температуре и светится (бледно-зелёное свечение). Явление такого рода свечения вследствие химических реакций окисления называется хемилюминесценцией (иногда ошибочно фосфоресценцией).

    Белый фосфор не только активен химически, но и весьма ядовит (вызывает поражение костей, костного мозга, некроз челюстей). Летальная доза белого фосфора для взрослого мужчины составляет 0,05—0,1 г.

    Жёлтый фосфор

    Неочищенный белый фосфор обычно называют «жёлтый фосфор». Сильно ядовитое (ПДК в атмосферном воздухе 0,0005 мг/м³), огнеопасное кристаллическое вещество от светло-жёлтого до тёмно-бурого цвета. Удельный вес 1,83 г/см³, плавится при +34 °C, кипит при +280 °C. В воде не растворяется, на воздухе легко окисляется и самовоспламеняется. Горит ослепительным ярко-зеленым пламенем с выделением густого белого дыма — мелких частичек декаоксида тетрафосфора P4O10[5]. Несмотря на то, что в результате реакции между фосфором и водой выделяется ядовитый газ фосфин (РН3)

    для тушения фосфора используют воду в больших количествах (для снижения температуры очага возгорания и перевода фосфора в твердое состояние) или раствор сульфата меди (медного купороса), после гашения фосфор засыпают влажным песком. Для предохранения от самовозгорания жёлтый фосфор хранится и перевозится под слоем воды (раствора хлорида кальция).

    Красный фосфор

    Красный фосфор

    Красный фосфор — это более термодинамически стабильная модификация элементарного фосфора. Впервые он был получен в 1847 году в Швеции австрийским химиком А. Шрёттером при нагревании белого фосфора при 500 °С в атмосфере угарного газа (СО) в запаянной стеклянной ампуле.

    Красный фосфор имеет формулу Рn и представляет собой полимер со сложной структурой. В зависимости от способа получения и степени дробления, красный фосфор имеет оттенки от пурпурно-красного до фиолетового, а в литом состоянии — тёмно-фиолетовый с медным оттенком, имеет металлический блеск. Химическая активность красного фосфора значительно ниже, чем у белого; ему присуща исключительно малая растворимость. Растворить красный фосфор возможно лишь в некоторых расплавленных металлах (свинец и висмут), чем иногда пользуются для получения крупных его кристаллов. Так, например, немецкий физико-химик И. В. Гитторф в 1865 году впервые получил прекрасно построенные, но небольшие по размеру кристаллы (фосфор Гитторфа). Красный Фосфор на воздухе не самовоспламеняется, вплоть до температуры 240—250 °С (при переходе в белую форму во время возгонки), но самовоспламеняется при трении или ударе, у него полностью отсутствует явление хемилюминесценции. Нерастворим в воде, а также в бензоле, сероуглероде и других, растворим в трибромиде фосфора. При температуре возгонки красный фосфор превращается в пар, при охлаждении которого образуется в основном белый фосфор.

    Ядовитость его в тысячи раз меньше, чем у белого, поэтому он применяется гораздо шире, например, в производстве спичек (составом на основе красного фосфора покрыта тёрочная поверхность коробков). Плотность красного фосфора также выше, и достигает 2400 кг/м³ в литом виде. При хранении на воздухе красный фосфор в присутствии влаги постепенно окисляется, образуя гигроскопичный оксид, поглощает воду и отсыревает («отмокает»), образуя вязкую фосфорную кислоту; поэтому его хранят в герметичной таре. При «отмокании» — промывают водой от остатков фосфорных кислот, высушивают и используют по назначению.

    Чёрный фосфор

    Чёрный фосфор — это наиболее стабильная термодинамически и химически наименее активная форма элементарного фосфора. Впервые чёрный фосфор был получен в 1914 году американским физиком П. У. Бриджменом из белого фосфора в виде чёрных блестящих кристаллов, имеющих высокую (2690 кг/м³) плотность. Для проведения синтеза чёрного фосфора Бриджмен применил давление в 2·109 Па (20 тысяч атмосфер) и температуру около 200 °С. Начало быстрого перехода лежит в области 13 000 атмосфер и температуре около 230 °С.

    Чёрный фосфор представляет собой чёрное вещество с металлическим блеском, жирное на ощупь и весьма похожее на графит, и с полностью отсутствующей растворимостью в воде или органических растворителях. Поджечь чёрный фосфор можно, только предварительно сильно раскалив в атмосфере чистого кислорода до 400 °С. Чёрный фосфор проводит электрический ток и имеет свойства полупроводника. Температура плавления чёрного фосфора 1000 °С под давлением 18·105 Па.

    Металлический фосфор

    При 8,3·1010 Па чёрный фосфор переходит в новую, ещё более плотную и инертную металлическую фазу с плотностью 3,56 г/см³, а при дальнейшем повышении давления до 1,25·1011 Па — ещё более уплотняется и приобретает кубическую кристаллическую решётку, при этом его плотность возрастает до 3,83 г/см³. Металлический фосфор очень хорошо проводит электрический ток.

    Химические свойства

    Химическая активность фосфора значительно выше, чем у азота. Химические свойства фосфора во многом определяются его аллотропной модификацией. Белый фосфор очень активен, в процессе перехода к красному и чёрному фосфору химическая активность резко снижается. Белый фосфор на воздухе светится в темноте, свечение обусловлено окислением паров фосфора до низших оксидов.

    В жидком и растворенном состоянии, а также в парах до 800 °С фосфор состоит из молекул Р4. При нагревании выше 800 °С молекулы диссоциируют: Р4 = 2Р2. При температуре выше 2000 °С молекулы распадаются на атомы.

    Взаимодействие с простыми веществами

    Фосфор легко окисляется кислородом:

    (с избытком кислорода)
    (при медленном окислении или при недостатке кислорода)

    Взаимодействует со многими простыми веществами — галогенами, серой, некоторыми металлами, проявляя окислительные и восстановительные свойства:

    с металлами — окислитель, образует фосфиды:

    фосфиды разлагаются водой и кислотами с образованием фосфина

    с неметаллами — восстановитель:

    Не взаимодействует с водородом.

    Взаимодействие с водой

    Взаимодействует с водой, при этом протекает реакция диспропорционирования с образованием фосфина и фосфорной кислоты:

    Взаимодействие со щелочами

    В растворах щелочей также протекает реакция диспропорционирования:

    Восстановительные свойства

    Сильные окислители превращают фосфор в фосфорную кислоту:

    Реакция окисления фосфора происходит при поджигании спичек, в качестве окислителя выступает бертолетова соль:

    Применение

    Фосфор является важнейшим биогенным элементом и в то же время находит очень широкое применение в промышленности. Красный фосфор применяют в производстве спичек. Его вместе с тонко измельчённым стеклом и клеем наносят на боковую поверхность коробки. При трении спичечной головки, в состав которой входят хлорат калия и сера, происходит воспламенение.

    Элементарный фосфор

    Пожалуй, первое свойство фосфора, которое человек поставил себе на службу, — это горючесть. Горючесть фосфора очень велика и зависит от аллотропической модификации.

    Наиболее активен химически, токсичен и горюч белый («жёлтый») фосфор, потому он очень часто применяется (в зажигательных бомбах и пр.).

    Красный фосфор — основная модификация, производимая и потребляемая промышленностью. Он применяется в производстве спичек, взрывчатых веществ, зажигательных составов, различных типов топлива, а также противозадирных смазочных материалов, в качестве газопоглотителя в производстве ламп накаливания.

    Соединения фосфора в сельском хозяйстве

    Фосфор (в виде фосфатов) — один из трёх важнейших биогенных элементов, участвует в синтезе АТФ. Большая часть производимой фосфорной кислоты идёт на получение фосфорных удобрений — суперфосфата, преципитата, аммофоски и др.

    Соединения фосфора в промышленности

    Фосфаты широко используются:

    • в качестве комплексообразователей (средства для умягчения воды),
    • в составе пассиваторов поверхности металлов (защита от коррозии, например, т. н. состав «мажеф»).

    Фосфатные связующие

    Способность фосфатов формировать прочную трёхмерную полимерную сетку используется для изготовления фосфатных и алюмофосфатных связок

    Биологическая роль соединений фосфора

    Фосфор присутствует в живых клетках в виде орто- и пирофосфорной кислот, входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, коферментов, ферментов. Кости человека состоят из гидроксилапатита 3Са3(РО4)3·Ca(OH)2. В состав зубной эмали входит фторапатит. Основную роль в превращениях соединений фосфора в организме человека и животных играет печень. Обмен фосфорных соединений регулируется гормонами и витамином D. Суточная потребность человека в фосфоре 800—1500 мг. При недостатке фосфора в организме развиваются различные заболевания костей.

    Токсикология элементарного фосфора

    • Красный фосфор практически нетоксичен (токсичность ему придают примеси белого фосфора). Пыль красного фосфора, попадая в легкие, вызывает пневмонию при хроническом действии.
    • Белый фосфор очень ядовит, растворим в липидах. Смертельная доза белого фосфора — 50—150 мг. Попадая на кожу, тлеющий белый фосфор даёт тяжелые ожоги.

    Острые отравления фосфором проявляются жжением во рту и желудке, головной болью, слабостью, рвотой. Через 2—3 суток развивается желтуха. Для хронических форм характерны нарушение кальциевого обмена, поражение сердечно-сосудистой и нервной систем. Первая помощь при остром отравлении — промывание желудка, слабительное, очистительные клизмы, внутривенно растворы глюкозы. При ожогах кожи обработать пораженные участки растворами медного купороса или соды. ПДК паров фосфора в воздухе производственных помещений — 0,03 мг/м³, временно допустимая концентрация в атмосферном воздухе — 0,0005 мг/м³, ПДК в питьевой воде — 0,0001 мг/дм³.[6]

    Токсикология соединений фосфора

    Некоторые соединения фосфора (фосфин) очень токсичны. Боевые отравляющие вещества зарин, зоман, табун, V-газы являются соединениями фосфора.

    Примечания

    Ссылки

    med.academic.ru

    Фосфор Википедия

    Внешний вид простого вещества

    Белый, красный и фиолетовый фосфор
    Свойства атома
    Название, символ, номер Фосфор/ Phosphorus (P), 15
    Атомная масса
    (молярная масса)
    30,973762(2)[1] а. е. м. (г/моль)
    Электронная конфигурация [Ne] 3s2 3p3
    Радиус атома 128 пм
    Химические свойства
    Ковалентный радиус 106 пм
    Радиус иона 35 (+5e) 212 (-3e) пм
    Электроотрицательность 2,19 [2] (шкала Полинга)
    Электродный потенциал 0
    Степени окисления 5, 3, 1, 0, −1, −3[3]
    Энергия ионизации
    (первый электрон)
     1011,2(10,48) кДж/моль (эВ)
    Термодинамические свойства простого вещества
    Плотность (при н. у.) (белый фосфор)1,82 г/см³
    Температура плавления 44,15 °C (317,3 K)
    Температура кипения 279,85 °C (553 K)
    Уд. теплота плавления 2,51 кДж/моль
    Уд. теплота испарения 49,8 кДж/моль
    Молярная теплоёмкость 21,6[4] (ромбич.) Дж/(K·моль)
    Молярный объём 17,0 см³/моль
    Кристаллическая решётка простого вещества
    Структура решётки кубическая, объёмноцентрированная
    Параметры решётки 18,800 Å
    Прочие характеристики
    Теплопроводность (300 K) (0,236) Вт/(м·К)
    Номер CAS 7723-14-0

    Фо́сфор (от др.-греч. φῶς — свет и φέρω — несу; φωσφόρος — светоносный; лат. Phosphorus) — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) третьего периода периодической системы Д. И. Менделеева; имеет атомный номер 15. Элемент входит в группу пниктогенов. Фосфор — один из распространённых элементов земной коры: его содержание составляет 0,08—0,09 % её массы. Концентрация в морской воде 0,07 мг/л[5]. В свободном состоянии не встречается из-за высокой химической активности. Образует около 190 минералов, важнейшими из которых являются апатит Ca5(PO4)3(F,Cl,OH), фосфорит и другие. Фосфор входит в состав важнейших биологических соединений — фосфолипидов. Содержится в животных тканях, входит в состав белков и других важнейших органических соединений (АТФ, ДНК), является элементом жизни.

    История

    Фосфор открыт гамбургским алхимиком Хеннигом Брандом в 1669 году. Подобно другим алхимикам, Бранд пытался отыскать философский камень, а получил светящееся вещество. Бранд сфокусировался на опытах с человеческой мочой, так как полагал, что она, обладая золотистым цветом, может содержать золото или нечто нужное для его добычи. Первоначально его способ заключался в том, что сначала моча отстаивалась в течение нескольких дней, пока не исчезнет неприятный запах, а затем кипятилась до клейкого состояния. Нагревая эту пасту до высоких температур и доводя до появления пузырьков, он надеялся, что, сконденсировавшись, они будут содержать золото. После нескольких часов интенсивных кипячений получались крупицы белого воскоподобного вещества, которое очень ярко горело и к тому же мерцало в темноте. Бранд назвал это вещество phosphorus mirabilis (лат. «чудотворный носитель света»). Открытие фосфора Брандом стало первым открытием нового элемента со времён античности.

    Несколько позже фосфор был получен другим немецким химиком — Иоганном Кункелем.

    Независимо от Бранда и Кункеля фосфор был получен Р. Бойлем, описавшим его в статье «Способ приготовления фосфора из человеческой мочи», датированной 14 октября 1680 года и опубликованной в 1693 году.

    Более усовершенствованный способ получения фосфора был опубликован в 1743 году Андреасом Маргграфом.

    Существуют данные, что фосфор умели получать ещё арабские алхимики в XII в.

    То, что фосфор — простое вещество, доказал Лавуазье.

    Происхождение названия

    В 1669 году Хеннинг Бранд при нагревании смеси белого песка и выпаренной мочи получил светящееся в темноте вещество, названное сначала «холодным огнём». Вторичное название «фосфор» происходит от греческих слов «φώς» — свет и «φέρω» — несу. В древнегреческой мифологии имя Фосфор (или Эосфор, др.-греч. Φωσφόρος) носил страж Утренней звезды.

    Получение

    Фосфор получают из апатитов или фосфоритов в результате взаимодействия с коксом и кремнезёмом при температуре около 1600 °С:

    2Ca3(PO4)2+10C+6SiO2→P4+10CO+6CaSiO3{\displaystyle {\mathsf {2Ca_{3}(PO_{4})_{2}+10C+6SiO_{2}\rightarrow P_{4}+10CO+6CaSiO_{3}}}}

    Образующиеся пары фосфора конденсируются в приёмнике под слоем воды в аллотропическую модификацию в виде белого фосфора. Вместо фосфоритов для получения элементарного фосфора можно восстанавливать углём и другие неорганические соединения фосфора, например, в том числе, метафосфорную кислоту:

    4HPO3+10C→P4+2h3O+10CO{\displaystyle {\mathsf {4HPO_{3}+10C\rightarrow P_{4}+2H_{2}O+10CO}}}

    Физические свойства

    Элементарный фосфор при нормальных условиях существует в виде нескольких устойчивых аллотропических модификаций. Все существующие аллотропные модификации фосфора пока (2016 г.) до конца не изучены. Традиционно различают четыре его модификации: зеленовато-белый, красный, чёрный и металлический фосфор. Иногда их ещё называют главными аллотропными модификациями, подразумевая при этом, что все остальные описываемые модификации являются смесью этих четырёх. При стандартных условиях устойчивы только три аллотропических модификации фосфора (например, белый фосфор термодинамически неустойчив (квазистационарное состояние) и переходит со временем при нормальных условиях в красный фосфор). В условиях сверхвысоких давлений термодинамически устойчива металлическая форма элемента. Все модификации различаются по цвету, плотности и другим физическим и химическим характеристикам, особенно по химической активности. При переходе состояния вещества в более термодинамически устойчивую модификацию снижается химическая активность, например, при последовательном превращении белого фосфора в красный, потом красного в чёрный (металлический).

    Аллотропные модификации фосфора (белый, красный, чёрный, металлический)

    Белый фосфор

    Белый фосфор представляет собой белое вещество (из-за примесей может иметь желтоватый оттенок). По внешнему виду он очень похож на очищенный воск или парафин, легко режется ножом и деформируется от небольших усилий.

    Молекула белого фосфора

    Белый фосфор имеет молекулярную кристаллическую решётку, формула молекулы белого фосфора — P4, причём атомы расположены в вершинах тетраэдра[6]. Отливаемый в инертной атмосфере в виде палочек (слитков), он сохраняется в отсутствии воздуха под слоем очищенной воды или в специальных инертных средах.

    Плохо растворяется в воде[6], но легкорастворим в органических растворителях. Растворимостью белого фосфора в сероуглероде пользуются для промышленной очистки его от примесей. Плотность белого фосфора из всех его модификаций наименьшая и составляет около 1823 кг/м³. Плавится белый фосфор при 44,1 °C. В парообразном состоянии происходит диссоциация молекул фосфора.

    Химически белый фосфор чрезвычайно активен. Например, он медленно окисляется кислородом воздуха уже при комнатной температуре и светится (бледно-зелёное свечение). Явление такого рода свечения вследствие химических реакций окисления называется хемилюминесценцией (иногда ошибочно фосфоресценцией). При взаимодействии с кислородом белый фосфор горит даже под водой[7].

    Белый фосфор не только активен химически, но и весьма ядовит: летальная доза белого фосфора для взрослого человека составляет 0,05—0,15 г[4], а при хроническом отравлении поражает кости, например, вызывает омертвение челюстей[4]. При контакте с кожей легко самовоспламеняется, вызывая серьёзные ожоги[8][9].

    Под действием света, при нагревании до не очень высоких температур в безвоздушной среде[6], а также под действием ионизирующего излучения[10] белый фосфор превращается в красный фосфор.

    Жёлтый фосфор

    Неочищенный белый фосфор обычно называют «жёлтый фосфор». Сильно ядовитое (ПДК в атмосферном воздухе 0,0005 мг/м³), огнеопасное кристаллическое вещество от светло-жёлтого до тёмно-бурого цвета. Удельный вес 1,83 г/см³, плавится при +43,1 °C, кипит при +280 °C. В воде не растворяется, на воздухе легко окисляется и самовоспламеняется. Горит ослепительным ярко-зеленым пламенем с выделением густого белого дыма — мелких частичек декаоксида тетрафосфора P4O10[11].

    Так как фосфор реагирует с водой лишь при температуре свыше 500 градусов по Цельсию, то для тушения фосфора используют воду в больших количествах (для снижения температуры очага возгорания и перевода фосфора в твердое состояние) или раствор сульфата меди (медного купороса), после гашения фосфор засыпают влажным песком. Для предохранения от самовозгорания жёлтый фосфор хранится и перевозится под слоем воды (раствора хлорида кальция)[12].

    Красный фосфор

    Красный фосфор

    Красный фосфор — это более термодинамически стабильная модификация элементарного фосфора. Впервые он был получен в 1847 году в Швеции австрийским химиком А. Шрёттером при нагревании белого фосфора при 500 °С в атмосфере угарного газа (СО) в запаянной стеклянной ампуле.

    Красный фосфор имеет формулу Рn и представляет собой полимер со сложной структурой. В зависимости от способа получения и степени дробления, красный фосфор имеет оттенки от пурпурно-красного до фиолетового, а в литом состоянии — тёмно-фиолетовый с медным оттенком, имеет металлический блеск. Химическая активность красного фосфора значительно ниже, чем у белого; ему присуща исключительно малая растворимость. Растворить красный фосфор возможно лишь в некоторых расплавленных металлах (свинец и висмут), чем иногда пользуются для получения крупных его кристаллов. Так, например, немецкий физико-химик И. В. Гитторф в 1865 году впервые получил прекрасно построенные, но небольшие по размеру кристаллы (фосфор Гитторфа). Красный фосфор на воздухе не самовоспламеняется, вплоть до температуры 240—250 °С (при переходе в белую форму во время возгонки), но самовоспламеняется при трении или ударе, у него полностью отсутствует явление хемилюминесценции. Нерастворим в воде, а также в бензоле, сероуглероде и других веществах, растворим в трибромиде фосфора. При температуре возгонки красный фосфор превращается в пар, при охлаждении которого образуется в основном белый фосфор.

    Ядовитость его в тысячи раз меньше, чем у белого, поэтому он применяется гораздо шире, например, в производстве спичек (составом на основе красного фосфора покрыта тёрочная поверхность коробков). Плотность красного фосфора также выше, и достигает 2400 кг/м³ в литом виде. При хранении на воздухе красный фосфор в присутствии влаги постепенно окисляется, образуя гигроскопичный оксид, поглощает воду и отсыревает («отмокает»), образуя вязкую фосфорную кислоту; поэтому его хранят в герметичной таре. При «отмокании» — промывают водой от остатков фосфорных кислот, высушивают и используют по назначению.

    Чёрный фосфор

    Чёрный фосфор — это наиболее стабильная термодинамически и химически наименее активная форма элементарного фосфора. Впервые чёрный фосфор был получен в 1914 году американским физиком П. У. Бриджменом из белого фосфора в виде чёрных блестящих кристаллов, имеющих высокую (2690 кг/м³) плотность. Для проведения синтеза чёрного фосфора Бриджмен применил давление в 2·109 Па (20 тысяч атмосфер) и температуру около 200 °С. Начало быстрого перехода лежит в области 13 000 атмосфер и температуре около 230 °С.

    Чёрный фосфор представляет собой чёрное вещество с металлическим блеском, жирное на ощупь и весьма похожее на графит, и с полностью отсутствующей растворимостью в воде или органических растворителях. Поджечь чёрный фосфор можно, только предварительно сильно раскалив в атмосфере чистого кислорода до 400 °С. Чёрный фосфор проводит электрический ток и имеет свойства полупроводника. Температура плавления чёрного фосфора 1000 °С под давлением 1,8·106 Па.

    Металлический фосфор

    При 8,3·1010 Па чёрный фосфор переходит в новую, ещё более плотную и инертную металлическую фазу с плотностью 3,56 г/см³, а при дальнейшем повышении давления до 1,25·1011 Па — ещё более уплотняется и приобретает кубическую кристаллическую решётку, при этом его плотность возрастает до 3,83 г/см³. Металлический фосфор очень хорошо проводит электрический ток.

    Химические свойства

    Химическая активность фосфора значительно выше, чем у азота. Химические свойства фосфора во многом определяются его аллотропной модификацией. Белый фосфор очень активен, в процессе перехода к красному и чёрному фосфору химическая активность снижается. Белый фосфор в воздухе при окислении кислородом воздуха при комнатной температуре излучает видимый свет, свечение обусловлено фотоэмиссионной реакцией окисления фосфора.

    В жидком и растворенном состоянии, а также в парах до 800 °С фосфор состоит из молекул Р4. При нагревании выше 800 °С молекулы диссоциируют: Р4 = 2Р2. При температуре выше 2000 °С молекулы распадаются на атомы.

    Взаимодействие с простыми веществами

    Фосфор легко окисляется кислородом:

    4P+5O2→2P2O5{\displaystyle {\mathsf {4P+5O_{2}\rightarrow 2P_{2}O_{5}}}} (с избытком кислорода)
    4P+3O2→2P2O3{\displaystyle {\mathsf {4P+3O_{2}\rightarrow 2P_{2}O_{3}}}} (при медленном окислении или при недостатке кислорода)

    Взаимодействует со многими простыми веществами — галогенами, серой, некоторыми металлами, проявляя окислительные и восстановительные свойства:

    с металлами — окислитель, образует фосфиды:

    2P+3Ca→Ca3P2{\displaystyle {\mathsf {2P+3Ca\rightarrow Ca_{3}P_{2}}}}

    фосфиды разлагаются водой и кислотами с образованием фосфина

    с неметаллами — восстановитель:

    2P+3S→P2S3{\displaystyle {\mathsf {2P+3S\rightarrow P_{2}S_{3}}}}
    2P+5Cl2→2PCl5{\displaystyle {\mathsf {2P+5Cl_{2}\rightarrow 2PCl_{5}}}}

    С водородом фосфор практически не соединяется. Однако разложением некоторых фосфидов водой по реакции, например:

    Ca3P2+6h3O→2Ph4+3Ca(OH)2{\displaystyle {\mathsf {Ca_{3}P_{2}+6H_{2}O\rightarrow 2PH_{3}+3Ca(OH)_{2}}}}

    может быть получен аналогичный аммиаку фосфористый водород (фосфин) — РH3

    Взаимодействие с водой

    Взаимодействует с водяным паром при температуре выше 500 °С, протекает реакция диспропорционирования с образованием фосфина и фосфорной кислоты:

    8P+12h3O→>500oC 5Ph4+3h4PO4{\displaystyle {\mathsf {8P+12H_{2}O{\xrightarrow {>500^{o}C}}\ 5PH_{3}+3H_{3}PO_{4}}}}

    Реакция взаимодействия красного фосфора и воды с образованием ортофосфорной кислоты и водорода. Реакция протекает при температуре 700-900 °C. Катализатором могут выступать: платина, медь, титан, цирконий.[1]

    2P+8h3O→700−900oC,kat 2h4PO4+5h3{\displaystyle {\mathsf {2P+8H_{2}O{\xrightarrow {700-900^{o}C,kat}}\ 2H_{3}PO_{4}+5H_{2}}}}

    Взаимодействие со щелочами

    В холодных концентрированных растворах щелочей также медленно протекает реакция диспропорционирования[13]:

    4P+3KOH+3h3O→ τ Ph4+3Kh3PO2{\displaystyle {\mathsf {4P+3KOH+3H_{2}O{\xrightarrow {\ \tau \ }}PH_{3}+3KH_{2}PO_{2}}}}

    Восстановительные свойства

    Сильные окислители превращают фосфор в фосфорную кислоту:

    3P+5HNO3+2h3O→3h4PO4+5NO{\displaystyle {\mathsf {3P+5HNO_{3}+2H_{2}O\rightarrow 3H_{3}PO_{4}+5NO}}}
    2P+5h3SO4→2h4PO4+5SO2+2h3O{\displaystyle {\mathsf {2P+5H_{2}SO_{4}\rightarrow 2H_{3}PO_{4}+5SO_{2}+2H_{2}O}}}

    Реакция окисления фосфора происходит при поджигании спичек, в качестве окислителя выступает бертолетова соль:

    6P+5KClO3→5KCl+3P2O5{\displaystyle {\mathsf {6P+5KClO_{3}\rightarrow 5KCl+3P_{2}O_{5}}}}

    Изотопы

    Известно более 20 изотопов фосфора (с массовым числом от 24 до 47). Природный изотоп 31P стабилен. Из радиоактивных изотопов наиболее долгоживущие: 30P (T1/2 = 2,5 мин), 32P (T1/2 = 14,26 сут) и 33P (T1/2 = 25,34 сут).[14].

    Применение

    Фосфор является важнейшим биогенным элементом и в то же время находит очень широкое применение в промышленности. Красный фосфор применяют в производстве спичек. Его вместе с тонко измельчённым стеклом и клеем наносят на боковую поверхность коробки. При трении спичечной головки, в состав которой входят хлорат калия и сера, происходит воспламенение.

    Элементарный фосфор

    Пожалуй, первое свойство фосфора, которое человек поставил себе на службу, — это горючесть. Горючесть фосфора очень велика и зависит от аллотропической модификации.

    Наиболее активен химически, токсичен и горюч белый («жёлтый») фосфор, потому он очень часто применяется (в зажигательных бомбах и пр.).

    Красный фосфор — основная модификация, производимая и потребляемая промышленностью. Он применяется в производстве спичек, взрывчатых веществ, зажигательных составов, различных типов топлива, а также противозадирных смазочных материалов, в качестве газопоглотителя в производстве ламп накаливания.

    Соединения фосфора в сельском хозяйстве

    Фосфор (в виде фосфатов) — один из трёх важнейших биогенных элементов, участвует в синтезе АТФ. Большая часть производимой фосфорной кислоты идёт на получение фосфорных удобрений — суперфосфата, преципитата, аммофоски и др.

    Соединения фосфора в промышленности

    Фосфаты широко используются:

    Фосфатные связующие

    Способность фосфатов формировать прочную трёхмерную полимерную сетку используется для изготовления фосфатных и алюмофосфатных связок.

    Биологическая роль соединений фосфора

    Фосфор присутствует в живых клетках в виде орто- и пирофосфорной кислот, входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, коферментов, ферментов. Кости человека состоят из гидроксилапатита 3Са3(РО4)2·Ca(OH)2. В состав зубной эмали входит фторапатит. Основную роль в превращениях соединений фосфора в организме человека и животных играет печень. Обмен фосфорных соединений регулируется гормонами и витамином D. При недостатке фосфора в организме развиваются различные заболевания костей.

    Суточная потребность в фосфоре составляет:

    • для взрослых 1,0—2,0 г
    • для беременных и кормящих женщин 3—3,8 г
    • для детей и подростков 1,5—2,5 г

    При больших физических нагрузках потребность в фосфоре возрастает в 1,5—2 раза.

    Усвоение происходит эффективнее при приеме фосфора вместе с кальцием в соотношении 3:2 (P:Ca).

    Некоторые источники[15]:

    Токсикология элементарного фосфора

    • Красный фосфор практически нетоксичен (токсичность ему придают примеси белого фосфора). Пыль красного фосфора, попадая в легкие, вызывает пневмонию при хроническом действии.
    • Белый фосфор очень ядовит, растворим в липидах. Смертельная доза белого фосфора — 50—150 мг. Попадая на кожу, тлеющий белый фосфор даёт тяжелые ожоги.

    Острые отравления фосфором проявляются жжением во рту и желудке, головной болью, слабостью, рвотой. Через 2—3 суток развивается желтуха. Для хронических форм характерны нарушение кальциевого обмена, поражение сердечно-сосудистой и нервной систем. Первая помощь при остром отравлении — промывание желудка, слабительное, очистительные клизмы, внутривенно растворы глюкозы. При ожогах кожи обработать пораженные участки растворами медного купороса или соды. ПДК паров фосфора в воздухе производственных помещений — 0,03 мг/м³, временно допустимая концентрация в атмосферном воздухе — 0,0005 мг/м³, ПДК в питьевой воде — 0,0001 мг/дм³[17] .

    Токсикология соединений фосфора

    Некоторые соединения фосфора (фосфин) очень токсичны. Ввиду высокой (ЛД50 15-100 мг/кг) и чрезвычайно высокой (<15 мг/кг) токсичности большинство фосфорорганических соединений (ФОС) используются в качестве пестицидов (инсектициды, акарициды, зооциды и т. д.) или боевых отравляющих веществ. Примером боевых отравляющих веществ являются — зарин, зоман, табун, V-газы.

    ФОС проявляют свойства веществ нервно-паралитического действия. Токсичность фосфорорганических соединений обусловлена ингибированием фермента ацетилхолинэстеразы, вследствие чего развивается головная боль, тошнота, головокружение, сужение зрачков (миоз), затруднение дыхания (отдышка), возникает слюнотечение, понижается артериальное давление, возникают конвульсии, проявляется паралитическое воздействие, кома, и как следствие может быстро возникнуть летальный исход. Эффективным антидотом при отравлении ФОС является атропин.

    Опасность для здоровья

    Рейтинг NFPA 704:

    Фосфор относится к 1-му классу опасности.

    Примечания

    1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047-1078. — DOI:10.1351/PAC-REP-13-03-02.
    2. ↑ Phosphorus: electronegativities (англ.). WebElements. Проверено 15 июля 2010.
    3. ↑ Sulfur and Phosphorus Compounds (англ.). Проверено 27 января 2010. Архивировано 22 августа 2011 года.
    4. 1 2 3 Редкол.:Зефиров Н. С. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Большая Российская энциклопедия, 1999. — Т. 5. — С. 145.
    5. ↑ J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
    6. 1 2 3 Ходаков Ю. В., Эпштейн Д. А., Глориозов П. А. § 30. Фосфор // Неорганическая химия. Учебник для 9 класса. — 7-е изд. — М.: Просвещение, 1976. — С. 62—65. — 2 350 000 экз.
    7. ↑ Горение белого фосфора под водой — видеоопыт в Единой коллекции цифровых образовательных ресурсов
    8. Kemal T. Saracoglu, Ahmet H. Acar, Tamer Kuzucuoglu, Sezer Yakupoglu. White phosphorus burn (англ.) // The Lancet. — 2010. — Vol. 376, no. 9734. — P. 68. — DOI:10.1016/S0140-6736(10)60812-4.
    9. Chou TD, Lee TW, Chen SL, Tung YM, Dai NT, Chen SG, Lee CH, Chen TM, Wang HJ. The management of white phosphorus burns (англ.) // Burns. — 2001. — Vol. 27, iss. 5. — P. 492-497. — DOI:10.1016/S0305-4179(01)00003-1. — PMID 11451604.
    10. ↑ Радиационная химия // Энциклопедический словарь юного химика. 2-е изд. / Сост. В. А. Крицман, В. В. Станцо. — М.: Педагогика, 1990. — С. 200. — ISBN 5-7155-0292-6.
    11. В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др. Химия = Chemie. — М.: Химия, 1989. — С. 351. — ISBN 5-7245-0360-3.
    12. ↑ Химическая энциклопедия / Редкол.: Зефиров Н.С. и др.. — М.: Большая Российская энциклопедия, 1998. — Т. 5. — 783 с. — ISBN 5-85270-310-9.
    13. Лидин Р.А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ: Учеб. пособие для вузов. — 3-е изд., испр. — М.: Химия, 2000. — 480 с. — ISBN 5-7245-1163-0.
    14. ↑ Данные приведены по Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nuclear Physics A. — 2003. — Т. 729. — С. 3—128. — DOI:10.1016/j.nuclphysa.2003.11.001. — Bibcode: 2003NuPhA.729….3A.
    15. ↑ USDA
    16. Буланов Ю. Б. Химический состав продуктов. Пищевая ценность.
    17. ↑ УНИАН — здоровье — Что происходит с фосфором?

    Ссылки

    wikiredia.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *