У цинка степень окисления: Таблица менделеева — Электронный учебник K-tree

Содержание

Сульфид цинка, химические свойства, получение

1

H

1,008

1s1

2,1

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

4,0026

1s2

4,5

Бесцветный газ

кип=-269°C

3

Li

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

18,998

2s2 2p5

3,98

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

20,180

2s2 2p6

4,4

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

22,990

3s1

0,98

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

39,948

3s2 3p6

4,3

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип

=3260°C

23

V

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

144,24

f-элемент

Серебристый металл

пл

=1010°C

кип=3127°C

61

Pm

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

232,04

f-элемент

Серый мягкий металл

91

Pa

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Урок 12. медь. цинк. титан. хром. железо. никель. платина — Химия — 11 класс

Химия, 11 класс

Урок № 12. Медь. Цинк. Титан. Хром. Железо. Никель. Платина

Перечень вопросов, рассматриваемых в теме: урок посвящён изучению основных металлов побочной подгруппы или Б-группы: меди, цинка, титана, хрома, железа, никеля и платины, их физическим и химическим свойствам, способам получения и применению.

Глоссарий

Катализатор – вещество, которое ускоряет химическую реакцию.

Пассивация – переход металла в неактивное состояние из-за образования на его поверхности оксидной плёнки. Может усиливаться концентрированными кислотами.

Проскок электрона – отступление от общей для большинства элементов последовательности заполнения электронных оболочек.

Хромирование/никелирование – покрытие поверхности металла другим, более устойчивым, для предотвращения коррозии.

Цинковая обманка (ZnS) – сложно идентифицируемое соединение цинка, подверженное сильному влиянию примесей на ее внешний вид.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тесто по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

  • Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Медь

Электронная конфигурация

Медь является металлом, расположенным в I группе побочной подгруппе и имеет следующую электронную конфигурацию:

1s2

Рисунок 1 – Электронная конфигурация атома меди

Мы видим, что у меди наблюдается проскок электрона – отступление от общей для большинства элементов последовательности заполнения электронных оболочек. По принципу наименьшей энергии электронные орбитали должны заполняться в следующем порядке:

1s → 2s → 2p → 3s → 3p → 4s → 3d …

Но для некоторых атомов энергетически более выгодно иметь наполовину (5 электронов, дальше увидим у хрома) или полностью заполненную (10 электронов, как у меди) 3d-орбиталь.

Медь имеет две валентности: 1 и 2 и проявляет степени окисления +1 и +2.

Физические свойства

Медь обладает следующими физическими свойствами

Таблица 1 – Основные физические свойства меди

Свойство

Значение

Цвет

Светло-розовый

Структура

Тягучая, вязкая, легко прокатывается

Температура плавления, °С

1083

Нахождение в природе

В природе медь встречается в самородном виде, а также в составе некоторых минералов:

  • медный блеск, Cu2S;
  • куприт, Cu2O;
  • медный колчедан, CuFeS;
  • малахит, (CuOH)2CO3.

Способы получения меди

Основными способами получения меди являются:

  1. Восстановление коксом и оксидом углерода (II). Таким образом получают медь из куприта:

Cu2O + С = 2Сu + CO

Cu2O + CO = 2Cu + CO2

  1. Обжиг в специальных печах до оксидов. Данный способ подходит для сульфидных и карбонатных руд.
  2. Электролиз. Единственный из перечисленных способов, который позволяет получить медь без примесей.

Химические свойства

При комнатной температуре медь не вступает в реакции с большинством соединений. При повышенной температуре ее реакционная способность резко возрастает.

Реакции с простыми веществами:

2Cu + O2 = 2CuO

2Cu + Cl2 = 2CuCl2

Cu + S = CuS

Реакции со сложными веществами:

Cu + 2H2SO4(конц) = CuSO4 + SO2↑ +2H2O

Cu + 4HNO3(конц) = Cu(NO3)2 + 2NO2↑ + 2H2O

3Cu + 8HNO3(разб) = 3Cu(NO3)2 + 2NO↑ + 4H2O

Применение

Широкое применение находит как сама медь, так и её соединения. В чистом виде она используется для производства проводов, кабелей, теплообменных аппаратов, а также входит в состав многих сплавов.

Соединения меди, например, медный купорос CuSO4∙5H2O используется для защиты растений, а гидроксид меди является качественным реагентом для определения альдегидной группы у органических соединений, а также наличия глицерина (дает голубое окрашивание раствора).

Цинк

Электронная конфигурация

Цинк является металлом, расположенным в II группе побочной подгруппе, и имеет следующую электронную конфигурацию:

Рисунок 2 – Электронная конфигурация атома цинка

В связи с тем, что 4s-орбиталь заполнена, цинк может находиться в единственной степени окисления, равной +2.

Физические свойства

Цинк обладает следующими физическими свойствами

Таблица 2 – Основные физические свойства цинка

Свойство

Значение

Цвет

Голубовато-серебристый

Структура

Хрупок

Температура плавления, °С

419,5

Нахождение в природе

В природе цинк встречается только в связанном состоянии, а именно в цинковом шпате ZnCO3 и цинковой обманке ZnS. Свое название цинковая обманка получила за то, что его сложно идентифицировать, поскольку он может выглядеть совершенно по-разному: быть различного цвета и структуры в зависимости от посторонних примесей.

Способы получения цинка

Чистый цинк получают обжигом с последующим восстановлением:

ZnS + O2 = ZnO + SO2

ZnO + C = Zn + CO↑

Химические свойства

Цинк является довольно устойчивым металлом, поскольку на воздухе покрывается оксидной пленкой, и в дополнение практически не взаимодействует с водой при нормальных условиях. Но так же, как и медь, становится более активным при повышении температуры.

Реакции с простыми веществами:

2Zn + O2 = 2ZnO

2Zn + Cl2 = 2ZnCl2

Zn + S = ZnS

Реакции со сложными веществами:

Zn + 2NaOH(крист) = NaZnO2 + H2

Zn + 2NaOH + 2H2O = Na2[Zn(OH)4] + H2

Zn + 2HCl = ZnCl2 + H2

Применение

Цинк является коррозионно-устойчивым металлом, поэтому он нашёл применение в производстве защитных покрытий металлов, гальванических элементов, а также как компонент сплавов.

Титан

Электронная конфигурация

Титан является элементом IV группы побочной подгруппы и имеет следующее электронное строение:

Рисунок 3 – Электронная конфигурация атома титана

Данная конфигурация позволяет атому титана проявлять две степени окисления: +2 и +4.

Физические свойства

Титан обладает следующими физическими свойствами:

Таблица 3 – Основные физические свойства титана

Свойство

Значение

Цвет

Серебристо-белый

Структура

Высокая прочность и взякость

Температура плавления, °С

1665

Нахождение в природе

В природе титан можно найти в составе таких минералов, как:

  • титаномагнетит, FeTiO3∙Fe3O4;
  • ильменит, FeTiO3;
  • рутил, TiO2.

Способы получения титана

В связи с тем, что в природе не существует титановых руд, человеку приходится извлекать его путём хлорирования рудных концентратов с их последующим восстановлением с помощью магния или натрия.

TiCl4 + 2Mg = Ti + 2MgCl2

Для удаления примесей магния и его соли полученную смесь продуктов нагревают под вакуумом.

Химические свойства

Титан является очень активным металлом, но его оксидная пленка не даёт ему взаимодействовать при нормальных условиях ни с морской водой, ни даже с «царской водкой». Поэтому все реакции протекают при повышенных температурах.

Реакции с простыми веществами:

Ti + 2Cl2 = TiCl4

Ti + O2 = TiO2

Азотная кислота действует на титан только в форме порошка, в то время как разбавленная серная кислота реагирует с металлом:

2Ti + 3H2SO4 = Ti2(SO4)3 + 3H2

Применение

Титан и его сплавы отличает не только коррозионная стойкость, но и лёгкость, прочность. В связи с этим он активно используется при построении космических ракет, самолётов, подлодок и морских судов. Титан не взаимодействует с тканями организмов, из-за чего используется в хирургии.

Хром

Электронная конфигурация

Хром находится в IV группе побочной подгруппе и имеет следующее электронное строение:

Рисунок 4 – Электронная конфигурация атома хрома

Так как для атома хрома энергетически более выгодно иметь наполовину заполненную 3d-орбиталь, у него, как и у меди, наблюдается проскок электрона, что позволяет ему находиться в степенях окисления от +1 до +6, но наиболее устойчивыми являются +2, +3, +6.

Физические свойства

Хром обладает следующими физическими свойствами:

Таблица 4 – Основные физические свойства хрома

Свойство

Значение

Цвет

Серебристо-белый с металлическим блеском

Структура

Твердый

Температура плавления, °С

1890

Нахождение в природе

В природе большая часть хрома заключена в составе хромистого железняка Fe(CrO2)2. Иногда может встречаться в виде оксида хрома (III) и других соединениях.

Способы получения хрома

Из хромистого железняка путем восстановлением углем при высоких температурах получают смесь железа и хрома – феррохром:

FeO + Cr2O3 + 3C = Fe + 2Cr + 3CO↑

Для получения чистого хрома проводят восстановление оксида хрома (III) алюминием:

Cr2O3 + 2Al = 2Cr + Al2O3

Химические свойства

Как и все вышеописанные металлы, хром покрыт оксидной плёнкой, которую трудно растворить даже сильными кислотами. Благодаря ней он обладает высокой стойкости к коррозии, поэтому начинает реагировать с разбавленными растворами кислот лишь спустя время. Концентрированные кислоты, такие как HNO3 и H2SO4, пассивируют оксидную пленку (укрепляют ее).

Применение

Благодаря своей коррозионной стойкости, хром используют в качестве защитных покрытий (хромируют поверхности металлов и сплавов). Также используется для создания легированных сталей, речь о которых пойдет в следующем уроке.

Железо

Железо – металл, с которым мы чаще всего сталкиваемся в нашей жизни, поэтому переоценить его значимость для человека невозможно. Он является самым распространенным после алюминия и составляет 5% земной коры. Теперь перейдем к рассмотрению его строения и свойств.

Электронная конфигурация

Железо находится в VII группе Б-подгруппе и имеет такое электронное строение, которое позволяет ему находиться в двух степенях окисления: +2 и +3. Конечно, в теории железо может выступать в качестве шестивалентного металла, но из-за пространственных затруднений ему не удается образовать такое количество связей. Поэтому такое состояние является неустойчивым для данного металла.

Рисунок 5 – Электронная конфигурация атома железа

Физические свойства

Железо обладает следующими физическими свойствами:

Таблица 5 – Основные физические свойства железа

Свойство

Значение

Цвет

Серебристо-белый

Структура

Мягкий, пластичный

Температура плавления, °С

1539

Нахождение в природе

 Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном виде железо находят в метеоритах, изредка встречается самородное железо (феррит) в земной коре как продукт застывания магмы.

Способы получения железа

Существует множество способов получения железа, и отличаются они друг от друга степенью его чистоты и требуемым типом конечного продукта.

  1. Восстановлением из оксидов (железо пирофорное).
  2. Электролизом водных растворов его солей (железо электролитическое).
  3. Разложением пентакарбонила железа Fe(CO)5 при нагревании до t 250°С.
  4. Методом зонной плавки (получение особо чистого железа).
  5. Технически чистое железо (около 0,16% примесей углерода, кремния, марганца, фосфора, серы и др.) выплавляют, окисляя компоненты чугуна в мартеновских сталеплавильных печах и в кислородных конверторах.
  6. Сварочное или кирпичное железо получают, окисляя примеси малоуглеродистой стали железным шлаком или путём восстановления руд твёрдым углеродом.

Химические свойства

Под воздействием высоких температур железо взаимодействует с простыми веществами:

2Fe + 3O2 = Fe2O3 ∙FeO

В ходе данной реакции происходит получение смеси оксидов, которую иногда записывают в виде общей формулы Fe3O4.

2Fe + 3Cl2 = 2FeCl3

Fe + S = FeS

Взаимодействует с разбавленными кислотами, причем с соляной кислотой происходит образование соли только двухвалентного железа:

Fe + 2HCl(разб) = FeCl2 + H2

При комнатной температуре железо пассивируется концентрированными кислотами, но при высоких температурах вступает в реакцию окисления:

2Fe + 6H2SO4(конц) = Fe2(SO4)3 + 3SO2 + 6H2O

Вступает в реакцию обмена с солями, образованными катионами более слабых металлов:

Fe + CuSO4 = FeSO4 + Cu↓

Применение

Про области применения железа можно говорить достаточно долго, поэтому выделим основные направления:

  1. В связи с его способностью быстро намагничиваться, его используют в трансформаторах и электромоторах.
  2. Основная масса железа расходуется на производство различных сплавов, таких как чугун и сталь.

Никель и платина

Далее стоит обратить на два металла: никель и платина. Как нам известно, они имеют схожие области применения, но отличаются по цене и качеству, потому предлагаю сравнить их.

Электронная конфигурация

Электронное строение металлов выглядит следующим образом:

Ni …3s2 3p6 3d8 4s2

Характерные степени окисления: + 2 и +3, но последняя является неустойчивой.

Pt …5s2 5p6 5d9 6s1

Характерные степени окисления: + 2 и +4.

Физические свойства

Таблица 5 – Основные физические свойства железа

Свойство

Значение

Ni

Pt

Цвет

Серебристо-белый

Белый

Структура

Очень твердый

Пластичный

Температура плавления, °С

1453

1769

Химические свойства

Никель при повышенных температурах реагирует с галогенами с образованием солей, и с кислородом с образованием оксида никеля (II), в то время как платина очень устойчива к любым взаимодействиям. Реагирует с серой и галогенами в мелкораздробленном виде.

Никель медленно взаимодействует с разбавленными кислотами, когда платина реагирует только с «царской водкой».

Применение

Оба металла активно используются в переработке нефти в качестве катализаторов.

Катализатор – вещество, которое ускоряет химическую реакцию.

Каждые 2-3 года закупаются тонны реагентов, в составе которых всего несколько десятых процента платины или никеля, но именно они определяют их стоимость.

Также они используются в составе высококачественных сплавов, а никель – как антикоррозионное покрытие.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

  1. Решение задачи на вычисление количества исходного реагента.

Условие задачи: При растворении меди в растворе концентрированной азотной кислоты выделилось 2 л газа. Вычислите массу прореагировавшей меди.

Шаг первый. Напишем уравнение реакции и определим, какой газ выделился, расставим коэффициенты.

Cu + 4HNO3(конц) = Cu(NO3)2 + 2NO2↑ + 2H2O

Шаг второй. Вычислим количество вещества газа:

Шаг третий. Вычислим количество вещества меди:

По уравнению реакции: n(Cu) = 0,5n(NO2), тогда

n(Cu) = 0,5 ∙ 0,089 = 0,044 (моль)

Шаг четвёртый. Вычислим массу меди:

m(Cu) = 0,044 ∙ 46 = 2,024 (г)

Ответ: 2,024 (г).

  1. Решение задачи на выход продукта.

Условия задачи: при обжиге 8,515 г сульфида цинка с последующим восстановлением оксида с помощью угля выделилось 3,45 л газа. Рассчитайте выход реакции обжига, если выход реакции восстановления равен 60%.

Шаг первый. Запишем уравнения реакций и вычислим молярные массы компонентов:

ZnS + O2 = ZnO + SO2

ZnO + C = Zn + CO↑

M (ZnO) = 81 г/моль

Шаг второй. Вычислим количество вещества газа:

Шаг третий. Вычислим массу оксида цинка:

Так как выход реакции составил 60%, то

n (ZnO) = 0,6n (CO) = 0,6 ∙ 0,154 = 0,0924 (моль)

Шаг четвёртый. Вычислим массу оксида цинка:

Шаг пятый. Вычислим выход реакции:

Ответ: 87, 89%.

Степени окисления цинка в технологиях производства и использование

Степень окисления цинка характеризует способность металла образовывать соединения в результате взаимодействия с реагентами. Это свойство используется при поиске, извлечении химического элемента из руды и промышленном производстве.

Цинк используется в промышленности и в медицине

Характеристика металла

Цинк принадлежит к группе цветных металлов и занимает по добыче третье место в мире, уступая только алюминию и меди. Хотя в мире наблюдается перепроизводство, добыча сырья непрерывно растет в связи с обширными потребностями применения в строительстве, химической промышленности и машиностроении.

Химический элемент № 30 – цветной металл, белого цвета с синим оттенком. Его плотность составляет 7,13 г/см3, а температура плавления – 419,5 °C. Ковким и эластичным он становится при разогреве до температуры 150— 200 °C.

С увеличением температурного градиента его можно преобразовать в порошок, а пары способны воспламеняться на воздухе с образованием густого дыма белого цвета, представляющего собой окись.

Добыча цинка

Химический элемент № 30 является достаточно распространенным на Земле. Он содержится в более чем 60 минералах, среди которых наиболее перспективными для добычи являются:

  • вюрцит;
  • сфалерит;
  • цинкит;
  • смитсонит;
  • каламин.

Низкая концентрация в породе обусловливает переработку и обогащение руды непосредственно вблизи месторождения. Технология извлечения сырья из сульфидных руд предусматривает использование флотационного или гравитационного способа.

Добыча и переработка руды

Выплавка металла производится электролитическим или термическим способом.

Термическая обработка предполагает обжиг руды, предварительно измельченной и обогащенной.

В результате обжига образуется оксид. Концентрат подвергают спеканию с последующим восстановлением углем при температуре +1200 °C. Технология извлечения чистого материала постоянно совершенствуется, что минимизирует содержание второстепенных компонентов.

Основным способом добычи цинка, который применяется в промышленности, является электролитический.

Обогащенный концентрат руды обрабатывают серной кислотой с последующей очисткой раствора от примесей. Химически чистый компонент осаждается на алюминиевых катодах, а из отходов производства извлекают купорос.

В настоящее время добычу сырья осуществляет 50 стран. Крупнейший в мире цинковый рудник находится на Аляске в горах и эксплуатируется круглый год.

В связи с возрастающими потребностями промышленного производства в сырье, рассматриваются альтернативные источники его добычи, среди которых особое место занимают донные отложения океана.

Альтернативный источник добычи цинка

Технология извлечения химического элемента из руды постоянно усовершенствуется и позволяет повысить интенсивность разработки уже разведанных месторождений.

Окислительные реакции металла

Окисление цинка происходит на воздухе с образованием оксидной пленки, которая защищает поверхность от дальнейшего разрушения под влиянием реагентов и препятствует вытеснению водорода из воды.

Степенью окисления, которую проявляет химический элемент в соединениях, является +2.

  • Цинк легко растворяется в разбавленных соляной и серной кислотах. В результате реакции происходит восстановление серной кислоты до серы или сероводорода.
  • В результате реакции цинка с азотной кислотой образуются различные продукты восстановления кислоты.
  • При взаимодействии цинка с раствором перманганата калия происходит обесцвечивание раствора.
  • Реакция металла с ванадатом калия характеризуется восстановлением ванадия с последовательным изменением цвета раствора: желтый, синий, зеленый, фиолетовый.
  • Металлический цинк растворяется в растворах щелочей с высокой концентрацией.
  • Оксиды металла можно получить в результате термического разложения карбонатов и синтеза простых веществ.
  • Соли цинка легко подвергаются гидролизу. В результате реакции металлического цинка с раствором хлорида металла, выделяется водород.

Применение цинка

Материал настолько прочно вошел в быт, что его часто можно не заметить в обыкновенных изделиях: водосточной трубе, ведре, инвентаре для сада и огорода, в патроне электрической лампочки и деталях машин.

  • Использование цинка в качестве материала для покрытия изделий предотвращает коррозионные процессы и повышает устойчивость к механическим повреждениям и воздействию агрессивной среды.
  • Цинк используют для формирования металлических сплавов, самым известным из которых является латунь. Для ее изготовления используется 20% добытого сырья.
  • Цинк является сырьем для химической промышленности. Его используют для изготовления гальванических батарей, минеральных красок, очистки растворов.
  • Половина добытого в мире металла используется для нанесения защитных покрытий, и только 15% используется для изготовления исключительно цинковых изделий.
  • Химический элемент № 30 является важным минералом, обеспечивающим нормальное функционирование организма, поэтому его используют в фармакологии для изготовления витаминных комплексов.

Цинк — общая характеристика элемента, химические свойства цинка и его соединений

Цинк — элемент побочной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 30. Обозначается символом Zn (лат. Zincum). Простое вещество цинк при нормальных условиях — хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка).

В четвертом периоде цинк является последним d-элементом, его валентные электроны 3d104s2. В образовании химических связей участвуют только электроны внешнего энергетического уровня, поскольку конфигурация d10 является очень устойчивой. В соединениях для цинка характерна степень окисления +2.

Цинк – химически активный металл, обладает выраженными восстановительными свойствами, по активности уступает щелочно-земельным металлам. Проявляет амфотерные свойства.

Взаимодействие цинка с неметаллами
При сильном нагревании на воздухе сгорает ярким голубоватым пламенем с образованием оксида цинка:
2Zn + O2 → 2ZnO.

При поджигании энергично реагирует с серой:
Zn + S → ZnS.

С галогенами реагирует при обычных условиях в присутствии паров воды в качестве катализатора:
Zn + Cl2 → ZnCl2.

При действии паров фосфора на цинк образуются фосфиды:
Zn + 2P → ZnP2 или 3Zn + 2P → Zn3P2.

С водородом, азотом, бором, кремнием, углеродом цинк не взаимодействует.

Взаимодействие цинка с водой
Реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода:
Zn + H2O → ZnO + H2.

Взаимодействие цинка с кислотами
В электрохимическом ряду напряжений металлов цинк находится до водорода и вытесняет его из неокисляющих кислот:
Zn + 2HCl → ZnCl2 + H2;
Zn + H2SO4 → ZnSO4 + H2.

Взаимодействует с разбавленной азотной кислотой, образуя нитрат цинка и нитрат аммония:
4Zn + 10HNO3 → 4Zn(NO3)2 + NH4NO3 + 3H2O.

Реагирует с концентрированными серной и азотной кислотами с образованием соли цинка и продуктов восстановления кислот:
Zn + 2H2SO4 → ZnSO4 + SO2 + 2H2O;
Zn + 4HNO3 → Zn(NO3)2 + 2NO2 + 2H2O

Взаимодействие цинка со щелочами
Реагирует с растворами щелочей с образованием гидроксокомплексов:
Zn + 2NaOH + 2H2O → Na2[Zn(OH)4] + H2

при сплавлении образует цинкаты:
Zn + 2KOH → K2ZnO2 + H2.

Взаимодействие с аммиаком
С газообразным аммиаком при 550–600°С образует нитрид цинка:
3Zn + 2NH3 → Zn3N2 + 3H2;
растворяется в водном растворе аммиака, образуя гидроксид тетраамминцинка:
Zn + 4NH3 + 2H2O → [Zn(NH3)4](OH)2 + H2.

Взаимодействие цинка с оксидами и солями
Цинк вытесняет металлы, стоящие в ряду напряжения правее него, из растворов солей и оксидов:
Zn + CuSO4 → Cu + ZnSO4;
Zn + CuO → Cu + ZnO.

Оксид цинка (II) ZnO – белые кристаллы, при нагревании приобретают желтую окраску. Плотность 5,7 г/см3, температура возгонки 1800°С. При температуре выше 1000°С восстанавливается до металлического цинка углеродом, угарным газом и водородом:
ZnO + C → Zn + CO;
ZnO + CO → Zn + CO2;
ZnO + H2 → Zn + H2O.

С водой не взаимодействует. Проявляет амфотерные свойства, реагирует с растворами кислот и щелочей:
ZnO + 2HCl → ZnCl2 + H2O;
ZnO + 2NaOH + H2O → Na2[Zn(OH)4].

При сплавлении с оксидами металлов образует цинкаты:
ZnO + CoO → CoZnO2.

При взаимодействии с оксидами неметаллов образует соли, где является катионом:
2ZnO + SiO2 → Zn2SiO4,
ZnO + B2O3 → Zn(BO2)2.

Гидроксид цинка (II) Zn(OH)2 – бесцветное кристаллическое или аморфное вещество. Плотность 3,05 г/см3, при температуре выше 125°С разлагается:
Zn(OH)2 → ZnO + H2O.

Гидроксид цинка проявляет амфотерные свойства, легко растворяется в кислотах и щелочах:
Zn(OH)2 + H2SO4 → ZnSO4 + 2H2O;
Zn(OH)2 + 2NaOH → Na2[Zn(OH)4];

также легко растворяется в водном растворе аммиака с образованием гидроксида тетраамминцинка:
Zn(OH)2 + 4NH3 → [Zn(NH3)4](OH)2.

Получается в виде осадка белого цвета при взаимодействии солей цинка со щелочами:
ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl.

Южный федеральный университет | Пресс-центр: Ученые ЮФУ оценили угрозу наночастиц оксидов цинка и меди для здоровья человека


Специалисты ЮФУ из Научно-исследовательской лаборатории «Экологический мониторинг почв» кафедры почвоведения и оценки земельных ресурсов совместно с коллегами из Национального медицинского исследовательского центра онкологии факультета почвоведения Московского государственного университета, Синьцзянского института экологии и географии Китайской Академии наук, Люблинского медицинского и Ереванского государственного университетов оценили потенциальную опасность наночастиц оксидов цинка и меди для окружающей среды и здоровья человека.

Наночастицы (НЧ) относятся к материалам, имеющим общий размер в наноразмерном диапазоне, который не превышают 100 нм. Благодаря специфическим характеристикам и физико-химическим свойствам применение НЧ широко распространено в промышленности, например, в сельском хозяйстве и производстве товаров народного потребления, а также в других отраслях.

Однако широкое использование НЧ создает вероятность загрязнения окружающей среды. НЧ могут случайно или преднамеренно попадать в воздух, воду и почву и накапливаться там в течение длительного времени. Например, в культивируемые почвы НЧ попадают благодаря наноудобрениям, пестицидам, обработке семян, гидропонным растворам и агропленкам.

Наиболее распространенные металлооксидные НЧ – оксиды цинка и меди – очень вредны для широкого спектра организмов. Эти наночастицы токсичны первоначально, но при взаимодействии с растительными клетками и тканями, либо путем высвобождения ионных форм они способны наносить еще больший вред.

Токсичность наночастиц в значительной степени зависит от кислотности почвы, в которой они проходят стадию трансформацию, включающую в себя процессы агрегации, растворения, адсорбции (увеличения концентрации) и окисления-восстановления.

После того как НЧ оказываются в почве, они могут влиять на ее физические и химические свойства, взаимодействовать с другими загрязняющими веществами, образовывать новые виды токсичных соединений и нарушать микробную функциональность.

Влияние НЧ на различные виды растений зависит от размера частиц, их концентрации, продолжительности влияния, генотипов растений, условий эксперимента и синтеза НЧ. Например, известно, что НЧ оксидов цинка и меди воздействовали на съедобные растения, вызывая изменения всхожести семян; трансформации в структуре и ультраструктуре постоянных компонентов клетки; жизненно необходимых для её существования –клеточных и субклеточных органелл; угнетение роста корней и побегов; усиление окислительного стресса и повышение активности его ферментов; гибель клеток; подавление фотосинтеза; повреждение ДНК и снижение скорости движения воды через растение – транспирации.

Рост промышленного производства и, как следствие, загрязнения почвы создает более высокие шансы попадания наночастиц в организм человека по пищевой цепи. Также они способны попадать в клетки человека при пероральном и кожном воздействии из-за своего малого размера и возможности легко проникать через клеточную стенку и мембраны.

Доказано, что НЧ оксидов цинка и меди проходят через различные химические и биохимические реакции, которые могут повлиять на биологическую фиксацию азота, повредить клетку растения и вызвать серьезную угрозу для здоровья человека. Необходимо сопоставлять их содержание в удобрениях с фазой роста урожая с наибольшим откликом. Например, надлежащее применение небольших количеств НЧ имело максимальные преимущества для сельскохозяйственных культур, когда наночастицы наносились на семена до прорастания. Поэтому следует разработать ряд стандартов оценки безопасности и токсикологического риска, включая пути воздействия и безопасные уровни содержания НЧ оксидов цинка и меди.

Результаты исследований были опубликованы в журнале Environmental Geochemistry and Health, IF 3.662, Q1. 

Ранее ученые ЮФУ изучали токсичность наночастиц оксида меди на яровом ячмене. Подробнее можно прочитать в журнале Science of The Total Environment.

Общая характеристика меди, цинка, хрома, железа

Кодификатор ЕГЭ. Раздел 1.2.3. Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в Периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов.

У атомов переходных элементов (меди, цинка, хрома и железа) происходит заполнение энергетического d-подуровня.

Рассмотрим строение электронной оболочки этих элементов. У атомов цинка и железа заполнение электронной оболочки происходит согласно энергетическому ряду орбиталей (подуровней), который рассмотрен в статье Строение атома. Электронная конфигурация атома железа:

+26Fe   [Ar]3d64s2                       [Ar] 4s    3d

У атома цинка на происходит полное заполнение 3d-подуровня:

+30Zn   [Ar]3d104s2                       [Ar] 4s    3d

У атомов хрома и меди наблюдается «проскок» или «провал» электрона, когда один электрон переходит с более энергетически выгодного 4s-подуровня на менее выгодный 3d-подуровень. Этот переход обусловлен тем, что в результате образуются более устойчивые электронные конфигурации (3d5 у атома хрома и 3d10 у атома меди). Дело в том, что энергетически более выгодно, когда d-орбиталь заполнена наполовину или полностью.

Элемент Электронная конфигурация валентной зоны
Теоретическая Реальная
Медь +29Cu   [Ar]3d94s2 [Ar]3d104s1        

 [Ar] 4s    3d

Хром +24Cr  [Ar]3d44s2 [Ar]3d54s        

 [Ar] 4s    3d 

Мы используем, конечно же, реальную электронную конфигурацию меди и хрома, теоретическая будет неверной.

Обратите внимание! У всех 3d-элементов внешним энергетическим уровнем считается четвертый уровень и 4s-подуровень. При образовании катионов атомы металлов отдают электроны с внешнего энергетического уровня.

Атом  Электронная конфигурация Характерные валентности Число электронов на внешнем энергетическом уровне Характерные степени окисления
Хром [Ar]3d54s1 II, III. VI 1 +2, +3, +6
Железо [Ar]3d64s2 II, III. VI 2 +2, +3, +6
Медь [Ar]3d104s1 I, II 1 +1, +2
Цинк [Ar]3d104s2 II 2 +2

Рассмотрим характеристики хрома, железа, меди и цинка:

 

Название Атомная масса, а.е.м. Заряд ядра ЭО по Полингу Мет. радиус, нм Энергия ионизации, кДж/моль tпл, оС Плотность,

г/см3

Хром 51,996 +24 1,66 0,130 652,4 1856,9 7,19
Железо 55.845 +26 1.83 0,126 759,1 1538,85 7,874
Медь 63,546 +29 1,90 0,128 745,0 1083,4 8,92
Цинк 65,38 +30 1,65 0,138  905,8 419,6 7,133

Свойства соединений железа, меди, цинка и хрома.

Для хрома характерны степени окисления +2, +3 и +6. Оксид и гидроксид хрома (II) (CrO и Cr(OH)2) проявляют основные свойства. Степени окисления +3 соответствуют амфотерные  оксид и гидроксид: Cr2O3 и Cr(OH)3 соответственно. Соединения хрома +6 проявляют сильные кислотные свойства: оксид CrOи сразу две сильных кислоты: хромовая H2CrO4 и дихромовая H2Cr2O7. Соединения хрома (II) проявляют сильные восстановительные свойства, соединения хрома (VI) проявляют только сильные окислительные свойства.

Характерные степени окисления железа: +2 и +3. Оксид и гидроксид железа (II) — основные (FeO и Fe(OH)2), а соединения железа (III) проявляют амфотерные свойства (Cr2O3 и Cr(OH)3 соответственно) с преобладанием основных. Соединения железа (II) проявляют также восстановительные свойства.

Для меди характерны степени окисления +1 и +2. Оксид меди (I) CuO и гидроксид меди (I) CuOH — основные. Оксид и гидроксид меди (II) проявляют амфотерные свойства с преобладанием основных: CuO и Cu(OH)2.

Характерная степень окисления цинка +2. Соединения цинка (II) проявляют амфотерные свойства: ZnO и Zn(OH)2.

 

Элемент Степень окисления Тип и формула оксида Тип и формула гидроксида Окислительно-восстановительные свойства
Хром +2 CrO, основный Cr(OH)2, основание восстановитель, слабый окислитель
+3 Cr2O3, амфотерный Cr(OH)3, амфотерный гидроксид окислитель и восстановитель
+6 CrO3, кислотный H2CrO4 и H2Cr2O7, кислоты окислитель
Железо +2 FeO, основный Fe(OH)2, основание восстановитель и слабый окислитель
+3 Fe2O3, амфотерный Fe(OH)3, амфотерный гидроксид окислитель, очень слабый восстановитель
Медь +1 Cu2O, основный CuOH, основание восстановитель и слабый окислитель
+2 CuO, основный Cu(OH)2, основание окислитель
Цинк +2 ZnO, амфотерный Zn(OH)2, амфотерный гидроксид слабый окислитель

 

 

Окисление цинка, скорость — Справочник химика 21

    На скорость окисления масел в двигателях существенное влияние оказывают металлы, из которых изготовлены детали двигателя сталь, медь, свинец, цинк, олово, алюминий, кадмий, серебро, никель, хром и др. Некоторые из этих металлов оказывают явное каталитическое действие на процесс окисления масел, другие действуют слабо. Сильнейшими катализаторами окисления являются железо и медь, а также их соединения. Глубокому окислению способствуют и продукты первичного окисления компонентов масла. Они тоже могут взаимодействовать с металлами, давая вещества, в свою очередь ускоряющие процессы окисления. Было, например, установлено, что каталитической активностью обладают соли нафтеновых кислот, особенно нафтенаты свинца и меди. [c.14]
    Наилучшая очистка трихлорида достигается зонной плавкой. Такие примеси, как медь, железо, никель, кремний, цинк, свинец, натрий и др., имеют коэффициенты распределения 0,3 и хорошо оттесняются при зонной плавке трихлорида галлия в конец слитка. Коэффициент распределения у двухвалентного марганца 0,03, но его окисленные соединения имеют коэффициент распределения больше единицы и накапливаются в начальной, наиболее чистой части слитка. Зонная плавка хлорида при вертикальном перемещении зоны эффективнее, очевидно, из-за лучшего перемешивания конвекцией расплава в зоне. Но для промышленного применения рекомендуется горизонтальная зонная плавка (с несколько наклоненным положением образцов для предотвращения переноса трихлорида галлия), так как режим горизонтальной плавки легче контролируется и уменьшается опасность разрушения образца [52]. При скорости движения зоны порядка 1—4 см ч уже 30 проходов зоны позволяют получить примерно 85% всего хлорида в очищенном состоянии. [c.166]

    Если взять такие-металлы, как железо, свинец, медь, и поочередно соединять их с цинком, то цинк, находясь в электролите (растворах кислот, солей), будет являться анодом, т. е. будет посылать своп ионы в раствор на металлах-катодах будут протекать восстановительные процессы. Однако нельзя заранее предсказать-скорость окисления цинка и степень защиты им других металлов,, так как скорость окислительно-восстановительных реакций определяется поляризацией контактируемых металлов. [c.47]

    Химическая активность. Под химической активностью пыли понимается способность пыли вступать в реакции с различными веществами, в том числе и в реакции окисления и горения. Химическая активность пыли определяется природой вещества, из которого она образована (качественный и количественный состав и строение молекул вещества), и в больщой степени зависит от дисперсности пыли. С увеличением дисперсности увеличивается химическая активность пыли. Это объясняется тем, что химическая реакция между твердым веществом (пылинками) и газообразным окислителем протекает на поверхности твердого вещества. Скорость реакции зависит от размера поверхности соприкосновения реагирующих веществ, а так как с увеличением дисперсности увеличивается удельная поверхность, химическая активность возрастает. Например, если 500 г каменного угля в кусках сгорает в течение нескольких минут, то 500 г каменноугольной пыли сгорает за доли секунды. Металлы— железо, алюминий, цинк, обычно не горящие при нормальных условиях, в состоянии пудры моментально самовозгораются при контакте с воздухом. Поэтому пудры и порошки этих металлов готовят в среде инертного газа (N2 или Аг) и перетирают с твердым жиром. Химическая активность зависит от количества дефектов молекулярных и кристаллических структур, число которых в свою очередь зависит от дисперсности и природы вещества. [c.125]


    На скорость окисления масел в двигателях существенное влияние оказывают металлы, из которых изготовлены детали двигателя (сталь, медь, свинец, цинк, олово, алюминий, кадмий, серебро, никель, хром и др.). Некоторые из этих металлов оказывают явное каталитическое действие на процесс окисления масел, другие действуют слабо. Сильнейшими катализаторами окисления являются железо и медь, а также их соединения. Глубокому окислению спо- [c.7]

    Активными веществами отрицательного электрода ЭА в основном служат свинец, кадмий, цинк и железо. Из табл. 1 видно, что все эти вещества имеют относительно низкую стоимость на единицу массы и высокую емкость на единицу объема. Кадмий очень дорог. Выбор этих веществ в основном обусловлен обратимостью реакций окисления — восстановления и относительно высокими скоростями процессов. [c.20]

    Для обеспечения высоких скоростей анодных и катодных реакций необходимо применять катализаторы. Активными катализаторами анодного окисления водорода являются платиновые металлы и их сплавы, например Р1—Р(1. Однако эти металлы очень дороги. Для щелочных растворов предложены более дешевые катализаторы на основе никеля борид никеля N 26 или скелетный никелевый катализатор, получаемый выщелачиванием алюминия или цинка из сплава никель — алюминий и никель — цинк. [c.83]

    Восстановление проводили на установке, изображенной на рис. 4.5. Согласно данным, скорость восстановления не зависит от давления водорода в экспериментальной области это позволяет следить за ходом превращения по изменению давления, поскольку образующаяся вода конденсируется. Появившийся цинк удаляется вследствие окисления водой и посредством акцептирования с помощью металлического никеля, полученного восстановлением порошкообразного окисла, предварительно смешанного с окисью цинка. Количество используемого никеля достаточно для полного акцептирования цинка. Данные показывают, что замедленный перенос вещества не оказывает влияния на химический [c.249]

    Если окислению подвергался цинк, содержащий алюминий, то в некоторых узлах решетки ZnO будут находиться катионы А1 +, а не Zn +. Чтобы сохранить электронейтральность, необходимо увеличить число электронов в междоузлиях. Это должно повысить электропроводность ZnO, так как она пропорциональна с ., и понизить скорость (w ) окисления цинка, так как, чем больше g , тем меньше (см. уравнение VI, 96). Опыт под- [c.485]

    Алюминий и цинк повышают скорость окисления, как это показано на рис. 3 и 4. Скорость окисления быстро возрастает с увеличением содержания алюминия вплоть до 10 /в, после чего почти не изменяется. Перелом на кривой скорости окисления примерно соответствует концентрации насыщенного твердого раствора алюминия в магнии. Сплав с 18,66 /о А1 имеет двухфазную структуру, в то время как прочие изученные сплавы при температуре окисления были однофазны. Цинк увеличивает скорость окисления примерно в такой же степени, как и алюминий, однако в этой системе не были исследованы двухфазные сплавы. [c.705]

    Помимо указанных выше факторов, вызывающих снижение скорости реакций окисления, существуют и такие, которые могут интенсифицировать этот процесс. Мы имеем в виду каталитические влияния. Некоторые металлы и их соли ускоряют реакции окисления масла. Наиболее активными катализаторами такого рода являются медь, цинк, свинец. Образующиеся альдегиды, кетоны и кислоты интенсифицируют окисление масла. [c.143]

    Некоторые металлы-кобальт, марганец, цинк, свинец-способны ускорять высыхание масел, если их добавлять в виде солей органических кислот, входящих в состав льняного масла, канифоли, нафтеновых кислот и др. Природа и содержание этих солей, называемых сиккативами, сильно влияют на скорость высыхания и свойства получаемого покрытия. При введении в полимеризованные или окисленные масла сиккатива получают олифу. Обычно в олифу или маслосодержащий лак вводят смесь, состоящую из 0,12% сиккатива, содержащего кобальт, и 0,13% сиккатива, содержащего марганец, или 0,45% сиккатива, содержащего свинец. Следует помнить, что избыточное содержание сиккатива в некоторых случаях замедляет сушку покрытия, а если даже и ускоряет ее, то качество покрытия ухудшается. [c.14]

    В местах сброса между веществами происходит взаимодействие, но большинство реакций и образующихся соединений изучены неполно. Известно, например, что такие металлы, как железо, медь и цинк, легко образуют комплексные металлоорганические соединения, но скорости их образования, диссоциации и переноса не определены. Между различными металлами и органическими соединениями существует также конкуренция, приводящая к преимущественному образованию определенных соединений, поэтому фактически во всех случаях идентификация примесей выполнена не вполне корректно. Также не исследованы скорости разложения и окисления различных соединений, состав продуктов разложения и их влияние на рассматриваемую часть системы. [c.329]

    Другим направлением окислительного дегидрирования углеводорода является проведение процесса на промышленных цинк-железо-хромовых или каль-ций-никель-фосфатных катализаторах в присутствии кислорода. При добавлении небольших количеств О2 механизм процесса в сущности не меняется, т. е. включает стадию образования молекулярного водорода. Однако скорость брутто-реакции возрастает за счет частичного сгорания последнего, а также в результате уменьшения перепада температур в зоне реакции и частичной регенерации и активации катализатора. В то же время селективность процесса несколько снижается из-за глуф сого окисления (сгорания) некоторого количества целевых углеводородов, В цМЗм эффект от применения указанного приема, по-видимому, [c.358]


    Следует также помнить, что стандартный электродный потенциал характеризует окислительно-восстановп-тельные свойства металлов и их ионов при стандартных условиях, без учета многих факторов, влияющих на протекание химической реакции. Например, магний не будет вытеснять цинк из раствора его соли, хотя его электродный потенциал на 1,61 В отрицательнее цинка. Щелочные металлы не будут восстанавливать ионы железа и даже меди или серебра из растворов их солей, так как в этих случаях с большей скоростью будет протекать реакция окисления металлов ионами Н+-из воды. Именно поэтому электродные потенциалы этих металлов определяются косвенным путем. [c.208]

    Замещение галоида водородом при помощи омедненного цинка и восстановление амальгамой цинка будут. рассмотрены ниже. Большое значение имеет восстановление нитросоединений цинком , в щелочном растворе, так как при этом невозможны никакие побочные акции. Практически этот способ применяют прежде всего для получения гидразосоединений, из которых путем окисления можно получить азосоединения легче, чем методом непосредственного восстановления нитросоединений. Реакцию ведут при температуре кипения. Нитросоединения растворяют в растворе едких щелочей, иногда с добавлением некоторого количества спирта. К раствору при энергичном перемешивании дббавляют цинковую пыль с такой скоростью, чтобы кипение не было слишком бурным. Количество употребляемого цинка устанавливают в зависимости от природы восстанавливаемого продукта. В среднем применяют 30%-ный избыток цинка по отношению к теоретически необходимому. Выход и продолжительность реакции в большой степени зависят от чистоты цинковой пыли. Перед восстановлением цинковую пыль анализируют следующим образом. К 0,2 г цинковой пыли добавляют 125 мл 0,1 н. раствора бнхро-мата калия я Ь мл 20%-ной серной кислоты. Смесь встряхивают.до полного растворения цинка и разбавляют водой до 500 мл. К 100 мл этого раствора добавляют 2 г иодистого калия и 20 мл 20%-ной серной кислоты оставляют на 0,5 часа и титруют 0,1 н. раствором тиосульфата натрия. Цинковую пыль с содержанием менее 75% чистого цинка нельзя применять для восстановления во многих случаях требуется еще более чистый цинк. Эти реакции очень легко контролировать в связи с тем, что промежуточно образующиеся азосоединения окрашены при обесцвечивании раствора реакцию следует прервать, чтобы избежать дальнейшего восстановления до амина. К реакционной смеси добавляют спирт для растворения частично выделившегося гидразосоединения и фильтруют горячим для отделения от избытка цинковой пыли, добавляя к фильтрату. 32—774 [c.497]

    Соли марганца и железа не могли быть применены вследствие их разрушающего действия на гидроперекиси. Сол и меди, кобальта, никеля и ртути действуют сравнительно слабо. Четыреххлористос олово и пяти хлористая сурь—ма не оказывают совершенно никакого действия. Наоборот, хлористый цинк действует весьма сильно 2%-ный раствор этой соли увеличивает скорость окисления анисового альдегида в 50 раз, влияя в то же время лишь весьма незначительно на скорость разложения раствора гидроперекиси бензойной кислоты. [c.35]

    Так, например, при анодном окислении медно-цинковых или сурьмяноцинковых амальгам не удается полностью отделить цинк от меди или сурьмы, несмотря на большое различие в потенциалах. Легко окисляется только то количество цинка, которое присутствует в жидкой фазе амальгамы. Цинк же, выпавший в виде твердой фазы интерметаллического соединения, может быть выделен из амальгамы лишь при очень малых плотностях тока, поскольку скорость анодного окисления будет лимитироваться медленно протекающим растворением интермёталлического соединения в ртути. Сказанное иллюстрируется данными, приведенными в табл. 3. В этой же таблице для сопоставления приведены данные по анодному окислению медно-кадмиевых и медно-индиевых амальгам. Медь с этими металлами также образует соединения, но значительно более растворимые в ртути. Более подробные сведения обо всех упомянутых системах изложены нами в специальных работах [11—13]. [c.218]

    Например, согласно [253], цинк начинает окислять водород только после длительной выдержки в реакционной смеси. Так же медленно устанавливается стационарная каталитическая активность меди. Скорость окисления водорода на Ре, Со, N1 особенно резко зависит от состава реакционной смеси при повышении концентрации кислорода скорость окисления водорода заметно падает, хотя фаза окислов, в отличие от таких металлов, как 2п, Т1, V, Сг, Мп, здесь не образуется. Подобные изменения активности металлов при варьировании концентраций реагирующих веществ, так же как и гистерезисные явления при окислении водорода на платине и некоторых других металлах, связаны, очевидно, с поглощением реактантов катализаторами [264]. Например, уменьшение скорости окисления водорода на никеле сопровождается изменением порядка по кислороду от первого к нулевому, что сеи-детельствует о насыщении поверхности катализатора кислородом. Именно это обратимое насыщение поверхности слоя контакта и обусловливает столь резкий спад активности (у N1 и Ре — в 12,5 раза, у Со — в 3,4 раза). В зависимости от природы металла этот спад наступает при разных концентрациях кислорода в смеси (для массивных Ре, N1, Со — при 0,06 0,1 0,3% соответственно). Существенное значение имеет также и структура катализатора. Например, на пористом катализаторе, содержащем 40—70% N1, падение скорости окисления водорода не наблюдается даже при концентрации кислорода 2,5% и температуре 40° С [297]. Это обусловлено протеканием реакции на пористых контактах в данных условиях во внешнедиффузионной области, исключающей насыщение поверхности катализатора кислородом. Несмотря на то что реакция взаимодействия кислорода с водородом в избытке последнего хорошо протекает при комнатной температуре на ряде контактов, для очистки водородсодержащих газов от примеси кислорода наиболее широко применяются никелевые катализаторы. Это связано, с одной стороны, с тем, что никель намного (на 3 порядка) активнее С03О4, а с другой — с тем, что он лишь в 5—6 раз менее активен, чем дорогие и дефицитные платина и палладий [296]. В отличие от металлов подгруппы железа, платина и палладий эффективно окисляют водород и в его стехиометрической смеси с кислородом [295]. В избытке же кислорода проявляется различие между этими металлами. Активность палладия падает с ростом концентрации кислорода, в то время как скорость окисления водорода на платине до 25 % -го избытка кислорода даже растет. Поэтому для низкотемпературной очистки инертных газов от примеси кислорода, когда в очищаемую смесь добавляется практически стехиометрическое количество водорода, целесообразно использовать палладиевый катализатор, а для очистки кислорода от водорода пригодны только платиновые контакты [296]. [c.245]

    Влияние комплексных соединений на процесс окисления может быть обусловлен не только металлом, но и связанным с ним лигандом. В связи с этим были провед1ШЫ опыты с добавками к углеводороду свободного лиганда и хелата цинк 1 (III). Оказалось, что эти соединения практически одинаково тормозят окисление к-декана. Из рис. 3 (кривая 2) видно, что период индукции возрастает пропорционально концентрации этих ингибиторов, как это должно наблюдаться в медленных реакциях окисления углеводородов при небольшой скорости распада гидроперекисей на свободные радикальг. Эти опыты свидетельствуют о том, что активным центром молекул хелатов и свободного лиганда в обрыве цепей является альдими-новая группа — СН=]ЧН. [c.228]

    Были проведены две серии опытов [62], показавших достаточно отчетливо отсутствие хроматографических эффектов при дегидрировании бутиленов в дивинил. В первой из этих серий в поток гелия импульсно вводили в микрореактор при 300° смесь бутилена и водорода. Во второй серии при этой же температуре газ-носитель гелий был заменен водородом. В обоих случаях выходы дивинила оказались такими же, как и при отсутствии водорода в газовой фазе, т. е., несмотря на огромный избыток водорода, в газовой фазе он не оказывал влияния па поверхностный процесс окислительного дегидрирования. Следовательно, не было и обратной реакции гидрирования. Так же, как и в случае В —Мо-катали-затора (см. стр. 286), было показано, что обеднение поверхности окисного железо-цинк-хромового катализатора кислородом происходит в результате реакции селективного окисления бутилена, даже при добавлении к бутилену значительных количеств кислорода. После проведения серии опытов по окислительному дегидрированию с добавлением к бутилену кислорода в количествах, превышаюш их стехиометрические, катализатор способен поглоп1 ать кислород. На этом катализаторе также, по-видимому, при низких температурах стадия окисления молекулы бутилена протекает быстрее стадии последуюш его окисления поверхности катализатора Для проверки высказанного положения следует измерить скорость каждой стадии в отдельности. Однако при этом трудно отличать кислород, хемосорбированный поверхностью, от кислорода решетки. [c.295]

    При обсуждении этого вопроса нужно иметь в виду, что перекись водорода может реагировать либо с анионной частью молекулы, либо с катионной, либо с той и другой. Так, в литературе встречаются часто отрывочные описания реакции окисления некоторых анионов, например сульфида или сульфита, где внимание в основном обращено па какую-то другую часть молекулы. Поэтому здесь приведены не все примеры таких реакций. Перекись водорода очень часто функционирует как растворитель металлов за счет своего окисляющего действия так, кислый раствор перекиси водорода может конкурировать в этом отношении с царской водкой. Путем праглльного подбора кислоты можно добиться растворения почти всех металлов по этому вопросу опубликованы многочисленные работы [152]. Окисляющее действие перекиси водорода имеет значение также и в отношении коррозии, поскольку перекись (стр. 68) может образоваться как промежуточный продукт прн реакции кислорода с различными металлами. Представляет интерес влияние перекиси водорода на форму окисла, образующегося при коррозии [153], и на ход коррозии например, сообщается [154], что цинк может корродировать с образованием особенно гладкой поверхности в присутствии соляной кислоты и Н. О . Некоторые исследования, имеющие общий интерес, касаются влияния света и магнитного поля па реакции перекиси водорода. Дхар и Бхаттачариа [155] показали, что поглощение света некоторыми реакционными смесями вын1е. чем отдельными составными частями. Коллинс и Брайс [156] сообщают, что, как и следовало ожидать, магнитное поле 12 000 гаусс не оказывает влияния на скорость термического разложения 1—3%-ной перекиси водорода при 80°. [c.332]

    При исследовании влияния контакта полиизопрена с металлической поверхностью (латунь, ковар, сталь, медь, цинк, алюминий и др.) на его термоокисление, показано [359, 360], что в процессе окисления полиизонрена, как и в случае ПЭ и ПП, в его объеме происходит накопление каталитически активных соединений с металлом. Скорости реакций термического окисления, деструкции и структурирования изопренового каучука на металлах зависят от химической природы подложки. [c.143]

    Ha связывание золота (I) расходуется еще 1 моль унитиола таким образом, соотношение золота и унитиола в конечной точке титрования составляет 2 3. Следует иметь в виду, что в избытке реактива образовавшийся осадок унитиолата золота растворяется с образованием комплексного соединения, окрашивающего раствор в золотисто-желтый цвет. Конечная точка титрования определяется, однако, очень резко. Титрование ведут по току окисления унитиола на платиновом электроде при -Н0,8 В (Нас. КЭ), форма кривой б. В присутствии меди (II), если ее не больше чем 100-кратное количество по отношению к золоту, возрастание тока после конечной точки происходит особенно резко, так как образу-ющиееся при взаимодействии меди (И) с избытком унитиола комплексное соединение меди(1) окисляется на электроде с большей скоростью, чем чистый унитиол, т. е. медь играет в данном случае роль индикатора. Если меди в титруемом растворе нет, то рекомендуется прибавлять несколько капель раствора сульфата меди (около 10 мг считая на медь) к титруемому раствору. Остальные элементы, чаще всего сопутствующие золоту (свинец, цинк, [c.157]

    В ZnO, а Хауффе и Фирк [29] — на примере разбавленных растворов AI2O3 и ОагОз в ZnO. При данной температуре и данном давлении кислорода электропроводность модифицированных образцов выше, чем у чистого окисла. Наоборот, при растворении катионов с валентностью ниже двух (с замещением ионов Zn ) электронейтральность поддерживается за счет снижения концентрации свободных электронов и повышения концентрации ионов цинка в междуузлиях. Так, электропроводность раствора Zn0+l%Li20 ниже, чем у чистой окиси цинка [29]. Поскольку окисление цинка связано с миграцией его междуузельных ионов, добавление трехвалентного элемента в качестве примеси при данных температурах и давлении кислорода снижает скорости окисления, ибо приводит к уменьшению концентрации междуузельного цинка в пленке окисла. Напротив, из-за большей концентрации междуузельных ионов сплав Zn — Li окисляется быстрее, чем чистый цинк [30]. Таким образом, добавка одновалентных или трехвалентных ионов изменяет объемную концентрацию структурных дефектов в образце в противоположных направлениях. Если окажется, что и скорость каталитической реакции на этих модифицированных катализаторах изменяется в противоположных направлениях, то можно будет заключить, что лимитирующая стадия реакции связана с отклонениями от стехиометрического соотношения в окисле (коль скоро имеет место качественное соответствие между изменениями свойств объема и поверхности). [c.66]

    Саморазряд может происходить вследствие окислительновосстановительных процессов с участием солей металлов, которые существуют в разиовалентной форме. Например, в случае загрязнения электролита хлористым железом РеСЬ или хлорным железом РеС1з наблюдается на положительно.м электроде окисление хлористого железа до хлорного железа. В этом процессе двуокись марганца является окислителем. Образовавшееся хорошо растворимое хлорное железо на отрицательном электроде окисляет цинк до окиси или гидрата окиси цинка, а само восста-павливаетея до хлористого железа. Хлористое железо, находящееся в растворе, вызывает восстановление двуокиси марганца на положительном электроде и т. д. Скорость такого процесса обычно велика, и саморазряд элементов, содержащих примеси соединений железа или других разновалентных металлов, на- [c.57]

    Вследствие такой побочной реакции происходит бесполезная потеря восстановителя и соответственно снижается фарадеевский к. п. д. ХИТ. Взаимодействие восстановителя и воды обычно протекает по электрохимическому механизму, т. е. через анодное окисление восстановителя и катодное выделение водорода. На электроде устанавливается смешанный потенциал, лежащий между потенциалами восстановителя и водорода, что приводит к снижению разности потенциалов электродов разомкну- чгого ХИТ по сравнению с его э. д. с. Скорость взаимо-% ействия восстановителя с водой определяется раз- ностью электродных потенциалов восстановителя и Л одорода, поляризацией анодного окисления восстанови-перенапряжением водорода. Для восстановителей относительно небольшой разностью потенциалов по сравнению с потеницалом водорода и высоким перенапряжением водорода скорость выделения невелика. К таким восстановителям относятся свинец, кадмий и амальгамированный цинк. Для восстановителей, потенциал которых значительно отрицательнее потенциала водородного электрода, скорость взаимодействия с водой может быть весьма велика. К таким восстановителям относятся щелочные, щелочноземельные металлы и алюминий. Реакция взаимодействия воды с щелочными металлами происходит с такими высокими скоростями, что приводит к взрыву, поэтому щелочные металлы в чистом виде могут применяться лишь в ХИТ с неводными или расплавленными электролитами. [c.17]

    Очевидно, эти вещества образуют на поверхности металлических фаз пленку, которая задерживает коррозию металла. Например, в методиках одределения соединений свинца и цинка в пылях применен никаль — дибутилнафталинсульфонат натрия. Добавление небольшого количества этого вещества в растворитель окисленных соединений свинца и цинка — ЭДТА — снижает скорость растворения металлического свинца и цинка, не влияя на скорость растворения окисленных соединений. Однако если замедление окисления и, следовательно, растворения металлического свинца настолько велико, что он практически не переходит в раствор, то скорость окисления металлического цинка, потенциал которого имеет большее отрицательное значение, замедляется лишь незначительно и поэтому цинк все же переходит в раствор. [c.32]

    Окисление латуни. Подобное вторичное взаимодействие между окисным слоем и металлом было замечено ранее Даном в его работе с латунями. Данн показал, что латуни, содержащие 20—40% цинка, дают пленку, состоящую из почти чистой окиси цинка. Очевидно, что и цинк и медь подвергаются окислению, но окись меди затем восстанавливается цинком из нижележащей неизмененной латуни. Чтобы это восстановление прошло, должна иметь место диффузия цинка через латунь вверх, к поверхности раздела если цинк не может достаточно бьфстро диффундировать, то в слое останется окись меди. Ясно, что 1Состав первоначального сплава является здесь важным фактором. Данн нашел, что латуни, содержащие менее 14% цинка, дают окисные слои с содержанием меди и цинка почти в том же самом соотношении, что и в первоначальном сплаве. Эти медьсодержащие слои обладают гораздо меньшим защитным действием, чем слои чистой окиси цинка, образующиеся на латуни, содержащей более 20% цинка. Все сплавы с содержанием цинка менее 14% окислялись со скоростью, подобной скорости окисления меди, тогда как группа сплавов [c.140]

    Медь и никель дают наиболее заметное увеличение скорости окисления из всех исследованных элементов, включая алюминий и цинк. 0,237о Си увеличивают скорость окисления примерно на такую же величину, как 9,49 /о N1. [c.705]


цинк | Свойства, использование и факты

Возникновение, использование и свойства

Цинк, немного более распространенный, чем медь, составляет в среднем 65 граммов (2,3 унции) на каждую тонну земной коры. Основным минералом цинка является сульфидный сфалерит (цинковая обманка), который вместе с продуктами его окисления смитсонитом и гемиморфитом составляет почти всю цинковую руду в мире. О самородном цинке сообщают из Австралии, Новой Зеландии и США, а ведущими производителями цинка в начале 21 века являются Китай, Австралия и Перу.Для минералогических свойств цинка см. самородный элемент.

Британская викторина

118 Названия и символы таблицы Менделеева

Периодическая таблица Менделеева состоит из 118 элементов. Насколько хорошо вы знаете их символы? В этой викторине вам будут показаны все 118 химических символов, и вам нужно будет выбрать название химического элемента, который представляет каждый из них.

Цинк является важным микроэлементом в организме человека, где он содержится в высоких концентрациях в красных кровяных тельцах как важная часть фермента карбоангидразы, который способствует множеству реакций, связанных с метаболизмом углекислого газа. Цинк, присутствующий в поджелудочной железе, может способствовать хранению инсулина. Цинк входит в состав некоторых ферментов, переваривающих белок в желудочно-кишечном тракте. Дефицит цинка в ореховых и плодовых деревьях вызывает такие заболевания, как розетка пекана, мелкий и крапчатый лист.Цинк функционирует в гемосикотипсине крови улиток, транспортируя кислород аналогично железу в гемоглобине крови человека.

Металлический цинк получают путем обжига сульфидных руд с последующим выщелачиванием окисленного продукта в серной кислоте или плавлением его в доменной печи. Цинк извлекается из выщелачивающего раствора путем электролиза или конденсируется из доменного газа, а затем отгоняется от примесей. Для получения конкретной информации о добыче, извлечении и рафинировании цинка, см. переработка цинка.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Основное применение металлического цинка — цинкование чугуна и стали против коррозии, а также производство латуни и сплавов для литья под давлением. Сам цинк образует непроницаемое покрытие из своего оксида при воздействии атмосферы, и, следовательно, металл более устойчив к обычной атмосфере, чем железо, и корродирует с гораздо меньшей скоростью. Кроме того, поскольку цинк склонен к окислению, а не железо, некоторая защита обеспечивается стальной поверхности, даже если часть ее обнажается через трещины.Цинковое покрытие формируется методом горячего цинкования или электрогальванизации.

Горячее цинкование — это наиболее распространенный способ покрытия стали цинком. Это может быть периодический процесс, известный как общее цинкование или непрерывное покрытие рулонов стальной полосы. При обычном цинковании сталь протравливают в кислоте, обрабатывают флюсующими добавками, а затем погружают в ванну с расплавленным цинком при температуре около 450 ° C (840 ° F). Слои сплава железа с цинком сформированы на поверхности и покрыты внешним слоем цинка.Обрабатываемые таким образом объекты варьируются от небольших гаек и болтов до стальных оконных рам и больших балок, используемых в строительстве. Обычно в этом процессе используется цинк обыкновенного сорта, содержащий до 1,5% свинца.

При электролитическом цинковании цинк наносится на стальную полосу в 20 последовательных ячейках электролитического покрытия. Есть несколько успешных конструкций ячеек; здесь обсуждается простая вертикальная ячейка, чтобы объяснить принцип. Полоса, подключенная к отрицательной стороне постоянного тока через проводящие ролики большого диаметра, расположенные над и между двумя ячейками, погружается в резервуар с электролитом погруженным опускающим роликом.Частично погруженные аноды, расположенные напротив полосы, подключены к положительной стороне электрического тока тяжелыми шинами. Катионы цинка (т.е. положительно заряженные атомы цинка), присутствующие в электролите, преобразуются током в обычные атомы цинка, которые осаждаются на полосе. Ванна снабжается катионами цинка либо цинковыми анодами, которые непрерывно растворяются под действием постоянного тока, либо соединениями цинка, непрерывно добавляемыми в электролит. В последнем случае аноды изготовлены из нерастворимых материалов, таких как титан, покрытый оксидом иридия.Электролит представляет собой кислый раствор сульфида цинка или хлорида цинка с другими добавками для ванн для улучшения качества покрытия и выхода по току. Толщину покрытия легче контролировать, чем в процессе горячего погружения, из-за хорошего соотношения между электрическим током и нанесенным цинком.

Отрицательный электрод (внешняя банка) в одном из распространенных типов сухих электрических элементов состоит из цинка. Еще одна важная серия сплавов — это сплавы, образованные добавлением от 4 до 5 процентов алюминия к цинку; они имеют относительно низкую температуру плавления, но обладают хорошими механическими свойствами и могут быть отлиты под давлением в стальных штампах.Значительное количество цинка в рулонном виде используется для кровли, особенно в Европе; небольшие добавки меди и титана улучшают сопротивление ползучести, то есть сопротивление постепенной деформации.

Свежеотлитый цинк имеет голубовато-серебряную поверхность, но медленно окисляется на воздухе с образованием сероватой защитной оксидной пленки. Цинк высокой чистоты (99,99%) пластичен; Так называемый «прайм-вестерн» (чистота 99,8%) является хрупким в холодном состоянии, но при температуре выше 100 ° C (212 ° F) его можно свернуть в листы, которые останутся гибкими.Цинк кристаллизуется в гексагональной плотноупакованной структуре. Когда железо и цинк вместе подвергаются воздействию агрессивной среды, они составляют электролитическую ячейку, и цинк подвергается атаке (окисляется до иона Zn 2 + ) преимущественно из-за более высокого электродного потенциала. Эта так называемая протекторная защита в сочетании с гораздо большей коррозионной стойкостью цинка в атмосферных условиях является основой для цинкования.

Природный цинк представляет собой смесь пяти стабильных изотопов: 6 4 Zn (48.6 процентов), 6 6 Zn (27,9 процента), 6 7 Zn (4,1 процента), 6 8 Zn (18,8 процента) и 7 0 Zn (0,6 процентов).

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Степень окисления цинка может быть увеличена до +3, что коренным образом меняет химию элемента — ScienceDaily

Новая статья исследователя VCU Пуру Йена «показывает, что фундаментальные химические свойства атома могут быть изменены» и может привести к синтезу новых материалов. с приложениями во многих отраслях.

Цинк традиционно имеет валентность два, что означает, что два электрона принимают участие в химической реакции элемента. Новая статья исследователя из Университета Содружества Вирджинии Пуру Джена, доктора философии, показывает, что химический состав цинка можно фундаментально изменить, сделав его трехвалентным — или трехвалентным — с помощью подходящего реагента.

«Эта технология позволяет вам управлять химией на фундаментальном уровне, делая возможным синтез новых материалов с заданными свойствами», — сказала Йена, заслуженный профессор физики Колледжа гуманитарных и естественных наук.

Хотя цинк классифицируется как элемент переходного металла, его третья электронная оболочка, расположенная вокруг ядра и содержащая электроны, является полной и, в отличие от обычных переходных металлов, не участвует в химической реакции цинка и не позволяет цинку быть магнитный. Однако Йена обнаружила, что при взаимодействии с высокостабильными трианионами свойства цинка могут изменяться.

«Его [третья оболочка] d-электроны участвуют в химических реакциях, а цинк может нести магнитный момент», — сказала Йена.«Это исследование показывает, что фундаментальные химические свойства атома можно изменить».

Статья

Йены «Реализация состояния окисления Zn3 +» была опубликована в журнале Nanoscale . Исследование финансировалось Министерством энергетики США.

Йена, автор около 650 статей и 14 книг, более 35 лет проводит исследования атомных кластеров и наночастиц.

«Замечательные свойства наноматериалов заключаются в том, что они могут сильно отличаться от своих массивных аналогов.Например, золото, благородный металл, может реагировать, когда его размер уменьшается до нанометров, — сказал он. — Это то, что мы называем современной алхимией.

По его словам, новаторские открытия Йены по цинку основаны на его прошлой работе, поскольку он и его коллеги разрабатывают атомные кластеры, которые могут быть очень стабильными при наличии нескольких зарядов.

«Мы всегда исследуем новые материалы со свойствами, которые люди считали недостижимыми; мы делаем это, контролируя их размер, состав и состояние заряда», — сказал он.«Возможности безграничны».

История Источник:

Материалы предоставлены Университетом Содружества Вирджинии . Оригинал написан Брайаном МакНилом. Примечание. Содержимое можно редактировать по стилю и длине.

Степени окисления переходных металлов

Степень окисления элемента связана с количеством электронов, которые атом теряет, получает или использует при соединении с другим атомом в соединениях.Он также определяет способность атома окислять (терять электроны) или восстанавливать (приобретать электроны) другие атомы или частицы. Практически все переходные металлы имеют несколько экспериментально наблюдаемых состояний окисления.

Введение

Для заполнения атомных орбиталей требуется определенное количество электронов. S-блок состоит из элементов I и II групп, щелочных и щелочноземельных металлов (к этому блоку относятся натрий и кальций). Группы с XIII по XVIII состоят из p-блока, который содержит неметаллы, галогены и благородные газы (общие элементы — углерод, азот, кислород, фтор и хлор).Переходные металлы находятся в d-блоке между группами III и XII. Если следующая таблица кажется странной или если ориентация неясна, просмотрите раздел об атомных орбиталях.

Таблица \ (\ PageIndex {1} \)
с Орбитальная p Орбитали d Орбитали
1 орбиталь, 2 электрона 3 орбитали: p x , p y , p z ; 6 электронов 5 орбиталей: d x 2 -y 2 , d z 2 , d xy , d yz , d xz ; 10 электронов
Орбиталь с наибольшей энергией для данного квантового числа n Вырожденные с s-орбиталью квантового числа n + 1

Главное, что нужно помнить об электронной конфигурации, — это то, что наиболее стабильная конфигурация благородного газа идеальна для любого атома.Формирование связей — способ приблизиться к этой конфигурации. В частности, переходные металлы образуют более мягкие связи с анионами, катионами и нейтральными комплексами по сравнению с другими элементами. Это связано с тем, что d-орбиталь довольно размыта (в большей степени f-орбиталь серий лантанидов и актинидов).

Конфигурации нейтрального атома электронов

Счет по периодической таблице — простой способ определить, какие электроны существуют на каких орбиталях. Как упоминалось ранее, подсчитывая протоны (атомный номер), вы можете определить количество электронов в нейтральном атоме.Блочная организация ускоряет этот процесс. Например, если бы мы были заинтересованы в определении электронной организации Ванадий (атомный номер 23), мы бы начали с водорода и пошли вниз по Периодической таблице).

1s (H, He), 2s (Li, Be), 2p (B, C, N, O, F, Ne), 3s (Na, Mg), 3p (Al, Si, P, S, Cl, Ar ), 4s (K, Ca), 3d (Sc, Ti, V).

Если вы не уверены в этой системе счета и в заполнении электронных орбиталей, см. Раздел, посвященный конфигурации электронов.

Рисунок \ (\ PageIndex {1} \): Периодическая таблица (общественное достояние; PubChem)

Ссылка на периодическую таблицу ниже подтверждает эту организацию. У нас есть три элемента на трехмерной орбите. Поэтому мы пишем в порядке заполнения орбиталей.

2 2 2p 6 3s 2 3p 6 4s 2 3d 3

или

[Ar] 4s 2 3d 3 .

Конфигурации нейтральных атомов переходных металлов четвертого периода приведены в Таблице \ (\ PageIndex {2} \).

Таблица \ (\ PageIndex {2} \)
SC Ti В Cr Mn Fe Co Ni Cu Zn
[Ar] 4s 2 3d 1 [Ar] 4s 2 3d 2 [Ar] 4s 2 3d 3 [Ar] 4s 2 3d 4 [Ar] 4s 2 3d 5 [Ar] 4s 2 3d 6 [Ar] 4s 2 3d 7 [Ar] 4s 2 3d 8 [Ar] 4s 2 3d 9 [Ar] 4s 2 3d 10
[Ar] 4s 1 3d 5 [Ar] 4s 1 3d 10

Хром и медь кажутся аномальными.Кратко посмотрите, где элемент Хром (атомный номер 24) находится в Периодической таблице (рисунок \ (\ PageIndex {1} \)). Электронная конфигурация хрома — не [Ar] 4s 2 3d 4 , а [Ar] 4s 1 3d 5 . Это связано с тем, что наполовину заполненное трехмерное многообразие (с одним 4s-электроном) более стабильно, чем частично заполненное d-многообразие (и заполненное 4s-многообразие). Вы заметите из Таблицы \ (\ PageIndex {2} \), что медь демонстрирует подобное явление, хотя и с полностью заполненным d-многообразием.

Состояния окисления ионов переходных металлов

Рассматривая ионы, мы добавляем или вычитаем отрицательные заряды атома. Учет атомных орбиталей при назначении степеней окисления помогает понять, что переходные металлы представляют собой особый случай, но не исключение из этого удобного метода. Атому, который принимает электрон для достижения более стабильной конфигурации, присваивается степень окисления -1. Пожертвование электрона тогда +1. Когда переходный металл теряет электроны, он имеет тенденцию терять свои s-орбитальные электроны раньше, чем любой из своих d-орбитальных электронов.Для более подробного обсуждения формы этих соединений см. Образование координационных комплексов.

Пример \ (\ PageIndex {1} \)

Запишите электронные конфигурации:

  1. нейтральное железо,
  2. ион железа (II) и
  3. ион железа (III).
Ответ

Атомный номер железа 26, поэтому в составе 26 протонов.

  1. Fe: [Ar] 4s 2 3d 6
  2. Fe 2 + : [Ar] 3d 6
  3. Fe 3 + : [Ar] 3d 5

Обратите внимание, что s-орбитальные электроны теряются сначала , затем d-орбитальные электроны.

Пример \ (\ PageIndex {2} \)

Определите более стабильную конфигурацию между следующей парой:

  1. [Kr] 5s 2 4d 6 vs. [Kr] 5s 1 4d 7
  2. Ag 1 + в сравнении с Ag 2 +
Ответ
  1. Это описывает рутений. Есть только один электрон 5s.
  2. Однократно окисленное серебро ([Kr] 4d 10 ) более стабильно, чем дважды — ([Kr] 4d 9 ).

Состояния множественного окисления

Большинство переходных металлов имеют несколько степеней окисления, поскольку для переходных металлов относительно легко потерять электрон (ы) по сравнению с щелочными металлами и щелочноземельными металлами. Щелочные металлы имеют один электрон на своей валентной s-орбитали, а их ионы почти всегда имеют степень окисления +1 (из-за потери одного электрона). Точно так же щелочноземельные металлы имеют два электрона на s-орбиталях валентности, что приводит к образованию ионов со степенью окисления +2 (от потери обоих).Однако переходные металлы более сложны и демонстрируют диапазон наблюдаемых состояний окисления, главным образом из-за удаления d-орбитальных электронов. В следующей таблице описаны наиболее распространенные степени окисления элементов периода 3.

Скандий — один из двух элементов в первом периоде переходного металла, который имеет только одну степень окисления (цинк — другой, со степенью окисления +2). Все остальные элементы имеют по крайней мере две разные степени окисления. Марганец, который находится в середине периода, имеет наибольшее количество степеней окисления и, действительно, самую высокую степень окисления за весь период, поскольку он имеет пять неспаренных электронов (см. Таблицу ниже).

Чтобы помнить о стабильности более высоких степеней окисления переходных металлов, важно знать тенденцию: стабильность более высоких степеней окисления постепенно увеличивается вниз по группе. Например, в группе 6 (хром) Cr наиболее стабилен в степени окисления +3, а это означает, что вы не найдете много стабильных форм Cr в степенях окисления +4 и +5. Напротив, существует много стабильных форм молибдена (Mo) и вольфрама (W) в степенях окисления +4 и +5.

Пример \ (\ PageIndex {3} \)

Что делает цинк стабильным, как Zn 2 + ? Что делает скандий стабильным как Sc 3 + ?

Ответ

Цинк имеет нейтральную конфигурацию [Ar] 4s 2 3d 10 .Потеря 2 электронов не изменяет полную d-орбиталь. Нейтральный скандий записывается как [Ar] 4s 2 3d 1 . Потеря 3 электронов переводит конфигурацию в благородное состояние с валентностью 3p 6 .

Пример \ (\ PageIndex {4} \)

Почему железо почти всегда Fe 2 + или Fe 3 + ?

Ответ

Железо записывается как [Ar] 4s 2 3d 6 .Потеря 2 электронов с s-орбитального (3d 6 ) или 2 s- и 1 d-орбитального (3d 5 ) электрона представляет собой довольно стабильные состояния окисления.

Пример \ (\ PageIndex {5} \)

Напишите оксиды марганца в нескольких различных степенях окисления. Какие из них возможны и / или разумны?

Ответ

Хотя Mn +2 является наиболее стабильным ионом марганца, d-орбиталь может быть удалена от 0 до 7 электронов.Следовательно, соединения марганца варьируются от Mn (0) как Mn (s) , Mn (II) как MnO, Mn (II, III) как Mn 3 O 4 , Mn (IV) как MnO 2 , или диоксид марганца Mn (VII) в перманганат-ионе MnO 4 и т. д.

Состояние окисления переходных металлов в соединениях

Если дано ионное соединение, такое как \ (\ ce {AgCl} \), вы можете легко определить степень окисления переходного металла. В этом случае вас попросят определить степень окисления серебра (Ag).Поскольку мы знаем, что хлор (Cl) находится в группе галогенов периодической таблицы, мы знаем, что он имеет заряд -1, или просто Cl . Вдобавок, увидев, что нет общего заряда для \ (\ ce {AgCl} \) (который определяется при взгляде на верхний правый угол соединения, то есть AgCl # , где # представляет собой общий заряд соединение), можно сделать вывод, что серебро (\ (\ ce {Ag} \)) имеет степень окисления +1. Это дает нам Ag + и Cl , в которых положительный и отрицательный заряд компенсируют друг друга, в результате чего получается общий нейтральный заряд; поэтому +1 подтверждается как степень окисления серебра (Ag).{-}} \)). Поскольку есть два брома каждый с зарядом -1. Кроме того, мы знаем, что \ (\ ce {CoBr2} \) имеет общий нейтральный заряд, поэтому мы можем сделать вывод, что катион (кобальт), \ (\ ce {Co} \) должен иметь степень окисления +2 до нейтрализовать заряд -2 от двух анионов брома.

Пример \ (\ PageIndex {7} \)

Какова степень окисления цинка в \ (\ ce {ZnCO3} \). (Примечание: анион \ (\ ce {CO3} \) имеет зарядовое состояние -2)

Ответ

Зная, что \ (\ ce {CO3} \) имеет заряд -2, и зная, что общий заряд этого соединения нейтрален, мы можем заключить, что цинк имеет степень окисления +2.{-}} \).

Этот пример также показывает, что атомы марганца могут иметь степень окисления +7, которая является наивысшей возможной степенью окисления для переходных металлов четвертого периода.

Марганец: пример из практики

Марганец широко изучается, поскольку он является важным восстановителем в химическом анализе, а также изучается в биохимии для катализа и в металлургии для обогащения сплавов. В растениях марганец требуется в следовых количествах; более сильные дозы начинают вступать в реакцию с ферментами и подавлять некоторые клеточные функции.Благодаря гибкости марганца в отношении многих степеней окисления, он становится хорошим примером для описания общих тенденций и концепций, лежащих в основе электронных конфигураций.

Рисунок \ (\ PageIndex {2} \): (слева) грубый фрагмент блестящего серебристого металла (CC BY-SA 3.0; Томихандорф через Википедию) (справа). В некоторых наскальных рисунках Ласко используются пигменты на основе марганца. (Public Domain; Prof saxx через Wikipedia)

Считается, что электронные конфигурации неспаренных электронов парамагнитны и реагируют на близость магнитов.{0} \ nonumber \]

Поскольку все 3p-орбитали парные, этот комплекс диамагнитен.

Сводка

Окислительные состояния переходных металлов подчиняются общим правилам для большинства других ионов, за исключением того факта, что d-орбиталь вырождена с s-орбиталью большего квантового числа. Переходные металлы достигают стабильности, располагая свои электроны соответствующим образом и окисляясь, или они теряют электроны в пользу других атомов и ионов. Эти образующиеся катионы участвуют в образовании координационных комплексов или синтезе других соединений.

Вопросы

Определите степень окисления переходных металлов, содержащихся в этих нейтральных соединениях. Примечание: переходный металл подчеркнут в следующих соединениях.

(A) Медь (I) Хлорид: Cu Cl (B) Медь (II) Нитрат: Cu (NO 3 ) 2 (C) Золото (V) Фторид: Au F 5
(D) Железо (II) Оксид: Fe O (E) Железо (III) Оксид: Fe 2 O 3 (F) Свинец (II) Хлорид: Pb Cl 2
(G) Свинец (II) Нитрат: Pb (NO 3 ) 2 (H) Марганец (II) Хлорид: Mn Cl 2 (I) Триоксид молибдена : Mo O 3
(J) Никель (II) Гидроксид: Ni (OH) 2 (K) Платина (IV) Хлорид: Pt Cl 4 (L) Серебро Сульфид: Ag 2 S
(M) Вольфрам (VI) Фторид: W F 6 (N) Ванадий (III) Нитрид: V N (O) Цирконий Гидроксид: Zr (OH) 4
  1. Определите степень окисления переходного металла для общего ненейтрального соединения: манганат ( Mn O 4 2 )
  2. Почему переходные металлы имеют большее количество степеней окисления, чем металлы основной группы (т.е. щелочные металлы и щелочноземельные металлы)?
  3. Какой переходный металл имеет наибольшее количество степеней окисления?
  4. Почему число степеней окисления переходных металлов увеличивается в середине группы?
  5. Какие два переходных металла имеют только одну степень окисления?

Список литературы

  1. Oxtoby D, Gillis HP, Campion, A. Principles of Modern Chemistry, 6 th ed. Томсон Брукс / Коул, Бельмонт.2008; 313-318.
  2. Audi A, Sherwood, P. Рентгеновские фотоэлектронные спектроскопические исследования в валентной зоне марганца и его оксидов, интерпретированные расчетами кластерной и зонной структуры ; Серфинг. Интерфейс Анал .; 2002; 33; 274-282.
  3. Рини С., Квик-Урибе С., Смит Д. Состояние окисления марганца и его значение для токсичности. Chem. Res. Toxicol .; 2002; 15; 1119-1126.
  4. Справочник CRC, 88 th ed. Sct.

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *