Sp3 гибридизацией можно объяснить геометрическую форму молекулы nh3: Типы гибридизации.

Содержание

Типы гибридизации.

Ковалентная связь наиболее распространена в мире органических веществ, она характеризуется насыщаемостью, поляризуемостью и направленностью в пространстве.

Насыщаемость ковалентной связи состоит в том, что число общих электронных пар, которые способен образовать тот или иной атом, ограничено. Благодаря этому ковалентные соединения имеют строго определенный состав. Поэтому, например, существуют молекулы Н 2 , N 2 , СН 4 , но нет молекул Н 3 , N 4 , СН 5 .

Поляризуемость ковалентной связи заключается в способности молекул (и отдельных связей в них) изменять свою полярность под действием внешнего электрического поля — поляризоваться.

В результате поляризации неполярные молекулы могут стать полярными, а полярные — превратиться в еще более полярные вплоть до полного разрыва отдельных связей с образованием ионов:

Направленность ковалентной связи обусловлена тем, что р-, d- и f-облака определенным образом ориентированы в пространстве.

Направленность ковалентной связи влияет на форму молекул веществ, их размеры, межатомные расстояния, валентный угол, т. е. на геометрию молекул.

Более полное представление о форме молекул органических и неорганических веществ можно составить на основе гипотезы о гибридизации атомных орбиталей. Она была предложена Л. Полингом (США) для объяснения установленного с помощью физических методов исследования веществ факта равноценности всех химических связей и симметричного расположения их относительно центра молекул СН 4 , BF 3 , ВеСl 2 . В образовании σ-связей в каждом случае от центрального атома (С, В, Be) должны были участвовать электроны, находящиеся в разных состояниях (s и р), поэтому они не могли быть равноценными. Теория оказалась неспособной объяснить факты, возникло противоречие, которое было разрешено с помощью новой гипотезы. Это один из примеров, показывающих путь развития познания человеком окружающего мира, возможность все более глубокого проникновения в сущность явлений.

С гипотезой гибридизации атомных орбиталей вы знакомились в курсе органической химии на примере атома углерода. Напомним об этом еще раз.

При образовании молекулы метана СН 4 атом углерода из основного состояния переходит в возбужденное:

Внешний электронный слой возбужденного атома углерода содержит один s- и три неспаренных р-электрона, которые и образуют четыре σ-связи с четырьмя s-электронами атомов водорода. При этом следует ожидать, что три связи С—Н, образованные за счет спаривания трех р-электронов атома углерода с тремя s-электронами трех атомов водорода (s-р σ-связь), должны бы отличаться от четвертой(s-s) связи прочностью, длиной, направленностью. Изучение электронной плотности в молекулах метана показывает, что все связи в его молекуле равноценны и направлены к вершинам тетраэдра (рис. 10). Согласно гипотезе о гибридизации атомных орбиталей четыре ковалентные связи молекулы метана образуются с участием не «чистых» s- и р-облаков атома углерода, а с участием так называемых гибридных, т.

е. усредненных, равноценных электронных облаков.


Рис. 10. Шаростержневая модель молекулы метана

Согласно этой модели, число гибридных атомных орбиталей равно числу исходных «чистых» орбиталей. Соответствующие гибридные облака выгоднее по геометрической форме, чем s- и р-облака, их электронная плотность распределена иначе, что обеспечивает более полное перекрывание с s-облаками атомов водорода, чем было бы у «чистых» s- и р-облаков.

В молекуле метана и в других алканах, а также во всех молекулах органических соединений по месту одинарной связи атомы углерода находятся в состоянии sp 3 -гибридизации, т. е. у атома углерода гибридизации подверглись одно s- и три р-атомные облака и образовались четыре одинаковые гибридные sp 3 -атомные орбитали облака.

В результате перекрывания соответствующих четырех гибридных sр 3 -облаков атома углерода с s-облаками четырех атомов водорода образуется тетраэдрическая молекула метана с четырьмя одинаковыми σ-связями, расположенными под углом 109°28″ (рис. 11).

Рис. 11.
Схемы sр 3 -гибридизации валентных электронных облаков (а) и образования связей в молекуле метана (б)

Этот тип гибридизации атомов и, следовательно, тетраэдрическое строение будут характеризовать также молекулы соединений аналога углерода — кремния: SiH 4 , SiCl 4 .

При образовании молекул воды и аммиака также происходит sр 3 -гибридизация валентных атомных орбиталей атомов кислорода и азота. Однако если у атома углерода все четыре гибридные sр 3 -облака заняты общими электронными парами, то у атома азота одно sр 3 -облако занято неподеленной электронной парой, а у атома кислорода ими заняты уже два sр 3 -облака (рис. 12).

Рис. 12.
Формы молекул аммиака, воды и фтороводорода

Наличие неподеленных электронных пар приводит к уменьшению углов связей (табл. 8) по сравнению с тетраэдрическими (109°28″).

Таблица 8
Взаимосвязь числа неподеленных электронных пар и угла связи в молекулах

sр 3 -Гибридизация наблюдается не только у атомов в сложных веществах, но и у атомов в простых веществах. Например, у атомов такой аллотропной модификации углерода, как алмаз.

В молекулах некоторых соединений бора имеет место sp 2 -гибридизация валентных атомных орбиталей атома бора.

У атома бора в возбужденном состоянии в гибридизации участвуют одна s- и две р-орбитали, в результате чего образуются три sp 2 -гибридные орбитали, оси соответствующих гибридных облаков расположены в плоскости под углом 120° друг к другу (рис. 13).

Рис. 13.
Схемы 8р 2 -гибридизации и расположения sр 2 -облаков в пространстве

Поэтому молекулы таких соединений, например BF3, имеют форму плоского треугольника (рис. 14).

Рис. 14.
Строение молекулы BF3

В органических соединениях, как вы знаете, sp 2 -гибридизация характерна для атомов углерода в молекулах алкенов по месту двойной связи, чем и объясняется плоскостное строение этих частей молекул, а также молекул диенов и аренов. sp 2 -Гибридизация наблюдается также у атомов углерода и в такой аллотропной модификации углерода, как графит.

В молекулах некоторых соединений бериллия наблюдается sр-гибридизация валентных орбиталей атома бериллия в возбужденном состоянии.

Два гибридных облака ориентируются друг относительно друга под углом 180° (рис. 15), и поэтому молекула хлорида бериллия ВеСl 2 имеет линейную форму.

Рис. 15.
Схемы sp-гибридизации и расположения sp-облаков в пространстве

Аналогичный тип гибридизации атомных орбиталей существует у атомов углерода в алкинах — углеводородах ряда ацетилена — по месту тройной связи.

Такая гибридизация орбиталей характерна для атомов углерода в еще одной его аллотропной модификации — карбине:

В таблице 9 приведены виды геометрических конфигураций молекул, соответствующие некоторым типам гибридизации орбиталей центрального атома А с учетом влияния числа свободных (несвязывающих) электронных пар.

Таблица 9
Геометрические конфигурации молекул, соответствующие различным типам гибридизации внешних электронных орбиталей центрального атома

Вопросы и задания к § 7

  1. В молекулах водородных соединений углерода, азота и кислорода, формулы которых СН 4 , NH 3 и Н 2 O, валентные орбитали центральных атомов неметаллов находятся в состоянии sр 3 -гибридизации, но валентные углы между связями разные — 109°28″ 107°30″ и 104°27″ соответственно.
    Чем это можно объяснить?
  2. Почему графит электропроводен, а алмаз нет?
  3. Какую геометрическую форму будут иметь молекулы двух фторидов — бора и азота (BF 3 и NF 3 соответственно)? Дайте обоснованный ответ.
  4. Молекула фторида кремния SiF 4 имеет тетраэдрическое строение, а молекула хлорида брома ВСl 3 — форму треугольника — плоскостное. Почему?

Для объяснения фактов, когда атом образует большее число связей, чем число неспаренных электронов в его основном состоянии (например, атом углерода), используется постулат о гибридизации близких по энергии атомных орбиталей. Гибридизация АО происходит при образовании ковалентной связи

, если при этом достигается более эффективное перекрывание орбиталей. Гибридизация атома углерода сопровождается его возбуждением и переносом электрона с 2s — на 2р -АО:

Основное и возбужденное состояния атома углерода.

Гибридизация АО — это взаимодействие (смешение) разных по типу, но близких по энергии атомных орбиталей данного атома с образованием гибридных орбиталей одинаковой формы и энергии.

Например, смешение 2s-АО с 2p -АО дает две гибридные 2sp -АО:

АО с большой разницей в энергии (например, 1s и 2р ) в гибридизацию не вступают. В зависимости от числа участвующих в гибридизации p -АО возможны следующие виды гибридизации:

для атомов углерода и азота — sp 3 , sp 2 и sp ;

для атома кислорода — sp 3 , sp 2 ;

для галогенов — sp 3 .

Гибридная АО асимметрична и сильно вытянута в одну сторону от ядра (форма неправильной восьмерки).

В отличие от негибридных s — или р -АО, она имеет одну большую долю, которая хорошо образует химическую связь, и малую долю, которую обычно даже не изображают. Гибридизованные АО при взаимодействии с орбиталями различных типов (s -, р — или гибридными АО) других атомов обычно дают s-МО, т.е. образуют s-связи. Такая связь прочнее связи, образованной электронами негибридных АО, за счет более эффективного перекрывания.

3.3.1. sp 3 -Гибридизация (тетраэдрическая).

Одна s — и три р четыре равноценные по форме и энергии sp 3 -гибридные орбитали.

Орбитальная модель атома в sp 3 -гибридизованном состоянии.

Для атома углерода и других элементов 2-го периода этот процесс происходит по схеме:

2s + 2p x + 2p y + 2p z = 4 (2sp 3)

Схема sp 3 -гибридизации атомных орбиталей.

Оси sp 3 -гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28″, что соответствует наименьшей энергии отталкивания электронов.

Впервые идею о направленности единиц сродства (валентностей) атома углерода по углам тетраэдра независимо друг от друга выдвинули в 1874 г. Вант-Гофф и Ле Бель.

sp 3 -Орбитали могут образовывать четыре s-связи с другими атомами или заполняться неподеленными парами электронов.

А как наглядно изобразить пространственное строение атома в sp 3 -состоянии на рисунке?

В этом случае sp 3 -гибридные орбитали изображают не электронными облаками, а прямыми линиями или клиньями в зависимости от пространственной ориентации орбитали. Такое схематическое изображение используется при написании стереохимических (пространственных) формул молекул.

Переход от орбитальной модели (а) к пространственной формуле (б).

На примере молекулы метана показаны объемные модели и пространственная (стереохимическая) формула молекулы с sp 3 -углеродным атомом.

Модель молекулы метана

sp 3 -Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 4.

Углерод в sp 3 -гибридном состоянии встречается в простом веществе — алмазе. Это состояние характерно для атомов С, N, O и др., соединенных с другими атомами одинарными связями (sp 3 -атомы выделены красным цветом):

С H 4 , RC H 3 , N H 3 , RN H 2 , H 2 O , RO H, R 2 O ;

а также анионам типа:

R 3 C : — , RO — .

Следствием тетраэдрического строения sp 3 -атома является возможность существования двух оптических стереоизомеров у соединения, содержащего такой атом с четырьмя разными заместителями (Вант-Гофф, Ле Бель, 1874).

3.3.2. sp 2 -Гибридизация (плоскостно-тригональная).

Одна s — и две p -орбитали смешиваются, и образуются три равноценные sp 2 -гибридные орбитали, расположенные в одной плоскости под углом 120° (выделены синим цветом). Они могут образовывать три s-связи. Третья р -орбиталь остается негибридизованной и ориентируется перпендикулярно плоскости расположения гибридных орбиталей. Эта р -АО участвует в образовании p-связи.

Для элементов 2-го периода процесс sp 2 -гибридизации происходит по схеме:

2s + 2p x + 2p y = 3 (2sp 2) 2p z -АО в гибридизации не участвует.

Для изображения пространственного строения атомов в sp 2 -состоянии используются те же приемы, что и в случае sp 3 -атомов:

Переход от орбитальной модели атома в sp 2 -гибридизированном состоянии (а) к пространственной формуле (б). Строение молекул с sp 2 -атомами отражают их модели:

Модели молекулы этилена

sp 2 -Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 3

Углерод в sp 2 -гибридном состоянии образует простое вещество графит. Это состояние характерно для атомов С, N, O и др. с двойной связью (sp 2 -атомы выделены красным цветом):

H 2 C =C H 2 , H 2 C =C HR, R 2 C =N R, R-N =N -R, R 2 C =O , R-N =O ,

а также для катионов типа

R 3 C + и свободных радикалов R 3 C · .

ГИБРИДИЗАЦИЯ — это явление взаимодействия между собой молекулярных орбиталей, близких по энергии и имеющих общие элементы симметрии, с образованием гибридных орбиталей с более низкой энергией.

Чем полнее в пространстве перекрываются друг с другом электронные облака, участвующие в химической связи, тем меньшим запасом энергии обладают электроны, находящиеся в области перекрывания и осуществляющие связь, и тем прочнее химическая связь между этими атомами

Иногда связь между атомами прочнее, чем этого можно было ожидать на основании расчета. Предполагается, что атомная орбиталь принимает форму, позволяющую ей более полно перекрываться с орбиталью соседнего атома. Изменить свою форму атомная орбиталь может, лишь комбинируясь с другими атомными орбиталями иной симметрии этого же атома. В результате комбинации различных орбиталей (s, p, d) возникают новые атомные орбитали промежуточной формы, которые называются гибридными .

Перестройка различных атомных орбиталей в новые орбитали, усредненные по форме называется гибридизацией .

Число гибридных орбиталей равно числу исходных. Так, при комбинации s- и р-орбиталей (sp-гиб­ридизация) возникают две гибридные орбитали, которые ориентируются под углом 180° друг к другу, рис.3, табл. 5 и 6.

(s+p)-орбитали Две spорбитали Две sp-гибридные

орбитали

Рисунок 3 – sp – Гибридизация валентных орбиталей

Таблица 6 – Образование гибридных орбиталей

Таблица 7 – Образование некоторых молекул V и VI периодов

Химическая связь, образуемая электронами гибридных орбиталей, прочнее связи с участием электронов негибридных орбиталей, так как при гибридизации перекрывание происходит в большей степени. Гибридные орбитали образуют только s-связи .

Подвергаться гибридизации могут орбитали, которые имеют близкие энергии. У атомов с малым значением заряд ядра для гибридизации пригодны только s– и р –орбитали. Это наиболее характерно для элементов второго периода II – VI групп, табл. 6 и 7.

В группах сверху вниз с увеличением радиуса атома способность образовывать ковалентные связи ослабевавает, усиливается различие в энергиях s — и р-электронов, уменьшается возможность их гибридизации.

Электронные орбитали, участвующие в образовании связей, и их пространственная ориентация определяют геометрическую форму молекул.

Линейная форма молекул . Соединения, имеющие линейную форму молекул, образуются при перекрывании:

1. Двух s– орбиталей (s – s связь): Н 2 , Na 2 , K 2 и др.

2. s — и р–орбиталей (s – р связь): НС1, НВr и др.

3. Двух р– орбиталей (р – р связь): F 2 , C1 2 , Вr 2 и т.д.

s–s s–p р–р

Рисунок 4 – Линейные молекулы

Линейную форму молекул образуют также атомы некоторых элементов II группы с атомами водорода или галогенов (ВеН 2 , ВеГ 2 , ZnГ 2). Рассмотрим образование молекул ВеС1 2 . Атом бериллия в возбужденном состоянии имеет два неспаренных электрона (2s l и 2р 1), следовательно, происходит sp–гибридизация, при которой образуются две sp-гибридные орбитали, расположенные относительно друг друга под углом 180° (см гибридизацию орбиталей). При взаимодействии бериллия с галогенами происходит перекрывая двух sp–гибридных орбиталей атома бериллия с р–орбиталями двух атомов хлора, в результате образуется молекула линейной формы, рис. 5.

Рисунок 5 – Линейная молекула BeCl 2

Треугольная форма молекул имеет место при образо­вании галогенидов бора, алюминия. Возбужденный атом бо­та имеет три неспаренных электрона (2s 1 и 2р 2), При образовании химических связей происходит sp 2 -гибридизация и образуются три sp 2 — гибиридные орбитали, которые лежат в одной плоскости и ориентированы друг к другу под углом 120°, рис. 6.

(s+p+p)- три sp 2 — гибрид­ные

орбитали орбитали

Рисунок 6 – sp 2 –Гибридизация валентных орбиталей (а) и

треугольная молекула ВСl 3 (б)

При взаимодействии бора с хлором происходит перекрывание трех sр 2 -гибридных орбиталей атома бора с р-орбиталями трех атомов хлора, в результате образуется молекула, имеющая форму плоского треугольника. Валентный угол в молекуле ВСl 3 равен 120°.

Тетраэдрическая форма молекулы характерна для соединений элементов IV группы главной подгруппы с галогенами, водородом. Так, атом углерода в возбужденном со­стоянии имеет четыре неспаренных электрона (2s 1 и 2р 3) следовательно, происходит sp-гибридизация, при которой образуются четыре гибридные орбитали, расположенные друг к другу под углом 109,28°, рис. 7.

(s+p+p+p)- четыре sp 3 -гибрид­ные

орбитали орбитали

Рисунок 7 – sp 3 –Гибридизация валентных орбиталей (а) и

тетраэдрическая молекула СН 4 (б)

При перекрывании четырех sp 3 -гибридных орбиталей атома углерода и s-орбиталей четырех атомов водорода образуется молекула метана, которая имеет форму тетраэдра. Валентный угол равен 109,28°.

Рассмотренные геометрические формы молекул (линейные, треугольные, тетраэдрические) являются идеальными (правило Гиллеспи).

В отличие от выше рассмотренных соединений молекулы элементов V и VI групп главных подгрупп имеют валентные неподеленные пары электронов, поэтому углы между связями оказываются меньшими по сравнению с идеальным молекулами.

Пирамидальная форма молекул имеет место при образовании водородных соединений элементов V групп главной подгруппы. При образовании химической связи, например, у атома азота также как и у атома углерода происходит sp 3 -гибридизация и образуется четыре sp 3 -гибридные орбитали, которые ориентированы под углом 109,28 о друг к другу. Но в отличие от атома углерода у атома азота в гибридизации принимают участие не только одноэлектронные орбитали (2р 3), но и двухэлектронная (2s 2). Поэтому из четырех sp 3 -гибридных орбиталей на трех находятся по одному электрону (одноэлектронная орбиталь), эти орбитали образуют связи с тремя атомами водорода. Четвертая орбиталь с неподелениой парой электронов не принимает участия в образовании связи. Молекула NH 3 имеет форму пирамиды, рис. 8.

Рисунок 8 – Пирамидальная молекула аммиака

В вершине пирамиды находится атом азота, а в углах (треугольника) основания – атомы водорода. Валентный угол равен 107,3°. Отклонение значения угла от тетраэдрического (109,28°) обусловлено отталкиванием между неподеленной парой электронов на четвертой sp 3 -гибридной ор­битали и связывающими парами на трех остальных орбиталях, т.е. sp 3 -гибридная орбиталь с неподеленной парой электронов отталкивает в направлении от себя три осталь­ные орбитали связи N–H, уменьшая угол до 107,3°.

В соответствии с правилом Гиллеспи: если централь­ный атом относится к элементам третьего или последующих периодов, а концевые атомы принадлежат менее электроотри­цательным элементам, чем галогены, то образование связей осуществляется через чистые р — орбитали и валентные углы становятся » 90°, следовательно, у аналогов азота (Р, As, Sb) гибридизация орбиталей в молекулах водородных соединений не наблюдается. Например, в образовании молекулы фосфина (РН 3) участвуют три неспаренных р-электрона (3s 2 и 3р 3), электронные орбитали которых расположены в трех взаимно перпендикулярных направле­ниях, и s-электроны трех атомов водо­рода. Связи располагаются вдоль трех осей р-орбиталей. Образовавшиеся молекулы имеют, как и молекулы NН 3 , пирамидальную форму, но в отличие от молекулы NН 3 , в молекуле РН 3 валентный угол равен 93,3°, а в соеди­нениях AsH 3 и SbH 3 – соответственно 91,8 и 91,3°, рис. 9 и табл. 4.

Рисунок 9 – Молекула РН 3

Неподеленная пара электронов будет занимать нес­вязывающую s- орбиталь.

Угловую форму молекул образуют водородные соединения элементов VI группы главной подгруппы. Рассмотренные особенности образования связей в соединениях элементов V группы характерны и для водородных соединений элементов VI группы. Так, в молекуле воды атом кислорода, так же как и атом азота, находится в состоянии sp 3 -гибридизаци. Из четырех sp 3 -гибридных орбитам на двух находится по одному электрону, эти орбитали образуют связи с двумя атомами водорода.

Две другие из четырех sp 3 -гибридных орбиталей содержат по неподеленной паре электронов и не принимав участия в образовании связи.

Молекула Н 2 О имеет угловую форму, валентный угол равен 104,5°. Отклонение значения угла от тетраэдрического в еще большей степени обусловлено отталкиванием от двух неподеленных пар электронов, рис. 10.

Рисунок 10 – Угловая молекула воды

Угловую форму молекул имеют H 2 S, H 2 Se, H 2 Te, только у аналогов кислорода образование связей в соединенн Н 2 Э осуществляется через чистые р-орбитали (правило Гиллеспи), поэтому валентные углы составляют »90°. Так, в молекулах H 2 S, H 2 Se, H 2 Te они соответственно равны 92; 91; 89,5°.

Таблица 8 – Молекулы водородных соединений элементов 2-го периода

Концепция гибридизации

Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей . Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи , в частности, выравнивание длин химических связей и валентных углов в молекуле.

Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. В настоящее время используется в основном в методических целях и в синтетической органической химии .

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи — Найхолма. Первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т. е электронные пары ведут себя так, как если бы они взаимно отталкивались» .

Второе правило состоит в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра» .

Виды гибридизации

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28″, что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Гибридизация и геометрия молекул

Представления о гибридизации атомных орбиталей лежат в основе теории отталкивания электронных пар Гиллеспи-Найхолма . Каждому типу гибридизации соответствует строго определённая пространственная ориентация гибридных орбиталей центрального атома, что позволяет её использовать как основу стереохимических представлений в неорганической химии.

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары) .

Тип гибридизацииЧисло
гибридных орбиталей
ГеометрияСтруктураПримеры
sp 2ЛинейнаяBeF 2 , CO 2 , NO 2 +
sp 2 3ТреугольнаяBF 3 , NO 3 — , CO 3 2-
sp 3 4ТетраэдрическаяCH 4 , ClO 4 — , SO 4 2- , NH 4 +
dsp 2 4ПлоскоквадратнаяNi(CO) 4 , XeF 4
sp 3 d 5ГексаэдрическаяPCl 5 , AsF 5
sp 3 d 2 6ОктаэдрическаяSF 6 , Fe(CN) 6 3- , CoF 6 3-

Ссылки

Литература

  • Паулинг Л. Природа химической связи / Пер. с англ. М. Е. Дяткиной. Под ред. проф. Я. К. Сыркина. — М.; Л.: Госхимиздат, 1947. — 440 с.
  • Полинг Л. Общая химия. Пер. с англ. — М .: Мир, 1974. — 846 с.
  • Минкин В. И., Симкин Б. Я., Миняев Р. М. Теория строения молекул. — Ростов-на-Дону: Феникс, 1997. — С. 397-406. — ISBN 5-222-00106-7
  • Гиллеспи Р. Геометрия молекул / Пер. с англ. Е. З. Засорина и В. С. Мастрюкова, под ред. Ю. А. Пентина. — М .: Мир, 1975. — 278 с.

См. также

Примечания

Wikimedia Foundation . 2010 .

Гибридизация АО — это выравнивание валентных АО по форме и энергии в процессе образования химической связи .

1. В гибридизации могут участвовать только те АО, энергия которых достаточно близка (например, 2s- и 2р-атомные орбитали).

2. В гибридизации могут участвовать вакантные (свободные) АО, орбитали с неспаренными электронами и неподеленными электронными парами.

3. В результате гибридизации появляются новые гибридные орбитали, которые ориентируются в пространстве таким образом, чтобы после их перекрывания с орбиталями других атомов электронные пары оказались максимально удаленными друг от друга. Такое состояние молекулы отвечает минимуму энергии в силу максимального отталкивания одноименно заряженных электронов.

4. Вид гибридизации (число АО, подвергающихся гибридизации), определяется числом «атакующих» данный атом атомов и числом неподеленных электронных пар в данном атоме .

Пример. ВF 3 . В момент образования связи происходит перестройка АО атома В, переходящего в возбужденное состояние: В 1s 2 2s 2 2p 1 ® B* 1s 2 2s 1 2p 2 .

Гибридные АО располагаются под углом 120 о. Молекула имеет форму правильного треугольника (плоская, треугольная):

3. sp 3 -гибридизация. Такой вид гибридизации характерен для атомов 4-ой группы (например, углерода, кремния, германия ) в молекулах типа ЭХ 4 , а также для атома С в алмазе, молекулах алканов, для атома N в молекуле NH 3 , NH 4 + , атома О в молекуле Н 2 О и т. д.

Пример 1. СН 4 . В момент образования связи происходит перестройка АО атома С, переходящего в возбужденное состояние: С 1s 2 2s 2 2p 2 ® С* 1s 2 2s 1 2p 3 .

Гибридные АО располагаются под углом 109 о 28″.

Пример 2. NН 3 и NН 4 + .

Электронная структура атома N: 1s 2 2s 2 2p 3 . Гибридизации подвергаются 3 АО, содержащие неспаренные электроны, и 1 АО, содержащая неподеленную электронную пару. В силу более сильного отталкивания неподеленной электронной пары от электронных пар s-связей угол связи в молекуле аммиака составляет 107,3 о (ближе к тетраэдрическому, а не к прямому).

Молекула имеет форму тригональной пирамиды :

Представления об sp 3 -гибридизации позволяют объяснить возможность образования иона аммония и равноценность связей в нем.

Пример 3. Н 2 О.

Электронная структура атома О 1s 2 2s 2 2p 4 . Гибридизации подвергаются 2 АО, содержащие неспаренные электроны, и 2 АО, содержащие неподеленные электронные пары. Угол связи в молекуле воды составляет 104,5 о (также ближе к тетраэдрическому, а не к прямому).

Молекула имеет угловую форму :

Представления об sp 3 -гибридизации позволяют объяснить возможность образования иона оксония (гидроксония) и образование каждой молекулой 4-х водородных связей в структуре льда.

4. sp 3 d-гибридизация. Такой вид гибридизации характерен для атомов элементов 5-ой группы (начиная с Р) в молекулах типа ЭХ 5 .

Пример. РСl 5 . Электронная структура атома Р в основном и возбужденном состояниях: Р 1s 2 2s 2 2p 6 3s 2 3p 3 ® P* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 1 . Форма молекулы — гексаэдр (точнее тригональная бипирамида) :

5. sp 3 d 2 -гибридизация. Такой вид гибридизации характерен для атомов элементов 6-ой группы (начиная с S) в молекулах типа ЭХ 6 .

Пример. SF 6 . Электронная структура атома S в основном и возбужденном состояниях: S 1s 2 2s 2 2p 6 3s 2 3p 4 ® P* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 2 .

Форма молекулы октаэдр :

6. sp 3 d 3 -гибридизация. Такой вид гибридизации характерен для атомов элементов 7 группы (начиная с Cl) в молекулах типа ЭХ 7 .

Пример. IF 7 . Электронная структура атома F в основном и возбужденном состояниях: I 5s 2 3p 5 ® I* 5s 1 3p 3 3d 3 . Форма молекулы — декаэдр (точнее пентагональная бипирамида) :

7. sp 3 d 4 -гибридизация. Такой вид гибридизации характерен для атомов элементов 8 группы (кроме Не и Ne) в молекулах типа ЭХ 8 .

Пример. ХеF 8 . Электронная структура атома Хе в основном и возбужденном состояниях: Хе 5s 2 3p 6 ® Хе* 5s 1 3p 3 3d 4 .

Форма молекулы додекаэдр :

Могут быть и другие виды гибридизации АО.

Тип гибридизации орбиталей атомов углерода. Поговорим о том, как определить тип гибридизации

Гибридизация АО — это выравнивание валентных АО по форме и энергии в процессе образования химической связи .

1. В гибридизации могут участвовать только те АО, энергия которых достаточно близка (например, 2s- и 2р-атомные орбитали).

2. В гибридизации могут участвовать вакантные (свободные) АО, орбитали с неспаренными электронами и неподеленными электронными парами.

3. В результате гибридизации появляются новые гибридные орбитали, которые ориентируются в пространстве таким образом, чтобы после их перекрывания с орбиталями других атомов электронные пары оказались максимально удаленными друг от друга. Такое состояние молекулы отвечает минимуму энергии в силу максимального отталкивания одноименно заряженных электронов.

4. Вид гибридизации (число АО, подвергающихся гибридизации), определяется числом «атакующих» данный атом атомов и числом неподеленных электронных пар в данном атоме .

Пример. ВF 3 . В момент образования связи происходит перестройка АО атома В, переходящего в возбужденное состояние: В 1s 2 2s 2 2p 1 ® B* 1s 2 2s 1 2p 2 .

Гибридные АО располагаются под углом 120 о. Молекула имеет форму правильного треугольника (плоская, треугольная):

3. sp 3 -гибридизация. Такой вид гибридизации характерен для атомов 4-ой группы (например, углерода, кремния, германия ) в молекулах типа ЭХ 4 , а также для атома С в алмазе, молекулах алканов, для атома N в молекуле NH 3 , NH 4 + , атома О в молекуле Н 2 О и т.д.

Пример 1. СН 4 . В момент образования связи происходит перестройка АО атома С, переходящего в возбужденное состояние: С 1s 2 2s 2 2p 2 ® С* 1s 2 2s 1 2p 3 .

Гибридные АО располагаются под углом 109 о 28″.

Пример 2. NН 3 и NН 4 + .

Электронная структура атома N: 1s 2 2s 2 2p 3 . Гибридизации подвергаются 3 АО, содержащие неспаренные электроны, и 1 АО, содержащая неподеленную электронную пару. В силу более сильного отталкивания неподеленной электронной пары от электронных пар s-связей угол связи в молекуле аммиака составляет 107,3 о (ближе к тетраэдрическому, а не к прямому).

Молекула имеет форму тригональной пирамиды :

Представления об sp 3 -гибридизации позволяют объяснить возможность образования иона аммония и равноценность связей в нем.

Пример 3. Н 2 О.

Электронная структура атома О 1s 2 2s 2 2p 4 . Гибридизации подвергаются 2 АО, содержащие неспаренные электроны, и 2 АО, содержащие неподеленные электронные пары. Угол связи в молекуле воды составляет 104,5 о (также ближе к тетраэдрическому, а не к прямому).

Молекула имеет угловую форму :

Представления об sp 3 -гибридизации позволяют объяснить возможность образования иона оксония (гидроксония) и образование каждой молекулой 4-х водородных связей в структуре льда.

4. sp 3 d-гибридизация. Такой вид гибридизации характерен для атомов элементов 5-ой группы (начиная с Р) в молекулах типа ЭХ 5 .

Пример. РСl 5 . Электронная структура атома Р в основном и возбужденном состояниях: Р 1s 2 2s 2 2p 6 3s 2 3p 3 ® P* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 1 . Форма молекулы — гексаэдр (точнее тригональная бипирамида) :

5. sp 3 d 2 -гибридизация. Такой вид гибридизации характерен для атомов элементов 6-ой группы (начиная с S) в молекулах типа ЭХ 6 .

Пример. SF 6 . Электронная структура атома S в основном и возбужденном состояниях: S 1s 2 2s 2 2p 6 3s 2 3p 4 ® P* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 2 .

Форма молекулы октаэдр :

6. sp 3 d 3 -гибридизация. Такой вид гибридизации характерен для атомов элементов 7 группы (начиная с Cl) в молекулах типа ЭХ 7 .

Пример. IF 7 . Электронная структура атома F в основном и возбужденном состояниях: I 5s 2 3p 5 ® I* 5s 1 3p 3 3d 3 . Форма молекулы — декаэдр (точнее пентагональная бипирамида) :

7. sp 3 d 4 -гибридизация. Такой вид гибридизации характерен для атомов элементов 8 группы (кроме Не и Ne) в молекулах типа ЭХ 8 .

Пример. ХеF 8 . Электронная структура атома Хе в основном и возбужденном состояниях: Хе 5s 2 3p 6 ® Хе* 5s 1 3p 3 3d 4 .

Форма молекулы додекаэдр :

Могут быть и другие виды гибридизации АО.

Одна из задач химии — это изучение строения вещества, в том числе выяснение механизма образования различных соединений из простых веществ, образуемых атомами одного химического элемента. Особенности взаимодействия атомов, точнее, их разноименно заряженных компонентов — электронных оболочек и ядер, — описываются как различные типы химической связи. Так, вещества, образуются посредством ковалентной связи, для описания которой в 1931 году американским химиком Л. Полингом была предложена модель гибридизации атомных орбиталей.

Понятие о ковалентной связи

В тех случаях, когда в процессе взаимодействия происходит образование общей для двух атомов пары валентных электронных облаков, говорят о ковалентной связи. В результате ее возникновения формируется мельчайшая частица простого или сложного вещества — молекула.

Одной из особенностей ковалентной связи является ее направленность — следствие сложной формы электронных орбиталей p, d и f, которые, не обладая сферической симметрией, имеют определенную пространственную ориентацию. Еще одна важная особенность данного типа химической связи — насыщаемость, обусловленная ограниченным количеством внешних — валентных — облаков в атоме. Именно поэтому существование молекулы, например, H 2 O, возможно, а H 5 O — нет.

Типы ковалентной связи

Образование общих электронных пар может происходить различными способами. В механизме образования ковалентной связи важную роль играет характер перекрытия облаков и пространственная симметрия результирующего облака. По данному критерию Л. Полинг предложил различать следующие типы:

  • Сигма-связь (σ) отличается наибольшей степенью перекрытия по оси, проходящей через атомные ядра. Здесь плотность облака будет максимальной.
  • Пи-связь (π) образуется при боковом перекрывании, и электронное облако, соответственно, имеет наибольшую плотность вне соединяющей ядра оси.

Эти пространственные характеристики имеют большое значение постольку, поскольку они коррелируют с энергетическими параметрами ковалентной связи.

Особенности многоатомных молекул

Концепция гибридизации была введена Полингом для объяснения одной из особенностей ковалентных связей в многоатомных молекулах. Известно, что связи, образуемые центральным атомом в таких молекулах, оказываются одинаковыми по пространственным и энергетическим характеристикам. Это происходит вне зависимости от того, какие орбитали (s, p или d) участвуют в формировании общей электронной пары.

Очень удобным и наглядным примером для иллюстрации этого явления служит атом углерода. При вступлении в химическую связь атом в возбужденном состоянии имеет 4 валентных орбитали: 2s, 2p x , 2p y и 2p z . Три последних отличаются от орбитали 2s по энергии и форме. Тем не менее в молекуле, например, метана CH 4 все четыре связи совершенно равноценны и имеют валентные углы 109,5° (в то время как p-орбитали расположены под углами 90°). В других соединениях углерода встречаются валентные углы 120° и 180°; в молекулах, содержащих азот (аммиак NH 3) и кислород (вода H 2 O) эти углы составляют 107,5° и 104,5°. Возникновение подобных валентных углов также потребовало объяснения.

Суть явления

Идея гибридизации состоит в образовании усредненных орбиталей путем перекрывания электронных облаков разного типа с близкими значениями энергии — s, p, иногда d. Количество результирующих — гибридных — орбиталей соответствует числу перекрывающихся облаков. Поскольку орбиталь — это определяющая вероятность нахождения электрона в той или иной точке атома, гибридная орбиталь представляет собой наложение волновых функций, происходящее в результате электронных переходов при возбуждении атома. Оно приводит к возникновению равнозначных волновых функций, различающихся только направленностью.

Гибридные орбитали эквивалентны по энергии и имеют одинаковую форму в виде объемной восьмерки, имеющей сильную асимметрию относительно ядра. На гибридизацию затрачивается меньше энергии, чем выделяется при образовании прочной ковалентной связи с гибридными орбиталями, поэтому такой процесс энергетически выгоден, то есть наиболее вероятен.

гибридизации орбиталей и геометрия молекул

Возможны различные варианты перекрывания (смешения) внешних электронных облаков в атоме. Самыми распространенными являются следующие виды наложения орбиталей:

  • Sp 3 -гибридизация. Данный вариант реализуется при наложении одной s- и трех p-орбиталей. Результатом его становятся четыре гибридные орбитали, оси которых направлены для любой пары под углами 109,5°, соответствующим минимальному взаимному отталкиванию электронов. При вступлении этих орбиталей в σ-связи с другими атомами, формируется молекула тетраэдрической конфигурации, например, метан, этан C 2 H 6 (комбинация двух тетраэдров), аммиак, вода. В молекуле аммиака одна, а в молекуле воды — две из вершин тетраэдра заняты неподеленными электронными парами, что приводит к уменьшению валентного угла.
  • Sp 2 -гибридизация возникает при комбинации одной s- и двух p-орбиталей. В этом случае тройка гибридных орбиталей располагается под углами 120° в одной плоскости. Подобную треугольную форму имеют, например, молекулы трихлорида бора BCl 3 , находящего применение в различных технологиях. Другой пример — молекула этилена — формируется за счет дополнительной π-связи между атомами углерода, в которых по одной p-орбитали негибридные и ориентированы перпендикулярно плоскости, образуемой двумя треугольниками.
  • Sp-гибридизация происходит, когда смешиваются одна s- и одна p-орбиталь. Два гибридных облака располагаются под углом 180°, а молекула имеет линейную конфигурацию. Примерами могут служить молекулы хлорида бериллия BeCl 2 или ацетилена C 2 H 2 (в последней две негибридные p-орбитали углерода образуют дополнительные π-связи).

Существуют и более сложные варианты гибридизации атомных орбиталей: sp 3 d, sp 3 d 2 и другие.

Роль модели гибридизации

Концепция Полинга дает хорошее качественное описание строения молекул. Она удобна и наглядна, успешно объясняет некоторые особенности ковалентных соединений, такие как величина валентных углов или выравнивание длины химической связи. Однако количественная сторона модели не может считаться удовлетворительной, поскольку не позволяет делать многие важные предсказания, касающиеся физических эффектов, связанных с особенностями строения молекул, — например, молекулярных фотоэлектронных спектров. Сам автор концепции гибридизации уже в начале 1950-х годов отмечал ее недостатки.

Тем не менее в становлении современных представлений о строении вещества модель гибридизации атомных орбиталей сыграла большую роль. На основе ее были разработаны более адекватные концепции, например, теория отталкивания электронных пар. Поэтому, безусловно, модель гибридизации явилась важным этапом в развитии теоретической химии, а при описании некоторых аспектов электронной структуры молекул она вполне применима и в настоящее время.

Концепция гибридизации

Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей . Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи , в частности, выравнивание длин химических связей и валентных углов в молекуле.

Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. В настоящее время используется в основном в методических целях и в синтетической органической химии .

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи — Найхолма. Первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т. е электронные пары ведут себя так, как если бы они взаимно отталкивались» .

Второе правило состоит в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра» .

Виды гибридизации

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28″, что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Гибридизация и геометрия молекул

Представления о гибридизации атомных орбиталей лежат в основе теории отталкивания электронных пар Гиллеспи-Найхолма . Каждому типу гибридизации соответствует строго определённая пространственная ориентация гибридных орбиталей центрального атома, что позволяет её использовать как основу стереохимических представлений в неорганической химии.

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары) .

Тип гибридизацииЧисло
гибридных орбиталей
ГеометрияСтруктураПримеры
sp 2ЛинейнаяBeF 2 , CO 2 , NO 2 +
sp 2 3ТреугольнаяBF 3 , NO 3 — , CO 3 2-
sp 3 4ТетраэдрическаяCH 4 , ClO 4 — , SO 4 2- , NH 4 +
dsp 2 4ПлоскоквадратнаяNi(CO) 4 , XeF 4
sp 3 d 5ГексаэдрическаяPCl 5 , AsF 5
sp 3 d 2 6ОктаэдрическаяSF 6 , Fe(CN) 6 3- , CoF 6 3-

Ссылки

Литература

  • Паулинг Л. Природа химической связи / Пер. с англ. М. Е. Дяткиной. Под ред. проф. Я. К. Сыркина. — М.; Л.: Госхимиздат, 1947. — 440 с.
  • Полинг Л. Общая химия. Пер. с англ. — М .: Мир, 1974. — 846 с.
  • Минкин В. И., Симкин Б. Я., Миняев Р. М. Теория строения молекул. — Ростов-на-Дону: Феникс, 1997. — С. 397-406. — ISBN 5-222-00106-7
  • Гиллеспи Р. Геометрия молекул / Пер. с англ. Е. З. Засорина и В. С. Мастрюкова, под ред. Ю. А. Пентина. — М .: Мир, 1975. — 278 с.

См. также

Примечания

Wikimedia Foundation . 2010 .

Задача 261.
Какие типы гибридизации АО углерода соответствуют образованию молекул СН 4 , С 2 Н 6 , С 2 Н 4 , С 2 Н 2 ?
Решение:
а) В молекулах СН 4 и С 2 Н 6 валентный электронный слой атома углерода содержит четыре электронных пары:

Поэтому электронные облака атома углерода в молекулах СН 4 , С 2 Н 6 будут максимально удалены друг от друга при sp3-гибридизации, когда их оси направлены к вершинам тетраэдра. При этом в молекуле СН 4 все вершины тетраэдра будут заняты атомами водорода, так что молекула СН4 имеет тетраэдрическую конфигурацию с атомом углерода в центре тетраэдра. В молекуле С 2 Н 6 атомы водорода занимают три вершины тетраэдра, а к четвёртой вершине направлено общее электронное облако другого атома углерода, т.е. два атома углерода соединены друг с другом. Это можно представить схемами:

б) В молекуле С 2 Н 4 валентный электронный слой атома углерода, как и в молекулах СН 4 , С 2 Н 6 . содержит четыре электронные пары:

При образовании С 2 Н 4 три ковалентные связи образованы по обычному механизму, т.е. являются — связями, и одна — — связь. При образовании молекулы С 2 Н 4 каждый атом углерода с двумя атомами водорода — связями и друг с другом двумя связями, одной — и одной — связями. Гибридные облака, соответствующие данному типу гибридизации, располагаются в атоме углерода так, чтобы взаимодействие между электронами было минимальным, т.е. как можно дальше друг от друга. Данное расположение атомов углерода (две двойные связи между атомами углерода) характерно для sp 2 -гибридизации АО углерода. При sp 2 -гибридизации электронные облака в атомах углерода ориентированы в направлениях, лежащих в одной плоскости и составляющих друг с другом углы в 120 0 , т.е. в направлениях к вершинам правильного треугольника. В молекуле этилена в образовании — связей участвуют три sp 2 -гибридные орбитали каждого атома углерода, две между двумя атомами водорода и одна со вторым атомом углерода, а — связь образуется за счёт р-электронных облаков каждого атома углерода. Структурная формула молекулы С 2 Н 4 будет иметь вид:

в) В молекуле С 2 Н 2 валентный электронный слой атома углерода содержит четыре пары электронов:

Структурная формула С 2 N 2 имеет вид:

Каждый атом углерода соединён одной электронной парой с атомом водорода и тремя электронными парами с другим атомом углерода. Таким образом, в молекуле ацетилена атомы углерода соединены друг с другом одной -связью и двум -связями. С водородом каждый атом углерода соединён -связью. В образовании — связей участвуют две sp-гибридные АО, которые расположены друг относительно друга так, что взаимодействие между ними минимальное, т.е. как можно дальше друг от друга. Поэтому при sp-гибридизации электронные облака между атомами углерода ориентированы в противоположных направлениях друг относительно друга, т.е. угол между связями С-С составляет 180 0 . Поэтому молекула С 2 Н 2 имеет линейное строение:

Задача 262.
Указать тип гибридизации АО кремния в молекулах SiH 4 и SiF 4 . Полярны ли эти молекулы?
Решение:
В молекулах SiH 4 и SiF 4 валентный электронный слой содержит четыре пары электронов:

Поэтому в обоих случаях электронные облака атома кремния будут максимально удалены друг от друга при sp 3 -гибридизации, когда их оси направлены к вершинам тетраэдра. При этом в молекуле SiH 4 все вершины тетраэдра заняты атомами водорода, а в молекуле SiF 4 – атомами фтора, так что эти молекулы имеют тетраэдрическую конфигурацию с атомом кремния в центре тетраэдра:

В тетраэдрических молекулах SiH 4 и SiF 4 дипольные моменты связей Si-H и Si-F взаимно компенсируют друг друга, так что суммарные дипольные моменты обоих молекул будут равны нулю. Эти молекулы неполярны, несмотря на полярность связей Si-H и Si-F.

Задача 263.
В молекулах SО 2 и SО 3 атом серы находится в состоянии sp 2 -гибридизации. Полярны ли эти молекулы? Какова их пространственная структура?
Решение:
При sp 2 -гибридизации гибридные облака располагаются в атоме серы в направлениях, лежащих в одной плоскости и составляющих друг с другом углы в 120 0 , т.е. направленных к вершинам правильного треугольника.

а) В молекуле SО 2 две sp 2 -гибридные АО образуют связь с двумя атомами кислорода, третья sp 2 -гибридная орбиталь будет занята свободной электронной парой. Эта электронная пара будет смещать электронную плоскость и молекула SО 2 примет форму неправильного треугольника, т.е. угол OSO не будет равен 120 0 . Поэтому молекула SО 2 будет иметь угловую форму при sp 2 -гибридизации орбиталей атома структуру:

В молекуле SО 2 взаимной компенсации дипольных моментов связей S-O не происходит; дипольный момент такой молекулы будет иметь значение больше нуля, т. е. молекула полярна.

б) В угловой молекуле SО 3 все три sp2-гибридные АО образуют связь с тремя атомами кислорода. Молекула SО 3 будет иметь форму плоского треугольника с sp 2 -гибридизацией атома серы:

В треугольной молекуле SО 3 дипольные моменты связей S-O взаимно компенсируют друг друга, так что суммарный дипольный момент будет равен нулю, молекула полярна.

Задача 264.
При взаимодействии SiF4 с HF образуется сильная кислота Н 2 SiF 6 , диссоциирующая на ионы Н + и SiF 6 2- . Может ли подобным образом протекать реакция между СF 4 и НF? Указать тип гибридизации АО кремния в ионе SiF 6 2- .
Решение:
а) При возбуждении атом кремния переходит из состояния 1s 2 2s 2 2p 6 3s 2 3p 3 в состояние 1s 2 2s 2 2p 6 3s 1 3p 4 3d 0 , а электронное строение валентных орбиталей соответствует схеме:

Четыре неспаренных электрона возбуждённого атома кремния могут участвовать в образовании четырёх ковалентных связей по обычному механизму с атомами фтора (1s 2 2s 2 2p 5), имеющими по одному неспаренному электрону с образованием молекулы SiF 4 .

При взаимодействии SiF 4 с HF образуется кислота Н 2 SiF 6 . Это возможно, потому что в молекуле SiF 4 имеются свободные 3d-орбитали, а в ионе F- (1s 2 2s 2 2p 6) свободные пары электронов. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов каждого из двух ионов F — (HF ↔ H + + F -) и свободных 3d-орбиталей молекулы SiF 4 . При этом образуется ион SiF 6 2- , который с ионами H + образует молекулу кислоты Н 2 SiF 6 .

б) Углерод (1s 2 2s 2 2p 2) может образовать, подобно кремнию, соединение СF 4 , ног при этом валентные возможности атома углерода будут исчерпаны (нет неспаренных электронов, свободных пар электронов и свободных валентных орбиталей на валентном уровне). Схема строения валентных орбиталей возбуждённого атома углерода имеет вид:

При образовании СF 4 все валентные орбитали углерода заняты, поэтому ион образоваться не может.

В молекуле SiF 4 валентный электронный слой атома кремния содержит четыре пары электронов:

Это же наблюдается и для молекулы СF 4 . поэтому в обоих случаях электронные облака атомов кремния и углерода будут максимально удалены друг от друга при sp3-гибридизации. Когда их оси будут направлены к вершинам тетраэдра:

В 1930 г. Слейтером и Л. Полингом была развита теория образования ковалентной связи за счет перекрывания электронных орбиталей – метод валентных связей. В основе этого метода лежит метод гибридизации, который описывает образование молекул веществ за счет «смешивания» гибридных орбиталей («смешиваются» не электроны, а орбитали).

ОПРЕДЕЛЕНИЕ

Гибридизация – смешение орбиталей и выравнивание их по форме и энергии. Так, при смешении s- и p- орбиталей получаем тип гибридизации sp, s- и 2-х p-орбиталей – sp 2 , s- и 3-х p-орбиталей – sp 3 . Существуют и другие типы гибридизации, например, sp 3 d, sp 3 d 2 и более сложные.

Определение типа гибридизации молекул с ковалентной связью

Определить тип гибридизации можно только для молекул с ковалентной связью типа АВ n , где n больше или равно двум, А – центральный атом, В – лиганд. В гибридизацию вступают только валентные орбитали центрального атома.

Определим тип гибридизации на примере молекулы BeH 2 .

Первоначально записываем электронные конфигурации центрального атома и лиганда, рисуем электронно-графические формулы.

Атом бериллия (центральный атом) имеет вакантные 2p-орбитали, поэтому, чтобы принять по одному электрону от каждого атома водорода (лиганд) для образования молекулы BeH 2 ему необходимо перейти в возбужденное состояние:

Образование молекулы BeH 2 происходит за счет перекрывания валентных орбиталей атома Be

* красным цветом обозначены электроны водорода, черным – бериллия.

Тип гибридизации определяют по тому, какие орбитали перекрылись, т.о., молекула BeH 2 находитс в sp – гибридизации.

Помимо молекул состава AB n , методом валентных связей можно определить тип гибридизации молекул с кратными связями. Рассмотрим на примере молекулы этилена C 2 H 4 . В молекуле этилена кратная двойная связь, которая образована и –связями. Чтобы определить гибридизацию, записываем электронные конфигурации и рисуем электронно-графические формулы атомов, входящих в состав молекулы:

6 C 2s 2 2s 2 2p 2

У атома углерода имеется еще одна вакантная p-орбиталь, следовательно, чтобы принять 4 атома водорода ему необходимо перейти в возбужденное состояние:

Одна p-орбиталь необходима для образования -связи (выделена красным цветом), поскольку -связь образуется за счет перекрывания «чистых» (негибридных) p — орбиталей. Остальные валентные орбитали идут в гибридизацию. Таким образом этилен находится в гибридизации sp 2 .

Определение геометрической структуры молекул

Геометрическую структуру молекул, а также катионов и анионов состава АВ n можно с помощью метода Гиллеспи. В основе этого метода – валентные пары электронов. На геометрическую структуру оказывают влияние не только электроны, участвующие в образовании химической связи, но и неподеленные электронные пары. Каждую неподеленную пару электронов в методе Гиллеспи обозначают Е, центральный атом – А, лиганд – В.

Если неподеленных электронных пар нет, то состав молекул может быть АВ 2 (линейная структура молекулы), АВ 3 (структура плоского треугольника), АВ4 (тетраэдрическая структура), АВ 5 (структура тригональной бипирамиды) и АВ 6 (октаэдрическая структура). От базисных структур могут быть получены производные, если вместо лиганда появляется неподеленная электронная пара. Например: АВ 3 Е (пирамидальная структура), АВ 2 Е 2 (угловая структура молекулы).

Чтобы определить геометрическую структуру (строение) молекулы необходимо определить состав частицы, для чего вычисляют количество неподеленных лектронных пар (НЕП):

НЕП = (общее число валентных электронов – число электронов, пошедших на образование связи с лигандами) / 2

На связь с H, Cl, Br, I, F уходит по 1-му электрону от А, на связь с O – по 2 электрона, а на связь с N – по 3 электрона от центрального атома.

Рассмотрим на примере молекулы BCl 3 . Центральный атом – B.

5 B 1s 2 2s 2 2p 1

НЕП = (3-3)/2 = 0, следовательно неподеленных электронных пар нет и молекула имеет структуру АВ 3 – плоский треугольник.

Подробно геометрическое строение молекул разного состава представлено в табл. 1.

Таблица 1. Пространственное строение молекул

Формула молекулы

Тип гибридизации

Тип молекулы

Геометрия молекулы

линейная

треугольная

тетраэдр

тригональная пирамида

тригональная бипирамида

дисфеноид

Т-образная

линейная

квадратная пирамида

Примеры решения задач

ПРИМЕР 1

ЗаданиеОпределите с помощью метода валентных связей тип гибридизации молекулы метана (CH 4) и его геометрическую структуру по методу Гиллеспи
Решение 6 С 2s 2 2s 2 2p 2

Определить тип гибридизации атомных орбиталей.

2 .

А что происходит в молекуле ацетилена или ? Его формула выглядит следующим образом: С2Н2. В каждом атоме углерода гибридизации подвергаются только два электрона: 1 —S и 1 – Р. Остальные два сохранили орбитали в виде «правильных восьмерок», перекрывающихся» в плоскости молекулы и по обе стороны от нее. Вот поэтому такой тип гибридизации носит название sp – гибридизации. Она присуща атомам с тройной связью.

Все слова , существующие в том или ином языке, можно разделить на несколько групп. Это важно при определении как значения, так и грамматических функций слова . Отнеся его к определенному типу , вы можете видоизменять его в соответствии с правилами, даже если оно вам раньше не встречалось. Типами элементов слова рного состава языка занимается лексикология.

Вам понадобится

  • — текст;
  • — словарь.

Инструкция

Выберите слово, тип которого вы хотите определить. Принадлежность его к той или иной части речи пока не играет роли, как и форма, и функция его в предложении. Это может быть абсолютно любое слово. Если оно не указано в задании, выпишите первое попавшееся. Определите, называет ли оно предмет, качество, действие или нет. По этому параметру все слова делятся на знаменательные, местоименные, числительные, служебные и междометные. К первому типу относятся существительные, прилагательные, глаголы и . Именно они обозначают названия предметов, качеств и действий. Второй тип слов, у которых есть функция называния — местоименный. Способность называть отсутствует у , междометного и служебного типов. Это сравнительно небольшие группы слов, но они есть в каждом .

Определите, способно ли заданное слово выражать понятие. Эта функция есть у слова рных единиц знаменательного типа, ведь именно они и формируют понятийный ряд любого языка. Однако любое число тоже относится к разряду понятий, а соответственно, тоже несет в себе эту функцию. Есть она и у служебных слов, а вот у местоимений и междометий — отсутствует.

Рассмотрите, как будет слово, если оно окажется в предложении. Может ли оно являться ? Им может быть любое слово знаменательного типа. Но эта возможность есть и у , а также у числительного. А вот служебные слова играют вспомогательную роль, ни подлежащим, ни , ни второстепенными членами предложения они быть не могут, как и междометия.

Для удобства можно составить табличку из четырех столбцов шести строк. В верхней строке назовите соответствующие столбцы «Типы слов», «Называние», «Понятие» и «Способно ли быть членом предложения». В первом левом столбце запишите названия типов слов, их всего пять. Определите, какими функциями обладает заданное слово, а каких у него нет. В соответствующих графа поставьте плюсы и . Если во всех трех графах стоят плюсы, то это знаменательный тип. У местоименного плюсы будут стоять в первом и третьем столбцах, — во второй и в третьей. Служебные слова могут только выражать понятие, то есть имеют один плюс во второй графе. Напротив междометий во всех трех столбцах будут стоять минусы.

Видео по теме

Гибридизацией называется процесс получения гибридов – растений или животных, произошедших от скрещения разных сортов и пород. Слово гибрид (hibrida) с латинского языка переводится как «помесь».

Гибридизация: естественная и искусственная

Процесс гибридизации основан на объединении в одной клетке генетического материала разных клеток от разных особей. Различается внутривидовая и отдаленная, при которой происходит соединение разных геномов. В природе естественная гибридизация происходила и происходит без участия человека постоянно. Именно скрещиваясь внутри вида, изменялись и улучшались растения и появлялись новые сорта и породы животных. С точки зрения происходит гибридизация ДНК, нуклеиновых кислот, изменения на атомном и внутриатомном уровнях.

В академической химии под гибридизацией понимается специфическое взаимодействие в молекулах вещества атомных орбиталей. Но это не реальный физический процесс, а лишь гипотетическая модель, концепция.

Гибриды в растениеводстве

В 1694 году немецкий ученый Р. Камерариус предложил искусственно получать . А в 1717 году английский Т. Фэрчайдл впервые скрестил разные виды гвоздик. Сегодня внутривидовая гибридизация растений производится с целью получения высокоурожайных или приспособленных, например, морозостойких сортов. Гибридизация форм и сортов является одним из методов селекции растений. Таким образом создано огромное количество современных сортов сельхозкультур.

При отдаленной гибридизации, когда скрещиваются представители разных видов и происходит объединение разных геномов, полученные гибриды в большинстве случаев не дают потомство или производят помеси низкого качества. Именно поэтому нет смысла оставлять семена созревших на грядке огурцов-гибридов, а всякий раз покупать их семена в специализированном магазине.

Селекция в животноводстве

В мире естественная гибридизация, как внутривидовая, так и отдаленная, также имеет место. Мулы были известны человеку еще за две тысячи лет до нашей эры. И в настоящее время мул и лошак используется в домашнем хозяйстве как относительно дешевое рабочее животное. Правда, такая гибридизация является межвидовой, поэтому самцы-гибриды рождаются обязательно стерильными. Самки же очень редко могут дать потомство.

Мул – это гибрид кобылицы и осла. Гибрид, полученный от скрещивания жеребца и ослицы, называется лошак. Специально разводятся мулы. Они выше и сильнее лошака.

А вот скрещивание домашней собаки с волком было очень распространенным занятием у охотников. Затем, полученное потомство подвергалось дальнейшей селекции, в результате создавались новые породы собак. Сегодня селекция животных – важная составляющая успешности отрасли животноводства. Гибридизация проводится целенаправленно, с ориентацией на заданные параметры.

Ковалентная связь наиболее распространена в мире органических веществ, она характеризуется насыщаемостью, поляризуемостью и направленностью в пространстве.

Насыщаемость ковалентной связи состоит в том, что число общих электронных пар, которые способен образовать тот или иной атом, ограничено. Благодаря этому ковалентные соединения имеют строго определенный состав. Поэтому, например, существуют молекулы Н 2 , N 2 , СН 4 , но нет молекул Н 3 , N 4 , СН 5 .

Поляризуемость ковалентной связи заключается в способности молекул (и отдельных связей в них) изменять свою полярность под действием внешнего электрического поля — поляризоваться.

В результате поляризации неполярные молекулы могут стать полярными, а полярные — превратиться в еще более полярные вплоть до полного разрыва отдельных связей с образованием ионов:

Направленность ковалентной связи обусловлена тем, что р-, d- и f-облака определенным образом ориентированы в пространстве. Направленность ковалентной связи влияет на форму молекул веществ, их размеры, межатомные расстояния, валентный угол, т. е. на геометрию молекул.

Более полное представление о форме молекул органических и неорганических веществ можно составить на основе гипотезы о гибридизации атомных орбиталей. Она была предложена Л. Полингом (США) для объяснения установленного с помощью физических методов исследования веществ факта равноценности всех химических связей и симметричного расположения их относительно центра молекул СН 4 , BF 3 , ВеСl 2 . В образовании σ-связей в каждом случае от центрального атома (С, В, Be) должны были участвовать электроны, находящиеся в разных состояниях (s и р), поэтому они не могли быть равноценными. Теория оказалась неспособной объяснить факты, возникло противоречие, которое было разрешено с помощью новой гипотезы. Это один из примеров, показывающих путь развития познания человеком окружающего мира, возможность все более глубокого проникновения в сущность явлений.

С гипотезой гибридизации атомных орбиталей вы знакомились в курсе органической химии на примере атома углерода. Напомним об этом еще раз.

При образовании молекулы метана СН 4 атом углерода из основного состояния переходит в возбужденное:

Внешний электронный слой возбужденного атома углерода содержит один s- и три неспаренных р-электрона, которые и образуют четыре σ-связи с четырьмя s-электронами атомов водорода. При этом следует ожидать, что три связи С—Н, образованные за счет спаривания трех р-электронов атома углерода с тремя s-электронами трех атомов водорода (s-р σ-связь), должны бы отличаться от четвертой(s-s) связи прочностью, длиной, направленностью. Изучение электронной плотности в молекулах метана показывает, что все связи в его молекуле равноценны и направлены к вершинам тетраэдра (рис. 10). Согласно гипотезе о гибридизации атомных орбиталей четыре ковалентные связи молекулы метана образуются с участием не «чистых» s- и р-облаков атома углерода, а с участием так называемых гибридных, т. е. усредненных, равноценных электронных облаков.


Рис. 10. Шаростержневая модель молекулы метана

Согласно этой модели, число гибридных атомных орбиталей равно числу исходных «чистых» орбиталей. Соответствующие гибридные облака выгоднее по геометрической форме, чем s- и р-облака, их электронная плотность распределена иначе, что обеспечивает более полное перекрывание с s-облаками атомов водорода, чем было бы у «чистых» s- и р-облаков.

В молекуле метана и в других алканах, а также во всех молекулах органических соединений по месту одинарной связи атомы углерода находятся в состоянии sp 3 -гибридизации, т. е. у атома углерода гибридизации подверглись одно s- и три р-атомные облака и образовались четыре одинаковые гибридные sp 3 -атомные орбитали облака.

В результате перекрывания соответствующих четырех гибридных sр 3 -облаков атома углерода с s-облаками четырех атомов водорода образуется тетраэдрическая молекула метана с четырьмя одинаковыми σ-связями, расположенными под углом 109°28″ (рис. 11).

Рис. 11.
Схемы sр 3 -гибридизации валентных электронных облаков (а) и образования связей в молекуле метана (б)

Этот тип гибридизации атомов и, следовательно, тетраэдрическое строение будут характеризовать также молекулы соединений аналога углерода — кремния: SiH 4 , SiCl 4 .

При образовании молекул воды и аммиака также происходит sр 3 -гибридизация валентных атомных орбиталей атомов кислорода и азота. Однако если у атома углерода все четыре гибридные sр 3 -облака заняты общими электронными парами, то у атома азота одно sр 3 -облако занято неподеленной электронной парой, а у атома кислорода ими заняты уже два sр 3 -облака (рис. 12).

Рис. 12.
Формы молекул аммиака, воды и фтороводорода

Наличие неподеленных электронных пар приводит к уменьшению углов связей (табл. 8) по сравнению с тетраэдрическими (109°28″).

Таблица 8
Взаимосвязь числа неподеленных электронных пар и угла связи в молекулах

sр 3 -Гибридизация наблюдается не только у атомов в сложных веществах, но и у атомов в простых веществах. Например, у атомов такой аллотропной модификации углерода, как алмаз.

В молекулах некоторых соединений бора имеет место sp 2 -гибридизация валентных атомных орбиталей атома бора.

У атома бора в возбужденном состоянии в гибридизации участвуют одна s- и две р-орбитали, в результате чего образуются три sp 2 -гибридные орбитали, оси соответствующих гибридных облаков расположены в плоскости под углом 120° друг к другу (рис. 13).

Рис. 13.
Схемы 8р 2 -гибридизации и расположения sр 2 -облаков в пространстве

Поэтому молекулы таких соединений, например BF3, имеют форму плоского треугольника (рис. 14).

Рис. 14.
Строение молекулы BF3

В органических соединениях, как вы знаете, sp 2 -гибридизация характерна для атомов углерода в молекулах алкенов по месту двойной связи, чем и объясняется плоскостное строение этих частей молекул, а также молекул диенов и аренов. sp 2 -Гибридизация наблюдается также у атомов углерода и в такой аллотропной модификации углерода, как графит.

В молекулах некоторых соединений бериллия наблюдается sр-гибридизация валентных орбиталей атома бериллия в возбужденном состоянии.

Два гибридных облака ориентируются друг относительно друга под углом 180° (рис. 15), и поэтому молекула хлорида бериллия ВеСl 2 имеет линейную форму.

Рис. 15.
Схемы sp-гибридизации и расположения sp-облаков в пространстве

Аналогичный тип гибридизации атомных орбиталей существует у атомов углерода в алкинах — углеводородах ряда ацетилена — по месту тройной связи.

Такая гибридизация орбиталей характерна для атомов углерода в еще одной его аллотропной модификации — карбине:

В таблице 9 приведены виды геометрических конфигураций молекул, соответствующие некоторым типам гибридизации орбиталей центрального атома А с учетом влияния числа свободных (несвязывающих) электронных пар.

Таблица 9
Геометрические конфигурации молекул, соответствующие различным типам гибридизации внешних электронных орбиталей центрального атома

Вопросы и задания к § 7

  1. В молекулах водородных соединений углерода, азота и кислорода, формулы которых СН 4 , NH 3 и Н 2 O, валентные орбитали центральных атомов неметаллов находятся в состоянии sр 3 -гибридизации, но валентные углы между связями разные — 109°28″ 107°30″ и 104°27″ соответственно. Чем это можно объяснить?
  2. Почему графит электропроводен, а алмаз нет?
  3. Какую геометрическую форму будут иметь молекулы двух фторидов — бора и азота (BF 3 и NF 3 соответственно)? Дайте обоснованный ответ.
  4. Молекула фторида кремния SiF 4 имеет тетраэдрическое строение, а молекула хлорида брома ВСl 3 — форму треугольника — плоскостное. Почему?

Гибридизация – выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако – это область пространства, в которой с высокой вероятностью может быть обнаружен электрон

Sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуются две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра центрального атома. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

Sp2-гибридизация

Sp2-гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуются три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары)

Тип гибридизации

Число гибридных орбиталей

Геометрия

Структура

Примеры

Линейная

BeF 2 , CO 2 , NO 2 +

sp 2

Треугольная

BF 3 , NO 3 — , CO 3 2-

sp 3

Тетраэдрическая

CH 4 , ClO 4 — , SO 4 2- , NH 4 +

dsp 2

Плоскоквадратная

Ni(CO) 4 , 2-

sp 3 d

Гексаэдрическая

sp 3 d 2 , d 2 sp 3

Октаэдрическая

SF 6 , Fe(CN) 6 3- , CoF 6 3-

4. Электровалентная, ковалентная, донорно-акцепторная, водородная связи. Электронное строение σ и π связи. Основные характеристики ковалентной связи: энергия связи, длина, валентный угол, полярность, поляризуемость.

Если между двумя атомами или двумя группами атомов имеет место электростатическое взаимодействие приводящее к сильному притяжению и образованию химической связи, то такая связь называется электровалентной или гетерополярной.

Ковалентная связь- химическая связь, образованная перекрытием пары валентных электронных облаков. Обепечивающие связь электронные облака называется общей электронной парой.

Донорно-акцепторная связь –это химическая связь между двумя атомами или группой атомов, осуществляемая за счет неподеленной пары электронов одного атома (донора) и свободного уровня другого атома (акцептора). Это связь отличается от ковалентной связи происхождением связи электронов.

Водородная связь -это вид химического взаимодейсвия атомов в молекуле отличающийся тем, что существенное участие в нем принимает атом водорода, уже связанный ковалентной связью с другими атомами

σ связь-это первая и более прочная связь, которая образуется при перекрывании электронных облаков в направлении прямой, соединяющий центры атомов.

σ связь-это обычные ковалентные связи атомов углерода с атомами водорода. Молекулы предельных углеродов содержат только σ связи.

π связь это менее прочная связь, которая образуется при перекрывании электронных плоскости атомов ядер

Электроны π и σ связи теряют свою принадлежность к определенному атому.

Особенности σ и π связи: 1)вращение атомов углерода в молекуле возможна в случае, если они соединены σ связью 2)появление π связи лишает атома углерода в молекуле в свободного вращения.

Длина связи- это расстояние между центрами связанных атомов.

Валентный угол- это угол между двумя связями, имеющий общий атом.

Энергия связи- энергия, выделяющаяся при образовании хим. связи и характеризующаяся ее прочность

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные. Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

5. Ионная связь (электровалентная)- очень прочная химическая связь, образующаяся между атомами с большой разностью электроотрицательностей, при которой общая электронная пара переходит преимущественно к атому с большей электроотрицательностью. Ковалентная связь – возникает за счет обобществления электронной пары посредством обменного механизма, когда каждый из взаимодействующих атомов поставляет по одному электрону. Донорно акцепторная связь (координационная связь) химическая связь между двумя атомами или группой атомов, осуществляемая за счет неподеленной пары электронов одного атома (донора) и свободной орбитали другого атома (акцептора). пример Nh5 Для возникновения водородных связей важно, чтобы в молекулах вещества были атомы водорода, связанные с небольшими, но электроотрицательными атомами, например: O, N, F. Это создает заметный частичный положительный заряд на атомах водорода. С другой стороны, важно, чтобы у электроотрицательных атомов были неподеленные электронные пары. Когда обедненный электронами атом водорода одной молекулы (акцептор) взаимодействует с неподеленной электронной парой на атоме N, O или F другой молекулы (донор), то возникает связь, похожая на полярную ковалентную. При образовании ковалентной связи в молекулах органических соединений общая электронная пара заселяет связывающие молекулярные орбитали, имеющие более низкую энергию. В зависимости от формы МО – σ-МО или π-МО – образующиеся связи относят к σ- или p-типу. σ-Связь – ковалентная связь, образованная при перекрывании s-, p- и гибридных АО вдоль оси, соединяющей ядра связываемых атомов (т. е. при осевом перекрывании АО) . π-Связь – ковалентная связь, возникающая при боковом перекрывании негибридных р-АО. Такое перекрывание происходит вне прямой, соединяющей ядра атомов.
π-Связи возникают между атомами, уже соединенными σ-связью (при этом образуются двойные и тройные ковалентные связи) . π-Связь слабее σ-связи из-за менее полного перекрывания р-АО. Различное строение σ- и π-молекулярных орбиталей определяет характерные особенности σ- и π-связей. 1.σ-Связь прочнее π-связи. Это обусловлено более эффективным осевым перекрыванием АО при образовании σ-МО и нахождением σ-электронов между ядрами. 2.По σ-связям возможно внутримолекулярное вращение атомов, т. к. форма σ-МО допускает такое вращение без разрыва связи (cм аним. Картинку внизу)) . Вращение по двойной (σ + π) связи невозможно без разрыва π-связи! 3.Электроны на π-МО, находясь вне межъядерного пространства, обладают большей подвижностью по сравнению с σ-электронами. Поэтому поляризуемость π-связи значительно выше, чем σ-связи.

Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные — двухатомная молекула состоит из одинаковых атомов (H 2 , Cl 2 , N 2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные — двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождаядипольный момент молекулы).

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

6.Номенклатура представляет собой систему правил, позволяющих дать однозначное название каждому индивидуальному соединению. Для медицины знание общих правил номенклатуры имеет особенно большое значение, так как в соответствии с ними строятся названия многочисленных лекарственных средств. В настоящее время общепринята систематическая номенклатура ИЮПАК (IUPAC — Международный союз теоретической и прикладной химии)*.

Однако до сих пор сохраняются и широко применяются (особенно в медицине) тривиальные (обыденные) и полутривиальные названия, использовавшиеся еще до того, как становилось известным строение вещества. В этих названиях могут отражаться природные источники и способы получения, особо заметные свойства и области применения. Например, лактоза (молочный сахар) выделена из молока (от лат. lactum — молоко), пальмитиновая кислота — из пальмового масла, пировиноградная кислота получена при пиролизе виноградной кислоты, в названии глицерина отражен его сладкий вкус (от греч. glykys — сладкий).

Тривиальные названия особенно часто имеют природные соединения — аминокислоты, углеводы, алкалоиды, стероиды. Употребление некоторых укоренившихся тривиальных и полутривиальных названий разрешается правилами ИЮПАК. К таким названиям относятся, например, «глицерин» и названия многих широко известных ароматических углеводородов и их производных.

Рациональная номенклатура предельных углеводородов

В отличие от тривиальной названия основываются на строении молекул. Названия сложных структур состовляют из названия блоков те радикалов связанных с основным навиболее важным узлом молекулы по этой номенклатуре алканы рассматриваются как производные метана у которого атомы водорода замещены соответствующими радикалами. Выбор метанового углерода произвольный поэтому 1 соедин может иметь неск названий. по этой номенклатуре алкены рассматривают как производные этилена а алкины-ацетилена.

7. Гомология органических соединений или закон гомологов — состоит в том, что вещества однойхимической функции и одинакового строения, отличающиеся друг от друга по своему атомному составу лишьна nСН 2, оказываются сводными и во всем своем остальном хим. характере, а различие их физическихсвойств возрастает или вообще изменяется правильно по мере увеличения разницы в составе,определяемой числом n групп СН 2. Такие хим. сходственные соединения образуют так наз. гомологическийряд, атомный состав всех членов которого возможно выразить общею формулою в зависимости от составапервого члена ряда и числа атомов углерода; органические вещества одного названия типо алканы только.

Изомеры- соединения имеющие одинаковый состав но разное строение и свойства.

8. Нуклеоф и льные и электроф и льные реаг е нты . Участвующие в замещения реакциях реагенты подразделяются на нуклеофильные и электрофильные. Нуклеофильные реагенты, или нуклеофилы, предоставляют свою паруэлектронов на образование новой связи и вытесняют из молекулы RX уходящую группу (X) с парой электронов, образовывавшей старую связь, например:

(где R — органический радикал).

К нуклеофилам относятся отрицательно заряженные ионы (Hal — , ОН — , CN — , NO 2 — , OR — , RS — , NH 2 — , RCOO — и др.), нейтральные молекулы, обладающие свободной парой электронов (например, Н 2 О, Nh4, R 3 N, R 2 S, R 3 P, ROH, RCOOH), и металлоорганич. соединения R — Me с достаточно поляризованной связью С — Me + , т. е. способные быть донорами карбанионов R — . Реакции с участием нуклеофилов (нуклеофильное замещение) характерны главным образом Для алифатических соединений, например гидролиз (ОН — , Н 2 О), алкоголиз (RO — , ROH), ацидолиз (RCOO — , RСООН), аминирование (NH — 2 , NH 3 , RNH 2 и др.), цианирование (CN -) и т. д.

Электрофильные реагенты, или электрофилы, при образовании новой связи служат акцепторами пары электронов и вытесняют уходящую группу в виде положительно заряженной частицы. К электрофилам относятся положительно заряженные ионы (например, Н + , NO 2 +), нейтральные молекулы с электронным дефицитом, например SO 3 , и сильно поляризованные молекулы (СН 3 СОО — Br + и др.), причём поляризация особенно эффективно достигаетсякомплексообразованием с коэффициентами Льюиса (Hal + — Hal — · А, R + — Cl — · A, RCO + — Cl — · А, где A= A1C1 3 , SbCl 5 , BF 3 и др.). К реакциям с участием электрофилов (электрофильное замещение) относятся важнейшие реакцииароматических углеводородов (например, нитрование, галогенирование, сульфирование, реакция Фриделя — Крафтса):

(E + = Hal + , NO + 2 , RCO + , R + и др.)

В определённых системах реакции с участием нуклеофилов осуществляются в ароматическом ряду, а реакции с участием электрофилов — в алифатическом (чаще всего в ряду металлоорганических соединений).

53. взаимодействие оксосоединений с металлорганическими (кетон или альдегид плюс металорганика)

Реакции широко используются для получения спиртов. при присоединении к формальдегиду реактива гриньяра(R-MgX) образуется первичный спирт, другим альдегидом вторичные, а кетонам тритичные спирты

Модель атома углерода

Валентные электроны атома углерода располагаются на одной 2s-орбитали и двух 2р-орбиталях. 2р-Орбитали расположены под углом 90° друг к другу, а 2s-орбиталь имеет сферическую симметрию. Таким образом, расположение атомных орбиталей углерода в пространстве не объясняет возникновения в органических соединениях валентных углов 109,5°, 120° и 180°.

Чтобы разрешить это противоречие, было введено понятие гибридизации атомных орбиталей. Для понимания природы трех вариантов расположения связей атома углерода понадобились представления о трех типах гибридизации.

Возникновением концепции гибридизации мы обязаны Лайнусу Полингу, много сделавшему для развития теории химической связи.

Концепция гибридизации объясняет, каким образом атом углерода видоизменяет свои орбитали при образовании соединений. Ниже мы будем рассматривать этот процесс трансформации орбиталей постадийно. При этом надо иметь в виду, что расчленение процесса гибридизации на стадии или этапы есть, на самом деле, не более чем мысленный прием, позволяющий более логично и доступно изложить концепцию. Тем не менее заключения о пространственной ориентации связей углеродного атома, к которым мы в итоге придем, полностью соответствуют реальному положению дел.

Электронная конфигурация атома углерода в основном и возбужденном состоянии

На рисунке слева показана электронная конфигурация атома углерода. Нас интересует только судьба валентных электронов. В результате первого шага, который называют возбуждением или промотированием , один из двух 2s-электронов перемещается на свободную 2р-орбиталь. На втором этапе происходит собственно процесс гибридизации, который несколько условно можно представить себе как смешение одной s- и трех р-орбиталей и образование из них четырех новых одинаковых орбиталей, каждая из которых на одну четверть сохраняет свойства s-орбитали и на три четверти — свойства р-орбиталей. Эти новые орбитали получили название sp 3 -гибридных . Здесь надстрочный индекс 3 обозначает не число электронов, занимающих орбитали, а число р-орбиталей, принявших участие в гибридизации. Гибридные орбитали направлены к вершинам тетраэдра, в центре которого находится атом углерода. На каждой sp 3 -гибридной орбитали находится по одному электрону. Эти электроны и участвуют на третьем этапе в образовании связей с четырьмя атомами водорода, образуя валентные углы 109,5°.

sp3 — гибридизация. Молекула метана.

Образование плоских молекул с валентными углами 120° показано на рисунке ниже. Здесь, как и в случае sp 3 -гибридизации, первый шаг — возбуждение. На втором этапе в гибридизации участвуют одна 2s- и две 2р — орбитали, образуя три s р 2 -гибридных орбитали, расположенных в одной плоскости под углом 120° друг к другу.

Образование трех sр2-гибридных орбиталей

Одна p-рорбиталь остается негибридизованной и располагается перпендикулярно плоскости sр 2 –гибридных орбиталей. Затем (третий шаг) две sр 2 -гибридные орбитали двух углеродных атомов объединяют электроны, образуя ковалентную связь. Такая связь, образующаяся в результате перекрывания двух атомных орбиталей вдоль линии, соединяющей ядра атома, называется σ -связью .

Образование сигма — и пи-связей в молекуле этилена

Четвертый этап — образование второй связи между двумя углеродными атомами. Связь образуется в результате перекрывания обращенных друг к другу краев негибридизованных 2р-орбиталей и называется π-связью . Новая молекулярная орбиталь представляет собой совокупность двух занятых электронами π-связи областей — над и под σ-связью. Обе связи (σ и π) вместе составляют двойную связь между атомами углерода. И наконец, последний, пятый шаг — образование связей между атомами углерода и водорода с помощью электронов четырех оставшихся sр 2 -гибридных орбиталей.

Двойная связь в молекуле этилена

Третий, последний тип гибридизации, показан на примере простейшей молекулы, содержащей тройную связь,- молекулы ацетилена. Первый шаг — возбуждение атома, такой же, как раньше. На втором этапе происходит гибридизация одной 2s- и одной 2р-орбиталей с образованием двух s р-гибридных орбиталей, которые располагаются под углом 180°. И остаются не измененными две 2р-орбитали, необходимые для образования двух π-связей.

Образование двух sр-гибридных орбиталей

Следующий шаг — образование σ-связи между двумя sр-гибридизованными углеродными атомами, затем образуются две π-связи. Одна σ-связь и две π-связи между двумя атомами углерода вместе составляют тройную связь . И наконец, образуются связи с двумя атомами водорода. Молекула ацетилена имеет линейное строение, все четыре атома лежат на одной прямой.

Мы показали, каким образом три основных в органической химии типа геометрии молекул возникают в результате различных трансформаций атомных орбиталей углерода.

Можно предложить два способа определения типа гибридизации различных атомов в молекуле.

Способ 1 . Наиболее общий способ, пригодный для любых молекул. Основан на зависимости валентного угла от гибридизации:

а) валентные углы 109,5°, 107° и 105° свидетельствуют об sр 3 -гибридизации;

б) валентный угол около 120° -sр 2 -гибридизация;

в) валентный угол 180°-sp-гибридизация.

Способ 2 . Пригоден для большинства органических молекул. Поскольку тип связи (простая, двойная, тройная) связан с геометрией, можно по характеру связей данного атома определить тип его гибридизации:

а) все связи простые – sр 3 -гибридизация;

б) одна двойная связь – sр 2 -гибридизация;

в) одна тройная связь — sp-гибридизация.

Гибридизация — это мысленная операция превращения обычных (энергетически наиболее выгодных) атомных орбиталей в новые орбитали, геометрия которых соответствует экспериментально определенной геометрии молекул.


Концепция гибридизации

Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей . Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи , в частности, выравнивание длин химических связей и валентных углов в молекуле.

Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. В настоящее время используется в основном в методических целях и в синтетической органической химии .

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи — Найхолма. Первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т. е электронные пары ведут себя так, как если бы они взаимно отталкивались» .

Второе правило состоит в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра» .

Виды гибридизации

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28″, что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Гибридизация и геометрия молекул

Представления о гибридизации атомных орбиталей лежат в основе теории отталкивания электронных пар Гиллеспи-Найхолма . Каждому типу гибридизации соответствует строго определённая пространственная ориентация гибридных орбиталей центрального атома, что позволяет её использовать как основу стереохимических представлений в неорганической химии.

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары) .

Тип гибридизацииЧисло
гибридных орбиталей
ГеометрияСтруктураПримеры
sp 2ЛинейнаяBeF 2 , CO 2 , NO 2 +
sp 2 3ТреугольнаяBF 3 , NO 3 — , CO 3 2-
sp 3 4ТетраэдрическаяCH 4 , ClO 4 — , SO 4 2- , NH 4 +
dsp 2 4ПлоскоквадратнаяNi(CO) 4 , XeF 4
sp 3 d 5ГексаэдрическаяPCl 5 , AsF 5
sp 3 d 2 6ОктаэдрическаяSF 6 , Fe(CN) 6 3- , CoF 6 3-

Ссылки

Литература

  • Паулинг Л. Природа химической связи / Пер. с англ. М. Е. Дяткиной. Под ред. проф. Я. К. Сыркина. — М.; Л.: Госхимиздат, 1947. — 440 с.
  • Полинг Л. Общая химия. Пер. с англ. — М .: Мир, 1974. — 846 с.
  • Минкин В. И., Симкин Б. Я., Миняев Р. М. Теория строения молекул. — Ростов-на-Дону: Феникс, 1997. — С. 397-406. — ISBN 5-222-00106-7
  • Гиллеспи Р. Геометрия молекул / Пер. с англ. Е. З. Засорина и В. С. Мастрюкова, под ред. Ю. А. Пентина. — М .: Мир, 1975. — 278 с.

См. также

Примечания

Wikimedia Foundation . 2010 .

Состояние sp3 гибридизация. Типы гибридизации s- и p- электронных облаков. Пространственная конфигурация молекул. Что будем делать с полученным материалом

Гибридизация атомных орбиталей – процесс, позволяющий понять, как атомы видоизменяют свои орбитали при образовании соединений. Так, что же такое гибридизация, и какие ее типы существуют?

Общая характеристика гибридизации атомных орбиталей

Гибридизация атомных орбиталей – это процесс, при котором смешиваются различные орбитали центрального атома, в результате чего образуются одинаковые по своим характеристикам орбитали.

Гибридизация происходит в процессе образования ковалентной связи.

Гибридная орбиталь имеет фору знака бесконечности или несимметричной перевернутой восьмерки, вытянутой в сторону от атомного ядра. Такая форма обусловливает более сильное, чем в случае чистых атомных орбиталей, перекрывание гибридных орбиталей с орбиталями (чистых или гибридных) других атомов и приводит к образованию более прочных ковалентных связей.

Рис. 1. Гибридная орбиталь внешний вид.

Впервые идею о гибридизации атомных орбиталей выдвинул американский ученый Л. Полинг. Он считал, что у вступающего в химическую связь атома имеются разные атомные орбитали (s-, p-, d-, f-орбитали), то в результате происходит гибридизация этих орбиталей. Суть процесса заключается в том, что из разных орбиталей образуются эквивалентные друг другу атомные орбитали.

Типы гибридизации атомных орбиталей

Существует несколько видов гибридизации:

  • . Этот вид гибридизации происходит, когда смешиваются одна s-орбиталь и одна p-орбиталь. В результате образуются две полноценных sp-орбиталей. Эти орбитали расположены к атомному ядру таким образом, что угол между ними составляет 180 градусов.

Рис. 2. sp-гибридизация.

  • sp2-гибридизация . Этот вид гибридизации происходит, когда смешиваются одна s-орбиталь и две p-орбитали. В результате происходит образование трех гибридных орбиталей, которые расположены в одной плоскости под углом 120 градусов друг к другу.
  • . Этот вид гибридизации происходит, когда смешиваются одна s-орбиталь и три p-орбитали. В результате происходит образование четырех полноценных sp3-орбиталей. Эти орбитали направлены к вершине тетраэдра и располагаются друг к другу под углом 109,28 градусов.

sp3-гибридизация характерна для многих элементов, например, атома углерода и других веществ IVА группы (CH 4 , SiH 4 , SiF 4 , GeH 4 и др.)

Рис. 3. sp3-гибридизация.

Возможны также и более сложные виды гибридизации с участием d-орбиталей атомов.

Что мы узнали?

Гибридизация – сложный химический процесс, когда разные орбитали атома образуют одинаковые (эквивалентные) гибридные орбитали. Первым теорию гибридизации озвучил американец Л. Полинг. Выделяют три основных вида гибридизации: sp-гибридизация, sp2-гибридизация, sp3-гибридизация. Существуют также более сложные виды гибридизации, в которых участвуют d-орбитали.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 315.

В 1930 г. Слейтером и Л. Полингом была развита теория образования ковалентной связи за счет перекрывания электронных орбиталей – метод валентных связей. В основе этого метода лежит метод гибридизации, который описывает образование молекул веществ за счет «смешивания» гибридных орбиталей («смешиваются» не электроны, а орбитали).

ОПРЕДЕЛЕНИЕ

Гибридизация – смешение орбиталей и выравнивание их по форме и энергии. Так, при смешении s- и p- орбиталей получаем тип гибридизации sp, s- и 2-х p-орбиталей – sp 2 , s- и 3-х p-орбиталей – sp 3 . Существуют и другие типы гибридизации, например, sp 3 d, sp 3 d 2 и более сложные.

Определение типа гибридизации молекул с ковалентной связью

Определить тип гибридизации можно только для молекул с ковалентной связью типа АВ n , где n больше или равно двум, А – центральный атом, В – лиганд. В гибридизацию вступают только валентные орбитали центрального атома.

Определим тип гибридизации на примере молекулы BeH 2 .

Первоначально записываем электронные конфигурации центрального атома и лиганда, рисуем электронно-графические формулы.

Атом бериллия (центральный атом) имеет вакантные 2p-орбитали, поэтому, чтобы принять по одному электрону от каждого атома водорода (лиганд) для образования молекулы BeH 2 ему необходимо перейти в возбужденное состояние:

Образование молекулы BeH 2 происходит за счет перекрывания валентных орбиталей атома Be

* красным цветом обозначены электроны водорода, черным – бериллия.

Тип гибридизации определяют по тому, какие орбитали перекрылись, т. о., молекула BeH 2 находитс в sp – гибридизации.

Помимо молекул состава AB n , методом валентных связей можно определить тип гибридизации молекул с кратными связями. Рассмотрим на примере молекулы этилена C 2 H 4 . В молекуле этилена кратная двойная связь, которая образована и –связями. Чтобы определить гибридизацию, записываем электронные конфигурации и рисуем электронно-графические формулы атомов, входящих в состав молекулы:

6 C 2s 2 2s 2 2p 2

У атома углерода имеется еще одна вакантная p-орбиталь, следовательно, чтобы принять 4 атома водорода ему необходимо перейти в возбужденное состояние:

Одна p-орбиталь необходима для образования -связи (выделена красным цветом), поскольку -связь образуется за счет перекрывания «чистых» (негибридных) p — орбиталей. Остальные валентные орбитали идут в гибридизацию. Таким образом этилен находится в гибридизации sp 2 .

Определение геометрической структуры молекул

Геометрическую структуру молекул, а также катионов и анионов состава АВ n можно с помощью метода Гиллеспи. В основе этого метода – валентные пары электронов. На геометрическую структуру оказывают влияние не только электроны, участвующие в образовании химической связи, но и неподеленные электронные пары. Каждую неподеленную пару электронов в методе Гиллеспи обозначают Е, центральный атом – А, лиганд – В.

Если неподеленных электронных пар нет, то состав молекул может быть АВ 2 (линейная структура молекулы), АВ 3 (структура плоского треугольника), АВ4 (тетраэдрическая структура), АВ 5 (структура тригональной бипирамиды) и АВ 6 (октаэдрическая структура). От базисных структур могут быть получены производные, если вместо лиганда появляется неподеленная электронная пара. Например: АВ 3 Е (пирамидальная структура), АВ 2 Е 2 (угловая структура молекулы).

Чтобы определить геометрическую структуру (строение) молекулы необходимо определить состав частицы, для чего вычисляют количество неподеленных лектронных пар (НЕП):

НЕП = (общее число валентных электронов – число электронов, пошедших на образование связи с лигандами) / 2

На связь с H, Cl, Br, I, F уходит по 1-му электрону от А, на связь с O – по 2 электрона, а на связь с N – по 3 электрона от центрального атома.

Рассмотрим на примере молекулы BCl 3 . Центральный атом – B.

5 B 1s 2 2s 2 2p 1

НЕП = (3-3)/2 = 0, следовательно неподеленных электронных пар нет и молекула имеет структуру АВ 3 – плоский треугольник.

Подробно геометрическое строение молекул разного состава представлено в табл. 1.

Таблица 1. Пространственное строение молекул

Формула молекулы

Тип гибридизации

Тип молекулы

Геометрия молекулы

линейная

треугольная

тетраэдр

тригональная пирамида

тригональная бипирамида

дисфеноид

Т-образная

линейная

квадратная пирамида

Примеры решения задач

ПРИМЕР 1

ЗаданиеОпределите с помощью метода валентных связей тип гибридизации молекулы метана (CH 4) и его геометрическую структуру по методу Гиллеспи
Решение 6 С 2s 2 2s 2 2p 2

sp–гибридизация имеет место, например, при образовании галогенидов Be, Zn, Co и Hg (II). В валентном состоянии все галогениды металлов содержат на соответствующем энергетическом уровне s и p-неспаренные электроны. При образовании молекулы одна s- и одна р-орбиталь образуют две гибридные sp-орбитали под углом 180 о.

Рис.3 sp-гибридные орбитали

Экспериментальные данные показывают, что все галогениды Be, Zn, Cd и Hg (II) линейны и обе связи имеют одинаковую длину.

sp 2 -гибридизация

В результате гибридизации одной s-орбитали и двух p-орбиталей образуются три гибридные sp 2 -орбитали, расположенные в одной плоскости под углом 120 о друг к другу. Такова, например, конфигурация молекулы BF 3:

Рис.4 sp 2 -гибридизация

sp 3 -гибридизация

sp 3 -гибридизация характерна для соединений углерода. В результате гибридизации одной s-орбитали и трех

р-орбиталей образуются четыре гибридные sp 3 -орбитали, направленные к вершинам тетраэдра с углом между орбиталями 109,5 о. Гибридизация проявляется в полной равноценности связей атома углерода с другими атомами в соединениях, например, в CH 4 , CCl 4 , C(CH 3) 4 и др.

Рис.5 sp 3 -гибридизация

Если все гибридные орбитали связаны с одинаковыми атомами, то связи ничем не отличаются друг от друга. В других случаях встречаются небольшие отклонения от стандартных валентных углов. Например, в молекуле воды H 2 O кислород — sp 3 -гибридный, находится в центре неправильного тетраэдра, в вершины которого «смотрят» два атома водорода и две неподеленные пары электронов (рис. 2). Форма молекулы угловая, если смотреть по центрам атомов. Валентный угол HОН составляет 105 о, что довольно близко к теоретическому значению 109 о.

Рис.6 sp 3 -гибридизация атомов кислорода и азота в молекулах а) H 2 O и б) NCl 3 .

Если бы не происходило гибридизации (“выравнивания” связей O-H), валентный угол HOH был бы равен 90°, потому что атомы водорода были бы присоединены к двум взаимно перпендикулярным р-орбиталям. В этом случае наш мир выглядел бы, вероятно, совершенно по-другому.

Теория гибридизации объясняет геометрию молекулы аммиака. В результате гибридизации 2s и трёх 2p орбиталей азота образуются четыре гибридные орбитали sp 3 . Конфигурация молекулы представляет из себя искажённый тетраэдр, в котором три гибридных орбитали участвуют в образовании химической связи, а четвёртая с парой электронов – нет. Углы между связями N-H не равны 90 о как в пирамиде, но и не равны 109,5 о, соответствующие тетраэдру.

Рис.7 sp 3 — гибридизация в молекуле аммиака

При взаимодействии аммиака с ионом водорода в результате донорно-акцепторного взаимодействия образуется ион аммония, конфигурация которого представляет собой тетраэдр.

Гибридизация объясняет также отличие угла между связями О-Н в угловой молекуле воды. В результате гибридизации 2s и трёх 2p орбиталей кислорода образуются четыре гибридных орбитали sp 3 , из которых только две участвуют в образовании химической связи, что приводит к искажению угла, соответсвующего тетраэдру.

Рис.8 sp 3 -гибридизация в молекуле воды

В гибридизацию могут включаться не только s- и р-, но и d- и f-орбитали.

При sp 3 d 2 -гибридизации образуется 6 равноценных облаков. Она наблюдается в таких соединениях как 4- , 4- . При этом молекула имеет конфигурацию октаэдра.

Большинство органических соединений имеют молекулярное строение. Атомы в веществах с молекулярным типом строения всегда образуют только ковалентные связи друг с другом, что наблюдается и в случае органических соединений. Напомним, что ковалентным называется такой вид связи между атомами, который реализуется за счет того, что атомы обобществляют часть своих внешних электронов с целью приобретения электронной конфигурации благородного газа.

По количеству обобществлённых электронных пар ковалентные связи в органических веществах можно разделить на одинарные, двойные и тройные. Обозначаются данные типы связей в графической формуле соответственно одной, двумя или тремя чертами:

Кратность связи приводит к уменьшении ее длины, так одинарная С-С связь имеет длину 0,154 нм, двойная С=С связь – 0,134 нм, тройная С≡С связь – 0,120 нм.

Типы связей по способу перекрывания орбиталей

Как известно, орбитали могут иметь различную форму, так, например, s-орбитали имеют сферическую, а p-гантелеобразную форму. По этой причине связи также могут отличаться по способу перекрывания электронных орбиталей:

ϭ-связи – образуются при перекрывании орбиталей таким образом, что область их перекрывания пересекается линией, соединяющей ядра. Примеры ϭ-связей:

π-связи – образуются при перекрывании орбиталей, в двух областях – над и под линией соединяющей ядра атомов. Примеры π-связей:

Как узнать, когда в молекуле есть π- и ϭ-связи?

При ковалентном типе связи ϭ-связь между любыми двумя атомами есть всегда, а π-связь имеет только в случае кратных (двойных, тройных) связей. При этом:

  • Одинарная связь – всегда является ϭ-связью
  • Двойная связь всегда состоит из одной ϭ- и одной π-связи
  • Тройная связь всегда образована одной ϭ- и двумя π-связями.

Укажем данные типы связей в молекуле пропиновой кислоты:

Гибридизация орбиталей атома углерода

Гибридизацией орбиталей называют процесс, при котором орбитали, изначально имеющие разные формы и энергии смешиваются, образуя взамен такое же количество гибридных орбиталей, равных по форме и энергии.

Так, например, при смешении одной s- и трех p- орбиталей образуются четыре sp 3 -гибридных орбитали:

В случае атомов углерода в гибридизации всегда принимает участие s- орбиталь, а количество p -орбиталей, которые могут принимать участие в гибридизации варьируется от одной до трех p- орбиталей.

Как определить тип гибридизации атома углерода в органической молекуле?

В зависимости от того, со скольким числом других атомов связан какой-либо атом углерода, он находится либо в состоянии sp 3 , либо в состоянии sp 2 , либо в состоянии sp- гибридизации:

Потренируемся определять тип гибридизации атомов углерода на примере следующей органической молекулы:

Первый атом углерода связан с двумя другими атомами (1H и 1C), значит он находится в состоянии sp -гибридизации.

  • Второй атом углерода связан с двумя атомами – sp -гибридизация
  • Третий атом углерода связан с четырьмя другими атомами (два С и два Н) – sp 3 -гибридизация
  • Четвертый атом углерода связан с тремя другими атомами (2О и 1С) – sp 2 -гибридизация.

Радикал. Функциональная группа

Под термином радикал, чаще всего подразумевают углеводородный радикал, являющийся остатком молекулы какого-либо углеводорода без одного атома водорода.

Название углеводородного радикала формируется, исходя из названия соответствующего ему углеводорода заменой суффикса –ан на суффикс –ил .

Функциональная группа — структурный фрагмент органической молекулы (некоторая группа атомов), который отвечает за её конкретные химические свойства.

В зависимости того, какая из функциональных групп в молекуле вещества является старшей, соединение относят к тому или иному классу.

R – обозначение углеводородного заместителя (радикала).

Радикалы могут содержать кратные связи, которые тоже можно рассматривать как функциональные группы, поскольку кратные связи вносят вклад в химические свойства вещества.

Если в молекуле органического вещества содержится две или более функциональных группы, такие соединения называют полифункциональными.

Гибридизация АО — это выравнивание валентных АО по форме и энергии в процессе образования химической связи .

1. В гибридизации могут участвовать только те АО, энергия которых достаточно близка (например, 2s- и 2р-атомные орбитали).

2. В гибридизации могут участвовать вакантные (свободные) АО, орбитали с неспаренными электронами и неподеленными электронными парами.

3. В результате гибридизации появляются новые гибридные орбитали, которые ориентируются в пространстве таким образом, чтобы после их перекрывания с орбиталями других атомов электронные пары оказались максимально удаленными друг от друга. Такое состояние молекулы отвечает минимуму энергии в силу максимального отталкивания одноименно заряженных электронов.

4. Вид гибридизации (число АО, подвергающихся гибридизации), определяется числом «атакующих» данный атом атомов и числом неподеленных электронных пар в данном атоме .

Пример. ВF 3 . В момент образования связи происходит перестройка АО атома В, переходящего в возбужденное состояние: В 1s 2 2s 2 2p 1 ® B* 1s 2 2s 1 2p 2 .

Гибридные АО располагаются под углом 120 о. Молекула имеет форму правильного треугольника (плоская, треугольная):

3. sp 3 -гибридизация. Такой вид гибридизации характерен для атомов 4-ой группы (например, углерода, кремния, германия ) в молекулах типа ЭХ 4 , а также для атома С в алмазе, молекулах алканов, для атома N в молекуле NH 3 , NH 4 + , атома О в молекуле Н 2 О и т.д.

Пример 1. СН 4 . В момент образования связи происходит перестройка АО атома С, переходящего в возбужденное состояние: С 1s 2 2s 2 2p 2 ® С* 1s 2 2s 1 2p 3 .

Гибридные АО располагаются под углом 109 о 28″.

Пример 2. NН 3 и NН 4 + .

Электронная структура атома N: 1s 2 2s 2 2p 3 . Гибридизации подвергаются 3 АО, содержащие неспаренные электроны, и 1 АО, содержащая неподеленную электронную пару. В силу более сильного отталкивания неподеленной электронной пары от электронных пар s-связей угол связи в молекуле аммиака составляет 107,3 о (ближе к тетраэдрическому, а не к прямому).

Молекула имеет форму тригональной пирамиды :

Представления об sp 3 -гибридизации позволяют объяснить возможность образования иона аммония и равноценность связей в нем.

Пример 3. Н 2 О.

Электронная структура атома О 1s 2 2s 2 2p 4 . Гибридизации подвергаются 2 АО, содержащие неспаренные электроны, и 2 АО, содержащие неподеленные электронные пары. Угол связи в молекуле воды составляет 104,5 о (также ближе к тетраэдрическому, а не к прямому).

Молекула имеет угловую форму :

Представления об sp 3 -гибридизации позволяют объяснить возможность образования иона оксония (гидроксония) и образование каждой молекулой 4-х водородных связей в структуре льда.

4. sp 3 d-гибридизация. Такой вид гибридизации характерен для атомов элементов 5-ой группы (начиная с Р) в молекулах типа ЭХ 5 .

Пример. РСl 5 . Электронная структура атома Р в основном и возбужденном состояниях: Р 1s 2 2s 2 2p 6 3s 2 3p 3 ® P* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 1 . Форма молекулы — гексаэдр (точнее тригональная бипирамида) :

5. sp 3 d 2 -гибридизация. Такой вид гибридизации характерен для атомов элементов 6-ой группы (начиная с S) в молекулах типа ЭХ 6 .

Пример. SF 6 . Электронная структура атома S в основном и возбужденном состояниях: S 1s 2 2s 2 2p 6 3s 2 3p 4 ® P* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 2 .

Форма молекулы октаэдр :

6. sp 3 d 3 -гибридизация. Такой вид гибридизации характерен для атомов элементов 7 группы (начиная с Cl) в молекулах типа ЭХ 7 .

Пример. IF 7 . Электронная структура атома F в основном и возбужденном состояниях: I 5s 2 3p 5 ® I* 5s 1 3p 3 3d 3 . Форма молекулы — декаэдр (точнее пентагональная бипирамида) :

7. sp 3 d 4 -гибридизация. Такой вид гибридизации характерен для атомов элементов 8 группы (кроме Не и Ne) в молекулах типа ЭХ 8 .

Пример. ХеF 8 . Электронная структура атома Хе в основном и возбужденном состояниях: Хе 5s 2 3p 6 ® Хе* 5s 1 3p 3 3d 4 .

Форма молекулы додекаэдр :

Могут быть и другие виды гибридизации АО.

Ковалентная связь

    Химическая связь.

Химическую связь можно определить как взаимодействие двух или нескольких атомов, в результате которого образуется химически устойчивая многоатомная микросистема (молекула, кристалл, комплекс и др.).

Учение о связи занимает центральное место в современной химии, поскольку химия как таковая начинается там, где кончается изолированный атом и начинается молекула. В сущности, все свойства веществ обусловлены особенностями связей в них. Главное отличие химической связи от других видов взаимодействия между атомами заключается в том, что ее образование определяется изменением состояния электронов в молекуле по сравнению с исходными атомами. Теория связи должна дать ответы на ряд вопросов. Почему образуются молекулы? Почему одни атомы вступают во взаимодействие, а другие – нет? Почему атомы соединяются в определенных соотношениях? Почему атомы располагаются в пространстве определенным образом? И наконец, надо рассчитать энергию связи, ее длину и другие количественные характеристики.

В большинстве случаев при образовании связи происходит обобществление электронов связываемых атомов. Такой тип химической связи называют ковалентной связью (приставка «ко-» в латинском языке означает совместность, «валенс» — имеющий силу). Связывающие электроны находятся преимущественно в пространстве между связываемыми атомами. За счет притяжения ядер атомов к этим электронам образуется химическая связь. Таким образом, ковалентная связь — это химическая связь, возникающая за счет увеличения электронной плотности в области между химически связанными атомами.

    Ковалентная связь.

    Методы изучения ковалентной связи.

В настоящее время для изучения химической связи в основном используют два метода:
1) валентных связей;
2) молекулярных орбиталей.
1.1. Метод валентных связей.

В рамках первого метода рассматривают индивидуальные атомы, вступающие во взаимодействие, исходя из принципа завершенности электронной оболочки (правило октета). Ковалентная связь с точки зрения метода валентных связей образуется за счет обобществления электронной пары. Рассмотрим квантово-механическую модель ковалентной связи по методу валентных связей на примере молекулы водорода. В 1927 г. уравнение Шрёдингера было решено для молекулы водорода немецкими физиками В.Гейтлером и Ф.Лондоном. Это была первая удачная попытка применения квантовой механики к решению проблем связи. Их работа заложила основы метода валентных связей, или валентных схем.

Рис.1 Фото. Ф. Лондон. Рис.2. Фото. В.Гейтлер.

Результаты расчета можно представить графически в виде зависимостей сил взаимодействия между атомами (рис.3, а) и энергии системы (рис. 3, б) от расстояния между ядрами атомов водорода. Ядро одного из атомов водорода поместим в начало координат, а ядро второго будем приближать к ядру первого атома водорода вдоль оси абсцисс. Если спины электронов антипараллельны, силы притяжения (рис. 3, а, кривая I) и силы отталкивания (кривая II) будут нарастать. Результирующая этих сил представлена кривой III. Сначала преобладают силы притяжения, затем – отталкивания. Когда расстояние между ядрами становится равным r0= 0,074 нм, сила притяжения уравновешивается силой отталкивания. Равновесию сил соответствует минимальная энергия системы (рис. 3, б, кривая IV) и, следовательно, наиболее устойчивое состояние. Глубина «потенциальной ямы» представляет энергию связи Е0Н–Н в молекуле Н2 при абсолютном нуле. Она составляет 458 кДж/моль. Однако при реальных температурах на разрыв связи требуется несколько меньшая энергия ЕН–Н, которая при 298К (25 °С) равна 435 кДж/моль. Разность этих энергий в молекуле Н2 является энергией колебаний атомов водорода (Екол = Е0Н–Н – ЕН–Н = 458 – 435 = 23 кДж/моль).


Рис. 3. Зависимость сил взаимодействия атомов (а) и энергии системы (б)
от расстояния между ядрами атомов в молекуле Н2

 При сближении двух атомов водорода, содержащих электроны с параллельными спинами, энергия системы постоянно увеличивается ( рис. 3, б, кривая V) и связь не образуется.

Таким образом, квантово-механический расчет дал количественное объяснение связи. При наличии у пары электронов противоположных спинов электроны двигаются в поле обоих ядер. Между ядрами появляется область с высокой плотностью электронного облака – избыточного отрицательного заряда, который стягивает положительно заряженные ядра. Из квантово-механического расчета следуют положения, являющиеся основой метода валентных связей:

    Причиной связи является электростатическое взаимодействие ядер и электронов.
    2. Связь образуется электронной парой с антипараллельными спинами.
    3. Насыщаемость связи обусловлена образованием электронных пар.
    4. Прочность связи пропорциональна степени перекрывания электронных облаков.
    5. Направленность связи обусловлена перекрыванием электронных облаков в области максимальной электронной плотности.

Простой метод валентных связей для химика наиболее понятен, удобен и нагляден, лучше всего отвечает целям первичного обучения. Недостаток метода валентных связей состоит в том, что в его рамках нельзя объяснить некоторые экспериментальные данные.

      Метод молекулярных орибиталей.

Большей эффективностью обладает метод молекулярных орбиталей, в котором рассматриваются электроны, находящиеся в поле притяжения, созданном всеми атомными ядрами молекулы. С точки зрения метода молекулярных орбиталей в молекуле нет атомов как таковых, а есть взаимно отталкивающиеся ядра и взаимодействующие с ними и между собой электроны.

Метод молекулярных орбиталей (МО) наиболее нагляден в его графической модели линейной комбинации атомных орбиталей (ЛКАО). Метод МО ЛКАО основан на следующих правилах.

1. При сближении атомов до расстояний химических связей из атомных орбиталей образуются молекулярные.

2. Число полученных молекулярных орбиталей равно числу исходных атомных.

3. Перекрываются атомные орбитали, близкие по энергии. В результате перекрывания двух атомных орбиталей образуются две молекулярные. Одна из них имеет меньшую энергию по сравнению с исходными атомными и называется связывающей, а вторая молекулярная орбиталь обладает большей энергией, чем исходные атомные орбитали, и называется разрыхляющей.

4. При перекрывании атомных орбиталей возможно образование и -связи (перекрывание по оси химической связи), и -связи (перекрывание по обе стороны от оси химической связи).

5. Молекулярная орбиталь, не участвующая в образовании химической связи, носит название несвязывающей. Ее энергия равна энергии исходной АО.

6. На одной молекулярной орбитали (как, впрочем, и атомной) возможно нахождение не более двух электронов.

7. Электроны занимают молекулярную орбиталь с наименьшей энергией (принцип наименьшей энергии).

8. Заполнение вырожденных (с одинаковой энергией) орбиталей происходит последовательно по одному электрону на каждую из них.

Применим метод МО ЛКАО и разберем строение молекулы водорода. Изобразим на двух параллельных диаграммах энергетические уровни атомных орбиталей исходных атомов водорода

Рис. 4 Энергетическая диаграмма несвязанных атомов водорода.

Далее мысленно перекроем две атомные орбитали, образовав две молекулярные, одна из которых (связывающая) обладает меньшей энергией (расположена ниже), а вторая (разрыхляющая) – большей энергией (расположена выше) (рис. 5).

Рис.5 Диаграмма уровней энергии АО атомов H и МО молекулы h3

Видно, что имеется выигрыш в энергии по сравнению с несвязанными атомами. Свою энергию понизили оба электрона, что соответствует единице валентности в методе валентных связей (связь образуется парой электронов).
Хотя метод молекулярных орбиталей более строг и универсален, он позволяет полнее объяснить экспериментальные данные.

    Свойства ковалентной связи.

Свойства ковалентной связи: энергия, длина, полярность, насыщаемость, направленность, гибридизация, кратность.

2.1.Длина химической связи.

При образовании химической связи всегда происходит сближение атомов — расстояние между ними меньше, чем сумма радиусов изолированных атомов:

r(A−B) < r(A) + r(B). Радиус атома водорода составляет 0,053 нм, атома фтора – 0,071 нм, а расстояние между ядрами атомов в молекуле HF равно 0,092 нм:

Межъядерное расстояние между химически связанными атомами называется длиной химической связи.

Во многих случаях длину связи между атомами в молекуле вещества можно предсказать, зная расстояния между этими атомами в других химических веществах. Длина связи между атомами углерода в алмазе равна 0,154 нм, между атомами галогена в молекуле хлора – 0,199 нм. Полусумма расстояний между атомами углерода и хлора, рассчитанная из этих данных, составляет 0,177 нм, что совпадает с экспериментально измеренной длиной связи в молекуле CCl4. В то же время это выполняется не всегда. Например, расстояние между атомами водорода и брома в двухатомных молекулах составляет 0,074 и 0,228 нм, соответственно. Среднее арифметическое этих чисел составляет 151 нм, однако реальное расстояние между атомами в молекуле бромоводорода равно 141 нм, то есть заметно меньше.

Расстояние между атомами существенно уменьшается при образовании кратных связей. Чем выше кратность связи, тем короче межатомное расстояние.

Длины некоторых простых и кратных связей.

Связь

Длина (нм)

Связь

Длина (нм)

С−С

0,154

С−О

0,143

С=С

0,133

С=О

0,123

С≡С

0,131

С≡O

0,113

2. 2. Энергия связи. Химическая связь возникает лишь в том случае, если полная энергия взаимодействующих атомов уменьшается, т.е. при образовании связи должна всегда выделяться энергия. Количество энергии, выделяющейся при образовании химической связи, называется энергией связи EСВ (кДж/моль).

Энергия связи является мерой прочности связи. Чем больше выделяется энергии при образовании молекулы, тем больше энергии надо затратить на разрыв, т.е. тем молекула прочнее.

Химическое соединение образуется из отдельных атомов только в том случае, если это энергетически выгодно. Если силы притяжения преобладают над силами отталкивания, потенциальная энергия взаимодействующих атомов понижается, в противном случае − повышается. На некотором расстоянии (равном длине связи r0) эта энергия минимальна.

Рис. 6. Энергия химической связи.

Таким образом, при образовании химической связи энергия выделяется, при ее разрыве − поглощается. Энергия E0, необходимая для того, чтобы разъединить атомы и удалить их друг от друга на расстояние, на котором они не взаимодействуют, называется энергией связи. Для двухатомных молекул энергия связи определяется как энергия диссоциации молекулы на атомы. Она может быть измерена экспериментально. В молекуле водорода энергия связи численно равна энергии, которая выделяется при образовании молекулы Н2 из атомов Н: Н + Н = Н2 + 432 кДж. Эту же энергию нужно затратить, чтобы разорвать связь Н-Н: h3 = H + H − 432 кДж.

Для многоатомных молекул эта величина является условной и отвечает энергии такого процесса, при котором данная химическая связь исчезает, а все остальные остаются без изменения. При наличии нескольких одинаковых связей (например, для молекулы воды, содержащей две связи кислород−водород) их энергию можно рассчитать, используя закон Гесса. Величины энергии распада воды на простые вещества, а также энергии диссоциации водорода и кислорода на атомы известны: 2Н2О = 2Н2 + О2; 484 кДж/моль

Н2 = 2Н; 432 кДж/моль

О2 = 2О; 494 кДж/моль

Учитывая, что в двух молекулах воды содержится 4 связи, энергия связи кислород-водород равна:

Е(О−Н) = (2 .  432 + 494 + 484) / 4 = 460,5 кДж/моль

В молекулах состава ABn последовательный отрыв атомов В сопровождается определенными (не всегда одинаковыми) затратами энергии. Например, значения энергии (кДж/моль) последовательного отщепления атомов водорода от молекулы метана существенно различаются:

427

368

519

335

СН4

СН3

СН2

СН

С

При этом энергия связи А−В определяется как средняя величина затраченной энергии на всех стадиях:

СН4 = С + 4Н; 1649 кДж/моль

Е(С−Н) = 1649 / 4 = 412 кДж/моль

Чем выше энергия химической связи, тем прочнее связь. Связь считается прочной, или сильной, если ее энергия превышает 500 кДж/моль (например, 942 кДж/моль для N2), слабой — если ее энергия меньше 100 кДж/моль (например, 69 кДж/моль для NO2). Если при взаимодействии атомов выделяется энергия менее 15 кДж/моль, то считают, что химическая связь не образуется, а наблюдается межмолекулярное взаимодействие (например, 2 кДж/моль для Xe2). Прочность связи обычно уменьшается с увеличением ее длины.

HF

HCl

HBr

HI

Длина связи, пм

92

128

141

160

Энергия связи, кДж/моль

565

431

364

217

Одинарная связь всегда слабее, чем кратные связи — двойная и тройная — между теми же атомами.

Энергии некоторых простых и кратных связей.

Связь

Энергия (кДж/моль)

Связь

Энергия (кДж/моль)

С-С

343

С-О

351

С=С

615

С=О

711

С≡С

812

С≡O

1096

      Кратность ковалентной связи.

Кратность ковалентной связи или делоколизация связи — число связей, образующихся между атомами, называется кратностью (порядком) связи. С увеличением кратности (порядка) связи изменяется длина связи и ее энергия. Относительно линии соединяющей центры атомов образующих связь различают σ и π -связь (рис. 9).

Рис. 7. Схема образования связей в молекуле азота: а) σ — связей; б) π – связей.

Связь, образованная перекрыванием электронных облаков по оси, проходящей через ядра атомов, называется σ -связью.


Рис. 8. Примеры σ -связей

Связь, образованная перекрыванием электронных облаков по обе стороны от оси, проходящей через ядра атомов, называется π -связью. Примеры π -связи приведены на рис. 9 . Такое перекрывание энергетически менее выгодно, чем по σ -типу. Оно осуществляется периферийными частями электронных облаков с меньшей электронной плотностью. Увеличение кратности связи означает образование π -связей, которые имеют меньшую энергию по сравнению с σ -связью. В этом и есть причина нелинейного увеличения энергии связи в сравнении с увеличением кратности.


Рис. 9. Примеры π –связей

      Насыщаемость ковалентной связи.

Атом не может образовать бесконечное число ковалентных связей, оно вполне определенное. Максимальное число связей, которое может образовать атом, определяется числом его валентных электронных орбиталей. Это и определяет насыщаемость ковалентной связи. Благодаря насыщаемости связей молекулы имеют определенный состав. Численное значение валентности в методе валентных связей определяется числом ковалентных связей, которые атом образует с другими атомами. Рассмотренный для молекулы Н2 механизм образования связи парой электронов с антипараллельными спинами, принадлежавших до образования связи разным атомам, называется обменным. Если учитывать только обменный механизм, валентность атома определяется числом его неспаренных электронов.

Очевидно, что число ковалентных связей не может превышать числа образующих связи электронных пар. Однако насыщаемость как свойство ковалентной связи означает также, что если атом имеет некоторое количество неспаренных электронов, то все они должны участвовать в образовании ковалентных связей. Это свойство объясняется принципом наименьшей энергии. При образовании каждой дополнительной связи выделяется дополнительная энергия. Поэтому все валентные возможности реализуются полностью. Действительно, устойчива молекула Н2S, а не НS•, где имеется нереализованная связь (неспаренный электрон обозначают точкой). Частицы, содержащие неспаренные электроны, называют свободными радикалами. Они чрезвычайно реакционноспособны и вступают в реакции с образованием соединений, содержащих насыщенные связи.

      Направленность ковалентной связи.

Другое важное свойство ковалентной связи — ее направленность в пространстве. Направленность связи обусловливает пространственную структуру молекул, т. е. их геометрическую форму. Рассмотрим примеры.

В молекуле фтора F2 связь образована 2р-орбиталями атомов фтора:

Наибольшая плотность электронного облака у 2р-орбитали в направлении оси симметрии. Если неспаренные электроны атомов фтора находятся на 2рх-орбиталях, связь осуществляется в направлении оси х (рис. 10). На 2рy- и 2рz-орбиталях находятся неподеленные электронные пары, не участвующие в образовании связей (на рис. 10 заштрихованы).


Рис. 10. Образование молекулы F2

В молекуле фтороводорода НF связь образована 1s-орбиталью атома водорода и 2рх-орбиталью атома фтора:

Направленность связи в этой молекуле определяется ориентацией 2рх-орбитали атома фтора (рис. 11). Перекрывание происходит в направлении оси симметрии х. Любой другой вариант перекрывания энергетически менее выгоден.


Рис. 11. Образование молекулы НF

Более сложные d- и f-орбитали также характеризуются направлениями максимальной электронной плотности вдоль осей их симметрии.

Направленность связи хорошо иллюстрирует пример молекулы сероводорода Н2S:

 

Поскольку оси симметрии валентных 3р-орбиталей атома серы взаимно перпендикулярны, то следует ожидать, что молекула Н2S должна иметь уголковую структуру с углом между связями S–Н 90° (рис. 12). Действительно, угол близок к расчетному и равен 92°.


Рис. 12. Образование молекулы Н2S

Направление ковалентных связей характеризуется валентными углами — углами между линиями, соединяющими связываемые атомы. Графическая формула химической частицы не несет информации о валентных углах. Например, в сульфат-ионе SO42− валентные углы между связями сера−кислород равны 109,5o, а в тетрахлоропалладат-ионе [PdCl4]2− − 90o. Совокупность длин связей и валентных углов в химической частице определяет ее пространственное строение. Для определения валентных углов используют экспериментальные методы изучения структуры химических соединений. Оценить значения валентных углов можно теоретически, исходя из электронного строения химической частицы.

Таким образом, направленность – одно из основных свойств ковалентной связи.

      Полярность и поляризуемость ковалентной связи.

Полярность химической связи зависит от разности электроотрицательностей связываемых атомов. Электроотрицательность − условная величина, характеризующая способность атома в молекуле притягивать электроны. Если в двухатомной молекуле А−В образующие связь электроны притягиваются к атому В сильнее, чем к атому А, то атом В считается более электроотрицательным. Шкала электроотрицательности была использована Л. Полингом для количественной характеристики способности атомов к поляризации ковалентных связей. Самое высокое значение электроотрицательности имеет фтор. Наименее электроотрицательный элемент — цезий. Чем выше значение разности электроотрицательностей двух атомов, тем более полярной является химическая связь между ними. В зависимости от того, как происходит перераспределение электронной плотности при образовании химической связи, различают несколько ее типов. Предельный случай поляризации химической связи — полный переход электрона от одного атома к другому. При этом образуются два иона, между которыми возникает ионная связь. Для того чтобы два атома смогли создать ионную связь, необходимо, чтобы их электроотрицательности очень сильно различались. Если электроотрицательности атомов равны (при образовании молекул из одинаковых атомов), связь называют неполярной ковалентной.

Рис.13. Ковалентная неполярная связь.

Рис.14. Ковалентная полярная связь.

Чаще всего встречается полярная ковалентная связь — она образуется между любыми атомами, имеющими разные значения электроотрицательности. Количественной оценкой полярности («ионности») связи могут служить эффективные заряды атомов. Эффективный заряд атома характеризует разность между числом электронов, принадлежащих данному атому в химическом соединении, и числом электронов свободного атома. Атом более электроотрицательного элемента притягивает электроны сильнее. Поэтому электроны оказываются ближе к нему, и он получает некоторый отрицательный заряд, который называют и эффективным, а у его партнера появляется такой же положительный заряд.

      Гибридизация ковалентной связи .

Гибридизация орбиталей — это изменение формы некоторых орбиталей при образовании ковалентной связи для достижения более эффективного перекрывания орбиталей.

sp3- Гибридизация. Одна s- орбиталь и три p- орбитали превращаются в четыре одинаковые «гибридные» орбитали, угол между осями которых равен 109°28′.

 

Рис.15. sp3- Гибридизация.

Молекулы, в которых осуществляется sp3- гибридизация, имеют тетраэдрическую геометрию (Ch5, Nh4).

 sp2- Гибридизация. Одна s- орбиталь и две p- орбитали превращаются в три одинаковые «гибридные» орбитали, угол между осями которых равен 120°.

 

 Рис. 16. sp2- Гибридизация.

Если связь образуется при перекрывании орбиталей по линии, соединяющей ядра атомов, она называется s- связью. Если орбитали перекрываются вне линии, соединяющей ядра, то образуется p- связь. Три sp2- орбитали могут образовывать три s- связи (BF3, AlCl3). Еще одна связь (p- связь) может образоваться, если на p- орбитали, не участвующей в гибридизации, находится электрон (этилен C2h5).

Молекулы, в которых осуществляется sp2- гибридизация, имеют плоскую геометрию.

 sp- Гибридизация. Одна s- орбиталь и одна p- орбиталь превращаются в две одинаковые «гибридные» орбитали, угол между осями которых равен 180°.

 

 Рис.17. sp- Гибридизация.

Две sp- орбитали могут образовывать две s- связи (Beh3, ZnCl2). Еще две p- связи могут образоваться, если на двух p- орбиталях, не участвующих в гибридизации, находятся электроны (ацетилен C2h3).

Молекулы, в которых осуществляется sp- гибридизация, имеют линейную геометрию.

 

3.Донорно-акцепторный механизм образования ковалентной связи

Все рассмотренные нами выше молекулы веществ образованы по обменному механизму. Однако нельзя забывать о еще одном способе образования ковалентной связи – донорно-акцепторном.

Пара электронов с антипараллельными спинами, образующая связь, может быть получена не только по обменному механизму, предусматривающему участие электронов обоих атомов, но и по иному механизму, называемому донорно-акцепторным: один атом (донор) предоставляет для образования связи неподеленную пару электронов, а другой (акцептор) – вакантную квантовую ячейку:

Рис. 18. Механизмы образования ковалентной связи.

Результат по обоим механизмам получается одинаковый. Часто образование связи можно объяснить и тем, и другим механизмом. Например, молекулу НF можно получить не только в газовой фазе из атомов по обменному механизму, как показано выше ( рис. 18), но и в водном растворе из ионов Н+ и F– по донорно-акцепторному механизму:

Вне сомнений, молекулы, полученные по разным механизмам, неразличимы; связи совершенно равноценны. Поэтому правильнее не выделять донорно-акцепторное взаимодействие в особый вид связи, а считать его лишь особым механизмом образования ковалентной связи.

Когда хотят подчеркнуть механизм образования связи именно по донорно-акцепторному механизму, ее обозначают в структурных формулах стрелкой от донора к акцептору (D®А). В других случаях такую связь не выделяют и обозначают черточкой, как и по обменному механизму: D–А.

Связи в ионе аммония, образующегося по реакции: Nh4 + H+ = Nh5+,

выражаются следующей схемой:

Структурную формулу NН4+ можно представить как

.

Вторая форма записи предпочтительней, поскольку отражает экспериментально установленную равноценность всех четырех связей.

Образование химической связи по донорно-акцепторному механизму расширяет валентные возможности атомов: валентность определяется не только числом неспаренных электронов, но и числом неподеленных электронных пар и вакантных квантовых ячеек, участвующих в образовании связей. Так, в приведенном примере валентность азота равна четырем.

Донорно-акцепторный механизм успешно используется для описания связи в комплексных соединениях по методу ВС.

Литература.

    Ахметов Н. С. Неорганическая химия. — изд. 2-е перераб. и доп.. — М.: Высшая школа, 1975.

    Габриелян. О.С., Остроумов И.Г. Химия. – М.: «Дрофа», 2008.

    Глинка Н. Л. «Общая химия».

    «Химический энциклопедический словарь», М., «Советская энциклопедия», 1983.

    http://him.1september.ru/article.php?ID=200102102

    http://him.1september.ru/2004/26/15.htm

    http://chem-bsu.narod.ru/umk_chem_webCD/Ch3/chembond.htm

    http://www.alhimik.ru/stroenie/gl_9.html

    http://www.km.ru/referats/B496925228A344ECA85A5BA4B17AA5B2

Кh4 Молекулярная геометрия — Научное образование и учебные пособия

Начертить и предсказать молекулярную геометрию Nh4 очень легко, если следовать данному методу. Здесь, в этом посте, мы шаг за шагом описали построение молекулярной геометрии Nh4.

Ключевые моменты, которые следует учитывать при рисовании молекулярной геометрии Nh4

Можно использовать трехэтапный подход к рисованию молекулы Nh4. Первый шаг — набросать молекулярную геометрию молекулы Nh4, рассчитать неподеленные пары электронов в центральном атоме азота; второй шаг — рассчитать гибридизацию Nh4, а третий шаг — дать точное обозначение молекулярной геометрии Nh4.

Молекулярная геометрия Nh4 представляет собой диаграмму, иллюстрирующую количество валентных электронов и пар связанных электронов в молекуле Nh4 определенным геометрическим образом. Затем геометрию молекулы Nh4 можно предсказать с использованием теории отталкивания электронных пар валентной оболочки (теория VSEPR) и теории молекулярной гибридизации, которая утверждает, что молекулы будут выбирать геометрическую форму Nh4, в которой электроны отделены друг от друга в конкретной молекулярной структуре. .

Наконец, вы должны добавить их характеристики полярности связи, чтобы вычислить силу связи N-H (свойства дипольного момента молекулярной геометрии Nh4).Азот-водородные связи в молекуле аммиака (Nh4), например, поляризованы в сторону атома азота с более электроотрицательным значением, и, поскольку все связи (NH) имеют одинаковый размер и полярность, их сумма отлична от нуля из-за того, что молекула Nh4 дипольный момент связи, и молекула Nh4 классифицируется как полярная молекула.

Молекула аммиака (с тетраэдрической формой молекулярной геометрии Nh4) наклонена на 107 градусов. Он имеет разницу в значениях электроотрицательности между атомами азота и водорода, при этом азот притягивает электронное облако больше, чем водород.В результате он имеет постоянный дипольный момент в своей молекулярной структуре. Молекула Nh4 имеет дипольный момент из-за неравного распределения зарядов отрицательных и положительных зарядов.

Обзор: электронная и молекулярная геометрия Nh4

Согласно теории VSEPR, Nh4 обладает тетраэдрической молекулярной геометрией и электронной геометрией, подобной Ch5. Потому что центральный атом азота имеет три связи NH с окружающими его атомами водорода. Валентный угол HNH составляет 107 градусов в тетраэдрической молекулярной геометрии.Молекула Nh4 имеет форму тетраэдра, поскольку содержит три атома водорода.

В молекулярной геометрии Nh4 имеется три связи NH. После соединения трех атомов водорода и одной неподеленной пары электронов в тетраэдрической форме он сохраняет тетраэдрическую структуру. В молекулярной геометрии Nh4 связи NH остались на трех концах и неподеленной паре электронов на вершине тетраэдрической молекулы.

Центральный атом азота Nh4 имеет одну неподеленную пару электронов, что приводит к тетраэдрической электронной геометрии.Однако молекулярная геометрия Nh4 выглядит как тетраэдр и одна неподеленная пара на вершине геометрии. Это асимметричная геометрия молекулы Nh4. В результате молекула Nh4 полярна.

Как найти Nh4 Гибридизация и молекулярная геометрия

Расчет неподеленных пар электронов на азоте в молекулярной геометрии Nh4:

1.Определить количество неподеленных пар на атоме азота ядра структуры Льюиса Nh4.Поскольку неподеленные пары азота в основном ответственны за искажение геометрии молекулы Nh4, нам нужно рассчитать, сколько их на центральном атоме азота в структуре Льюиса.

Используйте приведенную ниже формулу, чтобы найти неподеленную пару на атоме азота молекулы Nh4.

LP(N) = VE(N) – NA(NH)/2


Неподеленная пара на центральном атоме азота = LP(N)

Валентный электрон основного центрального атома азота = VE(N)

Номер связей NH = N.A (C-H и C-Cl)

расчет неподеленной пары атомов азота в молекуле Nh4

Например, Nh4, центральный атом азота, имеет пять электронов на внешней валентной оболочке, три связи N-H.

В результате этого  L.P(N) = (5 –3)/2=1

В структуре электронной геометрии Nh4 неподеленная пара на центральном атоме азота равна единице. Это означает, что в основном атоме азота имеется одна неподеленная пара. Эти неподеленные пары на центральном атоме азота ответственны за искажение молекулярной геометрии Nh4.

Если представить, на атоме азота молекулы Nh4 есть одна неподеленная пара. Затем электронное отталкивание пары связей NH и одной неподеленной пары электронов в Nh4. Это дает устойчивую тетраэдрическую геометрию.

Но в действительности молекула Nh4 претерпевает искажение своей геометрии из-за полярности связи N-H и неподеленных пар электронов в тетраэдрической геометрии. Это приводит к тетраэдрической геометрии молекулы Nh4.

Рассчитать число молекулярных гибридизаций молекулы Nh4

Что такое гибридизация Nh4? Это очень фундаментальный вопрос в области молекулярной химии.Все молекулы состоят из атомов. В химии атомы являются элементарными частицами. В химии существует четыре различных типа орбиталей. Они называются s-, p-, d- и f-орбиталями.

Вся система периодической таблицы основана на этой орбитальной теории. Атомы в периодической таблице классифицируются следующим образом:

элементы s-блока

элементы p-блока

элементы d-блока

элементы f-блока

Атомы классифицированы в таблице Менделеева
Молекула

Nh4 состоит из одного атома азота и трех атомов водорода.Атом азота имеет s- и p-орбитали. водород занимает первое место в таблице Менделеева. Атом водорода имеет s-орбиталь.

Когда эти атомы объединяются, образуя молекулу Nh4, ее орбитали смешиваются и образуют уникальные молекулярные орбитали из-за гибридизации.

Как вы находите гибридизацию молекулы Nh4? Теперь мы должны определить число молекулярной гибридизации Nh4.

Формула молекулярной гибридизации Nh4 выглядит следующим образом:

№Hyb Nh4= NA(NH-связи) + LP(N)

No. Hy Nh4= количество гибридизаций Nh4

центральный атом азота = LP(N)

Расчет числа гибридизации для молекулы Nh4

В молекуле Nh4 азот представляет собой атом ядра с тремя связанными с ним атомами водорода и одной неподеленной парой электронов. Количество гибридизаций Nh4 (No.Гибрид Nh4) можно рассчитать по приведенной ниже формуле.

№ Hyb Nh4= 3+1 =4

Гибридизация молекулы Nh4 равна четырем. Гибридизация sp3 молекулы Nh4 образуется, когда одна S-орбиталь и три p-орбитали соединяются вместе, образуя молекулярную орбиталь.

Молекулярная геометрия Обозначение молекулы Nh4:

Определите форму молекулярной геометрии Nh4, используя теорию VSEPR. Метод AXN обычно используется, когда теория VSEPR используется для расчета формы молекулы Nh4.

Обозначение AXN молекулы Nh4 выглядит следующим образом:

Центральный атом азота в молекуле Nh4 обозначается буквой A.

Связанные пары (три связи NH) электронов с основным атомом азота представлены X

Неподеленные пары электронов на центральном атоме азота обозначаются буквой N.

Обозначение молекулярной геометрии Nh4

Мы знаем, что азот является основным атомом с тремя связанными парами электронов (три N-H) и одной неподеленной парой электронов.Общая формула молекулярной геометрии для Nh4: AX3N1 .

Согласно теории VSEPR, если молекула Nh4 имеет общую формулу AX3N1, молекулярная геометрия и электронная геометрия будут иметь тетраэдрическую форму.

Сводка :

В этом посте мы обсудили метод построения молекулярной геометрии Nh4, метод нахождения неподеленных пар электронов в центральном атоме азота, гибридизацию Nh4 и молекулярную нотацию Nh4.Нужно помнить, что если вы будете следовать описанному выше методу, вы сможете очень легко построить молекулярную структуру Nh4.

Что такое молекулярная геометрия Nh4?

Nh4 Молекулярная геометрия представляет собой электронное структурное представление молекулы.

Какое молекулярное обозначение молекулы Nh4?

Молекулярное обозначение

Nh4 равно AX3N1.

Полярность молекул

Полярность молекул указана следующим образом

Структура Льюиса и молекулярная геометрия

Структура Льюиса и молекулярная геометрия молекул перечислены ниже

Внешняя ссылка:

Информация о молекуле аммиака (Nh4)

Что такое гибридизация NH_3?

Аммиак (#»NH»_3)#, точнее, центральный атом аммиака #»sp»^3#гибридизирован.Вот как вы можете определить это.

Во-первых, начнем со структуры Льюиса #»NH»_3#, которая должна составлять 8 валентных электронов — 5 от азота и 1 от каждого атома водорода.

Как видите, все валентные электроны действительно учитываются: по 2 на каждую ковалентную связь между азотом и водородом и 2 на неподеленную пару, присутствующую на атоме азота.

Теперь самое интересное.Гибридные орбитали 3# будут иметь меньшую энергию, чем три негибридных p-орбиталей .

Итак, чтобы определить гибридизацию, вы должны определить стерическое число центрального атома , которое представляет собой количество богатых электронами областей вокруг атома.

Поскольку он образует 3 ковалентные связи и имеет 1 неподеленную пару, стерическое число азота будет равно 4 , что означает, что одна s и три p-орбитали будут объединяться, образуя в общей сложности 4 гибридизованных орбитали.

Вот видео на эту тему:

Гибридизация Nh4 (аммиака) – структура Льюиса и электронная геометрия

Аммиак (NH 3 ) представляет собой sp 3 гибридизованный, или, если быть более конкретным, центральный атом аммиака, азота. В этой статье мы рассмотрим, как определить, гибридизован ли NH 3 .

Аммиак — бесцветное химическое вещество, используемое в производстве удобрений. Это стабильный гидрид с одним атомом азота и тремя атомами водорода.Химикат имеет сильный запах. Принятие протона позволяет ему стать ионом NH 4 + . Этот пост раздела будет охватывать точечную структуру Льюиса, электронную геометрию и молекулярную геометрию этой молекулы.

Структура Льюиса

Структуры Льюиса, также известные как точечные структуры Льюиса, точечные структуры Льюиса, электронные точечные структуры или точечные электронные структуры Льюиса (LEDS), содержат связи между атомами в молекуле и все неподеленные пары , которые могут быть дарами.Это диаграмма, чтобы показать. Все ковалентно связанные молекулы и координационные соединения могут быть представлены структурной формулой Льюиса.

Гилберт Н. Льюис назвал структуру Льюиса в честь себя после того, как представил ее в своей статье 1916 года «Атом и молекула». Структуры Льюиса добавляют линии между атомами, чтобы представить общие пары в химической связи, расширяя концепцию электронной точечной диаграммы.

(Изображение будет загружено в ближайшее время)

В структурах Льюиса используются химические символы для представления каждого атома и его места в структуре молекулы.Между соединенными между собой атомами проводят линии (вместо линий можно использовать пары точек). Неподеленные пары избыточных электронов показаны парами точек рядом с атомами.

Хотя элементы основной группы во втором периоде и далее обычно реагируют, приобретая, теряя или делясь электронами до тех пор, пока у них не будет полного октета (8) электронов в электронной конфигурации их валентной оболочки, водород (H) может образовывать только связи, которые разделяют два электрона.

Гибридизация

Когда атомные орбитали объединяются для создания новой атомной орбитали, это называется гибридизацией.На новой орбитали может разместиться то же количество электронов, что и на старой. Новые гибридные орбитальные характеристики и энергия представляют собой «усреднение» исходных негибридных орбиталей.

Гибридизация была предложена как лучшее объяснение того, почему все связи С-Н в таких молекулах, как метан, идентичны.

Электронная геометрия

Расположение электронных групп называется электронной геометрией. Когда в молекуле обнаруживается электрон, не связанный с неподеленной парой электронов или другим атомом, изменяется форма молекулы, а не форма электрона.

Электронная геометрия и молекулярная геометрия одинаковы, если все электронные группы связаны и нет неподеленных пар.

Гибридизация NH

3 (Аммиак)

Чтобы понять гибридизацию аммиака, мы должны исследовать среду, окружающую азот. Атомный номер азота равен 7, а его основное состояние — 1s 2 , 2s 2 , 2p 3 в соответствии с его атомным номером.

Одна 2s-орбиталь и три 2p-орбитали смеси азота во время производства аммиака для получения четырех гибридных орбиталей с эквивалентной энергией, что называется гибридизацией sp 3 .

(Изображение будет загружено в ближайшее время)

Кроме того, если мы посмотрим на молекулу NH 3 , мы увидим, что три наполовину заполненные орбитали азота sp 3 создают связи с тремя атомами водорода. С другой стороны, четвертая орбиталь sp 3 представляет собой несвязывающую пару гибридизованных орбиталей, которая обычно используется для удержания неподеленной пары вместе.

Это обычные азотсодержащие отходы жизнедеятельности водных существ и важный компонент пищевых потребностей наземных видов.Кроме того, при хранении в достаточных количествах аммиак считается коррозионным и вредным.

Что такое sp3-гибридизация Nh4? – СидмартинБио

Что такое sp3-гибридизация Nh4?

В аммиаке (Nh4) или, если быть более точным, центральный атом аммиака, которым является азот, sp3-гибридизирован… Гибридизация Nh4 (аммиак)

Название молекулы Аммиак
Тип гибридизации сп3
Угол связи 107о
Геометрия Пирамидальный или искаженный тетраэдрический

Что такое гибридизация sp3 в воде?

При образовании молекулы воды одна 2s-орбиталь и три 2p-орбитали Кислорода смешиваются, образуя четыре гибридные орбитали эквивалентной энергии.Эти четыре новые эквивалентные орбитали называются sp3-гибридными орбиталями. Они идентичны во всем.

Что такое гибридизация аммиака и воды?

Гибридизация центрального атома аммиака, воды и метана – sp3.

Почему Nh4 имеет пирамидальную форму, а h3O – изогнутую, хотя оба являются sp3-гибридами?

И аммиак, и вода имеют sp3-гибридизацию. В то время как аммиак имеет треугольную пирамидальную геометрию, вода имеет изогнутую геометрию. Валентный угол в этих двух молекулах сильно различается, так как они имеют разное количество пар связей и неподеленных пар.В NH 3 пары связей и одна неподеленная пара.

Является ли аммиак sp2 или sp3?

Аммиак (Nh4), или, точнее, центральный атом аммиака, sp3-гибридизирован.

Какой тип гибридизации происходит в brf3?

Гибридизация, происходящая в BrF3, представляет собой sp3d.

Является ли аммиак sp3?

В молекуле аммиака (Nh4) 2s- и 2p-орбитали образуют четыре sp3-гибридные орбитали, одна из которых занята неподеленной парой электронов.

Почему форма Nh4 пирамидальная, а форма воды изогнутая?

Nh4 имеет пирамидальную форму, а h3O – изогнутую.O в h3O является центральным атомом молекулы и имеет 2 неподеленные пары. Из-за наличия 2 неподеленных пар происходит отталкивание неподеленной пары, из-за которого валентный угол между атомами H уменьшается. Таким образом, валентный угол в Nh4 больше валентного угла в h3O.

Почему у Nh4 больший валентный угол, чем у h3O?

h3o содержит две одинокие пары, тогда как Nh4 содержит только одну одинокую пару. Как мы все знаем, неподеленные пары ответственны за отталкивание в молекуле, что приводит к уменьшению валентного угла.За счет одной неподеленной пары валентный угол уменьшается до 107,8). Итак, валентный угол Nh4 больше, чем валентный угол h3o.

Что такое форма и гибридизация Nh4?

Nh4 Молекулярная геометрия гибридизации sp3 Если мы заметим молекулярную геометрию аммиака, молекулярная форма Nh4 представляет собой искаженную тетраэдрическую или тригонально-пирамидальную структуру. Это в первую очередь связано с наличием неподеленной несвязывающей пары, которая оказывает большее отталкивание, обычно на связывающие орбитали.

Что такое гибридизация ICl3?

Ответ: ICl3 представляет собой sp3d-гибрид.

Какова гибридизация центрального атома в Nh4?

При гибридизации NH 3 три атома водорода будут располагаться вокруг центрального атома азота. Атомы водорода представляют собой просто s-орбитали, перекрывающие эти sp 3-орбитали. Молекулярная геометрия NH 3 и валентные углы. Если мы посмотрим на молекулярную геометрию аммиака, она имеет тригонально-пирамидальную или искаженно-тетраэдрическую структуру.

Какова структурная формула Nh4?

Формула и строение: Химическая формула аммиака Nh4, молярная масса 17.03 г/моль.

Чему равен валентный угол Nh4?

Краткое объяснение молекулярной геометрии Nh4, включая описание валентных углов Nh4. Молекулярная геометрия (форма молекулы) Nh4 является тригонально-пирамидальной. Валентные углы Nh4 составляют 107 градусов, потому что атомы водорода отталкиваются неподеленной парой электронов на атоме азота. Категория Образование.

Какова электронная и молекулярная геометрия Nh4?

Электронная геометрия

Nh4 (аммиак) — «тетраэдрическая», а молекулярная геометрия — «тригонально-пирамидальная».Лучший способ понять это — нарисовать структуру Льюиса.

Что представляет собой гибридизация молекулы Nh4? – Restaurantnorman.com

Что представляет собой гибридизация молекулы Nh4?

sp3-гибридизация
Центральный атом в молекуле аммиака находится в sp3-гибридизации.

Есть ли у Nh4 гибридная орбита dsp3?

Аммиак (Nh4), или, точнее, центральный атом аммиака, sp3-гибридизирован. Если бы три атома водорода соединились с азотом, используя имеющиеся p-орбитали, валентные углы были бы равны 90°.

Почему гибридизируется Nh4 sp3, а не sp2?

Его орбиталь размером 2 пикселя точно выровнена по оси x. Его 2pz-орбиталь выровнена точно по оси z. Поскольку аммиак трехмерен, для образования связей требуется sp3-гибридизация.

Что такое гибридизация NO2?

В классическом понимании NO2 является sp2-гибридизированным. Как правило, одноэлектронные орбитали являются негибридными и чистыми p-орбиталями, как в метильных свободных радикалах. Однако известно, что одноэлектронная орбиталь гибридизуется, когда центральный атом связан с сильно электроотрицательными группами или атомами.

Почему у Nh4 есть sp3-гибридизация?

В аммиаке есть 4 пары электронов, которые ведут себя относительно одинаково. Вот почему каждая пара занимает орбиталь, которая является средним из доступных 3 p и 1 s орбиталей в самой внешней оболочке. Это мы назвали гибридизацией sp3.

Какая гибридизация встречается у Nh4 и h3O?

SP3 Гибридизация
SP3 Гибридизация Nh4 и h3O | химическое соединение | Химия CBSE Class 11 — YouTube.

Является ли Nh4 тетраэдрической геометрией?

Аммиак имеет 4 области электронной плотности вокруг центрального атома азота (3 связи и одна неподеленная пара).Они расположены в форме тетраэдра. Полученная молекулярная форма представляет собой треугольную пирамиду с углами HNH 106,7 °.

Какова форма NO2?

NO2 – изогнутая молекула; однако, когда вы удаляете из нее электрон, превращая ее в NO2+, молекула становится линейной из-за потери одинокого электрона. В NO2+ между двумя атомами О и неподеленным электроном на центральном атоме не происходит отталкивания.

Геометрия аммиака пирамидальная или искаженно-тетраэдрическая.

Гибридизация

источник : Chemistryland

Гибридизация – sp

3

 В этой гибридизации одна s , три p-орбитали смешиваются вместе и образуются четыре гибридные орбитали с одинаковой энергией. Они называются sp 3 гибридной орбиталью, а этот процесс называется sp 3 гибридизацией.

Свойства гибридных орбиталей sp

3 :
  1. Все четыре гибридные орбитали sp 3 эквивалентны по форме и энергии.
  2. Четыре гибридные орбитали sp 3 направлены к четырем углам правильного тетраэдра.
  3. Бондовый угол равен 109 0 28′.
  4. Геометрия тетраэдрическая.

источник: grandinetti.org

Пример: CH

4 , C 2 , C 6 , N 2 O, NH 3 , NH 3 , NH 4 , NH 4 + , так 4 , PO 4 3 —

Гибридизация в метане и этане –

одна s и три p-орбитали гибридизуются с образованием четырех эквивалентных sp 3 гибридных орбиталей.Они заполнены по одному и направлены к четырем углам правильного тетраэдра. Эти четыре гибридные орбитали sp 3 образуют сигма-связь с однократно заполненной s-орбиталью атома Н- и образуются четыре сигма-связи. Валентный угол составляет 109 0 28′, а геометрия тетраэдрическая.

 

источник : Задание по химии

источник : A Plus Topper

источник: Chemistry-assignment.com

Гибридизация в аммиаке –

7 Н- 1с 2 ,2с 2 ,2п 3

 Четыре sp 3 гибридных орбиталей атома азота аммиака образованы перекрытием трех половин заполненных орбиталей атома азота с s-орбиталью из 3 атомов водорода.Остается полностью заполненная гибридная орбиталь sp 3 .

Геометрия аммиака пирамидальная или искаженно-тетраэдрическая из-за наличия неподеленной пары. Существует отталкивание lp-bp и bp-bp.

 

источник: Задание по химии

источник: химия @ tutorvista.com

Гибридизация в воде –

8 О- 1s 2 ,2s 2 ,2p 4

 У атома кислорода есть четыре sp3-гибридные орбитали.Вода образуется путем перекрытия двух половин заполненных sp 3 гибридных орбиталей атома кислорода и s-орбиталей двух атомов водорода. Остаются две полностью заполненные sp 3 гибридные орбитали на атоме кислорода.

            Геометрия  воды V-образная или искаженная тетраэдрическая  из-за отталкивания lp-lp, lp-bp, bp-bp. Валентный угол равен 104,5 0 .

 

источник: [email protected]

источник: SparkNotes

Nh4 Структура Льюиса (аммиак)

Кh4 Льюис Структура – ​​это формула аммиака.это жидкость с молекулярной массой (17 AMU). Структура аммиака Льюиса основана на трех атомах водорода, связанных с одним атомом азота.

Какова структура Льюиса Nh4?

Почему аммиак действует как основание Льюиса, потому что он может отдавать эти электроны. Молекула (Nh4) имеет треугольную пирамидальную форму, как предсказывает теория отталкивания электронных пар валентной оболочки (теория VSEPR) с экспериментально определенным валентным углом 106,7 °.

Расположение атомов в Nh4

Центральный атом азота имеет пять внешних электронов с дополнительным электроном от каждого атома H.Молекула аммиака имеет форму тригональной пирамиды с тремя атомами водорода и неподеленной парой электронов, присоединенной к атому азота.

Аммиак имеет 4 области электронной плотности со всех сторон от центрального атома азота (3 связи и одна неподеленная пара). Они расположены в форме тетраэдра. Полученная молекулярная форма или структура подобны треугольной пирамиде с углами HNH 106,7 °. Аммиак имеет тригональную пирамидальную или искаженную тетраэдрическую структуру из-за отталкивающего взаимодействия неподеленная пара-парная связь.Кроме того, валентный угол в аммиаке может быть меньше стандартного 109′ по той же причине.

Валентный угол равен 107. У аммиака есть одна неподеленная пара, потому что азот просто образует 3 связи, одна из всех пар должна быть неподеленной парой, благодаря этому между неподеленной парой и связывающей парой больше отталкивания, чем есть между двумя связующими парами. Это немного сближает связующие пары — уменьшите угол скрепления со 109,5° до 107°.

В аммиаке или (Nh4) центральный атом азота гибридизован sp3.На самом деле это никуда не делось, неподеленная пара азота в аммиаке подхватывает протон и образует ковалентную связь.

Следствием этого часто является то, что теперь внутри молекулы есть другой протон, чем электроны, поэтому это заряд. Аммиак может быть нуклеофилом, потому что это неподеленная пара электронов и δ⁻ заряд на атоме N. … Аммиак не несет заряда.

Но это неподеленная пара электронов. А азот более электроотрицательный, чем водород, поэтому атом азота содержит заряд δ⁻.

Nh4 Структура Льюиса молекулярная геометрия:

Теперь давайте перейдем к реализации электронной геометрии. Электронная геометрия Nh4: «тетраэдрическая», потому что это четыре группы электронов. Одна группа имеет неподеленную пару электронов. «N» имеет тетраэдрическую электронную геометрию.

Таким образом, аммиак представляет собой пример молекулы, в которой центральный атом разделил еще и неподеленную пару электронов. Итак, это все для аммиака. Надеюсь, я даже дал вам информацию об Аммиаке или Nh4, которую вы ожидали.

Геометрия молекул — удивительно увлекательный и захватывающий предмет, и понимание таких основ жизненно важно, если вы начинаете заниматься настоящей химией. Всегда оставайтесь любопытными и проверяйте, чтобы определить каждый аспект самостоятельно с помощью логики и магии науки.

h3O Структура Льюиса:

Структура Льюиса молекулы воды содержит 2 одинарные связи вокруг атома кислорода. Различные суммарные валентные электроны атомов кислорода и водорода используются для построения структуры Льюиса.В структуре Льюиса молекулы воды есть две одинарные связи вокруг атома кислорода. Атомы водорода (H) соединены с атомами кислорода (O) одинарными связями.

Кроме того, у атомов кислорода (O) есть 2 неподеленные пары. Молекулы воды также могут быть легкими молекулами. Нарисовать структуру молекул воды по Льюису проще, чем множество других сложных молекул или ионов. Представьте, что вы рисуете структуру тиосульфат-иона по Льюису. Чтобы правильно нарисовать структуру Льюиса, нужно выполнить несколько шагов.

Структура Льюиса для h3O объясняется нижеследующими шагами.
  1. Найдите полное число электронов атома водорода и, следовательно, валентные оболочки атома кислорода.
  2. Суммарные электронные пары как неподеленные пары и связи Выбор центрального атома.
  3. Отметьте нечетные пары внутри атомов.
  4. Отметьте заряды атомов, если они есть.
  5. Проверьте устойчивость, превратив одиночные пары в связи, и минимизируйте плату за атомы, чтобы создать простейшую структуру Льюиса.

Ch5 Структура Льюиса:

В Ch5 центральным атомом может быть углерод. В структуре электронной точки мы представляем значение e элемента. Таким образом, электрон углерода © (e) имеет 4 электрона в точечной структуре и один электрон в атоме водорода (H).

C – H делит электроны, образуя одну связь. Структура Льюиса Ch5 Структура Льюиса для Ch5 (метан). В точечной структуре CH4 (метана) Льюиса мы должны сначала найти валентные электроны углерода и водорода.Мы выражаем валентные электроны как точки внутри точечной структуры Льюиса. Чтобы индуцировать валентные электроны углерода, мы должны оказаться внутри электронной конфигурации углерода.

С (6) = 1с²2с²2п²

Здесь ценность самого квантового числа (n) равна n = 2.

Наибольшее значение самого квантового числа n указывает на валентную оболочку, и мы знаем, что электроны внутри валентной оболочки называются валентной оболочкой. Количество валентных электронов в углероде равно четырем.

Читайте также: Z Library — крупнейшая в мире библиотека электронных книг абсолютно БЕСПЛАТНО

CO2 Структура Льюиса:

При образовании СО2 участвуют две частицы; Углерод и кислород. Углерод находится в группе 4, а кислород в группе 6. Кроме того, есть 2 кислорода. Таким образом, CO2 = 4 + 6 (2) = 16. Следовательно, общее количество валентных электронов равно 16.

.

Углерод является наименее электроотрицательным, что предполагает, что он остается в середине. Так что поместите углерод в середину и установите кислород по обе стороны от него.Теперь давайте проверим и посмотрим, есть ли у нас байты. Кислород справа от вас имеет 8. Кислород слева от вас имеет 8. Для того, чтобы они оба имели байты. А еще у углерода всего 4 валентных электрона; это не байты.

Пришло время разделить эти несвязанные электроны между двумя атомами! Это будет выглядеть так. Начните с рассмотрения атома кислорода. Как видите, у кислорода 8 электронов. Тогда это идеально. А также углерод 6; что может быть немного ближе. Теперь повторите процесс почти как противоположный электрон кислорода.Давайте возьмем пару электронов и разделим их на противоположной стороне, чтобы у кислорода было 8, а у углерода 6.

Гибридизация CO2

Гибридизация СО2. Чтобы узнать это, мы должны заглянуть в каждый атом. Наблюдайте за каждой областью вокруг частиц, чтобы узнать больше о гибридизации молекул CO2.

Если мы начнем с атома, то получим две двойные связи. Так что нет ничего плохого в том, чтобы сказать, что со всех сторон есть сигма-связь, а над ней — PI-связь.

На центральном углероде нет несвязанных электронных пар, поэтому имеется только две сигма-связи. Есть два региона; что предполагает, что существуют S и P-гибридизация орбиталей. Следовательно, гибридизация углерода является «SP».

Если мы упомянем атомы кислорода, поскольку они симметричны, нам нужно изучить только один атом. Если присмотреться, то с правой стороны кислорода есть сигма-связь. Вы также найдете две пары несвязанных электронов.

Итак, мы скажем, что три области связаны с кислородом, что и приводит к гибридизации — SP2.В этом случае, поскольку все атомы кислорода подобны, противоположный s почти такой же, как остальные текущие. Так что это часто гибридизация CO2.

Заключение

Итак, в этой статье я делюсь с вами своими знаниями о структуре Льюиса nh4 и надеюсь, вы понимаете, что я хочу объяснить. Но если у вас есть какие-либо сомнения по поводу структуры nh4 lewis, пожалуйста, сообщите мне об этом в комментарии, и я люблю читать ваши комментарии, а также буду рад ответить на ваши вопросы. Пожалуйста, если у вас есть путаница, дайте мне знать в разделе комментариев.

.

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *