Площадь объема: Формулы объема геометрических фигур

Содержание

Формулы объема геометрических фигур.

Объем геометрической фигуры

— количественная характеристика пространства, занимаемого телом или веществом. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Объем куба

Объем куба равен кубу длины его грани.

Формула объема куба:

V = a3


где V — объем куба,
a — длина грани куба.

Объем призмы

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

V = So h


где V — объем призмы,
So — площадь основания призмы,
h — высота призмы.

Объем параллелепипеда

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

V = So · h


где V — объем параллелепипеда,
So — площадь основания,
h — длина высоты.

Объем прямоугольного параллелепипеда

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

V = a · b · h


где V — объем прямоугольного параллелепипеда,
a — длина,
b — ширина,
h — высота.

Объем пирамиды

Объем пирамиды равен трети от произведения площади ее основания на высоту.

Формула объема пирамиды:



где V — объем пирамиды,
So — площадь основания пирамиды,
h — длина высоты пирамиды.

Объем правильного тетраэдра

Формула объема правильного тетраэдра:

где V — объем правильного тетраэдра,
a — длина ребра правильного тетраэдра.

Объем цилиндра

Объем цилиндра равен произведению площади его основания на высоту.

Формулы объема цилиндра: где V — объем цилиндра,
So — площадь основания цилиндра,
R — радиус цилиндра,
h — высота цилиндра,
π = 3. 141592.

Объем конуса

Объем конуса равен трети от произведению площади его основания на высоту.

Формулы объема конуса:



где V — объем конуса,
So — площадь основания конуса,
R — радиус основания конуса,
h — высота конуса,
π = 3.141592.

Объем шара

Объем шара равен четырем третьим от его радиуса в кубе помноженного на число пи.

Формула объема шара:



где V — объем шара,
R — радиус шара,
π = 3.141592.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Калькулятор вычисления объема и площади геометрических фигур

Весь осязаемый мир представляет собой объемные геометрические фигуры и их сочетания. Определение объемов и площадей поверхностей тел может понадобиться не только при решении школьных задач, но также в быту или профессиональной деятельности. Простые объемные тела разделяются на две категории.

Тела вращения

Первая категория — это тела вращения. Такие объемные фигуры образуются путем вращения плоской фигуры вокруг одной из сторон или путем движения образующей кривой вдоль направляющей. Наш каталог предлагает калькуляторы, при помощи которых можно рассчитать параметры следующих тел вращения.

Конус

Конус — фигура, которая создается путем вращения прямоугольного треугольника вокруг одного из катетов. Также конус формируется путем движения образующего луча вдоль направляющей окружности, при этом начало луча остается неподвижным. Для определения площади поверхности конуса используется простая формула:

S = pi × R × (R + l),

где R — радиус основания, l — образующая конуса.

Для подсчета объема конической фигуры используется следующее соотношение:

V = (pi × R2 × h)/3,

где h — высота конуса.

Конусы широко встречаются в быту, производстве или науке. Например, коническую форму имеют вафельные рожки для мороженного, абажуры для светильников, пожарные ведра или воронки. В природе конус также распространен: горы, вулканы, сосновые шишки или шляпки грибов имеют форму данного тела.

Цилиндр

Цилиндр — тело вращения, которое образуется путем вращения прямоугольника вокруг одной из сторон. Также цилиндр формируется путем движения образующей прямой по направляющей кривой, которая в случае цилиндра может быть окружностью, эллипсом, параболой или гиперболой. Такие «экзотические» цилиндры носят соответствующие названия эллиптических, параболических и гиперболических фигур, однако в реальной жизни наибольшее распространение получил прямой круговой цилиндр. Для определения площади поверхности такого цилиндра используется формула:

S = 2 pi × R × (R + h),

где R — радиус основания, h — высота цилиндра.

Для вычисления объема цилиндра геометры применяют следующее соотношение:

V = pi × R2 × h.

Цилиндр легко встретить в реальной жизни: это и цистерны, и поршни двигателей, и колонны, и трубы газопроводов. Цилиндры широко используются в производстве, поэтому многим инженерам приходится вычислять площади поверхностей или объемы цилиндрических объектов.

Шар

Шар — тело вращения, созданное путем вращения круга около своей оси. Сфера — это поверхность, сформированная путем вращения окружности или полуокружности вокруг своей оси. Таким образом, шар — это пространство, ограниченное сферой. Площадь сферы вычисляется по формуле:

S = 4 pi × R2,

где R — радиус сферы.

Для подсчета объема шара используется следующее выражение:

V = 4/3 pi × R3.

Шар — идеальная фигура, поэтому в природе она встречается довольно часто. К примеру, сферическую форму принимают капли дождя, снежные комья, планеты, звезды, а также ягоды или кроны деревьев. В человеческой повседневности форму шара имеют спортивные мячи, пушечные ядра, подшипники или бусины.

Многогранники

Вторя категория — многогранники. Многогранник или полиэдр — это объемное тело, каждая грань которого является многоугольником. Существует огромное множество многогранников: к ним относятся призмы, пирамиды, параллелепипеды, а также платоновы тела — полиэдры, гранями которых являются правильные многоугольники. В нашем каталоге вы найдете инструменты для определения площадей поверхностей и объемов следующих многогранников.

Призма

Призма — это полиэдр, который состоит из двух n-угольных оснований, параллельных друг другу и n боковых граней, формирующих боковую поверхность призмы. Грань призмы — это всегда параллелограмм. Простыми словами, если в основании фигуры лежит квадрат, то призма считается четырехугольной, но при этом шестигранной: четыре грани составляют боковую поверхность, а две — поверхность оснований. Если в основании лежит пентагон — то призма пятиугольная и семигранная, а если додекагон — то фигура 12-угольная и 14-гранная. Если в основании призмы положить полигон, количество сторон которого стремится к бесконечности, то основание превратится в круг, а призма — в цилиндр. Для определения площади боковой поверхности призматической фигуры используется выражение:

Sb = n × a × h,

где a — сторона параллелограмма, n — количество граней, h — его высота.

Площадь поверхности основания призмы зависит от многоугольника и в общем виде для правильных полигонов рассчитывается как:

So = n/4 × a2 × ctg(pi/n),

где n — количество сторон фигуры, a — длина стороны.

Полная же площадь поверхности определяется как:

S = 2 So + Sb.

Объем призмы вычисляется по следующей формуле:

V = So х h.

Призма — наиболее распространенный в человеческой повседневности полиэдр. Форму призмы имеет огромное число предметов вокруг вас: это системный блок компьютера, сабвуфер, стол, шкаф, комната и здание. Если выйти на улицу, то вы увидите царство призм. Именно поэтому инструмент для определения объемов и площадей поверхности призматических фигур всегда актуален.

Пирамида

Пирамида — это полиэдр, который составлен из n-угольного основания и n боковых граней, формирующих боковую поверхность пирамидальной фигуры. Грань пирамиды — это всегда треугольник. Вид полиэдра определяется в зависимости от того, какой полигон выступает в роли фундамента пирамиды. Следовательно, пирамиды бывают треугольные, четырехугольные, пятиугольные или n-угольные. Площадь боковой порвехности пирамиды рассчитывается согласно выражению:

Sb = 0,5 P х h,

где h — высота пирамиды, P — периметр полигона, лежащего в основании.

Площадь фундамента рассчитывается по общей формуле для любого правильного полигона:

So = n/4 × a2 × ctg(pi/n),

где a — длина стороны, n — количество сторон.

Полная площадь поверхности пирамиды определяется как:

S = So + Sb.

Для определения объема пирамиды используется формула:

V = (So х h)/3,

где h — высота фигуры.

Пирамида — довольно распространенная фигура и широко используется в архитектуре. Всем известно о величественных пирамидах в Египте или колоссальных сооружениях в Южной Америке. Современные архитекторы также активно используют пирамиды при проектировании торговых комплексов, музеев или выставочных галерей. Кроме того, пирамидальные фигуры часто встречаются в производстве и машиностроении.

Параллелепипед

Параллелепипед — это гексаэдр с попарно параллельными гранями. Если ребра такого шестигранника равны, то параллелепипед превращается в куб. Параллелепипед — это частный случай прямой четырехугольной призмы, поэтому формулы для расчета площади и объема фигуры выводятся из соотношений для призмы с n = 4. Таким образом, для расчета площади поверхности гексаэдра используется формула:

S = 4 (a × h) + 2 (a × b),

где a, b — стороны основания параллелепипеда, h — высота фигуры.

Объем полиэдра определяется как:

V = a × b × h.

Параллелепипед, так же как и призма, постоянно встречается в реальности. Форму такого гексаэдра имеет множество вещей вокруг нас: шлакоблоки, бетонные плиты, грузовые контейнеры или картонные коробки. Формулы для расчета атрибутов параллелепипеда, несомненно, пригодятся вам не только для решения школьных задач, но и в бытовых вопросах.

Примеры использования

Наш калькулятор позволяет рассчитать объем или площадь поверхности любого из заданных геометрических тел. Рассмотрим пару примеров.

Заливка бетона

К примеру, вы решили построить летний коттедж, а для каждого дома необходим фундамент. Вы выбрали плитный фундамент — монолитную плиту, которую заливают под всей площадью будущего жилища. Вам требуется узнать, сколько бетона понадобится для обустройства такого фундамента. Плитное основание представляет собой обычный параллелепипед, следовательно, вам понадобится определить объем шестигранника. Пусть вы хотите построить дом с размерами 6 на 9 метров, а толщина фундамента согласно техническим требованиям должна составлять 15 см. Приведем все параметры в одни единицы измерения и воспользуемся калькулятором для расчета объема параллелепипеда.

V = 8,1

Таким образом, нам потребуется заказать 8,1 кубометров бетонной смеси.

Пошив мячей

Допустим, вы открыли производство по производству волейбольных мячей, и вам требуется узнать, сколько материала уходит на пошив одного мяча. Согласно данным из Википедии, стандартный волейбольный мяч имеет длину окружности l = 67 см, следовательно, радиус такого мячика составит 10,6 см. Зная радиус, вы без проблем можете определить, сколько синтетической кожи понадобится для создания одного изделия

S = 0,141

Это означает, что для обшивки одного мяча вам понадобится 0,141 квадратных метров кожи.

Заключение

Объемные фигуры постоянно вращаются вокруг нас, поэтому задача определения площадей поверхностей и объемов многогранников остается актуальной задачей. Используйте наш каталог онлайн-калькуляторов и выполняйте необходимые расчеты для решения бытовых или производственных задач.

Формула расчета объема цилиндра: пример решения задачи

Объем является физической величиной, которая присуща телу с ненулевыми размерами вдоль каждого из трех направлений пространства (все реальные объекты). В статье в качестве примера формулы объема рассматривается соответствующее выражение для цилиндра.

Объем тел

Эта физическая величина показывает, какую часть пространства занимает то или иное тело. Например, объем Солнца намного больше этой величины для нашей планеты. Это означает, что принадлежащее Солнцу пространство, в котором находится вещество этой звезды (плазма), превышает земную пространственную область.

Объем изменяется в кубических единицах длины, в СИ это метры в кубе (м3). На практике объемы жидких тел измеряют в литрах. Маленькие объемы могут выражать в кубических сантиметрах, миллилитрах и других единицах.

Для вычисления объема формула будет зависеть от геометрических особенностей рассматриваемого объекта. Например, для куба это тройное произведение длины его ребер. Ниже рассмотрим фигуру цилиндр и ответим на вопрос о том, как найти объем его.

Понятие о цилиндре

Фигура, о которой пойдет речь, является достаточно непростой. Согласно геометрическому определению, она представляет собой поверхность, образованную путем параллельного перемещения прямой (генератрисы) вдоль некоторой кривой (директрисы). Генератриса также называется образующей, а директриса — направляющей.

Если директриса — это окружность, а генератриса перпендикулярна ей, тогда полученный цилиндр называют круглым и прямым. О нем и пойдет дальше речь.

Цилиндр имеет два основания, которые параллельны друг другу и соединены цилиндрической поверхностью. Проходящая через центры двух оснований прямая называется осью круглого цилиндра. Все точки фигуры находятся на одинаковом расстоянии от этой прямой, которое равно радиусу основания.

Круглый прямой цилиндр однозначно определяется двумя параметрами: радиусом основания (R) и расстоянием между основаниями — высота H.

Формула объема цилиндра

Для расчета области пространства, которую занимает цилиндр, достаточно знать его высоту H и радиус основания R. Искомое равенство в этом случае имеет вид:

V = pi*R2*H, здесь pi = 3,1416

Понять эту формулу объема просто: поскольку высота перпендикулярна основаниям, то если ее умножить на площадь одного из них, получается нужная величина V.

Вычисление объема бочки

Для примера решим такую задачу: определим, сколько воды поместится в бочку, имеющую диаметр дна 50 см и высоту 1 метр.

Радиус бочки равен R=D/2=50/2=25 см. Подставляем данные в формулу, получаем:

V = pi*R2*H = 3,1416*252*100 = 196350 см3

Поскольку 1 л = 1 дм3 = 1000 см3, то получаем:

V = 196350/1000 = 196,35 литра.

То есть в бочку можно налить почти 200 литров воды.

Не удается найти страницу | Autodesk Knowledge Network

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}}*

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}}/500 {{l10n_strings.TAGS}} {{$item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}  

{{l10n_strings. DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}  

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$select.selected.display}} {{l10n_strings.
CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}

4. Объем фигур — Фигуры В Пространстве

  

 Объем — это величина фигуры в дину, высоту и ширину, измеряемая в кубических единицах.

    Свойства объемов:

  • Равные тела имеют равные объемы.
  • Если тело составлено из нескольких тел, то его объем равен сумме объемов этих тел.

    1. Объем куба равен кубу длины его граней.

    Формула объема куба:  

    где V — объем куба,

            a — длина грани куба. 

    2. Объем призмы равен произведению основания призмы на ее высоту.

     Формула объема призмы: 

     где V — объем призмы,

           

So — площадь основания,

           h — длина высоты.  

    3. Объем параллелепипеда равен произведению площади снования на высоту.

    Формула объема параллелепипеда:     где 

V

 — объем параллелепипеда, 

          So

 — площадь основания, 

           h

 — длина высоты.    Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты. Формула объема прямоугольного параллелепипеда: 

    

    где 

V

 — объем прямоугольного параллелепипеда, 

            a

 — длина, 

            b

 — ширина, 

            h

 — высота.

    4. Объем пирамиды равен трети от произведения площади ее основания на высоту.

    Формула объема пирамиды: 

                                                               

    где 

V

 — объем пирамиды, 

           So

 — площадь основания пирамиды, 

             h

 — длина высоты пирамиды.

    5. Объем цилиндра равен произведению площади его основания на высоту.

    Формулы объема цилиндра:    где 

V

 — объем цилиндра, 

            So

 — площадь основания цилиндра, 

            R

 — радиус цилиндра, 

            h

 — высота цилиндра, 

            π

= 3,141592

.

    6. Объем конуса равен трети от произведения площади его основания на высоту.

    Формулы объема конуса: 
    где 

V

 — объем конуса, 

          So

 — площадь основания конуса, 

           R

 — радиус основания конуса, 

           h

 — высота конуса, 

          

π

= 3,141592

.

    7. Объем шара равен четырем третьим от его радиуса в кубе помноженного на число.

    Фор

мула объема шара:

    где 

V

 — объем шара, 

           R

 — радиус шара, 

           π

= 3.141592

.

Один из важнейших инженерных приемов.

Отношение объема к площади поверхности любого физического тела = Отношение массы (веса) или запасенного тепла к поверхности опоры, излучения или теплообмена = Отношение инерции тела к площади поперечного сечения…

Один из важнейших инженерных приемов. Отношение объема к площади поверхности любого физического тела = Отношение массы (веса) или запасенного тепла к поверхности опоры, излучения или теплообмена = Отношение инерции тела к площади поперечного сечения или площади сопротивления и т.д.

Суть вопроса в том, что V (r3), а S(r2) (объем пропорционален кубу линейного размера, а площадь поверхности — квадрату линейного размера, т.е. объем растет быстрее чем площадь поверхности с ростом линейного размера подобных тел)

Представьте себе куб с длиной грани (ребра) 1 метр (1 сантиметр, 1 фут, 1 дюйм или 1 «чего Вам угодно»), далее единицей пусть будет  метр — для простоты. Объем этого куба равен 1 м3. Каждая сторона имеет площадь1 м

2, а вся площадь поверхности этого кубика равна 6 м2 — сторон-то шесть. Отношение объема к площади поверхности равно 1:6 = 1/6 (размерность в отношении,естественно, исчезает).

  • Тепрь представьте себе куб со стороной 3 м.Объем этого куба равен 27 м3 (3х3х3). Каждая сторона имеет площадь 9 м2 , а вся площадь поверхности этого кубика равна 54 м2. Отношение объема к площади поверхности равно 27:54 = 1/2 = 3/6.
  • То есть, при росте линейного размера в 3 раза площадь поверхности выросла в 9 раз, но объем вырос в 27 раз. Отношение объема к площади поверхности выросло в 3 раза.
  • В таблице ниже приведены расчеты для кубов при пошаговом удвоении линейного размера. :

Таблица. Сравнение динамик площади поверхности и объема физического тела с ростом линейного размера.

Линейный
размер (м)
Площадь
поверхности (м2)
Объем (м3)

Отношение объема
к площади поверхности

1

6,00

1,00

0,17

2

24,00

8,00

0,33

4

96,00

64,00

0,67

8

384,00

512,00

1,33

16

1 536,00

4 096,00

2,67

32

6 144,00

32 768,00

5,33

64

24 576,00

262 144,00

10,67

128

98 304,00

2 097 152,00

21,33

256

393 216,00

16 777 216,00

42,67

512

1 572 864,00

134 217 728,00

85,33

При росте линейного размера объем возрастает намного быстрее, чем площадь поверхности тела, поскольку объем пропорционален кубу линейного размера, а площадь — квадрату. Этот факт применим не только к телам кубической формы, но и к любым другим телам, естественно при сохранении формы ( или пропорций, если Вам так больше нравится).

Рисунок. Сравнение динамик площади поверхности и объема физического тела с ростом линейного размера. Минимальным отношением объема к площади поверхности, очевидно, обладает сфера 🙂 

Некоторые житейские примеры важности рассматриваемого факта.

  • 1) Теплоотдача пропорциональна площади поверхности. Теплоемкость — объему тела. Из этого факта напрямую следует, что более крупное здание (той же формы) будет дольше отдавать накопленное за световой день тепло (или нагреваться днем) и потребует меньше энергии на единицу полезной площади — ! полезная площадь прямо пропорциональна внутреннему объему ! — на отопление (кондиционирование).
  • 2) Масса (вес) пропорциональна объему опоры. Нагрузка на грунт — площади поверхности. Из этого факта напрямую следует, что для опоры любой формы существует размер, начиная с которого (при сохранении формы) она уйдет в любой грунт.
  • 3) Ребенок имеет совершенно другое соотношение площадь/объем, чем взрослый человек. Поэтому риски переохлаждения или получения теплового удара для ребенка несоизмеримо выше (что, конечно, отчасти компенсируется другой скоростью обменных процессов у детей).

Рассчитать объем коробки в м3 и литрах онлайн

07.10.2019

Сколько будет стоить отправка вашего груза до места назначения? Чтобы ответить на это вопрос, нужно знать его объем в кубических метрах, т. к. транспортные компании чаще всего в прайсе указывают стоимость услуг именно в таких единицах измерения.

Картонные коробки — наиболее выгодный и удобный вид упаковки для большинства товаров. Выбирая гофроупаковку для своей продукции, вам нужно, в первую очередь, рассчитать объем коробок и заказать нужное количество коробок, чтобы не перевозить воздух и не переплачивать за транспортные услуги.

Если в результате расчета оказалось, что вам требуется гофротара индивидуальных размеров, наша компания «МС-ПАК» изготовит нужный тираж на заказ. Рассмотрим, как правильно рассчитать объем картонной коробки.

Поэтапный расчет объема картонной коробки

Для расчета нужно: