Условия возникновения электрического поля: Условие возникновения электрического тока. Электрическое поле

Электрический ток. Условия, необходимые для возникновения электрического тока

Цели урока.

Обучающая:

формирование знаний учащихся об условиях возникновения и существования электрического тока.

Развивающая:

развитие логического мышления, внимания, умений использовать полученные знания на практике.

Воспитательная:

создание условий для проявления самостоятельности, внимательности и самооценки.

Оборудование.

  1. Гальванические элементы, аккумулятор, генератор, компас.
  2. Карточки (прилагаются).
  3. Демонстрационный материал (портреты выдающихся физиков Ампера, Вольта; плакаты “Электричество”, “Электрические заряды”).

Демонстрации:

  1. Действие электрического тока в проводнике на магнитную стрелку.
  2. Источники тока: гальванические элементы, аккумулятор, генератор.

План проведения урока

1. Организационный момент.

2. Вступительное слово преподавателя.

3. Подготовка к восприятию нового материала.

4. Изучение нового материала.

а) источники тока;

б) действия электрического тока;

в) физическая оперетта “Королева Электричество”;

г) заполнение таблицы “Электрический ток”;

д) меры безопасности при работе с электроприборами.

5. Подведение итогов урока.

6. Рефлексия.

7. Домашнее задание:

а) Опираясь на знания, полученные на уроках ОБЖ, спецтехнологии подготовить и записать в тетради памятку “Меры безопасности при работе с электроприборами”

б) Индивидуальное задание: Подготовить сообщение о применении источника тока в быту и технике.

1. Организационный момент

Отметить наличие учащихся, назвать тему урока, цель.

2. Вступительное слово преподавателя

Со словами электричество, электрический ток мы знакомы с раннего детства. Электрический ток используется в наших домах, на транспорте, на производстве, в осветительной сети.

Но, что такое электрический ток, какова его природа, понять нелегко.

Слово электричество произошло от слова электрон, которое переводится с греческого языка как янтарь. Янтарь — это окаменевшая смола древних хвойных деревьев. Слово ток обозначает течение или движение чего-либо.

3. Подготовка к восприятию нового материала

Вопросы вводной беседы.

— Какие два типа зарядов существуют в природе? Как они взаимодействуют?

Ответ: В природе существуют два вида зарядов: положительные и отрицательные.

Носителями положительного заряда являются протоны, отрицательного электроны. Одноименно заряженные частицы отталкиваются, разноименно заряженные притягиваются

— Существует ли электрическое поле вокруг электрона?

Ответ: Да, электрическое поле вокруг электрона существует.

— Что такое свободные электроны?

Ответ: Это электроны наиболее удаленные от ядра, они могут свободно двигаться между атомами.

4. Изучение нового материала

а) Источники тока.

На столе находятся специальные устройства. Как они называются? Для чего они нужны?

Ответ: Это гальванические элементы, аккумулятор, генератор — общее название источники тока. Они необходимы для подачи электрической энергии, создают электрическое поле в проводнике.

Мы знаем, что существуют заряженные частицы, электроны и протоны, знаем, что существуют устройства, которые называются источниками тока.

Как вы считаете, что такое электрический ток?

Ответ: Электрический ток – это направленное движение заряженных частиц.

б) Действия электрического тока.

Скажите, как мы можем понять, что в цепи существует электрический ток, по каким действиям?

Ответ: Электрический ток оказывает различные виды действия:

  • Тепловое – проводник по которому идет электрический ток нагревается (электроплита, утюг, лампа накаливания, паяльник).
  • Химическое действие тока можно наблюдать при пропускании электрического тока через раствор медного купороса – выделение меди из раствора купороса, хромирование, никелирование.
  • Физиологическое – сокращение мышц человека и животных, по которым прошел электрический ток.
  • Магнитное – при прохождении электрического тока по проводнику, если рядом расположить магнитную стрелку она способна отклонится. Это действие является основным. Демонстрация опыта: аккумулятор, лампа накаливания, соединительные провода, компас.

в) Физическая оперетта “Королева Электричество”. (Приложение № 1)

Теперь девушки старшего курса представят вашему вниманию оперетту “Королева Электричество”. Не забываем русскую народную пословицу “Сказка ложь, да в ней намек, добрым молодцам урок”. То есть, вы не только слушаете и смотрите, но и берете из нее определенную информацию. Ваша задача записать как можно больше физических терминов, которые встречаются в представлении.

г) Заполнение таблицы “Электрический ток”. (Приложение № 2)

Скажите, какое одно понятие объединяет все термины, которые вы записали?

Ответ: Электрический ток.

Приступаем к заполнению таблицы “Электрический ток”.

Заполняя таблицу, давайте, обобщим полученные на уроке знания и получим новую информацию.

В процессе заполнения таблицы делаем вывод о том, какие условия необходимы для создания электрического тока.

  • Первое условие — это наличие свободных заряженных частиц.
  • Второе условие — это наличие электрического поля внутри проводника.

д) Меры безопасности при работе с электроприборами.

Где, на производственной практике, вы сталкиваетесь с применением электрического тока? Ответы учащихся.

Главная наша задача сохранить здоровье в течение всей жизни, скажите, а какие меры безопасности необходимо соблюдать при работе с электроприборами?

Ответ: При работе с электроприборами.

Запрещено.

  • Ходить по земле, держа в руках включенные в сеть электроприборы. Особенно опасно ходить босиком по влажной почве.
  • Входить в электрощитовые и другие электротехнические помещения.
  • Браться за оборванные, оголенные, висящие и лежащие на земле провода.
  • Вбивать гвозди в стену в месте, где может располагаться скрытая проводка. Смертельно опасно в этот момент заземляться на батареи центрального отопления, водопровод.
  • Сверлить стены в местах возможной электропроводки.
  • Красить, белить, мыть стены с наружной или скрытой проводкой, находящейся под напряжением.
  • Работать с включенными электроприборами вблизи батарей или водопровода.
  • Работать с электроприборами, менять лампочки, стоя на ванной.
  • Работать с неисправными электроприборами.
  • Ремонтировать необесточенные электроприборы.

5. Подведение итогов урока

— Следуя законам физики, время неумолимо движется вперед, и наш урок подошел к своему логическому завершению.

Давайте подведем итоги нашего занятия.

Как вы считаете, что такое электрический ток?

Ответ: Электрический ток – это направленное движение заряженных частиц.

Какие условия необходимы для создания электрического тока?

Ответ: Первое условие — это наличие свободных заряженных частиц.

Второе условие — это наличие электрического поля внутри проводника.

6. Рефлексия

Заполнение карточки. (Приложение № 3)

7. Домашнее задание

а) Опираясь на знания, полученные на уроках ОБЖ, спецтехнологии, подготовить и записать в тетради памятку “Меры безопасности при работе с электроприборами”.

б) Индивидуальное задание: Подготовить сообщение о применении источника тока в быту и технике. (Приложение № 2)

Урок 4. Условия существования электрического тока

И снова доброго времени суток вам, уважаемые. Без лишних прелюдий начнём наш сегодняшний разговор. Казалось бы, с причинами возникновения тока в проводнике мы давно разобрались. Поместили проводник в поле – побежали электроны, возник ток. Что еще надо. Но оказывается, чтобы этот ток существовал в проводнике постоянно, необходимо соблюдать некоторые условия. Для более ясного понимания физики процесса протекания электрического тока в проводнике рассмотрим пример.

Предположим, что у нас имеется некоторый проводник, который мы поместим в электрическое поле как показано на рисунке 4.1.

Рисунок 4.1 – Проводник в электрическом поле

Условно обозначим величину напряженности на концах проводника как E1и E2, причем E1>E2. Как мы выяснили ранее, свободные электроны в проводнике начнут двигаться в сторону большей напряженности поля, то есть в точку А. Однако со временем потенциал, образованный скоплением электронов в точке А станет таким, что создаваемое им собственное электромагнитное поле E0 сравняется по модулю с внешним полем, причем направления полей будут противоположными, поскольку потенциал точки В – более положительный (недостаток электронов, вызванный воздействием внешнего поля).

Поскольку результирующее действие двух одинаковых противоположных сил равно нулю: |E|+|(E

0)|=0, электроны прекращают упорядоченное движение, электрический ток прекращается. Для того, чтобы поток электронов был непрерывный необходимо: во-первых, приложить дополнительную силу не потенциального характера, которая бы компенсировала влияние собственного электрического поля проводника и, во-вторых, создать замкнутый контур, поскольку перемещение электронов может происходить только в проводниках (ранее мы указали, что диэлектрики хоть и имеют некоторую электропроводность, но не пропускают электрический ток) и для обеспечения постоянства компенсирующей силы необходимо постоянство полей: как внешнего так и собственного.

Начнём разбираться со второго пункта. Будем рассматривать проводник, помещенный в поле, как показано на рисунке 4.2. Предположим, что после того, как взаимодействие внешнего и собственного электромагнитных полей было скомпенсировано, мы приложили дополнительно к внешнему полю еще одно такое же поле. Суммарное действие внешнего поля составит 2•|E|. Ток в проводнике продолжит течь в том же направлении, однако ровно до того момента, пока 2•|E|>|E0|, после чего электрический ток вновь прекратиться. То есть внешнее воздействие должно увеличиваться непрерывно для обеспечения протекания тока в разомкнутом проводнике, что невозможно.
Если замкнуть проводник так, чтобы одна его часть лежала вне поля, тогда за счет работы дополнительной силы помимо внешнего поля (эта сила в таком случае должна быть не потенциальной, поскольку работа потенциальной силы в замкнутом контуре равна нулю и не зависит от формы траектории), то в проводнике возникнет электрический ток, обусловленный влиянием только внешнего поля, поскольку собственно поле проводника будет полностью скомпенсировано. Именно поэтому любая электрическая цепь всегда должна быть замкнутой.

Можно попробовать объяснить необходимость введения дополнительной силы из такого соображения: если бы мы могли заряды с конца В проводника частично перебрасывать на конец А проводника, электрический ток бы так же не прекращался. Однако, на такое «десантирование» так же требуется энергия. Значит, введение дополнительной силы всё равно необходимо. Не потенциальные силы так же называют сторонними силами. А их источники – источниками или генераторами тока.

Рисунок 4.2 – Возникновение собственного электромагнитного поля в проводнике

Так где же взять дополнительную силу, которая, притом, не должна быть создана полем, ведь без нее тока мы не получим? Оказывается, во время протекания химической восстановительно-окислительной реакции, например, взаимодействие диодксида свинца и разбавленной серной кислоты, происходит высвобождение свободных электронов:

Для того, чтобы «притянуть» все электроны, высвобожденные в процессе реакции к одной точки пространства, в раствор серной кислоты помещается несколько свинцовых решёток, называемых электродами. Одна часть электродов изготавливается из свинца и называется катод, другая – анод – изготавливается из диоксида свинца. Катод является источником свободных электродов для внешней цепи, а анод – приемником.

Приведённый пример соответствует известному всем автомобилистам (да и не только) устройству – свинцово-кислотному аккумулятору. Конечно, приведенный пример мало совпадает с тем, что происходит внутри аккумулятора в действительности, однако, суть возникновения тока отражает хорошо. Таким образом, между положительным анодом (мало электронов) и отрицательным катодом (много электронов) возникает электрическое поле, которое формирует сторонние силы и создаёт ток в проводнике. Эта сила зависит только от протекания химической реакции, то она практически постоянная до того момента, пока существуют элементы этой реакции – кислота и оксид свинца. Следовательно, если мы уберём электрическое поле и подключим проводник к аноду и катоду, электрический ток всё равно будет протекать из-за того, что аккумулятор создаёт стороннюю силу. Проводник будет иметь вокруг себя собственное электрическое поле, которое нужно преодолеть аккумулятору, чтобы перенести электрон от катода к аноду. В этом и есть суть сторонней силы.

Теперь рассмотрим ситуация с аккумулятором и подключенным к нему проводником.Электрическое поле совершает положительную работу по перемещению положительного заряда (мы говорим именно о положительных зарядах, так как направлению их движения соответствует направление тока) в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов – на одном полюсе накапливаются положительные заряды, на другом отрицательные. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу». В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить.

На рисунке 4.3 показано направление протекания тока Iв проводнике, подключенному к аккумулятору – от положительного анода к отрицательному катоду, однако внутри аккумулятора сторонние силы химической реакции производят «десантирование» электронов, пришедших из внешней цепи с анода на катод и положительных ионов с катода на анод, то есть действуют против направления движения тока и направления поля.

Рисунок 4.3 – Демонстрация сторонних сил при возникновении электрического тока

Из сделанных выше соображений можно сделать следующий вывод: силы, действующие на заряд внутри источника тока отличны от сил, действующий внутри проводника. Соответственно, необходимо эти силы отличать друг от друга. Для характеристики сторонних сил была введена величина электродвижущей силы (ЭДС) – работы, совершаемой сторонними силами по перемещению единичного положительного заряда. Обозначается латинской буквой &#949 («эпсилон») и измеряется так же, как и разность потенциалов – в вольтах.

Поскольку разность потенциалов и ЭДС являются силами различного типа, можно говорить о том, что ЭДС вне выводов источника равно нулю. Хотя в обычной жизни этими тонкостями пренебрегают и говорят: «Напряжение на батарее 1.5В», хотя строго говоря напряжение на участке цепи – суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда. В будущем мы еще будем сталкиваться с этими понятиями и они пригодятся нам при расчете сложных электрических цепей.

На этом, пожалуй всё, потому что урок получился чересчур нагруженным… Но понятия напряжение и ЭДС нужно уметь отличать.

  • Для существования электрического тока необходимо два условия:
    1)замкнутая электрическая цепь;
    2)наличие источника сторонних непотенциальных сил.
  • Электродвижущая сила (ЭДС) – работа, совершаемая сторонними силами по перемещению единичного положительного заряда.
  • Источники сторонних сил в электрической цепи называются так же источниками тока.
  • Положительный вывод аккумулятора называется анод, отрицательный – катод.

Задачек на этот раз не будет, лучше лишний повторить этот урок, чтобы понимать всю физику протекания тока в проводнике. Как всегда любые возникшие вопросы, предложения и пожелания можете оставлять в комментариях ниже! До новых встреч!

← Урок 3: Закон Ома | Содержание | Урок 5: Источники питания →

Учебник по физике: Линии электрического поля

В предыдущем разделе урока 4 обсуждалась векторная природа напряженности электрического поля. Величина или напряженность электрического поля в пространстве, окружающем заряд источника, прямо пропорциональна количеству заряда на заряде источника и обратно пропорциональна расстоянию от заряда источника. Направление электрического поля всегда направлено в том направлении, в котором положительный пробный заряд будет выталкиваться или тянуться, если его поместить в пространство, окружающее исходный заряд. Поскольку электрическое поле является векторной величиной, его можно представить векторной стрелкой. Для любого заданного места стрелки указывают направление электрического поля, и их длина пропорциональна напряженности электрического поля в этом месте. Такие векторные стрелки показаны на диаграмме ниже. Обратите внимание, что длина стрелок больше, когда они ближе к заряду источника, и меньше, когда дальше от заряда источника.

 

Более полезным средством визуального представления векторной природы электрического поля является использование силовых линий электрического поля. Вместо того, чтобы рисовать бесчисленные векторные стрелки в пространстве, окружающем заряд источника, возможно, полезнее нарисовать узор из нескольких линий, протянувшихся между бесконечностью и зарядом источника. Этот набор линий, иногда называемый линиями электрического поля, указывает направление, в котором положительный пробный заряд ускорится, если его поместить на линию. Таким образом, линии направлены от положительно заряженных исходных зарядов к отрицательно заряженным исходным зарядам. Чтобы передать информацию о направлении поля, каждая линия должна включать стрелку, указывающую в соответствующем направлении. Образец линий электрического поля может включать бесконечное количество линий. Поскольку рисование такого большого количества линий снижает удобочитаемость шаблонов, количество линий обычно ограничивается. Наличие нескольких линий вокруг заряда обычно достаточно, чтобы передать характер электрического поля в пространстве, окружающем линии.

Правила рисования рисунков электрического поля

Существует множество соглашений и правил рисования таких рисунков линий электрического поля. Условные обозначения просто установлены для того, чтобы образцы линий электрического поля передавали наибольшее количество информации о природе электрического поля, окружающего заряженный объект. Одно общее соглашение состоит в том, чтобы окружить более заряженные объекты большим количеством линий. Объекты с большим зарядом создают более сильные электрические поля. Окружая сильно заряженный объект большим количеством линий, можно передать силу электрического поля в пространстве, окружающем заряженный объект, плотностью линий. Это соглашение изображено на диаграмме ниже.

Мало того, что плотность линий, окружающих любой данный объект, дает информацию о количестве заряда источника заряда, плотность линий в определенном месте в пространстве дает информацию о силе поля в этом месте. Рассмотрим объект, показанный справа. Два разных круглых сечения нарисованы на разных расстояниях от источника заряда. Эти поперечные сечения представляют области пространства ближе и дальше от источника заряда. Линии поля ближе друг к другу в областях пространства, ближайших к заряду; и они расходятся дальше друг от друга в областях пространства, наиболее удаленных от заряда. Основываясь на соглашении относительно линейной плотности, можно было бы сделать вывод, что электрическое поле наибольшее в местах, ближайших к поверхности заряда, и наименьшее в местах, удаленных от поверхности заряда. Плотность линий в структуре линий электрического поля раскрывает информацию о силе или величине электрического поля.

Второе правило рисования линий электрического поля включает в себя рисование силовых линий перпендикулярно поверхностям объектов в местах, где линии соединяются с поверхностями объектов. На поверхности объектов как симметричной, так и неправильной формы никогда не бывает составляющей электрической силы, направленной параллельно поверхности. Электрическая сила и, следовательно, электрическое поле всегда направлены перпендикулярно поверхности объекта. Если бы когда-либо существовала какая-либо составляющая силы, параллельная поверхности, то любой избыточный заряд, находящийся на поверхности исходного заряда, начал бы ускоряться. Это привело бы к возникновению электрического тока внутри объекта; такого никогда не наблюдается в статическое электричество электричество. Как только силовая линия покидает поверхность объекта, она часто меняет свое направление. Это происходит при рисовании линий электрического поля для конфигураций двух или более зарядов, как описано в разделе ниже.

Последнее правило рисования линий электрического поля включает пересечение линий. Линии электрического поля никогда не должны пересекаться. Это особенно важно (и заманчиво нарушить) при рисовании линий электрического поля для ситуаций, связанных с конфигурацией зарядов (как в разделе ниже). Если бы линиям электрического поля когда-нибудь позволили пересечься друг с другом в заданном месте, вы могли бы представить результаты. Линии электрического поля раскрывают информацию о направлении (и напряженности) электрического поля в области пространства. Если линии пересекаются друг с другом в заданном месте, то должны быть два совершенно разных значения электрического поля со своим индивидуальным направлением в этом заданном месте. Этого никогда не могло быть. Каждое отдельное место в космосе имеет свою собственную напряженность электрического поля и связанное с ним направление. Следовательно, линии, представляющие поле, не могут пересекаться друг с другом в любом заданном месте в пространстве.

 

Линии электрического поля для конфигураций из двух или более зарядов

В приведенных выше примерах мы видели линии электрического поля для пространства, окружающего отдельные точечные заряды. Но что, если область пространства содержит более одного точечного заряда? Как электрическое поле в пространстве, окружающем конфигурацию из двух или более зарядов, может быть описано линиями электрического поля? Чтобы ответить на этот вопрос, мы сначала вернемся к нашему первоначальному методу рисования векторов электрического поля.

Предположим, что в данной области пространства есть два положительных заряда — заряд A (Q A ) и заряд B (Q B ). Каждый заряд создает свое электрическое поле. В любом заданном месте, окружающем заряды, напряженность электрического поля можно рассчитать, используя выражение kQ/d 2 . Так как есть два заряда, расчет kQ/d 2 должен быть выполнен дважды в каждом месте — один раз с kQ A /d A 2 и один раз с kQ B /d B 2 (d A — расстояние от этого места до центра заряда A и d B — расстояние от этого места до центра заряда B ). Результаты этих расчетов показаны на диаграмме ниже с векторами электрического поля (E A и E B ), нарисованными в различных местах. Сила поля представлена ​​длиной стрелки, а направление поля представлено направлением стрелки.

 

Поскольку электрическое поле является вектором, к электрическому полю можно применить обычные операции, применимые к векторам. То есть их можно добавлять в прямом порядке для определения результирующего или результирующего вектора электрического поля в каждом месте. Это показано на диаграмме ниже.

На приведенной выше диаграмме показано, что величина и направление электрического поля в каждом месте представляют собой просто векторную сумму векторов электрического поля для каждого отдельного заряда. Если выбрано больше мест и процесс рисования E A , E B и E net повторяется, тогда будут известны напряженность и направление электрического поля во множестве мест. (Этого не делается, так как это очень трудоемкая задача.) В конце концов, линии электрического поля, окружающие конфигурацию наших двух зарядов, начнут проявляться. Для ограниченного числа точек, выбранных в этом месте, можно увидеть начало рисунка силовых линий электрического поля. Это изображено на диаграмме ниже. Обратите внимание, что для каждого местоположения векторы электрического поля касаются направления линий электрического поля в любой заданной точке.

 

Построение линий электрического поля таким образом является утомительной и громоздкой задачей. Использование компьютерной программы для построения полевых графиков или лабораторной процедуры дает аналогичные результаты за меньшее время (и с большей затратой времени). Каким бы ни был метод, используемый для определения паттернов линий электрического поля для конфигурации зарядов, общая идея состоит в том, что паттерн является результатом паттернов отдельных зарядов в конфигурации. Образцы линий электрического поля для других конфигураций заряда показаны на диаграммах ниже.

 

На каждой из вышеприведенных диаграмм отдельные заряды источника в конфигурации обладают одинаковым количеством заряда. Имея одинаковое количество заряда, каждый источник заряда имеет равную способность изменять окружающее его пространство. Следовательно, картина носит симметричный характер, и количество линий, исходящих от исходного заряда или идущих к исходному заряду, одинаково. Это усиливает обсуждавшийся ранее принцип, согласно которому плотность линий, окружающих любой заданный исходный заряд, пропорциональна количеству заряда на этом исходном заряде. Если количество заряда на заряде источника неодинаково, картина приобретет асимметричный характер, так как один из зарядов источника будет иметь большую способность изменять электрическую природу окружающего пространства. Это показано на рисунках линий электрического поля ниже.

 

После построения линий электрического поля для различных конфигураций заряда можно предсказать общие закономерности для других конфигураций. Существует ряд принципов, которые помогут в таких предсказаниях. Эти принципы описаны (или переописаны) в списке ниже.

  • Линии электрического поля всегда проходят от положительно заряженного объекта к отрицательно заряженному объекту, от положительно заряженного объекта до бесконечности или от бесконечности к отрицательно заряженному объекту.
  • Линии электрического поля никогда не пересекаются.
  • Линии электрического поля наиболее плотны вокруг объектов с наибольшим количеством заряда.
  • В местах, где линии электрического поля встречаются с поверхностью объекта, линии перпендикулярны поверхности.
  •  

Линии электрического поля как невидимая реальность

В Уроке 4 подчеркивалось, что концепция электрического поля возникла, когда ученые пытались объяснить действие на расстоянии, происходящее между заряженными объектами. Впервые понятие электрического поля было введено 19 в.физик 19 века Майкл Фарадей. Фарадей считал, что узор из линий, характеризующих электрическое поле, представляет собой невидимую реальность. Вместо того, чтобы думать с точки зрения воздействия одного заряда на другой заряд, Фарадей использовал концепцию поля, чтобы предположить, что заряженный объект (или массивный объект в случае гравитационного поля) влияет на окружающее его пространство. Когда другой объект входит в это пространство, на него воздействует поле, установленное в этом пространстве. С этой точки зрения видно, что заряд взаимодействует с электрическим полем, а не с другим зарядом. Для Фарадея секрет понимания действия на расстоянии заключается в понимании силы заряда-поля-заряда. Заряженный объект посылает свое электрическое поле в пространство, идущее от «тянущего к шкиву». Каждый заряд или конфигурация зарядов создает сложную паутину влияния в окружающем его пространстве. Хотя линии невидимы, эффект очень реален. Таким образом, когда вы практикуете построение линий электрического поля вокруг зарядов или конфигурации зарядов, вы делаете больше, чем просто рисуете извилистые линии. Скорее, вы описываете наэлектризованную паутину пространства, которая будет притягивать и отталкивать другие заряды, входящие в нее.

 

 

Мы хотели бы предложить…

Иногда недостаточно просто прочитать об этом. Вы должны взаимодействовать с ним! И это именно то, что вы делаете, когда используете один из интерактивов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного приложения «Поместите заряд в цель» и/или интерактивного взаимодействия с линиями электрического поля. Оба интерактива можно найти в разделе Physics Interactives на нашем веб-сайте. Оба интерактива обеспечивают привлекательную среду для изучения линий электрического поля.


Посетите:  Зарядите цель  | Линии электрического поля

 

 

Проверьте свое понимание

Используйте свое понимание, чтобы ответить на следующие вопросы. Когда закончите, нажмите кнопку, чтобы просмотреть ответы.

1. Несколько рисунков линий электрического поля показаны на диаграммах ниже. Какие из этих шаблонов неверны? _________ Объясните, что не так со всеми неправильными диаграммами.

 

2. Эрин Агин нарисовала следующие линии электрического поля для конфигурации из двух зарядов. Что Эрин сделала не так? Объяснять.


 

3. Рассмотрите линии электрического поля, показанные на диаграмме ниже. Из диаграммы видно, что объект А — это ____, а объект В — это ____.

а. +, +

б. -, —

в. +, —

д. -, +

эл. недостаточно информации

 


4. Рассмотрим линии электрического поля, нарисованные справа для конфигурации из двух зарядов. На схеме отмечены несколько мест. Расположите эти места в порядке напряженности электрического поля — от наименьшего к наибольшему.



5. Используйте свое понимание силовых линий электрического поля, чтобы определить заряды объектов в следующих конфигурациях.


 

6. Посмотрите на линии электрического поля ниже для различных конфигураций. Расположите предметы, в соответствии с которыми имеет наибольшую величину электрического заряда, начиная с наименьшего заряда.

 

 

Следующий раздел:

18.3 Электрическое поле — физика

Раздел Цели обучения

К концу этого раздела вы сможете делать следующее:

  • Вычислять напряженность электрического поля
  • Создание и интерпретация рисунков электрических полей

Поддержка учителей

Поддержка учителей

Цели обучения в этом разделе помогут вашим учащимся освоить следующие стандарты:

  • (5) Учащийся знает природу сил в физическом мире. Ожидается, что студент:
    • (С) описать и рассчитать, как величина электрической силы между двумя объектами зависит от их зарядов и расстояния между ними.

Основные термины раздела

электрическое поле испытательный заряд

Поддержка учителей

Поддержка учителей

Спросите учащихся, видели ли они фильмы, в которых используется концепция полей как силовых полей . Попросите их описать, как работают такие поля. Опишите, как можно рассматривать гравитацию как поле, которое окружает массу и с которым взаимодействуют другие массы. Объясните, что электрические поля очень похожи на гравитационные поля.

Возможно, вы слышали о силовом поле в научно-фантастических фильмах, где такие поля применяют силы в определенных точках в космосе, чтобы удерживать злодея в ловушке или защищать космический корабль от вражеского огня. Концепция поле очень полезно в физике, хотя и несколько отличается от того, что вы видите в кино.

Поле — это способ концептуализации и отображения силы, которая окружает любой объект и действует на другой объект на расстоянии без видимой физической связи. Например, гравитационное поле, окружающее Землю и все другие массы, представляет гравитационную силу, которая возникла бы, если бы в данной точке поля была помещена другая масса. Майкл Фарадей, английский физик девятнадцатого века, предложил концепцию электрического поля. Если вы знаете электрическое поле, то можете легко рассчитать силу (величину и направление), действующую на любой электрический заряд, который вы поместите в поле.

Электрическое поле создается электрическим зарядом и сообщает нам силу на единицу заряда во всех точках пространства вокруг распределения заряда. Распределение заряда может быть одноточечным; распределение заряда, скажем, по плоской пластине; или более сложное распределение заряда. Электрическое поле распространяется в пространстве вокруг распределения заряда. Теперь рассмотрите возможность размещения пробного заряда в поле. Пробный заряд — это положительный электрический заряд, заряд которого настолько мал, что не возмущает существенно заряды, создающие электрическое поле. Электрическое поле действует на пробный заряд в заданном направлении. Приложенная сила пропорциональна заряду пробного заряда. Например, если мы удвоим заряд пробного заряда, сила, действующая на него, удвоится. Математически говоря, что электрическое поле представляет собой силу на единицу заряда, записывается как

E→=F→qtestE→=F→qtest

18.15

где мы рассматриваем только электрические силы. Обратите внимание, что электрическое поле представляет собой векторное поле, направленное в том же направлении, что и сила, действующая на положительный пробный заряд. Единицы электрического поля N/C.

Если электрическое поле создается точечным зарядом или сферой с однородным зарядом, то величина силы между этим точечным зарядом Q и пробным зарядом определяется законом Кулона

F=k|Qqtest|r2F =k|Qqtest|r2

, где используется абсолютное значение, потому что мы учитываем только величину силы. Тогда величина электрического поля равна

E=Fqtest=k|Q|r2.E=Fqtest=k|Q|r2.

18,16

Это уравнение дает величину электрического поля, создаваемого точечным зарядом Q . Расстояние r в знаменателе — это расстояние от точечного заряда Q или от центра сферического заряда до интересующей точки.

Если тестовый заряд удалить из электрического поля, электрическое поле все еще существует. Чтобы создать трехмерную карту электрического поля, представьте себе размещение пробного заряда в разных местах поля. В каждом месте измерьте силу, действующую на заряд, и используйте векторное уравнение E→=F→/qtestE→=F→/qtest для расчета электрического поля. Нарисуйте стрелку в каждой точке, где вы поместите пробный заряд, чтобы представить силу и направление электрического поля. Длина стрелок должна быть пропорциональна напряженности электрического поля. Если вы соедините эти стрелки вместе, вы получите линии. На рис. 18.17 показано изображение трехмерного электрического поля, создаваемого положительным зарядом.

Рисунок 18.17 Трехмерное представление электрического поля, создаваемого положительным зарядом.

Поддержка учителей

Поддержка учителей

[BL][OL]Укажите, что все силовые линии электрического поля берут начало от заряда.

[AL]Обратите внимание, что количество линий, пересекающих воображаемую сферу, окружающую заряд, одинаково независимо от размера сферы, которую вы выберете. Спросите, могут ли учащиеся использовать это, чтобы показать, что количество силовых линий, пересекающих поверхность на единицу площади, показывает, что напряженность электрического поля уменьшается пропорционально обратному квадрату расстояния.

Простое рисование линий электрического поля в плоскости, пересекающей заряд, дает двумерные карты электрического поля, показанные на рис. 18.18. Слева — электрическое поле, создаваемое положительным зарядом, а справа — электрическое поле, создаваемое отрицательным зарядом.

Обратите внимание, что силовые линии электрического поля направлены от положительного заряда к отрицательному. Таким образом, положительный пробный заряд, помещенный в электрическое поле положительного заряда, будет отталкиваться. Это согласуется с законом Кулона, согласно которому одноименные заряды отталкиваются друг от друга. Если мы поместим положительный заряд в электрическое поле отрицательного заряда, положительный заряд притянется к отрицательному заряду. Противоположное верно для отрицательных тестовых зарядов. Таким образом, направление линий электрического поля согласуется с тем, что мы находим, используя закон Кулона.

Уравнение E=k|Q|/r2E=k|Q|/r2 говорит о том, что электрическое поле становится сильнее по мере приближения к заряду, который его генерирует. Например, на расстоянии 2 см от заряда Q ( r = 2 см) электрическое поле в четыре раза сильнее, чем на расстоянии 4 см от заряда ( r = 4 см). Снова взглянув на рис. 18.17 и рис. 18.18, мы видим, что линии электрического поля становятся более плотными по мере приближения к заряду, который их генерирует. На самом деле плотность линий электрического поля пропорциональна напряженности электрического поля!

Рисунок 18.18 Линии электрического поля от двух точечных зарядов. Красная точка слева несет заряд +1 нКл, а синяя точка справа несет заряд -1 нКл. Стрелки указывают направление, в котором будет двигаться положительный пробный заряд. Линии поля сгущаются по мере приближения к точечному заряду.

Карты электрического поля могут быть составлены для нескольких зарядов или для более сложных распределений зарядов. Электрическое поле от нескольких зарядов можно найти, сложив электрические поля от каждого отдельного заряда. Поскольку эта сумма может быть только одним числом, мы знаем, что только одна линия электрического поля может проходить через любую заданную точку. Другими словами, линии электрического поля не могут пересекаться друг с другом.

На рис. 18.19(а) показана двухмерная карта электрического поля, создаваемого зарядом + q и соседним зарядом — q . Трехмерная версия этой карты получается путем вращения этой карты вокруг оси, проходящей через оба заряда. Положительный пробный заряд, помещенный в это поле, будет испытывать силу в направлении силовых линий в его местоположении. Таким образом, он будет отталкиваться от положительного заряда и притягиваться к отрицательному заряду. Рисунок 18.19(b) показывает электрическое поле, создаваемое двумя зарядами − q . Обратите внимание, как силовые линии отталкиваются друг от друга и не перекрываются. Положительный пробный заряд, помещенный в это поле, будет притягиваться к обоим зарядам. Если вы находитесь далеко от этих двух зарядов, где далеко означает намного дальше, чем расстояние между зарядами, электрическое поле выглядит как электрическое поле от одного заряда -2 q .

Рисунок 18.19 (а) Электрическое поле, создаваемое точечным положительным зарядом (слева) и точечным отрицательным зарядом той же величины (справа). (б) Электрическое поле, создаваемое двумя равными отрицательными зарядами.

Поддержка учителей

Поддержка учителей

Попросите учащихся интерпретировать карты электрического поля. Где поле сильнее? Где поле слабее? В каком направлении поле увеличивается или уменьшается? Где поле наиболее однородно? Могут ли они проверить, что величина заряда одинакова в данной панели? Чем отличается поле двух отрицательных зарядов от поля положительного и отрицательного зарядов?

Виртуальная физика

Исследование электрического поля

Эта симуляция показывает вам электрическое поле из-за зарядов, которые вы размещаете на экране. Начните с установки верхнего флажка на панели параметров с правой стороны, чтобы отобразить электрическое поле. Перетащите заряды из ведер на экран, перемещайте их и наблюдайте за электрическим полем, которое они образуют. Чтобы более точно увидеть величину и направление электрического поля, перетащите датчик электрического поля или датчик электрического поля из нижнего ведра и перемещайте его по экрану.

Исследования PhET: заряды и поля. Перемещайте точечные заряды по игровому полю, а затем просматривайте электрическое поле, напряжения, эквипотенциальные линии и многое другое.

Нажмите, чтобы просмотреть содержимое

Два положительных заряда помещаются на экран. Какое утверждение описывает электрическое поле, создаваемое зарядами?

  1. Постоянно везде.

  2. Рядом с каждым зарядом ноль.

  3. Между зарядками ноль.

  4. Наибольшая сила на полпути между зарядами.

Смотреть физику

Электростатика (часть 2): интерпретация электрического поля

В этом видеоролике объясняется, как рассчитать электрическое поле точечного заряда и как интерпретировать карты электрического поля в целом. Обратите внимание, что лектор использует d для расстояния между частицами вместо r . Обратите внимание, что точечные заряды бесконечно малы, поэтому все их заряды сосредоточены в одной точке. Когда рассматриваются более крупные заряженные объекты, расстояние между объектами должно измеряться между центрами объектов.

Проверка захвата

Верно или неверно — если точечный заряд имеет силовые линии электрического поля, которые указывают на него, заряд должен быть положительным.

  1. правда
  2. ложь

Рабочий пример

Какова плата?

Посмотрите на рисунок электрического поля на рис. 18.20. Какова относительная сила и знак трех зарядов?

Рисунок 18.20 Карта электрического поля трех заряженных частиц.

Стратегия

Мы знаем, что электрическое поле простирается от положительного заряда и заканчивается отрицательным зарядом. Мы также знаем, что количество силовых линий электрического поля, которые касаются заряда, пропорционально заряду. Заряд 1 имеет 12 полей, выходящих из него. В заряд 2 входит шесть силовых линий. В заряд 3 входит 12 силовых линий.

Решение

Линии электрического поля выходят из заряда 1, так что это положительный заряд. Линии электрического поля проходят через заряды 2 и 3, поэтому они являются отрицательными зарядами. Отношение зарядов равно q1:q2:q3=+12:-6:-12q1:q2:q3=+12:-6:-12. Таким образом, величина зарядов 1 и 3 вдвое превышает величину заряда 2.

Обсуждение

Хотя мы не можем определить точный заряд каждой частицы, мы можем получить много информации из электрического поля относительно величины и знака зарядов. и где сила пробного заряда будет наибольшей (или наименьшей).

Рабочий пример

Электрическое поле от дверной ручки

Дверная ручка, которую можно принять за сферический металлический проводник, приобретает заряд статического электричества q=-1,5 нКл. q=-1,5 нКл. Чему равно электрическое поле на расстоянии 1,0 см от дверной ручки? Диаметр дверной ручки 5,0 см.

Стратегия

Поскольку дверная ручка является проводником, весь заряд распределяется по внешней поверхности металла. Кроме того, поскольку дверная ручка считается идеально сферической, заряд на поверхности распределяется равномерно, поэтому мы можем рассматривать дверную ручку так, как если бы весь заряд был сосредоточен в центре дверной ручки. Справедливость этого упрощения будет доказана в следующем курсе физики. Теперь нарисуйте дверную ручку и определите вашу систему координат. Используйте +x+x, чтобы указать внешнее направление, перпендикулярное двери, с x=0x=0 в центре дверной ручки (как показано на рисунке ниже).

Если диаметр дверной ручки 5,0 см, ее радиус 2,5 см. Мы хотим знать электрическое поле на расстоянии 1,0 см от поверхности дверной ручки, что составляет расстояние r = 2,5 см + 1,0 см = 3,5 см, r = 2,5 см + 1,0 см = 3,5 см от центра дверной ручки. Мы можем использовать уравнение E=k|Q|r2E=k|Q|r2, чтобы найти величину электрического поля. Направление электрического поля определяется знаком заряда, который в данном случае отрицательный.

Раствор

Введение заряда Q=-1,5 нКл=-1,5×10-9.

Обсуждение

Похоже на огромное электрическое поле. К счастью, требуется электрическое поле примерно в 100 раз сильнее (3×106 Н/Кл3×106 Н/Кл), чтобы заставить воздух разлагаться и проводить электричество. Кроме того, вес взрослого человека составляет около 70 кг × 9,8 м/с2 ≈ 700 Н70 кг × 9,8 м/с2 ≈ 700 Н, так почему вы не чувствуете силы, действующей на протоны в вашей руке, когда вы тянетесь к дверной ручке? Причина в том, что ваша рука содержит равное количество отрицательного заряда, который отталкивает отрицательный заряд дверной ручки. Из-за поляризации в вашей руке может развиться очень небольшая сила, но вы никогда этого не заметите.

Практические задачи

15.

Какова величина электрического поля на расстоянии 20 см от точечного заряда q = 33 нКл?

  1. 7,4 × 10 3 Н/З
  2. 1,48 × 10 3 Н/З
  3. 7,4 × 10 12 Н/З
  4. 0

16.

Заряд -10 нКл находится в начале. В каком направлении электрическое поле от заряда указывает на х + 10 см?

  1. Электрическое поле направлено в сторону от отрицательных зарядов.
  2. Электрическое поле указывает на отрицательные заряды.
  3. Электрическое поле направлено в сторону положительных зарядов.
  4. Электрическое поле направлено в сторону от положительных зарядов.

Проверьте свое понимание

17.

Когда линии электрического поля сближаются, что это говорит вам об электрическом поле?

  1. Электрическое поле обратно пропорционально плотности линий электрического поля.
  2. Электрическое поле прямо пропорционально плотности линий электрического поля.
  3. Электрическое поле не связано с плотностью силовых линий электрического поля.
  4. Электрическое поле обратно пропорционально квадратному корню из плотности силовых линий электрического поля.

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *