Цитоплазма эукариотическая клетка – Эукариотическая клетка, основные структурные компоненты, их строение и функции: органоиды, цитоплазма, включения.

10. Эукариотическая клетка. Цитоплазма. Органоиды. Биология. Общая биология. 10 класс. Базовый уровень

10. Эукариотическая клетка. Цитоплазма. Органоиды

Вспомните!

Каковы основные положения клеточной теории?

Какие выделяют типы клеток в зависимости от расположения генетического материала?

Назовите известные вам органоиды клетки. Какие функции они выполняют?

В § 4 мы уже говорили о существовании двух типов клеток – прокариотических и эукариотических, различия между которыми носят принципиальный характер. У прокариот (от лат. pro – до, перед и греч. karyon – ядро) ДНК не окружена мембраной и свободно располагается в цитоплазме, т. е. у них нет настоящего оформленного ядра. В клетках эукариот (от греч. eu – полностью, хорошо) присутствует ядро. В настоящее время большинство учёных считает, что эукариотические клетки в процессе эволюции произошли от прокариотических. Чуть позже мы с вами рассмотрим эту гипотезу, но прежде нам надо изучить принципиальное строение клеток.

К эукариотическим организмам относятся грибы, растения и животные. Их клетки наиболее крупные и сложно устроенные по сравнению с клетками прокариот – бактерий и синезелёных водорослей (цианобактерий).

Подобно тому как в любом организме основные функции распределены между отдельными органами и системами органов, в клетке тоже существует «разделение труда» между структурами и органоидами. Строение различных клеток несколько отличается в зависимости от той конкретной задачи, которую они выполняют в многоклеточных организмах. Однако существуют общие принципы клеточной организации, характерные для всех типов клеток, как одноклеточных, так и многоклеточных животных, растений и грибов.

Рассмотрим строение типичной эукариотической клетки (рис. 29).

В каждой клетке можно выделить три основные части: наружная клеточная мембрана, которая отделяет содержимое клетки от внешней среды; ядро – обязательный компонент эукариотических клеток, в котором хранится наследственная информация; и цитоплазма – часть клетки, заключённая между наружной мембраной и ядром.

Наружная клеточная мембрана. Термин «мембрана» (от лат. membrana – кожица, оболочка) был предложен более 100 лет назад для обозначения границ клетки. Однако в дальнейшем с развитием электронной микроскопии было обнаружено, что клеточные мембраны входят в состав многих структурных элементов клетки. Первая гипотеза строения мембраны была выдвинута ещё в 1935 г. А в 1959 г. Вильям Робертсон сформулировал гипотезу элементарной мембраны; в ней постулировалось, что все клеточные мембраны построены по единому принципу. К началу 70-х гг. XX в. накопилось много новых данных, на основании которых в 1972 г. была предложена новая жидкостно-мозаичная модель строения мембраны, которая в настоящее время является общепризнанной.

Рис. 29. Строение эукариотических клеток

Рис. 30. Строение клеточной мембраны

Согласно этой модели основой любой мембраны является двойной слой фосфолипидов; в нём гидрофобные остатки жирных кислот обращены внутрь, а гидрофильные головки, включающие глицерин и остаток фосфорной кислоты, – наружу. С липидным бислоем связаны молекулы белков, которые могут пронизывать его насквозь, погружаться в него или примыкать с наружной или внутренней стороны. Расположение этих белков жёстко не фиксировано, и большинство из них свободно «плавает», образуя подвижную мозаичную структуру (рис. 30).

Наружная клеточная мембрана имеет универсальное строение, типичное для всех клеточных мембран. Положение этой мембраны на границе клетки и окружающей среды определяет её основные функции. Прочная и эластичная плёнка, легко восстанавливающаяся после незначительных повреждений, является прекрасным

барьером, предохраняющим клетку от попадания в неё чужеродных токсических веществ и обеспечивающим поддержание постоянства внутриклеточной среды.

Рис. 31. Фагоцитоз. Амёба, поглощающая эвглену

Транспортная функция мембраны носит избирательный характер: одни вещества легко проникают внутрь клетки через специальные поры или с помощью белков-переносчиков, а для других – мембрана непроницаема. Будучи подвижной структурой, мембрана клетки может образовывать выросты, захватывая твёрдые частицы (фагоцитоз) (рис. 31) или капли жидкости (пиноцитоз), при этом образуются фагоцитозные или пиноцитозные вакуоли. Общее название пино– и фагоцитоза – эндоцитоз (от греч. endon – внутри). В клетке существует и обратный процесс – экзоцитоз (от греч. exo – вне). В процессе экзоцитоза вещества, синтезированные клеткой и упакованные в мембранные пузырьки, выбрасываются из клетки, при этом мембрана пузырька встраивается в клеточную мембрану.

Клеточная мембрана обеспечивает также взаимодействие клетки с окружающей средой и с другими клетками в многоклеточном организме.

Мембрана животных клеток снаружи покрыта тонким слоем углеводов и белков – гликокаликсом, а у клеток растений, грибов и бактерий снаружи от клеточной мембраны находится прочная клеточная стенка.

Цитоплазма. Основой цитоплазмы клетки является цитоплазматический сок – гиалоплазма (от греч. hyalos – стекло и plasma, букв. – вылепленное, оформленное) – раствор органических веществ, в котором осуществляются биохимические реакции и располагаются постоянные структурные компоненты клетки – органоиды (органеллы). Гиалоплазма является средой для объединения всех клеточных структур и обеспечивает их химическое взаимодействие. В процессе жизнедеятельности клетки в цитоплазме откладываются различные вещества, образуя непостоянные структуры – включения (глыбки гликогена, капли жира, пигментные гранулы).

Все органоиды клетки подразделяют на мембранные и немембранные. Среди мембранных органоидов существуют одномембранные (эндоплазматическая сеть, комплекс Гольджи, лизосомы) и двухмембранные (митохондрии, пластиды).

Рис. 32. Эндоплазматическая сеть: А – расположение в клетке; Б – электронная фотография участка ЭПС; В – схема участка ЭПС

Эндоплазматическая сеть (ЭПС). Этот органоид был открыт американским учёным Кейтом Робертсом Портером в 1945 г. Совокупность вакуолей, каналов, трубочек образует внутри цитоплазмы мембранную сеть, объединённую в единое целое с наружной мембраной ядерной оболочки. Различают два типа эндоплазматической сети – шероховатая (гранулярная) и гладкая (агранулярная) (рис. 32).

На поверхности мембран шероховатой ЭПС располагаются рибосомы, которые синтезируют все белки, необходимые для обеспечения жизнедеятельности клетки, а также продукты, выделяемые, т. е. секретируемые, клеткой. Синтезированные белковые молекулы поступают в каналы ЭПС. Там они модифицируются, а затем по системе каналов переносятся в ту часть клетки, где необходимы.

Скопления шероховатой эндоплазматической сети характерны для клеток, активно синтезирующих секреторные белки. Например, в клетках печени, нервных клетках, в клетках поджелудочной железы шероховатая эндоплазматическая сеть образует обширные зоны.

В отличие от гранулярной эндоплазматической сети, на мембранах гладкой сети нет рибосом. Эта сеть участвует в синтезе липидов и углеводов, а также обезвреживает токсичные (ядовитые) для организма вещества. Так, при некоторых отравлениях в клетках печени появляются обширные зоны, заполненные гладкими мембранами ЭПС.

Комплекс Гольджи (

аппарат Гольджи). В 1898 г. итальянский учёный Камилло Гольджи, исследуя строение нервных клеток, обнаружил органоид, который входил в состав единой мембранной сети клетки и представлял собой стопку плоских цистерн (рис. 33). Комплекс Гольджи играет роль своеобразного центра, где происходит окончательная сортировка и упаковка различных продуктов жизнедеятельности клетки. Аппарат Гольджи формирует лизосомы и обеспечивает выведение необходимых белков за пределы клетки путём экзоцитоза.

Лизосомы. Это мелкие мембранные пузырьки диаметром 0,5 мкм, которые впервые были обнаружены при помощи электронного микроскопа в 1955 г. Они образуются в комплексе Гольджи или непосредственно в ЭПС и содержат разнообразные пищеварительные ферменты. Лизосомы участвуют во внутриклеточном пищеварении, образуя пищеварительные вакуоли, а также уничтожают отслужившие органоиды и даже целые клетки. Если содержимое лизосом высвобождается внутри самой клетки, то наступает саморазрушение клетки – автолиз, поэтому лизосомы называют «орудиями самоубийства» клетки.

Рис. 33. Строение и функционирование аппарата Гольджи

Именно лизосомы обеспечивают исчезновение хвоста головастика в процессе его превращения во взрослую лягушку.

Митохондрии. Эти органоиды имеют двухмембранное строение. Внешняя мембрана митохондрий гладкая, а внутренняя образует различные выросты (кристы) (рис. 34). Основная функция митохондрий – синтез АТФ, основного высокоэнергетического вещества клетки, поэтому их называют энергетическими станциями клетки. Митохондрии имеют собственные рибосомы и ДНК, поэтому способны самостоятельно синтезировать белки. В живых клетках митохондрии могут перемещаться, сливаться друг с другом, делиться. Их количество в клетке сильно варьирует – от единиц до нескольких тысяч. Обычно митохондрий больше в тех участках цитоплазмы и в тех клетках, где существует повышенная потребность в энергии. Особенно богаты митохондриями мышечные ткани и клетки нервной ткани.

Пластиды. Двухмембранные органоиды растительных клеток, которые размножаются путём деления. Существует три типа пластид – лейкопласты, хромопласты и хлоропласты. Основная функция бесцветных лейкопластов – запасание крахмала. Важнейшую роль в жизнедеятельности растительной клетки играют хлоропласты – зелёные пластиды, содержащие хлорофилл и осуществляющие фотосинтез. Осенью хлоропласты превращаются в хромопласты – пластиды с жёлтой, оранжевой и красной окраской. Как и митохондрии, пластиды имеют собственный генетический аппарат (ДНК), рибосомы и синтезируют белки.

Рибосомы. Субмикроскопические немембранные органоиды, функция которых – синтез белков, благодаря чему они являются обязательными органоидами в клетках всех живых организмов. Каждая рибосома в рабочем состоянии состоит из двух субъединиц – большой и малой, в состав которых входят молекулы белка и рибосомальной РНК (рРНК) (рис. 35). В цитоплазме рибосомы могут находиться в свободном состоянии или располагаться на шероховатых мембранах ЭПС. В зависимости от типа синтезируемого белка рибосомы могут «работать» поодиночке или объединяться в комплексы –

полирибосомы. В таких комплексах рибосомы связаны одной молекулой иРНК.

Рис. 34. Митохондрия: А – расположение в клетке; Б – электронная фотография; В – схема строения

Рис. 35. Строение рибосомы

Клеточный центр. Органоид немембранного строения, присутствующий в клетках животных, грибов и низших растений. Состоит из двух расположенных перпендикулярно друг другу цилиндров – центриолей. В процессе клеточного деления центриоли удваиваются, расходятся к полюсам и образуют веретено деления, обеспечивающее равномерное распределение хромосом между дочерними клетками.

Вакуоль. Обязательной принадлежностью растительной клетки является вакуоль. Это крупный мембранный пузырёк, заполненный клеточным соком, состав которого отличается от окружающей цитоплазмы. Вакуоль накапливает запасные питательные вещества и регулирует водно-солевой обмен, контролируя поступление воды в клетку и из клетки.

Принципиальные различия в строении животной и растительной клеток и клетки грибов приведены на рис. 29 и в табл. 2.

Таблица 2. Сравнительная характеристика растительной, животной и грибной клеток

Окончание табл. 2

Вопросы для повторения и задания

1. Каковы отличия в строении эукариотической и прокариотической клеток?

2. Расскажите о пино– и фагоцитозе. Чем различаются эти процессы?

3. Раскройте взаимосвязь строения и функций мембраны клетки.

4. Какие органоиды клетки находятся в цитоплазме?

5. Охарактеризуйте органоиды цитоплазмы и их значение в жизнедеятельности клетки. Как особенности строения органоидов связаны с выполняемыми ими функциями?

Подумайте! Выполните!

1. В клетках каких органов и почему аппарат Гольджи наиболее развит? Как это связано с их функциями?

2. Какими путями осуществляется обмен веществ между клеткой и окружающей средой?

3. Рассмотрите рис. 28. Расскажите о взаимосвязи эндоплазматической сети, комплекса Гольджи и лизосом. Изобразите схематично эту взаимосвязь.

4. Объясните, как вы понимаете утверждение: «Биологические мембраны – важный фактор целостности клетки и внутриклеточных структур». Согласны ли вы с этим утверждением? Аргументируйте свою точку зрения.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Узнайте больше

Цитоскелет. Цитоскелет – это опорно-двигательная система эукариотической клетки, состоящая из белковых нитчатых образований. Эти структуры очень динамичны: они быстро возникают в результате полимеризации их элементарных молекул и так же быстро разбираются при деполимеризации.

Основные компоненты цитоскелета – фибриллярные структуры и микротрубочки.

Фибриллярные структуры. К фибриллярным компонентам цитоплазмы эукариотических клеток относят микрофиламенты и промежуточные филаменты.

Микрофиламенты – это белковые нити толщиной около 5 нм, которые обычно располагаются пучками или слоями в наружном слое цитоплазмы, непосредственно под плазматической мембраной. Их можно увидеть в псевдоподиях амёб или в микроворсинках кишечного эпителия. Внутри каждой микроворсинки находится пучок из 20–30 микрофиламентов, придающий ей жёсткость и прочность. В состав микрофиламентов входят сократительные белки, в основном актин и миозин. Следовательно, микрофиламенты являются также внутриклеточным сократительным аппаратом, обеспечивающим подвижность клеток и большинство внутриклеточных движений. Очень важны микрофиламенты для процессов фагоцитоза и пиноцитоза.

Промежуточные филаменты – это неветвящиеся, часто располагающиеся пучками белковые нити толщиной около 10 нм. Эта сложная система цитоскелетных нитей изучена относительно недавно. Оказалось, что, в отличие от других элементов цитоскелета, промежуточные филаменты построены в разных клетках из разных белков. Так, например, в клетках эпителия в состав промежуточных филаментов входит кератин, а в мышечных клетках – белок десмин. Особенно много промежуточных филаментов в клетках, подверженных механическим воздействиям.

В настоящее время для определения тканевого происхождения различных опухолей проводят анализ белков их промежуточных филаментов. Дело в том, что при перерождении клетки в раковую она теряет многие черты своей изначальной организации и определить тип опухоли очень трудно. Но белки промежуточных филаментов остаются такими же, какими они были в изначальной ткани. Исследуя белки филаментов в опухолевых клетках, можно точно определить, клетки какой ткани дали начало этой опухоли. Это правило распространяется и на метастазы опухолей, которые могут находиться далеко от места первоначального образования опухолей. Определение белков филаментов позволяет провести корректную цитодиагностику опухолей и правильно подобрать химиотерапевтические противоопухолевые препараты.

Микротрубочки Микротрубочки – это неветвящиеся длинные полые трубки, диаметром около 25 нм. Стенка микротрубочек состоит из плотно уложенных округлых субъединиц, основной компонент которых – белок тубулин. Микротрубочки присутствуют во всех эукариотических клетках. Образуя сеть в цитоплазме интерфазных клеток, микротрубочки создают внутриклеточный каркас – цитоскелет, необходимый для поддержания формы клетки. Микротрубочки входят в состав центриолей клеточного центра, веретена деления, ресничек и жгутиков. В больших количествах они обнаруживаются в отростках нервных клеток, чья форма должна быть постоянной. Кроме этого микротрубочки участвуют во внутриклеточном транспорте. По ним, как по рельсам, могут передвигаться мелкие вакуоли, содержащие различные вещества. Микротрубочки – очень динамичные структуры, они постоянно собираются и разбираются. Среднее время жизни микротрубочки в животной клетке в интерфазе около 10 минут, во время митоза – гораздо меньше. Есть в клетке и стабильные, долго живущие микротрубочки. Длина микротрубочек может быть самая различная: от десятых долей микрона до нескольких микрон. Добавление алкалоида колхицина предотвращает самосборку микротрубочек или приводит к разрушению уже существующих. Это действие колхицина используется, например, если необходимо остановить деление клетки.

Клеточный центр. Клеточный центр – это место организации и роста микротрубочек. В клетках животных и некоторых водорослей клеточный центр, или центросома, состоит из двух центриолей и связанных с ними микротрубочек – центросферы. Впервые центриоли были описаны немецким цитологом Вальтером Флемингом в 1875 г., но сам термин «центриоль» был предложен позже, в 1895 г. Немецкий учёный Теодор Бовери ввёл его для обозначения очень мелких телец, размер которых находился на границе разрешающей способности микроскопа. Подробно строение центриолей удалось изучить только с помощью электронного микроскопа.

Центриоль представляет собой полый цилиндр диаметром 150–250 нм и длиной 300–500 нм. Стенка центриоли состоит из девяти комплексов микротрубочек, причём каждый комплекс в свою очередь построен из трёх микротрубочек. Такие триплеты связаны между собой специальными белками. В центральной части цилиндра микротрубочек нет.

Обычно в интерфазных клетках присутствуют две центриоли, расположенные под прямым углом друг к другу. При подготовке клеток к митотическому делению центриоли удваиваются: две материнские центриоли расходятся, и около каждой из них возникает заново по одной новой дочерней, так что в клетке перед делением обнаруживаются четыре центриоли.

Центриоли участвуют в образовании нитей веретена деления. В клетках высших растений клеточный центр устроен по – другому и центриолей не содержит.

Реснички и жгутики. Это специальные органоиды движения, встречающиеся в некоторых клетках различных организмов. В световом микроскопе эти структуры выглядят как тонкие выросты клетки. В основании ресничек и жгутиков в цитоплазме видны мелкие гранулы – базальные тельца. Длина ресничек 5–10 мкм, а длина жгутиков может достигать 150 мкм.

Реснички и жгутики представляют собой тонкие выросты цитоплазмы, от основания до самой вершины покрытые плазматической мембраной. Внутри выроста цитоплазмы по кругу расположены микротрубочки – 9 пар (дуплетов). Дуплеты связаны друг с другом при помощи молекул белка. Кроме периферических дуплетов микротрубочек, образующих цилиндр, в центре реснички располагается пара центральных микротрубочек. В основании органоидов движения, в цитоплазме, расположены базальные тельца – одно у ресничек и два у жгутиков. Базальное тельце по своей структуре очень сходно с центриолью. Оно тоже состоит из 9 триплетов микротрубочек.

Реснички и жгутики структурно связаны с базальным тельцем и составляют вместе единое целое.

Жгутики характерны для ряда простейших (класс Жгутиконосцы), зооспор и сперматозоидов. Реснички – это органоиды движения инфузорий, свободноплавающих личинок многих морских животных и мужских гамет некоторых папоротников. Имеют реснички и клетки мерцательного эпителия у многоклеточных животных (до 500 ресничек на клетку).

Дефекты ресничек могут приводить к различным врождённым патологиям. Так, например, нарушение структуры мерцательного эпителия дыхательных путей становится причиной наследственного бронхита. Причиной некоторых форм наследственного мужского бесплодия являются дефекты жгутиков сперматозоидов.

Включения. Клеточные включения – это непостоянные структуры, не способные к самостоятельному существованию, которые клетка использует для своих нужд или выделяет в окружающую среду.

Различают трофические (резервные), секреторные и пигментные включения. К трофическим включениям относят, например, капли жира, глыбки гликогена, крахмальные зёрна. Гликогена очень много в клетках печени, а липидные гранулы в основном содержатся в специализированных жировых клетках.

Секреторные включения – мембранные вакуоли, содержащие биологически активные вещества, которые подлежат удалению путём экзоцитоза, поэтому их часто называют экскреторными гранулами. Таких гранул много в железистых клетках животных.

Пигментные включения, локализованные в цитоплазме, могут обеспечивать окраску ткани или органа. Примером пигментных включений являются гранулы меланина, обеспечивающие пигментацию.

Надмембранный комплекс животных клеток. Гликокаликс. Эукариотические клетки животных не образуют клеточных стенок, но на поверхности их плазматической мембраны есть сложный комплекс – гликокаликс, который выполняет важные функции. В его состав входят сложные органические вещества – гликопротеины и гликолипиды, а также надмембранные участки белков, погружённых в мембрану.

Гликокаликс выполняет ряд важных функций. В нём происходит внеклеточное пищеварение, там располагаются многие рецепторы клетки, и с помощью гликокаликса некоторые клетки контактируют друг с другом.

Мембранный транспорт. Одна из важных функций наружной клеточной мембраны – транспортная. Плазматическая мембрана обладает избирательной проницаемостью – она пропускает только определённые вещества и молекулы. Выделяют пассивный и активный транспорт через мембрану.

Пассивный транспорт. Этот вид транспорта осуществляется без дополнительных затрат энергии. К нему относят диффузию и ионный транспорт. Диффузия – это транспорт через мембрану веществ из зоны высокой концентрации в зону низкой концентрации. Этот процесс не нуждается в энергии, он идёт относительно медленно и прекращается, когда концентрация веществ по обе стороны мембраны уравнивается. Скорость диффузии и сама возможность транспорта веществ через мембрану зависит (помимо концентрации) от ряда других факторов: температуры, размера молекул, способности растворяться в липидах. Жирорастворимые вещества легко проходят через липидные слои, водорастворимые – с трудом. В мембране существуют специальные каналы, образованные белковыми молекулами, через которые и происходит диффузия. Ионный транспорт – это разновидность пассивного транспорта для заряженных ионов. Транспорт ионов через мембрану осуществляется либо сквозь специальные ионные поры, либо с помощью переносчиков.

Активный транспорт. Если диффузия продолжается достаточно долго, это может привести к тому, что по обе стороны мембраны концентрация веществ выравнивается. Для клетки это равнозначно смерти – в норме состав цитоплазмы и состав межклеточной жидкости должны сильно различаться. Поэтому существует система активного транспорта, благодаря которому перенос молекул происходит против градиента концентрации (из зоны низкой концентрации в зону высокой). Активный транспорт осуществляют специальные белковые мембранные комплексы, так называемые ионные насосы, работающие с затратой энергии. До 40 % всей энергии, вырабатываемой клеткой, идёт на эти транспортные расходы.

Транспорт в мембранной упаковке (эндо– и экзоцитоз). В отличие от ионов и мелких молекул, макромолекулы сквозь клеточную мембрану не проходят. Их перенос происходит путём эндоцитоза. Происходит выпячивание наружной плазматической мембраны, охватывающее внеклеточный материал. Образуется вакуоль, которая погружается в глубь цитоплазмы клетки. Такой процесс впервые был открыт российским учёным, лауреатом Нобелевской премии Ильей Ильичом Мечниковым и назван фагоцитозом. Процесс захвата клеткой капелек жидкости получил название «пиноцитоз».

Процесс, обратный эндоцитозу, – выведение из клеток каких – либо веществ и продуктов, называют экзоцитозом. На базе мембранного транспорта основан процесс выделения секретов и гормонов клетками. И эндо-, и экзоцитоз являются энергозатратными процессами, поэтому относятся к активному транспорту.

Поделитесь на страничке

Следующая глава >

bio.wikireading.ru

Эукариотическая клетка. Цитоплазма. Органоиды



Вспомните!

Каковы основные положения клеточной теории?

– Клетка — элементарная единица живого. Клетка является наименьшей структурно-функциональной единицей живого и представляет собой открытую, саморегулирующуюся, само воспроизводящуюся систему. Вне клетки жизни нет.

– Все клетки сходны по своему химическому составу и имеют общий план строения. Общий принцип организации клеток определяется обязательными функциями, необходимыми для поддержания собственной жизнедеятельности. Однако клетки обладают и специфическими особенностями, связанными с выполнением клетками специальных функций и возникающими в результате клеточной дифференцировки.

– Клетка происходит только от клетки. Размножение (увеличение числа) клеток происходит только путём деления предшествующих клеток. Миллиарды клеток, из которых состоит живой организм, возникли в результате делений оплодотворённого яйца (зиготы), поэтому все клетки организма генетически одинаковы.

– Многоклеточные организмы представляют собой сложно организованные интегрированные системы, состоящие из взаимодействующих клеток. Кроме клеток в состав многоклеточных организмов входят неклеточные компоненты и гигантские многоядерные образования. Многоклеточный организм обладает новыми специфическими чертами и свойствами, которые не являются простым суммированием свойств составляющих его клеток.

– Сходное клеточное строение организмов — свидетельство того, что всё живое имеет единое происхождение.

Какие выделяют типы клеток в зависимости от расположения генетического материала?

Прокариоты (генетическая информация — нуклеоид) располагается в центре клетке в цитоплазме, и эукариоты (генетическая информация в ядре) окружена отдельной цитоплазматической мембраной.

Назовите известные вам органоиды клетки. Какие функции они выполняют?

Вопросы для повторения и задания

1. Каковы отличия в строении эукариотической и прокариотической клеток?

2. Расскажите о пино- и фагоцитозе. Чем различаются эти процессы?

Пиноцитоз и фагоцитоз это процесс, относящиеся к разновидности эндоцитоза. Эндоцитоз – транспорт в клетку. Фагоцитоз – это поглощение твердых частиц в клетку. Пиноцитоз – это поглощение капель жидкости в клетку. Это тип активного транспорта, происходит по градиенту концентрации с затратами энергии АТФ. В процессе экзоцитоза вещества, синтезированные клеткой и упакованные в мембранные пузырьки, выбрасываются из клетки, при этом мембрана пузырька встраивается в клеточную мембрану.

3. Раскройте взаимосвязь строения и функций мембраны клетки.

К началу 70 -х гг. XX в. накопилось много новых данных, на основании которых в 1972 г. была предложена новая жидкостно-мозаичная модель строения мембраны, которая в настоящее время является общепризнанной. Согласно этой модели основой любой мембраны является двойной слой фосфолипидов; в нём гидрофобные остатки жирных кислот обращены внутрь, а гидрофильные головки, включающие глицерин и остаток фосфорной кислоты, — наружу. С липидным бислоем связаны молекулы белков, которые могут пронизывать его насквозь, погружаться в него или примыкать с наружной или внутренней стороны. Расположение этих белков жёстко не фиксировано, и большинство из них свободно «плавает», образуя подвижную мозаичную структуру. Наружная клеточная мембрана имеет универсальное строение, типичное для всех клеточных мембран. Положение этой мембраны на границе клетки и окружающей среды определяет её основные функции. Прочная и эластичная плёнка, легко восстанавливающая после незначительных повреждений, является прекрасным барьером, предохраняющим клетку от попадания в неё чужеродных токсических веществ и обеспечивающим поддержание постоянства внутриклеточной среды. Транспортная функция мембраны носит избирательный характер: одни вещества легко проникают внутрь клетки через специальные поры или с помощью белков-переносчиков, а для других — мембрана непроницаема. Будучи подвижной структурой, мембрана клетки может образовывать выросты, захватывая твёрдые частицы (фагоцитоз) или капли жидкости (пиноцитоз), при этом образуются фагоцитозные или пиноцитозные вакуоли. Клеточная мембрана обеспечивает также взаимодействие клетки с окружающей средой и с другими клетками в многоклеточном организме.

4. Какие органоиды клетки находятся в цитоплазме?

Ядро

ЭПС и везикулы

Митохондрии

Рибосомы

Комплекс Гольджи и лизосомы

Пластиды

Клеточный центр

Вакуоль

Цитоскелет

5. Охарактеризуйте органоиды цитоплазмы и их значение в жизнедеятельности клетки. Как особенности строения органоидов связаны с выполняемыми ими функциями?

Подумайте! Вспомните!

1. В клетках каких органов и почему аппарат Гольджи наиболее развит? Как это связано с их функциями?

Комплекс Гольджи – это стопка плоские мембранных мешков, в нем происходит модификация, концентрация и упаковка белков. Комплекс Гольджи играет роль своеобразного центра, где происходит окончательная сортировка и упаковка различных продуктов жизнедеятельности клетки. Аппарат Гольджи формирует лизосомы и обеспечивает выведение необходимых белков за пределы клетки путём экзоцитоза.

Хорошо развитый аппарат Гольджи присутствует в секреторных клетках желез, а также в клетках печени и почках. Комплекс Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки — белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности комплекса Гольджи происходят обновление и рост плазматической мембраны.

2. Какими путями осуществляется обмен веществ между клеткой и окружающей средой?

С помощью цитоплазматической мембраны двумя типами транспорта – пассивный и активный.

3. Рассмотрите рис. 33. Расскажите о взаимосвязи эндоплазматической сети, комплекса Гольджи и лизосом. Изобразите схематично эту взаимосвязь.

На поверхности мембран шероховатой ЭПС располагаются рибосомы, которые синтезируют все белки, необходимые для обеспечения жизнедеятельности клетки, а также продукты, выделяемые, т. е. секретируемые, клеткой. Синтезированные белковые молекулы поступают в каналы ЭПС. Там они модифицируются, а затем по системе каналов переносятся в ту часть клетки, где необходимы. На поверхности мембран шероховатой ЭПС располагаются рибосомы, которые синтезируют все белки, необходимые для обеспечения жизнедеятельности клетки, а также продукты, выделяемые, т. е. секретируемые, клеткой. Синтезированные белковые молекулы поступают в каналы ЭПС. Там они модифицируются, а затем по системе каналов переносятся в ту часть клетки, где необходимы. Углеводов, а также обезвреживает токсичные (ядовитые) для организма вещества. Так, при некоторых отравлениях в клетках печени появляются обширные зоны, заполненные гладкими мембранами ЭПС. Комплекс Гольджи играет роль своеобразного центра, где происходит окончательная сортировка и упаковка различных продуктов жизнедеятельности клетки. Аппарат Гольджи формирует лизосомы и обеспечивает выведение необходимых белков за пределы клетки путём экзоцитоза и наоборот при поступлении веществ в клетку.

Схема:

4. Объясните, как вы понимаете утверждение: «Биологические мембраны — важный фактор целостности клетки и внутриклеточных структур». Согласны ли вы с этим утверждением? Аргументируйте свою точку зрения.

Да согласны, большая часть органоидов имеют мембраны (одну или две), по строению они аналогичны наружной цитоплазматической мембране клетки. Прежде всего мембрана отграничивает клетки друг от друга, а органоиды – от содержимого цитоплазмы. Наружная клеточная мембрана имеет универсальное строение, типичное для всех клеточных мембран. Положение этой мембраны на границе клетки и окружающей среды определяет её основные функции. Прочная и эластичная плёнка, легко восстанавливающаяся после незначительных повреждений, является прекрасным барьером, предохраняющим клетку от попадания в неё чужеродных токсических веществ и обеспечивающим поддержание постоянства внутриклеточной среды, все это говорит о целостности клетки и ее структур.

resheba.com

Эукариотическая клетка. Цитоплазма

Энергетический обмен

Что такое диссимиляция? Перечис­лите ее этапы.

Диссимиляция (катаболизм, энерге­тический обмен) — процесс, обратный реакциям биосинтеза. Сложные биополи­меры распадаются, образуя простые веще­ства с выделением энергии, необходимой для реакций биосинтеза.

Выделяют три этапа энергетического обмена.

1. Подготовительный этап. На этом этапе молекулы полисахаридов, бел­ков, жиров и нуклеиновых кислот распа­даются на более мелкие молекулы — глю­козу, аминокислоты, жирные кислоты, глицерин, нуклеотиды.

2. Бескислородный — этап неполного окисления (брожения), таге лее называется анаэробным дыханием (гликолизом). При этом из 1 молекулы глюкозы образуется 2 молекулы молочной кислоты, а из 2 АДФ и 2 остатков фосфорной кислоты синтези­руется 2 молекулы АТФ. В АТФ запасает­ся 40% энергии, остальное рассеивается в виде тепла.

3. Кислородное расщепление аэробное дыхание.

На этом этапе органические соединения (молочная кислота) окисляются до конеч­ных продуктов СО^ и Н20. Кислородное расщепление сопровождается выделением большого количества энергии и запасани­ем 90% ее в 36 молекулах АТФ.

В каких структурах клетки осуществ­ляется синтез АТФ?

Энергия, высвобождаемая при окисле­нии питательных веществ в клетке, запа­сается в фосфатных связях молекулы АТФ. АТФ обеспечивает энергией все ви­ды клеточных функций — биосинтез, де­ление клетки, мышечное сокращение, пе­ренос веществ через мембрану, поддержа­ние мембранного потенциала и проведе­ние нервного импульса.

Молекула АТФ состоит из азотистого основания адепипа, сахара рибозы и трех остатков фосфорной кислоты.

Синтез АТФ происходит на внутренней поверхности внутренней мембраны мито­хондрий.



Опишите известные вам типы питания организмов.

По типу питания все организмы делят­ся на автотрофных и гетеротроф­ных. Гетеротрофными называются орга­низмы, использующие для питания орга­нические источники углерода. Напри­мер, все животные, грибы, большинство бактерий питаются готовыми органиче­скими веществами.

Автотрофными называются организ­мы, живущие за счет неорганического источника углерода — углекислого газа и использующие для осуществления про­цессов синтеза органических молекул энергию солнечного света — фототро- фы или химических связей — хемо- трофы.

Какие организмы называются автот­рофными? На какие группы делятся автотрофные организмы?

Автотрофы — организмы, живущие за счет неорганического источника угле­рода — углекислого газа и использующие для осуществления процессов синтеза энергию солнечного света — фототрофы

(например, зеленые растения) или хими­ческих связей — хемотрофы (например, нитрифицирующие бактерии).

Почему в результате фотосинтеза у зеленых растений в атмосферу выделяется сво­бодный киспород?

Фотосинтез — процесс образования органических соединений из неорганиче­ских за счет энергии солнечного света. Выделяют световую и темповую фазы фо­тосинтеза.

1. В ходе световых реакций фотосинте­за образуются молекулы АТФ, необходи­мые для синтеза глюкозы из углекислого газа, и свободный кислород, который яв­ляется побочным продуктом фотосинтеза.

2. В темновую фазу фотосинтеза проис­ходит образование глюкозы из углекисло­го газа с затратой энергии.

В световую фазу фотосинтеза под дейст­вием квантов света и при взаимодействии с хлорофиллом происходит разложение — фотолиз воды на атомарный водород и свободные радикалы ОН*. Радикалы ОН* взаимодействуют между собой, образуя свободный кислород и воду: 40Н» 02 + 4- 2Н20.

Так как кислород не включается в даль­нейший каскад реакций фотосинтеза, он выделяется во внешнюю среду.

Вопрос 7. Что такое хемосинтез?

Некоторые бактерии, лишенные хлоро­филла, способны к синтезу органических соединений; при этом они используют энергию химических реакций, происхо­дящих в клетках при окислении некото­рых неорганических соединений, для ас­симиляции С02 и Н20 и построения из них неорганических веществ. Процесс образо­вания некоторыми микроорганизмами ор­ганических соединений из неорганиче­ских за счет энергии окислительно-вос­становительных реакций называется хе­мосинтезом .

К группе автотрофов-хемосинтетиков (хемотрофов) относятся, в частности, ни­трифицирующие (азотфиксирующие) бак­терии. Одни из них используют энергию окисления аммиака в азотную кислоту, другие — энергию окисления азотистой кислоты в азотную. Известны хемосинте- тики, извлекающие энергию, которая воз­никает при окислении двухвалентного железа в трехвалентное (их называют же­лезобактериями) или при окислении серо­водорода до серной кислоты (серные бак­терии). Фиксируя атмосферный азот, пе­реводя нерастворимые минералы в форму, пригодную для усвоения растениями, хемосинтезирутощие бактерии играют важ­ную роль в круговороте веществ в природе и образовании полезных ископаемых.

Вопрос 8. Какие организмы называются гетеротрофными? 11риведите примеры.

Гетеротрофы — организмы, исполь­зующие органические источники углеро­да. Например, нее животные, грибы, боль­шинство бактерий. Эти организмы полу­чают все необходимые им питательные ве­щества с пищей. Последняя расщепляется в пищеварительной системе до мономе­ров. Некоторые вещества, например угле­воды и жиры, подвергаются дальнейшему расщеплению внутри клеток, за счет чего запасается энергия в виде АТФ. Из других мономеров гетеротрофы «строят» свое те­ло, используя, по сути, энергию химиче­ских связей органических молекул (по­шедших на синтез АТФ).

сутствие или наличие в их клетках оформленного ядра.

Основные отличия эукариотических и прокариотических клеток представлены в таблице:

Эукариотические клетки Прокариотические клетки
1. Ядро имеется; оболоч­ка состоит из двух мемб­ран; генетический мате­риал храни 1Ся внутри ядра — в хромосомах. Как правило, функци­онирует небольшое ко­личество генов (особен­но в клетках мно гоклеточных организ­мов) 1. Ядро отсутствует; кольцевая молекула ДНК свободно располо­жена в цитоплазме, не связана с белками и не образует спиралей вы­сокого уровня. Боль­шинство генов непре рывно работает
2. Аэробное дыхание происходит в митохонд­риях 2. Дыхание происходит на внутренней поверх­ности цитоплазматиче- ской мембраны и в ме- зосомах — впячиваниях плазматической мембраны
3. Присущ мембранный принцип строения. Ор- ганелл много, некото­рые из них имеют дву- мембранное строение (мигохондрии, хло- роп ласты) 3. Внутренних мембран нет. Органелл мало; представлены только рибосомы, видоизме11енный аппарат Гольд- жи и лизосомы

Окончание

Эукариотические клетки Прокариотические клетки
4. Размеры е 1000- 10 ООО раз больше про­кариот. Могут достигать 40мкм; некоторые одно- Kiiei очные организмы — нескольких миллиметров 4. Размеры — от 0,5 до 5 мкм
5. Существуют в вице одноклеточных организ­мов и составляют много клеточные организмы 5. Всегда существуют в виде одноклеточных организмов
6. Животные клетки не имеют клеточной crei i ки; растительные обла­дают целлюлозной кле­точной стенкой б. Имеют клеточную стенку, состоящую из мурейна
7. Размножение осуществляется путем митоза 7. Размножаются путем простого делении над­вое, чему предшествует удвоение кольцевой хромосомы
     

Какие организмы относятся к прока­риотам?

— Опишите строение бактериальной клетки.

К прокариотам относятся бактерии (ар- хебактерии, настоящие бактерии и окси- фотобактерии).

Строение бактериальной клетки значи­тельно проще организации клетки эука- риоти ческой.

Большинство бактерий имеют клеточ­ную стенку из муреина (кроме микоплазм), под которой лежит плазма­тическая мембрана. Особые выросты плазмолеммы бактерий — мезосомы пред­ставляют собой примитивные органеллы, участвующие в процессах клеточного ды­хания. У фотосинтезирующих бактерий в складках и выпячиваниях плазматиче­ской мембраны находятся фотосинтетиче­ские пигменты, на которых идут процес­сы фотосинтеза. Бактериальпая клетка лишена эндоплазматической сети, рибосо­мы свободно лежат в цитоплазме. Генети­ческий материал, представлепный коль­цевидной молекулой ДНК, также свобод­но расположен в цитоплазме.

Но своей форме бактериальные клетки могут быть шаровидными (кокки), вытя­нутыми (палочки или бациллы) и извиты­ми (спириллы).

Как размножаются бактерии?

Бактериальные клетки размножаются делением надвое. После удвоения кольце­вой хромосомы и удлинения клетки по­степенно образуется поперечпая перетяж­ка. Затем дочерние клетки расходятся или остаются связанными в характерные группы — цепочки, пакеты. Иногда раз­множению у бактерий предшествует поло­вой процесс — конъюгация, сущность ко­торого заключается в образовании новых комбинаций генов в бактериальной хро­мосоме. В ходе конъюгации бактерия- донор отдает часть своего генетическо­го материала бактерии-реципиенту. По­сле этого клетка-донор погибает, а клет­ка-реципиент с обновленной наследствен­ной информацией делится надвое.

В чем сущность и биологический смысл процесса спорообразования у бактерий?

В неблагоприятных условиях среды многие прокариоты образуют споры. Спо­рообразование выражается в выделении небольшого участка цитоплазмы, содер­жащего кольцевидную хромосому, и ок­ружении его толстой многослойной капсу­лой. Обменные процессы внутри споры практически прекращается, спора обиз- вествляется. В сухом состоянии споры мо­гут сохранять жизнеспособность сотни и тысячи лет. Попадая в благоприятные ус­ловия, спора «прорастает» и дает начало полноценной активной прокариотичес- кой клетке.

Эукариотическая клетка. Цитоплазма

Что такое цитоплазма?

Какие органоиды клетки находятся в цитоплазме?

Цитоплазма. — одна из составных частей клетки. Она представляет собой внеядерную часть протоплазмы клеток живых организмов и является рабочим аппаратом клетки, в котором протекают основные метаболические процессы. В ней сосредоточены общие и специальные орга­ноиды, включения.

Органоидами называют постоянно при­сутствующие в цитоплазме, специализи­рованные для выполнения определенных функций структуры. По структуре выде­ляют мембранные и нем ем бранные орга­ноиды клетки.

Мембранные органоиды клетки

1. Эидоплазматическая сеть —

система внутренних мембран цитоплаз­мы, образующих крупные полости — цис­терны и многочисленные канальцы; зани­мает центральное положение в клетке во­круг ядра, составляя до 50% ее объема. Каналы эндоплазматической сети (ЭПС) связывают все органоиды цитоплазмы и открываются в мелсмембранное простран­ство ядерной оболочки. Таким образом, ЭПС представляет собой внутриклеточ­ную циркуляционную систему.

Различают два вида мембран эндоплаз- матической сети — гладкую и грануляр­ную (шероховатую). Однако необходимо понимать, что все они являются частью одной, непрерывной эндоплазматической сети. На гранулярных мембранах располо­жены рибосомы, «здесь идет синтез белка. На гладких мембранах ЭПС упорядоченно расположены ферментные системы, уча­ствующие в синтезе жиров и углеводов.

2. Аппарат Гольджи — система цис­терн, канальцев и пузырьков, образован­ных гладкими мембранами. Эта структу­ра расположена на периферии клетки по отношению к ЭПС. На мембранах аппара­та Гольджи упорядочепно расположены ферментные системы, участвующие в об­разовании более сложных органических соединений из белков, жиров и углеводов, синтезированных на мембранах ЭПС* Здесь происходит сборка мембран, образо­вание лизосом. Мембраны аппарата Гольд­жи обеспечивают накопление, концентра­цию и упаковку секрета, выделяемого из клетки.

3. Лизосомы — мембранные органо­иды, содержащие до 40 протеолитических ферментов, способных расщеплять орга­нические молекулы. Лизосомы участву­ют в процессах внутриклеточного пище­варения и запрограммированной гибели клетки (апоптоза).

4. Митохондрии — энергетические станции клетки. Двухмембраппые органо­иды, имеющие гладкую наружную и внут­реннюю мембрану, образующую кристы — гребни. На внутренней поверхности внут­ренней мембраны упорядочение располо­жены ферментные системы, участвую­щие в синтезе АТФ. В митохондриях на­ходится кольцевидная молекула ДНК, сходная по строению с хромосомой прока­риот. Имеется много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Однако генов, заклю­ченных в кольцевидной молекуле ДНК недостаточно для обеспечения всех аспек­тов жизнедеятельности митохондрий, и они являются полуавтопомпьтми структура­ми цитоплазмы. Увеличение их числа происходит за счет деления, чему пред­шествует удвоение кольцевой молекулы ДНК.

5. Пластиды — органоиды, характер­ные для растительных клеток.

Среди пластид различают лейкоплас­ты — бесцветные пластиды, хромоплас­ты., имеющие красно-оранжевую окра­ску, и хлоропласты — зеленые пласти­ды. Все они имеют единый план строения и образованы двумя мембранами: наруж­ной — гладкой и внутренней, образующей перегородки — тилакоиды стромы (осно­вы). На тилакоидах стромы расположены граны, состоящие из уплощенных мемб­ранных пузырьков тилакоидов граны, уложенных один на другой по типу монет­ных столбиков. Внутри тилакоидов граны находится хлорофилл. Световая фаза фо­тосинтеза проходит именно в тилакоидах гран, а темновая в тилакоидах стромы. В пластидах имеется кольцевидная моле­кула ДНК, сходная по строению с хро­мосомой прокариот, и много мелких рибо­сом, на которых идет частично независи­мый от ядра синтез белков. Пластиды мо­гут переходить из одного вида в другой (хлоропласты в хромопласты и лейкоп­ласты), они являются полуавтономными органоидами клетки. Увеличение числа пластид идет за счет их деления надвое и почкования, которым предшествует редупликация кольцевидной молекулы ДНК.

Немембранные органоиды клетки

 

1. Рибосомы, округлые тельца, об­разованные из двух субъединиц, состоя­щие на 50% из РНК и 50% из белков. Субъединицы образуются в ядре, в зоне ядрышка, а в цитоплазме в присутствии ионов Са24~ объединяются в целостные структуры. В цитоплазме расположены на мембранах эндоплазматической сети (гра­нулярная ЭПС) или свободно. В актив­ном центре рибосом происходит процесс трансляции (подбор антикодонов тРНК к кодоиам иРНК). Рибосомы, перемеща­ясь по молекуле иРНК с одного конца на другой, последовательно делают доступ­ными кодопы иРНК для контакта с ан- тикодонами тРНК. Так последовательно считывается уникальная наследственная информация, и образуется полипептид с заданной последовательностью аминокис­лот.

2. Центриоли (клеточный центр) пред­ставляют собой цилиндрические тельца, стенкой которых являются 9 триад белко­вых микротрубочек. В клеточном центре центриоли расположены под прямым уг­лом друг к другу. Они способны к само­воспроизведению по принципу самосбор­ки. Самосборка — образование при помо­щи ферментов структур, подобных суще­ствующим. Центриоли принимают участие в образовании нитей веретена деления. Обеспечивают процесс расхождения хро­мосом во время деления клеток.

3. Жгутики и реснички — органо­иды движения клетки; они имеют единый план строения — наружная часть жгути­ка обращена в окружающую среду и по­крыта участком ц итоплазматической мем­браны. Она представляет собой цилиндр: его стенкой являются 9 пар белковых мик­ротрубочек, а в центре расположены 2 осе­вые микротрубочки. В основании жгути­ка, находящегося в эктоплазме — ци­топлазме, лежащей непосредственно под клеточной мембраной, к каждой паре ми крот ру бочек добавляется егце одна ко­роткая микротрубочка. В результате обра­зуется базальное тельце, состоящее из 9 триад микротрубочек. Базальпая мемб­рана по форме сходна с центриолыо.

4. Цитпоскелет представлен системой белковых волокон и микротрубочек. Обес­печивает поддержание и изменение фор­мы тела клетки, образование псевдопо­дий. Отвечает за амебоидное движение, образует внутренний каркас клетки, обес­печивает передвижение клеточных струк­тур по цитоплазме.

Какие органоиды клетки являются самовоспроизводящимися и почему?

К самовоспроизводящимся органоидам клетки относятся: митохондрии, пласти­ды, а также клеточный центр и базальные тельца.

В митохондриях и пластидах имеется кольцевидная молекула ДНК, сходная по строению с хромосомой прокариот. Само­воспроизведение этих структур основано на редупликации ДНК и выражается в де­лении падвое.

Центриоли способны к самовоспроизве­дению по принципу самосборки. Самосбор­ка — образование при помощи ферментов структур, подобных существующим.

Что такое включения?

Включениями называют непостоян­ные структуры цитоплазмы, которые в от­личие от органоидов то возникают, то ис­чезают в процессе жизнедеятельности клетки. Чаще всего они выполняют роль резерва питательных веществ, как, на­пример, зерна крахмала в клетках расте­ний или глыбки гликогена у животных; встречаются также жидкие включения капли жира.

В других случаях включения оказыва­ются защитными продуктами жизнеде­ятельности, например, пигмент меланин в коже загорающего человека.

Плотные включения называют грану­лами (зерна .крахмала или гликогена). Жидкие включения — вакуолями (кап­ли жира).

В чем различие между пиноцитозом и фагоцитозом?

Процесс поглощения твердой частицы, например бактерии, пазывают фагоци­тозом, что буквально означает «клеточ­ный процесс поедания».

В начале 30-х гг. XX в. американский биолог Уоррен Льюис обнаружил, что клетки в состоянии поглощать также ка­пельки жидкости; он назвал это явление тгиноцитозом (греч. pine иг — нить). Со временем оказалось, что фагоцитоз и пи- ноцитоз — проявления более общего ме­ханизма захвата, которому дали название эндоцитоз.

Эндоцитоз может осуществляться по- разному, но неизменно зависит от плазма­тической мембраны, служащей «перево­зочным средством» для проникновения внутрь клетки. Каким бы ни был захва­ченный клеткой объект, он всегда входит в нее, окутанный мембранозным мешком, образованным от внячивания (инвагина­ции) плазматической мембраны.

. Эукариотическая клетка. Ядро

Опишите строение ядра эукарио тической клетки.

Ядро — важнейшая составляющая часть клетки; выполняет функции хране­ния и воспроизведения генетической ин­формации, регулирует процессы обмена веществ в клетке. Ядро окружено ядерной оболочкой, которая состоит из двух мемб­ран. Содержимое ядра подразделяют на ядерный сок, хроматин и ядрышко.

Ядерная оболочка имеет две мембра­ны — наружную, покрытую рибосома­ми, — гранулярную и внутреннюю глад­кую. Она является частью внутренней мембранной сети клетки. В пространство между двумя мембранами ядерной обо­лочки открываются каналы ОПС. Ядер­ная оболочка имеет поры диаметром до 80 нм, которые способны к избирательной проницаемости. Транспорт веществ через ядерную оболочку осуществляется по ка­налам ЭПС, через поры ядерной оболочки, а также путем образования вакуолей и от- шпуровывания участков ядерной оболоч­ки. Ядерная оболочка образуется после завершения деления хромосом в телофазе митоза из прилегающих мембран ЭПС.

Кариоплазма (ядерный сок) — жидкая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур — все виды РНК, ри- босомальные белки, нуклеотиды, фермен­ты ядра, ионы.

Что такое ядрышко?

Ядрышко представляет собой не что иное, как скопление рибосомальных РНК, рибосомальных белков и рибосом на разных этапах формирования. В основе этого лежит участок хромосомы, несущий ген — ядрышковый организатор, заклю­чающий наследственную информацию о структуре рибосома л ьнътх РНК.

Вопрос 3 Что такое хроматин? Опишите стро­ение и состав хромосомы.

Хроматин наследственный матери­ал клетки. Тот хроматин, который мы ви­дим в микроскоп как глыбки и гранулы, представляет собой в разной степени спи­рал изованные участки хромосом. Он в ге­нетическом плане не активен. Генетиче­ски активный хроматин полностью деспи- рализован и не виден даже в электронный микроскоп.

В делящейся клетке наследственный материал компактно упакован. Вслед­ствие сиирализации ДНК во время деле­ния клетки наследственный материал ста­новится виден в световой микроскоп как палочковидные тела — хромосомы. Поми­мо молекул ДНК в состав хромосом вхо­дят различные белки, вокруг которых сворачивается молекула ДНК.

Хромосомами называют самостоятель­ные ядерные структуры, имеющие плечи и первичную перетяжку. Форма хромосом зависит от положения первичной пере­тяжки —- центромеры, к области которой во время деления клетки прикрепляются нити веретепа деления. Центромера делит хромосому на два плеча.

Как соотносится число хромосом в соматических и половых клетках?

Хромосомный набор клеток тела (сома­тических клеток) несет так называемый двойной, или диплоидный набор хромо­сом. В этом наборе все хромосомы парные. Парные хромосомы носят паз ванне гомо­логичных; они совершенно одинаковы, несут геньт, отвечающие за одни и те же признаки, и достались организму одна — от матери, другая — от отца.

При образовании половых клеток у каждого организма из каждой пары гомо­логичных хромосом в гамету (половую клетку) попадает только одна хромосома. Поэтому хромосомный набор половых клеток называют одинарным — гаплоид­ным. Например, в соматической клетке человека 46 хромосом — 23 пары, а в яй­цеклетку или сперматозоид попадет толь­ко 23 хромосомы; у дрозофилы в клетках тела 8 хромосом — 4 пары, а в гаметах — 4 хромосомы.

При слиянии двух половых клеток про­исходит восстановление двойного набора хромосом, присущее данному виду.

Какие хромосомы называют гомоло гичными?

Хромосомы одинаковые по форме и раз­меру и несущие гены, определяющие раз- витис одинаковых признаков, называют­ся гомологичными. Одна из таких хро­мосом достается организму от отца, дру­гая от матери.

Что такое кариотип? Дайте опреде­ление.

Совокупность качественных и количе­ственных признаков хромосомного набора в соматической клетке называется карио типом.. Кариотип является видовым при­знаком и одинаков у всех представителей вида. Например, у человека — 46 хромо­сом, у дрозофилы — 8 и т. д.

Вспомните строение хромосомы бактерий. Чем она отличается от хромосомы эука- риог?

Хромосома прокариотической клетки имеет кольцевое строение, свободно распо­ложена в цитоплазме и не отграничена ядерной оболочкой. Она одна, не имеет яд­рышка, центромеры, вторичной перетяж­ки и вследствие этого характерных морфо­логических типов строения, свойствен­ных хромосомам эукариотической клетки.


Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Эукариотическая клетка, основные структурные компоненты, их строение и функции: органоиды, цитоплазма, включения.

К эукариотам относятся царства растений, животных, грибов.

Основные признаки эукариот.

  1. Клетка разделена на цитоплазму и ядро.
  2. Большая часть ДНК сосредоточена в ядре. Именно ядерная ДНК отвечает за большую часть процессов жизнедеятельности клетки и за передачу наследственности дочерним клеткам.
  3. Ядерная ДНК расчленена на нити, не замкнутые в кольца.
  4. Нити ДНК линейно вытянуты внутри хромосом, отчетливо видны в процессе митоза. Набор хромосом в ядрах соматических клеток диплоидный.
  5. Развита система наружных и внутренних мембран. Внутренние делят клетку на отдельные отсеки – компартменты. Принимают участие в образовании органоидов клетки.
  6. Органоидов много. Некоторые органоиды окружены двойной мембраной: ядро, митохондрии, хлоропласты. В ядре, наряду с оболочкой и ядерным соком, обнаруживается ядрышко и хромосомы. Цитоплазма представлена основным веществом (матриксом, гиалоплазмой) в которой распределены включения и органеллы.
  7. Большое число органелл ограничено одинарной мембранной (лизосомы, вакуоли и т.д.)
  8. В эукариотической клетке выделяют органеллы общего и специального значения. Например: общего значения – ядро, митохондрии, ЭПС и т.д.; специального значения — микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов.
  9. Характерен митоз – механизм воспроизведения в поколениях генетически сходных клеток.
  10. Свойствен половой процесс. Образуются истинные половые клетки – гаметы.
  11. Не способны к фиксации свободного азота.
  12. Аэробное дыхание происходит в митохондриях.
  13. Фотосинтез проходит в хлоропластах содержащих мембраны, которые обычно уложенные в граны.
  14. Эукариоты представлены одноклеточными, нитчатыми и истинно многоклеточными формами.

Основные структурные компоненты эукариотической клетки

органоиды

Ядро. Строение и функции.

В клетке выделяют ядро и цитоплазму. Клеточное ядросостоит из оболочки, ядерного сока, ядрышка и хроматина. Функциональная рольядерной оболочкизаключается в обособлении генетического материала (хромосом) эукариотической клетки от цитоплазмы с присущими ей многочисленными метаболическими реакциями, а также регуляции двусторонних взаимодействий ядра и цитоплазмы. Ядерная оболочка состоит из двух мембран, разделенных околоядерным (перинуклеарным) пространством. Последнее может сообщаться с канальцами цитоплазматической сети.

Ядерная оболочка пронизана порожу диаметром 80—90нм. Область поры или поровый комплекс с диаметром около 120нм имеет определенное строение, что указывает на сложный механизм регуляции ядерно-цитоплазматических перемещений веществ и структур. Количество пор зависит от функционального состояния клетки. Чем выше синтетическая активность в клетке, тем больше их число. Подсчитано, что у низших позвоночных животных в эритробластах, где интенсивно образуется и накапливается гемоглобин, на 1мкм2ядерной оболочки приходится около 30пор. В зрелых эритроцитах названных животных, сохраняющих ядра, на 1мк»г оболочки остается до пяти пор, т.е. в 6 раз меньше.

В области перового комплекса начинается так называемая плотная пластинка —белковый слой, подстилающий на всем протяжении внутреннюю мембрану ядерной оболочки. Эта структура выполняет прежде всего опорную функцию, так как при ее наличии форма ядра сохраняется даже в случае разрушения обеих мембран ядерной оболочки. Предполагают также, что закономерная связь с веществом плотной пластинки способствует упорядоченному расположению хромосом в интерфазном ядре.

Основу ядерного сока,илиматрикса,составляют белки. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль в обеспечении нормального функционирования генетического материала. В составе ядерного сока присутствуютнитчатые,илифибриллярные, белки, с которыми связано выполнение опорной функции: в матриксе находятся также первичные продукты транскрипции генетической информации — гетероядерные РНК (гя-РНК), которые здесь же подвергаются процессингу, превращаясь в м-РНК (см. 3.4.3.2).

Ядрышкопредставляет собой структуру, в которой происходит образование и созреваниерибосомальныхРНК (рРНК). Гены рРНК занимают определенные участки (в зависимости от вида животного) одной или нескольких хромосом (у человека 13—15и 21—22пары) — ядрышковые организаторы, в области которых и образуются ядрышки. Такие участки в метафазных хромосомах выглядят как сужения и называютсявторичными перетяжками. Спомощью электронного микроскопа в ядрышке выявляют нитчатый и зернистый компоненты. Нитчатый (фибриллярный) компонент представлен комплексами белка и гигантских молекул РНК-предшественниц, из которых затем образуются более мелкие молекулы зрелых рРНК. В процессе созревания фибриллы преобразуются в рибонуклеопротеиновые зерна (гранулы), которыми представлен зернистый компонент.

Хроматиновые структуры в виде глыбок,рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки

цитоплазма

В цитоплазмеразличают основное вещество (матрикс, гиалоплазма), включения и органеллы.Основное вещество цитоплазмызаполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Обычный электронный микроскоп не выявляет в нем какой-либо внутренней организации. Белковый состав гиалоплазмы разнообразен. Важнейшие из белков представлены ферментами гаиколиза, обмена Сахаров, азотистых оснований, аминокислот и липидов. Ряд белков гиалоплазмы служит субъединицами, из которых происходит сборка таких структур, как микротрубочки.

Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом. Выполнение матриксом объединяющей, а также каркасной функции может быть связано с выявляемой с помощью сверхмощного электронного микроскопа микротрабекулярной сети, образованной тонкими фибриллами толщиной 2—3нм и пронизывающей всю цитоплазму. Через гиалоплазму осуществляется значительный объем внутриклеточных перемещений веществ и структур. Основное вещество цитоплазмы следует рассматривать так же, как сложную коллоидную систему, способную переходить из золеобразного (жидкого) состояния в гелеобразное. В процессе таких переходов совершается работа. О функциональном значении таких переходов см. разд. 2.3.8.

Включениями(рис. 2.5)называют относительно непостоянные компоненты цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), продуктами, подлежащими выведению из клетки (гранулы секрета), балластными веществами (некоторые пигменты).

Органеллы —это постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции.

Выделяют органеллы общего значенияиспециальные.Последние в значительном количестве присутствуют в клетках, специализированных к выполнению определенной функции, но в незначительном количестве могут встречаться и в других типах клеток. К ним относят, например, микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов, синаптические пузырьки, транспортирующие вещества —переносчики нервного возбуждения с одной нервной клетки на другую или клетку рабочего органа, миофибриллы, от которых зависит сокращение мышцы. Детальное рассмотрение специальных органелл входит в задачу курса гистологии.

К органеллам общего значения относят элементы канальцевой и вакуолярной системы в виде шероховатой и гладкой цитоплазматической сети, пластинчатый комплекс, митохондрии, рибосомы и полисомы, лизосомы, пероксисомы, микрофибриллы и микротрубочки, центриоли клеточного центра. В растительных клетках выделяют также хлоропласта, в которых происходит фотосинтез.

Канальцеваяивакуолярная системыобразованы сообщающимися или отдельными трубчатыми или уплощенными (цистерна) полостями, ограниченными мембранами и распространяющимися по всей цитоплазме клетки. Нередко цистерны имеют пузыревидные расширения. В названной системе выделяютшероховатуюигладкую цитоплазматическую сети(см. рис. 2.3).Особенность строения шероховатой сети состоит в прикреплении к ее мембранам полисом. В силу этого она выполняет функцию синтеза определенной категории белков, преимущественно удаляемых из клетки, например секретируемых клетками желез. В области шероховатой сети происходит образование белков и липидов цитоплазматических мембран, а также их сборка. Плотно упакованные в слоистую структуру цистерны шероховатой сети являются участками наиболее активного белкового синтеза и называютсяэргастоплазмой.

Мембраны гладкой цитоплазматической сети лишены полисом. Функционально эта сеть связана с обменом углеводов, жиров и других веществ небелковой природы, например стероидных гормонов (в половых железах, корковом слое надпочечников). По канальцам и цистернам происходит перемещение веществ, в частности секретируемого железистой клеткой материала, от места синтеза в зону упаковки в гранулы. В участках печеночных клеток, богатых структурами гладкой сети, разрушаются и обезвреживаются вредные токсические вещества, некоторые лекарства (барбитураты). В пузырьках и канальцах гладкой сети поперечно-полосатой мускулатуры сохраняются (депонируются) ионы кальция, играющие важную роль в процессе сокращения.

Рибосома —это округлая рибонуклеопротеиновая частица диаметром 20—30нм. Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называютполисомой.Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках, с одной стороны, и в специализированных клетках взрослого организма —с другой, привело к заключению, что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки, тогда как на полисомах гранулярной сети синтезируются белки, выводимые из клетки и используемые на нужды организма (например, пищеварительные ферменты, белки грудного молока).

Пластинчатый комплекс Голъджиобразован совокупностью диктиосом числом от нескольких десятков (обычно около 20)до нескольких сотен и даже тысяч на клетку.

Диктиосома(рис. 2.6,А) представлена стопкой из 3—12уплощенных дискообразных цистерн, от краев которых отшнуровываются пузырьки (везикулы). Ограниченные определенным участком (локальные) расширения цистерн дают более крупные пузырьки (вакуоли). В дифференцированных клетках позвоночных животных и человека диктиосомы обычно собраны в околоядерной зоне цитоплазмы. В пластинчатом комплексе образуются секреторные пузырьки или вакуоли, содержимое которых составляют белки и другие соединения, подлежащие выводу из клетки. При этом предшественник секрета (просекрет), поступающий.в диктиосому из зоны синтеза, подвергается в ней некоторым химическим преобразованиям. Он также обособляется (сегрегируется) в виде «порций», которые здесь же одеваются мембранной оболочкой. В пластинчатом комплексе образуются лизосомы. В диктиосомах синтезируются полисахариды, а также их комплексы с белками (гликопротеины) и жирами (гликолипиды), которые затем можно обнаружить в гликокаликсе клеточной оболочки.

Митохондрии(рис. 2.6, Б) —это структуры округлой или палочко-видной, нередко ветвящейся формы толщиной 0,5мкм и длиной обычно до 5—10мкм. В большинстве животных клеток количество митохондрий колеблется от 150до 1500,однако в женских половых клетках их число достигает нескольких сотен тысяч. В сперматозоидах нередко присутствует одна гигантская митохондрия, спирально закрученная вокруг осевой части жгутика. Одна разветвленная митохондрия обнаружена в клетке такого паразита человека, как трипаносома.

Оболочка митохондрий состоит из двух мембран, различающихся по химическому составу, набору ферментов и функциям. Внутренняя мембрана образует впячивания листовидной (кристы) или трубчатой (тубулы) формы. Пространство, ограниченное внутренней мембраной, составляет матриксорганеллы. В нем с помощью электронного микроскопа обнаруживаются зерна диаметром 20—40нм. Они накапливают ионы кальция и магния, а также полисахариды, например гликоген.

В матриксе размещен собственный аппарат биосинтеза белка органеллы. Он представлен 2—б копиями кольцевой и лишенной гистонов (как у прокариот) молекулы ДНК, рибосомами, набором транспортных РНК (тРНК), ферментами редупликации ДНК, транскрипции и трансляции наследственной информации. По основным свойствам: размерам и структуре рибосом, организации собственного наследственного материала —этот аппарат сходен с таковым у прокариот и отличается от аппарата биосинтеза белка цитоплазмы эукариотической клетки (чем подтверждается симбиотическая гипотеза происхождения митохондрий; см. § 1.5).Гены собственной ДНК кодируют нуклеотидные последовательности митохондриальных рРНК и тРНК, а также последовательности аминонокислот некоторых белков органеллы, главным образом ее внутренней мембраны. Аминокислотные последовательности (первичная структура) большинства белков митохондрий закодированы в ДНК клеточного ядра и образуются вне органеллы в цитоплазме.

Главная функция митохондрий состоит в ферментативном извлечении из определенных химических веществ энергии (путем их окисления) и накоплении энергии в биологически используемой форме (путем синтеза молекул аденозинтрифосфата —АТФ). В целом этот процесс называетсяокислительным (расформированием.В энергетической функции митохондрий активно участвуют компоненты матрикса и внутренняя мембрана. Именно с этой мембраной связаны цепь переноса электронов (окисление) и АТФ-синтетаза, катализирующая сопряженное с окислением фосфорилирование АДФ в АТФ. Среди побочных функций митохондрий можно назвать участие в синтезе стероидных гормонов и некоторых аминокислот (глутаминовая).

Лизосомы(рис. 2.6,В) представляют собой пузырьки диаметром обычно 0,2—0,4мкм, которые содержат набор ферментов кислых гидролаз, катализирующих при низких значениях рН гидролитическое (в водной среде) расщепление нуклеиновых кислот, белков, жиров, полисахаридов. Их оболочка образована одинарной мембраной, покрытой иногда снаружи волокнистым белковым слоем (на электронограммах «окаймленные» пузырьки). Функция лизосом — внутриклеточное переваривание оазличных химических соединений и структур.

Первичными лизосомами(диаметр 100нм) называют неактивные органеллы,вторичными —органеллы, в которых происходит процесс переваривания. Вторичные лизосомы образуются из первичных. Они подразделяются нагетеролизосомы(фаголизосомы) иаутолизосомы (цитолизосомы). В первых (рис. 2.6,Г) переваривается материал, поступающий в клетку извне путем пиноцитоза и фагоцитоза, во вторых разрушаются собственные структуры клетки, завершившие свою функцию. Вторичные лизосомы, в которых процесс переваривания завершен, называютостаточными тельцами(телолизосомы). В них отсутствуют гидролазы и содержится непереваренный материал.

Микротельца составляют сборную группу органелл. Это ограниченные одной мембраной пузырьки диаметром 0,1—1,5мкм с мелкозернистым матриксом и нередко кристаллоидными или аморфными белковыми включениями. К этой группе относят, в частности,пероксисомы.Они содержат ферменты оксидазы, катализирующие образование пероксида водорода, который, будучи токсичным, разрушается затем под действием фермента пероксидазы. Эти реакции включены в различные метаболические циклы, например в обмен мочевой кислоты в клетках печени и почек. В печеночной клетке число пероксисом достигает70—100.

К органеллам общего значения относят также некоторые постоянные структуры цитоплазмы, лишенные мембран. Микротрубочки(рис.2.6,Д) —трубчатые образования различной длины с внешним диаметром 24нм, шириной просвета 15нм и толщиной стенки около 5нм. Встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей. Свободные микротрубочки и микротрубочки ресничек, жгутиков и центриолей имеют разную устойчивость к разрушающим воздействиям, например химическим (колхицин). Микротрубочки строятся из стереотипных субьединиц белковой природы путем их полимеризации. В живой клетке процессы полимеризации протекают одновременно с процессами деполимеризации. Соотношением этих процессов определяется количество микротрубочек. В свободном состоянии микротрубочки выполняют опорную функцию, определяя форму клеток, а также являются факторами направленного перемещения внутриклеточных компонентов.

Микрофиламентами(рис. 2.6,Е) называют длинные, тонкие образования, иногда образующие пучки и обнаруживаемые по всей цитоплазме. Существует несколько разных типов микрофиламентов.Актиновые микрофиламентыблагодаря присутствию в них сократимых белков (актин) рассматривают в качестве структур, обеспечивающих клеточные формы движения, например амебоидные. Им приписывают также каркасную роль и участие в организации внутриклеточных перемещений органелл и участков гиалоплазмы.

По периферии клеток под плазмалеммой, а также в околоядерной зоне обнаруживаются пучки микрофиламентов толщиной 10нм — промежуточные филстенты.В эпителиальных, нервных, глиальных, мышечных клетках, фибробластах они построены из разных белков. Промежуточные филаменты выполняют, по-видимому, механическую, каркасную функцию.

Актиновые микрофибриллы и промежуточные филаменты, как и микротрубочки, построены из субъединиц. В силу этого их количество зависит от соотношения процессов полимеризации и деполимеризации.

Для животных клеток, части клеток растений, грибов и водорослей характерен клеточный центр,в состав которого входят центриоли.Центриолъ(под электронным микроскопом) имеет вид «полого» цилиндра диаметром около 150нм и длиной 300—500нм. Ее стенка образована 27микротрубочками, сгруппированными в 9триплетов. В функцию центриолей входит образование нитей митотического веретена, которые также образованы микротрубочками. Центриоли поляризуют процесс деления клетки, обеспечивая расхождение сестринских хроматид (хромосом) в анафазе митоза.

Эукариотическая клетка имеет клеточный скелет (цитоскелет) из внутриклеточных волокон (Кольцов) – начало ХХ века, в конце 1970 вновь открыт. Эта структура позволяет клетке иметь свою форму, иногда изменяя ее. Цитоплазма находится в движении. Цитоскелет участвует с процессе переноса органоидов, участвует в регенерации клеток.

Митохондрии – сложные образования с двойной мембраной(0,2-0,7мкм) и разной формой. Внутренняя мембрана имеет кристы. Наружная мембрана проницаема практически для всех химических веществ, внутренняя – только активный транспорт. Между мембранами – матрикс. Митохондрии располагаются там, где необходима энергия. Митохондрии имеют систему рибосом, молекулу ДНК. Возможно возникновение мутаций (более66 заболеваний). Как правило, они связаны с недостаточной энергией АТФ, часто связаны с сердечно-сосудистой недостаточностью, патологиями. Количество митохондрий разное (в клетке трипаносомы- 1 митохондрия). Количество зависит от возраста, функции, активности ткани (печень – более1000).

Лизосомы – тельца, окруженные элементарной мембраной. Содержат 60 ферментов( 40 лизосомальных, гидролитических). Внутри лизосомы – нейтральная среда. Активизируются низкими значениями рН, выходя в цитоплазму (самопереваривание). Мембраны лизосом защищают цитоплазму и клетку от разрушения. Образуются в комплексе Гольджи (внутриклеточный желудок, могут перерабатывать отработавшие свое структуры клетки). Есть 4 вида. 1-первичные, 2-4 – вторичные. С помощью эндоцитоза в клетку попадает вещество. Первичная лизосома (запасающая гранула) с набором ферментов, поглощает вещество и образуется пищеварительная вакуоль (при полном переваривании расщепление идет до низкомолекулярных соединений). Непереваренные остатки остаются в остаточных тельцах, которые могут накапливаться (лизосомные болезни накопления). Остаточные тельца, накапливающиеся в эмбриональном периоде, приводят к гаргалеизму, уродствам, мукополисахаридозам. Аутофагирующие лизосомы уничтожают собственные структуры клетки( ненужные структуры). Могут содержать митохондрии, части комплекса Гольджи. Часто образуются при голодании. Могут возникать при воздействии других клеток (эритроциты).

alexmed.info

2.7 Эукариотическая клетка. Цитоплазма. Органоиды

Вопрос 1. Каковы отличия в строении эукари­отической и прокариотической клеток?

У прокариот нет настоящего оформленного ядра (греч. karyon — ядро). Их ДНК представ­ляет собой одну кольцевую молекулу, свобод­но располагающуюся в цитоплазме и не окру­женную мембраной. У прокариотических кле­ток отсутствуют пластиды, митохондрии, эндоплазматическая сеть, аппарат Гольджи, Лизосомы. Рибосомы есть как у прокариот, так и у эукариот (у ядерных — более круп­ные). Жгутик прокариотической клетки тонь­ше и работает по иному принципу, чем жгутик эукариотов. Эукариотическими организмами являются грибы, растения, животные — одно­клеточные и многоклеточные; прокариота­ми — бактерии и синезеленые водоросли (ци­анобактерии).

Вопрос 2. Расскажите о пино- и фагоцитозе. Чем различаются эти процессы?

Мембрана клетки — подвижное образова­ние, способное путем формирования впячиваний и выростов захватывать объекты внешней среды. Этот процесс называют эндоцитозом. Причина эндоцитоза — сложные биохимиче­ские реакции, происходящие в цитоплазме и связанные в первую очередь с изменением тре­тичной структуры внутриклеточных белков. Если клетка захватывает каплю жидкости — это пиноцитоз, если твердую частицу — фагоцитоз. В результате образуются пиноцитарные или фагоцитарные вакуоли (мембран­ные пузырьки). Процесс, обратный эндоцитозу (выброс из клетки содержимого вакуолей), называют экзоцитозом.

Вопрос 3. Раскройте взаимосвязь строения и функций мембраны клеток.

Известно, что основой любой мембраны яв­ляется бислой (двойной слой) фосфолипидов, в котором гидрофильные «головки» молекул (глицерин) обращены наружу, а гидрофобные остатки жирных кислот — внутрь. С липид­ным бислоем связаны молекулы белков, кото­рые могут примыкать к мембране с любой из сторон, погружаться в нее или даже пронизы­вать. Положение клеточной мембраны на гра­нице клетки и окружающей среды определяет ее основные функции. Прочный, эластичный, легко восстанавливающийся бислой является барьером, обеспечивающим постоянство вну­триклеточной среды и предохраняющим цитоплазму от проникновения чужеродных веществ. Транспортная функция мембраны имеет избирательный характер. Мелкие неза­ряженные молекулы (02, N2) легко проникают непосредственно через бислой. Более крупные и/или заряженные частицы (Na+, К+, некото­рые гормоны) проходят через специальные белковые поры (каналы) или транспортируют­ся белками-переносчиками. Будучи подвиж­ной структурой, клеточная мембрана может также осуществлять транспорт веществ пу­тем эндо- и экзоцитоза.

Вопрос 4. Какие органоиды клетки находятся в цитоплазме?

Органоиды, расположенные в цитоплазме эукариотической клетки, можно разделить на три группы: одномембранные, двухмем­бранные и немембранные. К одномембран­ным органоидам относят эндоплазматическую сеть (гладкую и шероховатую), аппарат Гольд­жи, Лизосомы и вакуоли. Двухмембранные ор­ганоиды — это пластиды и митохондрии; не­мембранные — рибосомы, цитоскелет и кле­точный центр.

Вопрос 5. Охарактеризуйте органоиды цито­плазмы и их значение в жизнедеятельности клетки.

Эндоплазматическая сеть (ЭПС) пред­ставляет собой совокупность вакуолей, кана­лов и трубочек. Она образует внутри цитоплаз­мы единую сеть, объединенную с наружной мембраной ядерной оболочки. Различают гладкую и шероховатую ЭПС. Гладкая ЭПС участвует в синтезе липидов и углеводов, а также обезвреживает токсичные вещества. На поверхности мембран шероховатой ЭПС располагаются рибосомы.

Аппарат Гольджи — одномембранный органоид, входящий в состав единой мембран­ной сети клетки и представляющий собой стоп­ку плоских цистерн. В нем происходит окон­чательная сортировка и упаковка продуктов жизнедеятельности клетки в мембранные пу­зырьки (вакуоли). В числе прочего аппарат Гольджи формирует Лизосомы и обеспечивает экзоцитоз.

Лизосомы — мелкие мембранные пузырь­ки, которые содержат ферменты для перевари­вания питательных веществ. Лизосомы слива­ются с эндоцитозной вакуолью, формируя пи­щеварительную вакуоль. Если содержимое лизосом высвобождается внутри самой клет­ки, наступает ее автолиз (самопереваривание клетки).

Митохондрии относят к двухмембран­ным органоидам. Их внешняя мембрана глад­кая, а внутренняя образует складки (крис­ты). Митохондрии — энергетические станции клетки, их основная функция — синтез АТФ.

Пластиды представляют собой двухмем­бранные органоиды растительных клеток. Существует три типа пластид: хлоропласты, хромопласты и лейкопласты. Бесцветные лей­копласты запасают крахмал; зеленые хлоро­пласты осуществляют фотосинтез; оранжевые, желтые и красные хромопласты обеспечивают окраску плодов и цветов (привлечение опыли­телей и распространителей семян). Считается установленным, что в далеком прошлом мито­хондрии и пластиды произошли от прокариот, «проглоченных» эукариотической клеткой и вступивших с нею в симбиоз. Митохондрии и пластиды имеют кольцевую ДНК, самостоя­тельно синтезируют часть белков, а их рибосо­мы мельче эукариотических.

Рибосомы — мелкие многочисленные не­мембранные органоиды, образованные двумя субъединицами — большой и малой. Субъеди­ницы состоят из белка и рибосомальной РНК. Функцией рибосом является синтез белка. Часть рибосом находится непосредственно в цитоплазме, а часть — на мембранах шерохо­ватой ЭПС.

Клеточный центр — органоид немем­бранного строения клеток животных, грибов и низших растений. Состоит из двух центрио­лей, по форме сходных с цилиндрами и состоя­щих из мельчайших белковых трубочек; уча­ствует в образовании веретена деления.

Вакуоль представляет собой мембранный пузырек, заполненный клеточным соком. Она обязательно присутствует в растительной клетке. Функция вакуоли — накопление во­ды, солей, питательных веществ. Здесь могут также содержаться пигменты (синие, фиолето­вые) и накапливаться отходы обмена веществ.

Цитоскелет — немембранный органоид, представляющий собой белковые тяжи-тру­бочки, расположенные как рядом с мембра­ной, так и в цитоплазме. Их функция — под­держание формы клетки, обеспечение внутри­клеточного транспорта веществ, а также активного движения клетки (амеба, фагоцит). Мембранные пузырьки, содержащие какие- либо вещества, могут двигаться по трубочкам цитоскелета, как по рельсам.

2.7 Эукариотическая клетка. Цитоплазма. Органоиды

5 (100%) 1 vote
На этой странице искали :
  • Каковы отличия в строении эукариотической и прокариотической клеток
  • раскройте взаимосвязь строения и функций мембраны клетки
  • расскажите о пино и фагоцитозе чем различаются эти процессы
  • эукариотическая клетка цитоплазма органоиды
  • каковы отличия в строении эукариотической и прокариотической клетки

Сохрани к себе на стену!

vsesochineniya.ru

Эукариотическая клетка. Цитоплазма. Органоиды — сочинение-рассуждение



Вопрос 1. Каковы отличия в строении эукариотической и прокариотической клеток?

У прокариот нет настоящего оформленного ядра (греч. karyon — ядро). Их ДНК представляет собой одну кольцевую молекулу, свободно располагающуюся в цитоплазме и не окруженную мембраной. У прокариотических клеток отсутствуют пластиды, митохондрии, эндоплазматическая сеть, аппарат Гольджи, Лизосомы. Рибосомы есть как у прокариот, так и у эукариот (у ядерных — более крупные). Жгутик прокариотической клетки тоньше и работает по иному принципу, чем жгутик эукариотов. Эукариотическими организмами являются грибы, растения, животные — одноклеточные и многоклеточные; прокариотами — бактерии и синезеленые водоросли (цианобактерии).

Вопрос 2. Расскажите о пино — и фагоцитозе. Чем различаются эти процессы?

Мембрана клетки — подвижное образование, способное путем формирования впячиваний и выростов захватывать объекты внешней среды. Этот процесс называют эндоцитозом. Причина эндоцитоза — сложные биохимические реакции, происходящие в цитоплазме и связанные в первую очередь с изменением третичной структуры внутриклеточных белков. Если клетка захватывает каплю жидкости — это пиноцитоз, если твердую частицу — фагоцитоз. В результате образуются пиноцитарные или фагоцитарные вакуоли (мембранные пузырьки). Процесс, обратный эндоцитозу (выброс из клетки содержимого вакуолей), называют экзоцитозом.

Вопрос 3. Раскройте взаимосвязь строения и функций мембраны клеток.

Известно, что основой любой мембраны является бислой (двойной слой) фосфолипидов, в котором гидрофильные «головки» молекул (глицерин) обращены наружу, а гидрофобные остатки жирных кислот — внутрь. С липидным бислоем связаны молекулы белков, которые могут примыкать к мембране с любой из сторон, погружаться в нее или даже пронизывать. Положение клеточной мембраны на границе клетки и окружающей среды определяет ее основные функции. Прочный, эластичный, легко восстанавливающийся бислой является барьером, обеспечивающим постоянство внутриклеточной среды и предохраняющим цитоплазму от проникновения чужеродных веществ. Транспортная функция мембраны имеет избирательный характер. Мелкие незаряженные молекулы (02, N2) легко проникают непосредственно через бислой. Более крупные и/или заряженные частицы (Na+, К+, некоторые гормоны) проходят через специальные белковые поры (каналы) или транспортируются белками-переносчиками. Будучи подвижной структурой, клеточная мембрана может также осуществлять транспорт веществ путем эндо — и экзоцитоза.

Вопрос 4. Какие органоиды клетки находятся в цитоплазме?

Органоиды, расположенные в цитоплазме эукариотической клетки, можно разделить на три группы: одномембранные, двухмембранные и немембранные. К одномембранным органоидам относят эндоплазматическую сеть (гладкую и шероховатую), аппарат Гольджи, Лизосомы и вакуоли. Двухмембранные органоиды — это пластиды и митохондрии; немембранные — рибосомы, цитоскелет и клеточный центр.

Вопрос 5. Охарактеризуйте органоиды цитоплазмы и их значение в жизнедеятельности клетки.

Эндоплазматическая сеть (ЭПС) представляет собой совокупность вакуолей, каналов и трубочек. Она образует внутри цитоплазмы единую сеть, объединенную с наружной мембраной ядерной оболочки. Различают гладкую и шероховатую ЭПС. Гладкая ЭПС участвует в синтезе липидов и углеводов, а также обезвреживает токсичные вещества. На поверхности мембран шероховатой ЭПС располагаются рибосомы.

Аппарат Гольджи — одномембранный органоид, входящий в состав единой мембранной сети клетки и представляющий собой стопку плоских цистерн. В нем происходит окончательная сортировка и упаковка продуктов жизнедеятельности клетки в мембранные пузырьки (вакуоли). В числе прочего аппарат Гольджи формирует Лизосомы и обеспечивает экзоцитоз.

Лизосомы — мелкие мембранные пузырьки, которые содержат ферменты для переваривания питательных веществ. Лизосомы сливаются с эндоцитозной вакуолью, формируя пищеварительную вакуоль. Если содержимое лизосом высвобождается внутри самой клетки, наступает ее автолиз (самопереваривание клетки).

Митохондрии относят к двухмембранным органоидам. Их внешняя мембрана гладкая, а внутренняя образует складки (кристы). Митохондрии — энергетические станции клетки, их основная функция — синтез АТФ.

Пластиды представляют собой двухмембранные органоиды растительных клеток. Существует три типа пластид: хлоропласты, хромопласты и лейкопласты. Бесцветные лейкопласты запасают крахмал; зеленые хлоропласты осуществляют фотосинтез; оранжевые, желтые и красные хромопласты обеспечивают окраску плодов и цветов (привлечение опылителей и распространителей семян). Считается установленным, что в далеком прошлом митохондрии и пластиды произошли от прокариот, «проглоченных» эукариотической клеткой и вступивших с нею в симбиоз. Митохондрии и пластиды имеют кольцевую ДНК, самостоятельно синтезируют часть белков, а их рибосомы мельче эукариотических.

Рибосомы — мелкие многочисленные немембранные органоиды, образованные двумя субъединицами — большой и малой. Субъединицы состоят из белка и рибосомальной РНК. Функцией рибосом является синтез белка. Часть рибосом находится непосредственно в цитоплазме, а часть — на мембранах шероховатой ЭПС.

Клеточный центр — органоид немембранного строения клеток животных, грибов и низших растений. Состоит из двух центриолей, по форме сходных с цилиндрами и состоящих из мельчайших белковых трубочек; участвует в образовании веретена деления.

Вакуоль представляет собой мембранный пузырек, заполненный клеточным соком. Она обязательно присутствует в растительной клетке. Функция вакуоли — накопление воды, солей, питательных веществ. Здесь могут также содержаться пигменты (синие, фиолетовые) и накапливаться отходы обмена веществ.

Цитоскелет — немембранный органоид, представляющий собой белковые тяжи-трубочки, расположенные как рядом с мембраной, так и в цитоплазме. Их функция — поддержание формы клетки, обеспечение внутриклеточного транспорта веществ, а также активного движения клетки (амеба, фагоцит). Мембранные пузырьки, содержащие какие — либо вещества, могут двигаться по трубочкам цитоскелета, как по рельсам.

www.sochuroki.com

Цитоплазма эукариотов — Справочник химика 21

    В клетках прокариот органеллы, типичные для эукариот, отсутствуют. Ядерная ДНК у них не отделена от цитоплазмы мембраной. В цитоплазме находятся функционально специализированные структуры, но они не изолированы от цитоплазмы с помощью мембран и, следовательно, не образуют замкнутых полостей. Эти структуры могут быть сформированы и мембранами, но последние не замкнуты и, как правило, обнаруживают тесную связь с ЦПМ, являясь результатом ее локального внутриклеточного разрастания. В клетках прокариот есть также образования, окруженные особой мембраной, имеющей иное по сравнению с элементарной строение и химический состав. [c.18]
    В цитоплазме эукариотов существует по крайней мере еще два типа органелл, которые, подобно митохондриям, вероятно, являются дегенерировавшими прокариотическими симбионтами. Первый из них — это хлоропласт, компонент растительных клеток, в котором происходят основные этапы фотосинтеза — процесса превращения энергии солнечного света в химическую энергию АТФ. Вторая такая органелла — центриоль, управляющая передвижением сестринских хромосом к противоположным полюсам клетки во время митоза (фиг. 6). Таким образом, клетку эукариотов можно рассматривать как империю, которой управляет республика ядерных хромосом. Находясь в ядре, хромосомы распоряжаются окружающей цитоплазмой, в которой в прошлом независимые, а ныне порабощенные и дегенерировавшие прокариоты выполняют специализированные вспомогательные функции. [c.512]

    Вторая основная категория живых существ — это эукариоты, т. е. организмы, клетки которых содержат истинное ядро. Клетки эукариот крупнее и сложнее по строению, чем клетки прокариот. В ядре, окруженном мембраной, заключена большая часть ДНК, которая таким образом отделена от цитоплазмы. В цитоплазме содержатся различные органеллы, каждая из которых обладает характерной структурой, — митохондрии, лизосомы, центриоли. Клетки эукариот так разнообразны ло размерам и форме и настолько специализированы, что описать типичную клетку практически невозможно. Все же на рис. 1-3 мы попытались изобразить некую усредненную клетку, отчасти животную, отчасти растительную. [c.26]

    В цитоплазме эукариот содержатся также гранулярные элементы, не отграниченные мембранами. Главные из них — рибосомы (рис. 2-19), одни из которых находятся в цитоплазме в свободном состоянии, а другие связаны с эндоплазматическим ретикулумом. Рибосомы эукариот крупнее рибосом прокариот, однако и те и другие вьшолняют одну и ту же основную функцию биосинтез белков из аминокислот. [c.43]

    Рибосомные, транспортные и информационные РНК локализованы и функционируют в цитоплазме про- и эукариотических клеток. У эукариот они синтезируются в клеточном ядре, где и обнаруживаются их предшественники. Кроме того, в ядрах и цитоплазме клеток имеется множество так называемых малых РНК- [c.10]

    А. присутствует во всех клетках эукариотов (10-15% по массе от всех белков). В немышечных клетках он формирует цитоскелет (микрофиламенты цитоплазмы клеток). [c.77]

    У эукариотических организмов ДНК локализована преимущественно в ядрах клеток у прокариот она образует довольно компактный нуклеоид, в котором содержится вся хромосома бактериальной клетки. Такие клеточные органеллы, как митохондрии и хлоро-пласты, имеют свою собственную ДНК- Кроме того, в цитоплазме многих прокариот и низших эукариот обнаруживаются внехромо-сомные ДНК — плазмиды. [c.10]

    В организме эукариот синтез цитрата протекает в митохондриях, но в определенных условиях цитрат перемещается в цитоплазму, где он расщепляется под действием цитрат-лиазы. Полное течение реакции обеспечивается ее сопряжением с гидролизом АТР до ADP и неорганического фосфата  [c.169]

    Для большинства эукариотических клеток, как и клеток прокариот, стадия инициации транскрипции является основной, главной регуляторной точкой экспрессии активности генов. Тем не менее имеются существенные различия во-первых, место процессов транскрипции (в ядре) и трансляции (в цитоплазме) во-вторых, активирование транскрипции у эукариот связано с множеством сложных изменений структуры хроматина в транскрибируемой области в-третьих, в эукариотических клетках превалируют положительные регуляторные механизмы над отрицательными. [c.538]

    Строение генетического аппарата прокариот долгое время было предметом жарких дискуссий, суть которых сводилась к тому, есть у них такое же ядро, как у эукариот, или нет. Установлено, что генетический материал прокариотных организмов, как и эукариотных, представлен ДНК, но имеются существенные различия в его структурной организации. У прокариот ДНК представляет собой более или менее компактное образование, занимающее определенную область в цитоплазме и не отделенное от нее мембраной, как это имеет место у эукариот. Чтобы подчеркнуть структурные различия в генетическом аппарате прокариотных и эукариотных клеток, предложено у первых его называть ну кл е-о и д о м в отличие от ядра у вторых. [c.55]

    Цитоплазма эукариот. У настоящих грибов, простейших, высших растений и животных клетки имеют кариоплазму и цитоплазму, объединяемых пбд одним назвднием протоплазма . По химическому составу протоплазма эукариотР1ческих микроорганизмов похожа на цитоплазму прокариот [21]. [c.45]

    Информационная РНК в цитоплазме эукариот относительно стабильна. При измерении ее стабильности обнаруживается несколько дискретных компонентов. Обычно около половины мРНК в культуре клеток млекопитающих имеет период полужизни около 6 ч, тогда как оставшаяся мРНК характеризуется стабильностью, соизмеримой с продолжительностью клеточного цикла, составляющей 24 ч. В дифференцированных клетках, специализированных на синтезе определенных белков, некоторые мРНК могут быть еще более стабильными. [c.120]

    В то же время известно, что как в прокариотических, так и в эукариотических клетках часть рибосом, организованных в полирибосомы, является свободными (хотя в эукариотах они, повидимому, связаны с каким-то цитоскелетом ), а другая часть прикреплена к мембранам. В прокариотах полирибосомы могут сидеть на внутренней стороне цитоплазматической мембраны клетки, в то время как в эукариотах местом размещения мембраносвязанных рибосом является так называемый шероховатый эндо-плазматический ретикулум цитоплазмы прикрепленные рибосомы могут продуцировать Лептид непосредственно в мембрану. Соответственно, в зависимости от локализации рибосом, ко-трансляцион-ное внерибосомное сворачивание растущего полипептида может происходить либо в водной среде цитоплазмы, либо в гидрофобном окружении липидного бислоя мембраны. [c.274]

    Коэн [399] и Холл [782], так же как Рафф и Малер, отмечают еще одно обстоятельство, осложняющее принятие эндосимбиотической гипотезы дело в том, что в цитоплазме эукариотов вне митохондрий 13, А) существует много аэробных биосинтетических путей, например синтез аскорбиновой и олеиновой кислот, а также синтез стеролов. Между тем не ясно, почему хозяин после или даже до приобретения митохондрий не мог тем или иным образом приспособить свои биосинтетические пути к присутствию кислорода. Такие приспособленные пути есть у многих аэробных бактерий, в связи с чем эта трудность, видимо, не слишком серьезна. [c.199]

    Принципиальные черты строения клеток животных, растений, грибов одинаковы (рис. 4.2). Их общая черта — компартментали-Шция. Этот термин обозначает подразделение клетки на ядро, содержащее хроматин и одно или несколько ядрышек, и цитоплазму, в которой различают митохондрии, пластиды (у растений) и некоторые другие самовоспроизводящиеся органеллы клетки. Кроме того, в цитоплазме эукариот имеются органоиды, которые постоянно присутствуют в ней, но не обладают способностью к самовоспроизведению. Это аппарат Гольджи, вакуоли, лизосомы. [c.57]

    Рибосомы сами по себе являются рибонуклеопротеинами с содержанием нуклеиновых кислот -60%. Они находятся в свободном состоянии прежде всего в цитоплазме и в связанном — в эидоплазматическом ретикулуме. Все рибосомы состоят из двух субъединиц, на которые они диссоциируют в зависимости от концентрации. У наиболее хорошо изученных рибосом Е. oli большая (50 S) субъединица включает 5 S- и 23 S-рибосомные РНК, а также 34 различных белка малая (30 S) субъединица состоит из 16 S-рибосомной РНК и 21 белка. Рибосомы эукариот образованы 60 S- и 40 S-субъединицами. [c.393]

    Молекулы предшественников зрелых клеточных РНК подвергаются расщеплению и химической модификации. Совокупность биохимических реакций, в результате которых уменьшается молекулярная масса РНК-предшественника и осуществляются разные способы химической модификации с образованием зрелых молекул РНК, называют процессингом. Процессинг наблюдается и в прокариотических клетках, но особенно аюжны превращения предшественников клеточных РНК в ядрах эукариот. Хромосомы эукариотической клетки, в которых осуществляется транскрипция, локализованы в ядре и отделены двойной ядерной мембраной от цитоплазмы, где протекает трансляция. В ядре синтезируются предшественники всех типов цитоплазматических РНК- Зрелые молекулы РНК транспортируются в цитоплазму. Механизм транспорта РНК из ядра в цитоплазму исследован недостаточно. Полагают, что процессинг РНК с образованием зрелых молекул продолжается и в ходе их транспорта в составе рибонуклеопротендных частиц через поры ядерных мембран. В клетках эукариот только незначительная часть, около 10%, транскрибируемых в ядре последовательностей ДНК выяыяется в составе цитоплазматических мРНК. Основная часть новообразованной РНК распадается в ядре и не обнаруживается в цитоплазме. [c.163]

    У эукариот (все организмы, за исключением бактерий и синезеленых водорослей) также широко распространены М г.э., к-рые аналогичны М.г.э. прокариот по общему плану строения, способу транспозиции и генетич. эффекту. Элементы, подобньге 18 и гранспозонам, найдены у мн. эукариот (грибы, растения, млекопитающие и др.). Разл. эписомоподобные факторы обнаружены в ядре и цитоплазме дрожжей Умеренным фагам бактерий соответствуют онкогенные вирусы, в частности РНК-содержащие вирусы (ретровирусы) позвоночных. [c.80]

    Простейшие организмы на Земле — это бактерии и сине-зеленые водоросли они составляют царство прокариот (Pro ariotae, Мопега) [1, 2]. Основным отличительным признаком прокариот является отсутствие у них отграниченного мембраной клеточного ядра. Клетки всех остальных организмов, называемых эукариотами, содержат ядра, отделенные от цитоплазмы мембраной. Некоторые биологи относят к живым организмам также и вирусы, однако эти поразительные объекты (дополнение 4-В) не могут считаться живыми в полном смысле этого слова, поскольку у них нет, как правило, собственного обмена веществ. [c.14]

    По структуре центриоли сходны со жгутиками или более короткими образованиями — ресничками (эти термины, в сущности, синонимы), обычно находятся на поверхности клеток эукариот и являются органами движения. Неподвижные клетки тела человека также нередко имеют реснички. Например, эпителий бронхов несет 10 ресничек на 1 см Г26]. Модифицированные жгутики образуют светочувствительные рецепторы нашего глаза и рецепторы вкуса на языке. Жгутики и реснички несколько больше по диаметру (около 0,2 мкм), чем центриоли, и обладают характерной внутренней структурой они состоят из И полых микротрубочек диаметром 24 нм, организованных по схеме 9 + 2 (рис. 1-5 и 1-6). Каждая микротрубочка внешне похожа на жгутик бактерии, но существенно отличается от него по химическому составу. Базальное тельце, называемое также кинетосомой (рис. 1-5), по структуре, размерам и способу воспроизведения сходно с центриолью. Микротрубочки, подобные тем, которые входят в состав жгутиков, обнаружены также в цитоплазме клеток [27]. Они выглядят как маленькие канальцы, но действительно ли играют такую роль — неясно. Скорее всего микротрубочки выполняют опорную функцию цитоокелета . В аксоне нерва микротрубочки расположены по всей длине аксона и, вероятно, составляют часть механической системы переноса клеточных компонентов. [c.37]

    Фотосинтетические пигменты представлены хлорофиллами а и b и каротиноидами. Основную массу последних составляют Р-каротин и ксантофилл, близкий к зеаксантину. Обнаружено несколько каротиноидов в незначительных количествах, среди которых идентифицированы эхиненон, Р-криптоксантин, изокриптоксантин и др. Все эти каротиноиды найдены и у цианобактерий. По составу жирных кислот и гликолипидов прохлорофиты также близки к цианобактериям. В цитоплазме обнаружены 705-рибо-сомные частицы, содержащие РНК 165- и 235 -типов, аналогично рибосомальным РНК прокариот и хлоропластов эукариот. Молярное содержание ГЦ в ДНК — 39 —53 %. [c.322]

    Код, данный на рис. 3, является универсальным для белоксинтези-рующих систем бактерий и цитоплазмы всех эукариот, включая животных, грибы и высшие растения. Однако в живой природе имеются также и исключения. По крайней мере белоксинтезирующие системы митохондрий животных (млекопитающих) и грибов обнаруживают ряд отклонений от этого универсального кода. Так, в митохондриях изученных эукариотических организмов триптофан кодируется как UGG, так и UGA соответственно, UGA не является терминирующим кодоном. В митохондриях млекопитающих (человека) кодоны AGA и AGG — терминирующие и не кодируют аргинин. В митохондриях дрожжей вся кодоновая семья UU, U , UA и UG кодирует треонин, а не лейцин (хотя в митохондриях другого гриба, Neurospora, они кодируют лейцин, в соответствии с универсальным кодом). [c.16]

    Более того, имеются основания утверждать, что, по крайней мере, самые фундаментальные механизмы сигнального пептид-мембранного узнавания и последующего внутримембранного пептидного отщепления являются общими для эукариот и прокариот. В самом деле, бактерии, несущие рекомбинантные плазмиды с генами эукариотических секретируемых белков, могут синтезировать эти белки и эффективно секретировать их сквозь цитоплазматическую мембрану из клетки, специфически отщепляя амино-терми-нальный сигнальный сегмент. Например, крысиный препроинсулин, синтезируемый в Е. соИ, правильно процессируется в проинсулин, и последний секретируется из бактериальной цитоплазмы в периплазматическое пространство. [c.280]

    Выше уже говорилось о ко-трансляционном протеолитическом отщеплении сигнальной гидрофобной последовательности ряда секреторных и трансмембранных белков эукариот. Сигнальная пептидаза локализована в мембране на ее стороне, обращенной от цитоплазмы (т. е. на люминальной стороне мембраны эндоплазматического ретикулума эукариотической клетки). По типу действия она оказалась эндопептидазой. Характерным местом расщепления полипептидной цепи сигнальной пептидазой. является пептидная связь у малого остатка, такого как С1у или Ala, реже Ser или ys, с его С-стороны (часто, но далеко не всегда, за ним следует заряженный остаток, такой как Arg, Lys, His, Asp). Кроме того, район расщепления должен быть как-то отмечен более открытой конформацией пептида в этом месте. Отщепление сигнального пептида — необходимая предпосылка для последующего выхода растущего пептида в водное замембранное пространство и его ко-трансляционного сворачивания там. [c.286]

    Механизмы, лежащие в основе этой регуляции, пока неизвестны. Для их объяснения существует ряд гипотез. Предполагают, что контроль осуществляется на уровне транскрипции по аналогии с индукцией ферментов у бактерий и что в этом случае в клетках животных должны функционировать аналогичные репрессоры. С молекулой ДНК у эукариот связаны гистоны, поэтому считается, что именно эти белки выполняют роль репрессоров. Прямых доказательств их роли в качестве репрессоров не получено, хотя, как было показано, в клетках эукариот открыт класс регуляторных белков процесса транскрипции. Высказано предположение, что в ядре синтезируется высокомолекулярная молекула мРНК, содержащая информацию для синтеза широкого разнообразия белков, но в цитоплазму попадает только небольшая часть зрелой мРНК, а основная часть ее распадается. Неясны, однако, биологический смысл и назначение этого механизма избирательного распада и соответственно траты огромной массы молекулы мРНК. [c.540]

    Хромосома ( hromosome) Структура, основу которой составляет конденсированная молекула ДНК носитель генетической информации. Способна к воспроизведению с сохранением структурно-функциональной индивидуальности в ряду поколений. У эукариот находится в ядре клетки, у прокариот — непосредственно в цитоплазме. [c.563]

    Эукариоты (Eukaryotes) Организмы, у которых I) имеется ядро, где содержатся хромосомы 2) в цитоплазме присутствуют различные органеллы — митохондрии, хлоропласты и т.д. К эукариотам относятся животные, растения, грибы, некоторые водоросли. [c.565]

    Обоснование того, что прокариотный и эукариотный типы клеточной организации являются наиболее существенной границей, разделяющей все клеточные формы жизни, связано с работами Р. Стейниера (К. 81ашег, 1916—1982) и К. ван Ниля, относящимися к 60-м гг. XX в. Поясним разницу между прокариотами и эукариотами. Клетка — это кусочек цитоплазмы, отграниченный мембраной. Последняя под электронным микроскопом имеет характерную ультраструктуру два электронно-плотных слоя каждый толщиной 2,5 —3,0 нм, разделенных электронно-прозрачным промежутком. Такие мембраны получили название элементарных. Обязательными химическими компонентами каждой клетки являются два вида нуклеиновых кислот (ДНК и РНК), белки, липиды, углеводы. Цитоплазма и элементарная мембрана, окружающая ее, — непременные и обязательные структурные элементы клетки. Это то, что лежит в основе строения всех без исключения клеток. Изучение тонкой структуры выявило существенные различия в строении клеток прокариот (бактерий и цианобактерий) и эукариот (остальные макро- и микроорганизмы). [c.18]

    По тонкому строению клетки, выявляемому с помощью электронного микроскопа, архебактерии принципиально не отличаются от эубактерий и ближе к грамположительной их ветви. Прокариотная организация архебактерий проявляется в отсутствии у них ядра и характерных для эукариот органелл, окруженных мембраной. Хромосомная ДНК организована в виде нуклеоида, т.е. расположена непосредственно в цитоплазме и имеет вид электроннопрозрачной зоны, заполненной нитями ДНК. [c.408]


chem21.info

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *