На плоскости хоу задана своими координатами точка а указать: На плоскости ХОY задана своими координатами точка А. Указать, где она расположена (на какой

Содержание

Программирование ветвящихся алгоритмов. Решение и обсуждение заданий

1. Разместить решение любой задачи первого и второго уровня на слайдах коллективной презентации (условие задачи, текст программы, блок-схему, тест для проверки задачи). Не забываем подписывать слайды. 1. Даны два угла треугольника (в градусах). Определить, существует ли такой треугольник. Если да, то будет ли он прямоугольным. 2. На плоскости XOY задана своими координатами точка A. Указать, где она расположена: на какой оси или в каком координатном угле. 3. Грузовой автомобиль выехал из одного города в другой со скоростью v1 км/ч. Через t ч в этом же направлении выехал легковой автомобиль со скоростью v2 км/ч. Составить программу, определяющую, догонит ли легковой автомобиль грузовой через t1 ч после своего выезда 4. Написать программу нахождения суммы большего и меньшего из 3 чисел. 5. Написать программу, распознающую по длинам сторон среди всех треугольников прямоугольные. Если таковых нет, то вычислить величину угла
C
. 6. Найти max{min(a, b), min(c, d)}. 7. Составить программу, осуществляющую перевод величин из радианной меры в градусную или наоборот. Программа должна запрашивать, какой перевод нужно осуществить, и выполнять указанное действие. 8. Заданы размеры A, B прямоугольного отверстия и размеры x, y, z кирпича. Определить, пройдет ли кирпич через отверстие. 9. Составить программу, осуществляющую перевод величин из радианной меры в градусную или наоборот. Программа должна запрашивать, какой перевод нужно осуществить, и выполнять указанное действие. 10. Два прямоугольника, расположенные в первом квадранте, со сторонами, параллельными осям координат, заданы координатами своих левого верхнего и правого нижнего углов. Для первого прямоугольника это точки (x1y1) и (x2, 0), для второго — (x3y3), (
x
4, 0). Составить программу, определяющую, пересекаются ли данные прямоугольники, и вычисляющую площадь общей части, если они пересекаются. 11. В небоскребе N этажей и всего один подъезд; на каждом этаже по 3 квартиры; лифт может останавливаться только на нечетных этажах. Человек садится в лифт и набирает номер нужной ему квартиры M. На какой этаж должен доставить лифт пассажира? 12. Написать программу, которая по заданным трем числам определяет, является ли сумма каких-либо двух из них положительной. 13. Известно, что из четырех чисел a1, a2, a3 и a4 одно отлично от трех других, равных между собой; присвоить номер этого числа переменной n. 14. Составить программу, которая проверяла бы, не приводит ли суммирование двух целых чисел A и B к переполнению (т.е. к результату большему, чем 32767). Если будет переполнение, то сообщить об этом, иначе вывести сумму этих чисел.

2. Оценить свое решение. Результаты самооценки разместить в таблице

Другое написать программу 📝 в vb6 Информатика

1. Сколько стоит помощь?

Цена, как известно, зависит от объёма, сложности и срочности. Особенностью «Всё сдал!» является то, что все заказчики работают со экспертами напрямую (без посредников). Поэтому цены в 2-3 раза ниже.

2. Каковы сроки?

Специалистам под силу выполнить как срочный заказ, так и сложный, требующий существенных временных затрат. Для каждой работы определяются оптимальные сроки. Например, помощь с курсовой работой – 5-7 дней. Сообщите нам ваши сроки, и мы выполним работу не позднее указанной даты. P.S.: наши эксперты всегда стараются выполнить работу раньше срока.

3. Выполняете ли вы срочные заказы?

Да, у нас большой опыт выполнения срочных заказов.

4. Если потребуется доработка или дополнительная консультация, это бесплатно?

Да, доработки и консультации в рамках заказа бесплатны, и выполняются в максимально короткие сроки.

5. Я разместил заказ. Могу ли я не платить, если меня не устроит стоимость?

Да, конечно — оценка стоимости бесплатна и ни к чему вас не обязывает.

6. Каким способом можно произвести оплату?

Работу можно оплатить множеством способом: картой Visa / MasterCard, с баланса мобильного, в терминале, в салонах Евросеть / Связной, через Сбербанк и т.д.

7. Предоставляете ли вы гарантии на услуги?

На все виды услуг мы даем гарантию. Если эксперт не справится — мы вернём 100% суммы.

8. Какой у вас режим работы?

Мы принимаем заявки 7 дней в неделю, 24 часа в сутки.

Декартова система координат: основные понятия и примеры

Если вы находитесь в некоторой нулевой точке и размышляете над тем, сколько единиц расстояния нужно пройти строго вперёд, а затем — строго вправо, чтобы оказаться в некоторой другой точке, то вы уже пользуетесь прямоугольной декартовой системой координат на плоскости. А если точка находится выше плоскости, на которой вы стоите, и к вашим расчётам добавляется подъём к точке по лестнице строго вверх также на определённое число единиц расстояния, то вы уже пользуетесь прямоугольной декартовой системой координат в пространстве.

Упорядоченная система двух или трёх пересекающихся перпендикулярных друг другу осей с общим началом отсчёта (началом координат) и общей единицей длины называется прямоугольной декартовой системой координат.

С именем французского математика Рене Декарта (1596-1662) связывают прежде всего такую систему координат, в которой на всех осях отсчитывается общая единица длины и оси являются прямыми. Помимо прямоугольной существует

общая декартова система координат (аффинная система координат). Она может включать и не обязательно перпендикулярные оси. Если же оси перпендикулярны, то система координат является прямоугольной.

Прямоугольная декартова система координат на плоскости имеет две оси, а прямоугольная декартова система координат в пространстве — три оси. Каждая точка на плоскости или в пространстве определяется упорядоченным набором координат — чисел в соответствии единице длины системы координат.

Заметим, что, как следует из определения, существует декартова система координат и на прямой, то есть в одном измерении. Введение декартовых координат на прямой представляет собой один из способов, с помощью которого любой точке прямой ставится в соответствие вполне определённое вещественное число, то есть координата.

Метод координат, возникший в работах Рене Декарта, ознаменовал собой революционную перестройку всей математики. Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так, неравенство z < 3 геометрически означает полупространство, лежащее ниже плоскости, параллельной координатной плоскости xOy и находящейся выше этой плоскости на 3 единицы.

С помощью декартовой системы координат принадлежность точки заданной кривой соответствует тому, что числа x и y удовлетворяют некоторому уравнению. Так, координаты точки окружности с центром в заданной точке (ab) удовлетворяют уравнению (

x — a)² + (y — b)² = R².

Две перпендикулярные оси на плоскости с общим началом и одинаковой масштабной единицей образуют декартову прямоугольную систему координат на плоскости. Одна из этих осей называется осью Ox, или осью абсцисс, другую — осью Oy, или осью ординат. Эти оси называются также координатными осями. Обозначим через Mx и My соответственно проекции произвольной точки М на оси Ox и Oy. Как получить проекции? Проведём через точку М прямую, перпендикулярную оси Ox. Эта прямая пересекает ось Ox в точке Mx. Проведём через точку М прямую, перпендикулярную оси Oy. Эта прямая пересекает ось Oy в точке My. Это показано на рисунке ниже.

Декартовыми прямоугольными координатами x и y точки М будем называть соответственно величины направленных отрезков OMx и OMy. Величины этих направленных отрезков рассчитываются соответственно как x = x0 — 0 и y = y0 — 0. Декартовы координаты x и y точки М называются соответственно её абсциссой и ординатой. Тот факт, что точка М имеет координаты x и y, обозначается так: M(xy).

Координатные оси разбивают плоскость на четыре квадранта, нумерация которых показана на рисунке ниже. На нём же указана расстановка знаков координат точек в зависимости от их расположения в том или ином квадранте.

Помимо декартовых прямоугольных координат на плоскости часто рассматривается также полярная система координат. О способе перехода от одной системы координат к другой — в уроке

полярная система координат.

Декартовы координаты в пространстве вводятся в полной аналогии с декартовыми координатами на плоскости.

Три взаимно перпендикулярные оси в пространстве (координатные оси) с общим началом O и одинаковой масштабной единицей образуют декартову прямоугольную систему координат в пространстве.

Одну из указанных осей называют осью Ox, или осью абсцисс, другую — осью Oy, или осью ординат, третью — осью Oz, или осью аппликат. Пусть Mx, My Mz — проекции произвольной точки М пространства на оси Ox, Oy и Oz соответственно.

Проведём через точку М плоскость, перпендикулярную оси Ox. Эта плоскость пересекает ось Ox в точке Mx. Проведём через точку М плоскость, перпендикулярную оси Oy. Эта плоскость пересекает ось Oy в точке My. Проведём через точку М плоскость, перпендикулярную оси Oz. Эта плоскость пересекает ось Oz в точке Mz.

Декартовыми прямоугольными координатами x, y и z точки М будем называть соответственно величины направленных отрезков OMx, OMy и OMz. Величины этих направленных отрезков рассчитываются соответственно как x = x0 — 0, y = y0 — 0 и z = z0 — 0.

Декартовы координаты x, y и z точки М называются соответственно её абсциссой, ординатой и аппликатой.

Попарно взятые координатные оси располагаются в координатных плоскостях xOy, yOz и zOx.

Пример 1. В декартовой системе координат на плоскости даны точки

A(2; -3);

B(3; -1);

C(-5; 1).

Найти координаты проекций этих точек на ось абсцисс.

Решение. Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox, а следовательно имеет абсциссу, равную абсциссе самой точки, и ординату (координату на оси Oy, которую ось абсцисс пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось абсцисс:

Ax(2; 0);

Bx(3; 0);

Cx(-5; 0).

Пример 2. В декартовой системе координат на плоскости даны точки

A(-3; 2);

B(-5; 1);

C(3; -2).

Найти координаты проекций этих точек на ось ординат.

Решение. Как следует из теоретической части этого урока, проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy, а следовательно имеет ординату, равную ординате самой точки, и абсциссу (координату на оси Ox, которую ось ординат пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось ординат:

Ay(0; 2);

By(0; 1);

Cy(0; -2).

Пример 3. В декартовой системе координат на плоскости даны точки

A(2; 3);

B(-3; 2);

C(-1; -1).

Найти координаты точек, симметричных этим точкам относительно оси Ox.

Решение. Поворачиваем на 180 градусов вокруг оси Ox направленный отрезок, идущий от оси Ox до данной точки. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно оси Ox, будет иметь такую же абсциссу, что и данная точка, и ординату, равную по абсолютной величине ординате данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Ox:

A’(2; -3);

B’(-3; -2);

C’(-1; 1).

Пример 4. Определить, в каких квадрантах (четвертях, рисунок с квадрантами — в конце параграфа «Прямоугольная декартова система координат на плоскости») может быть расположена точка M(xy), если

1) xy > 0;

2) xy < 0;

3) x − y = 0;

4) x + y = 0;

5) x + y > 0;

6) x + y < 0;

7) x − y > 0;

8) x − y < 0.

Правильное решение и ответ.

Пример 5. В декартовой системе координат на плоскости даны точки

A(-2; 5);

B(3; -5);

C(ab).

Найти координаты точек, симметричных этим точкам относительно оси Oy.

Правильное решение и ответ.

Пример 6. В декартовой системе координат на плоскости даны точки

A(-1; 2);

B(3; -1);

C(-2; -2).

Найти координаты точек, симметричных этим точкам относительно оси Oy.

Решение. Поворачиваем на 180 градусов вокруг оси Oy направленный отрезок, идущий от оси Oy до данной точки. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно оси Oy, будет иметь такую же ординату, что и данная точка, и абсциссу, равную по абсолютной величине абсциссе данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Oy:

A’(1; 2);

B’(-3; -1);

C’(2; -2).

Пример 7. В декартовой системе координат на плоскости даны точки

A(3; 3);

B(2; -4);

C(-2; 1).

Найти координаты точек, симметричных этим точкам относительно начала координат.

Решение. Поворачиваем на 180 градусов вокруг начала координат направленный отрезок, идущий от начала координат к данной точке. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно начала координат, будет иметь абсциссу и ординату, равные по абсолютной величине абсциссе и ординате данной точки, но противоположные им по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно начала координат:

A’(-3; -3);

B’(-2; 4);

C(2; -1).

Пример 8. В декартовой системе координат в пространстве даны точки

A(4; 3; 5);

B(-3; 2; 1);

C(2; -3; 0).

Найти координаты проекций этих точек:

1) на плоскость Oxy;

2) на плоскость Oxz;

3) на плоскость Oyz;

4) на ось абсцисс;

5) на ось ординат;

6) на ось апликат.

Решение.

1) Проекция точки на плоскость Oxy расположена на самой этой плоскости, а следовательно имеет абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxy:

Axy(4; 3; 0);

Bxy(-3; 2; 0);

Cxy(2; -3; 0).

2) Проекция точки на плоскость Oxz расположена на самой этой плоскости, а следовательно имеет абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxz:

Axz(4; 0; 5);

Bxz(-3; 0; 1);

Cxz(2; 0; 0).

3) Проекция точки на плоскость Oyz расположена на самой этой плоскости, а следовательно имеет ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную нулю. Итак получаем следующие координаты проекций данных точек на Oyz:

Ayz(0; 3; 5);

Byz(0; 2; 1);

Cyz(0; -3; 0).

4) Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox, а следовательно имеет абсциссу, равную абсциссе самой точки, а ордината и апликата проекции равны нулю (поскольку оси ординат и апликат пересекают ось абсцисс в точке 0). Получаем следующие координаты проекций данных точек на ось абсцисс:

Ax(4; 0; 0);

Bx(-3; 0; 0);

Cx(2; 0; 0).

5) Проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy, а следовательно имеет ординату, равную ординате самой точки, а абсцисса и апликата проекции равны нулю (поскольку оси абсцисс и апликат пересекают ось ординат в точке 0). Получаем следующие координаты проекций данных точек на ось ординат:

Ay(0; 3; 0);

By(0; 2; 0);

Cy(0; -3; 0).

6) Проекция точки на ось апликат расположена на самой оси апликат, то есть оси Oz, а следовательно имеет апликату, равную апликате самой точки, а абсцисса и ордината проекции равны нулю (поскольку оси абсцисс и ординат пересекают ось апликат в точке 0). Получаем следующие координаты проекций данных точек на ось апликат:

Az(0; 0; 5);

Bz(0; 0; 1);

Cz(0; 0; 0).

Пример 9. В декартовой системе координат в пространстве даны точки

A(2; 3; 1);

B(5; -3; 2);

C(-3; 2; -1).

Найти координаты точек, симметричных этим точкам относительно:

1) плоскости Oxy;

2) плоскости Oxz;

3) плоскости Oyz;

4) оси абсцисс;

5) оси ординат;

6) оси апликат;

7) начала координат.

Решение.

1) «Продвигаем» точку по другую сторону оси Oxy на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oxy, будет иметь абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную по величине апликате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxy:

A’(2; 3; -1);

B’(5; -3; -2);

C’(-3; 2; 1).

2) «Продвигаем» точку по другую сторону оси Oxz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oxz, будет иметь абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную по величине ординате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxz:

A’(2; -3; 1);

B’(5; 3; 2);

C’(-3; -2; -1).

3) «Продвигаем» точку по другую сторону оси Oyz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oyz, будет иметь ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную по величине абсциссе данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oyz:

A’(-2; 3; 1);

B’(-5; -3; 2);

C’(3; 2; -1).

По аналогии с симметричными точками на плоскости и точками пространства, симметричными данным относительно плоскостей, замечаем, что в случае симметрии относительно некоторой оси декартовой системы координат в пространстве, координата на оси, относительно которой задана симметрия, сохранит свой знак, а координаты на двух других осях будут теми же по абсолютной величине, что и координаты данной точки, но противоположными по знаку.

4) Свой знак сохранит абсцисса, а ордината и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси абсцисс:

A’(2; -3; -1);

B’(5; 3; -2);

C’(-3; -2; 1).

5) Свой знак сохранит ордината, а абсцисса и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси ординат:

A’(-2; 3; -1);

B’(-5; -3; -2);

C’(3; 2; 1).

6) Свой знак сохранит апликата, а абсцисса и ордината поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси апликат:

A’(-2; -3; 1);

B’(-5; 3; 2);

C’(3; -2; -1).

7) По аналогии с симметрии в случае с точками на плоскости, в случае симметрии относительно начала координат все координаты точки, симметричной данной, будут равными по абсолютной величине координатам данной точки, но противоположными им по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно начала координат:

A’(-2; -3; -1);

B’(-5; 3; -2);

C’(3; -2; 1).

Поделиться с друзьями

Весь блок «Аналитическая геометрия»

  • Векторы
  • Плоскость
  • Прямая на плоскости

Вариант 2

№ 1

Ветвление

На плоскости XOY задана своими координатами точка А. Указать, где она расположена: на какой оси или в каком координатном угле

№ 2

Циклы (все три вида: For, While, Repeat)

Дана последовательность из N произвольных целых чисел. Написать программу, которая определяет, сколько в этой последовательности положительных чисел, кратных 3

№ 3

Теория чисел

Поменять местами первую и последнюю цифры числа

№ 4

Одномерные массивы

Дана последовательность целых чисел, в которой есть нулевые элементы. Сформировать массив из номеров этих элементов

№ 5

Двумерные массивы

Дан двумерный массив А. Сформировать двумерный массив В путем возведения в квадрат элементов массива А

№ 6

Строковые величины

Определить количество символов в предложении, исключая знаки препинания

№ 7

Процедуры и функции

Вычислить сумму: 1! + 2! + 3! … + n!, используя функцию вычисления факториала числа k!

№ 8

Записи

Построить массив записей о студентах. Каждая запись должна содержать фамилию, группу, баллы за контрольную неделю по дисциплинам. Рассчитать для каждого студента средний балл

№ 1

Ветвление

Определить, является ли треугольник со сторонами a, b, c равнобедренным

№ 2

Циклы

Написать программу вычисления суммы всех двузначных чисел, кратных 3 и 9

№ 3

Теория чисел

Найти количество четных цифр целого положительного числа

№ 4

Одномерные массивы

Дана произвольная последовательность натуральных чисел. Создать массив из четных чисел этой последовательности. Если таких чисел нет, то вывести сообщение об этом факте

№ 5

Двумерные массивы

Найти число элементов, расположенных в четных строках, которые больше заданного числа К

№ 6

Строковые величины

Дан текст. Проверить, можно ли заданной последовательностью символов составить слово «информатика»

№ 7

Процедуры и функции

Даны действительные числа x1, y1, x2, y2,…x10, y10. Найти периметр десятиугольника, вершины которого имеют соответственно координаты (x1, y1), (x2, y2),…, (x10, y10). Определить функцию вычисления расстояния между двумя точками, заданными своими координатами

№ 8

Записи

Построить массив записей о студентах СРШБ направления «ПО ВТ и АС». Каждая запись содержит поля: фамилия, группа, экзаменационные оценки за период обучения. Для каждого студента определить среднюю оценку

В прямоугольном параллелепипеде провести сечение, проходящее через сторону нижнего основания и противоположную сторону верхнего основания.

В прямоугольном параллелепипеде провести сечение, проходящее через сторону нижнего основания и противоположную сторону верхнего основания. В треугольной призме построить сечение, проходящее через одну из сторон верхнего основания и противолежащую вершину нижнего. | В прямом параллелепипеде провести сечение, проходящее через большую диагональ нижнего основания и одну из вершин верхнего основания. | В прямом цилиндре построить осевое сечение. | В четырехугольной пирамиде построить сечение, параллельное основанию. | В правильной шестиугольной призме построить сечение, проходящее через большую диагональ нижнего основания и одну из сторон верхнего. | В прямоугольном параллелепипеде провести сечение, проходящее через сторону верхнего основания и противоположную сторону нижнего основания. | В правильной шестиугольной призме построить сечение, проходящее через большую диагональ верхнего основания и одну из сторон нижнего. | В правильной шестиугольной пирамиде построить сечение, параллельное основанию. | В треугольной призме построить сечение, проходящее через одну из сторон нижнего основания и противолежащую вершину верхнего. | В треугольной пирамиде построить сечение, проходящее через одну из сторон основания и середину противоположного ребра. |

16. Построить график функции:

17. Дана строка символов, среди которых есть двоеточие (:). Оп­ределить, сколько символов ему предшествует.

18. Найти наибольшие элементы и их порядковые номера массивов X(N) и Y(M) ( N<=80, M<=70). Составить функцию — подпрограмму обработки массива заданной размерности. Использовать эту функцию в основной программе.

19. Записать в файл N действительных чисел. Найти наибольшее из значений модулей компонентов с нечетными номерами.

20. Создать файл, содержащий текст, набранный заглавными английскими буквами. Провести частотный анализ текста, т.е. указать (в процентах), сколько раз встречается та или иная буква.

21. На аптечном складе хранятся лекарства. Сведения о лекарствах содержатся в специальной ведомости: наименование лекарственного препарата; количество; цена; срок хранения ( в месяцах). Выяснить, сколько стоит самый дорогой и самый дешевый препарат; сколько препаратов хранится на складе; какие препараты имеют срок хранения более 3 месяцев; сколько стоят все препараты, хранящиеся на складе.

22. Написать программу, демонстрирующую работу с объектами классов «прямоугольник» и «квадрат».

Предусмотреть следующие методы:

— создать объект

— изобразить объект на экране

— сравнить объекты по площади.

 

Индивидуальное задание (вариант № 5)

  1. Напишите программу для расчета по двум формулам (результаты вычислений по обеим формулам должны совпадать).

.

  1. Даны два действительных числа x и y. Вычислить их сумму, разность, произведение и частное.
  2. Напишите программу, в текстовом режиме приводящую экран к виду, соответствующему номеру вашего варианта.

 

  1. На плоскости XOY задана своими координатами точка A. Указать, где она расположена (на какой оси или в каком координатном угле).
  2. Написать программу, которая вводит координаты точки (x, y) и определяет, попадает ли точка в заштрихованную область на рисунке, который соответствует Вашему варианту. Попадание на границу области считать попаданием в область.

  1. Пусть элементами круга являются радиус (первый элемент), диаметр (второй элемент) и длина окружности (третий элемент). Составить программу, которая по номеру элемента запрашивала бы его соответствующее значение и вычисляла бы площадь круга.
  2. Вычислить и вывести на экран в виде таблицы значения функции, заданной с помощью ряда Тейлора, на интервале от xнач до xкон с шагом dx c точностью ε. Таблицу снабдить заголовком и шапкой. Каждая строка таблицы должна содержать значение аргумента, значение функции и количество просуммированных членов ряда.

.

  1. Вычислить приближенное значение интеграла по формулам прямоугольников и Симпсона для n = 40 .
  2. Составить алгоритм решения ребуса барс + рысь =кошки (различные буквы обозначают различные цифры, старшая – не 0).
  3. В одномерном массиве, состоящем из n вещественных элементов, вычислить:

а) максимальный элемент массива;

b) сумму элементов массива, расположенных до последнего положительного элемента.

  1. Сжать одномерный массив, состоящий из n вещественных элементов,

удалив из него все элементы, модуль которых находится в интервале [a; b]. Освободившиеся в конце массива элементы заполнить нулями.




Дата добавления: 2015-11-04; просмотров: 124 | Нарушение авторских прав



mybiblioteka.su — 2015-2021 год. (0.043 сек.)

Аналитическая геометрия в пространстве (Лекция №19)

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Рассмотрим две плоскости α1 и α2, заданные соответственно уравнениями:

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами и плоскостей α1 и α2 равен одному из указанных смежных двугранных углов или . Поэтому . Т.к. и , то

.

Пример. Определить угол между плоскостями x+2y-3z+4=0 и 2x+3y+z+8=0.

Условие параллельности двух плоскостей.

Две плоскости α1 и α2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит .

Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:

или

Условие перпендикулярности плоскостей.

Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .

Таким образом, .

Примеры.

  1. Составить уравнение плоскости, проходящей через точку

    M(-2; 1; 4) параллельно плоскости 3x+2y-7z+8=0.

    Уравнение плоскости будем искать в виде Ax+By+Cz+D=0. Из условия параллельности плоскостей следует, что: . Поэтому можно положить A=3, B=2, C=-7. Поэтому уравнение плоскости принимает вид3x+2y-7z+D=0.

    Кроме того, так какMÎ α, то-6+2-28+D=0, D=32.

    Итак, искомое уравнение 3x+2y-7z+32=0.

  2. Составить уравнение плоскости, проходящей через точки M1(1; 1; 1), M2(0; 1; –1) перпендикулярно плоскости x+y+z=0.

    Так как M1Î α, то используя уравнение плоскости, проходящей через заданную точку, будем иметь A(x-1)+B(y-1)+C(z-1)=0.

    Далее, так как M2Î α, то подставив координаты точки в выписанное уравнение, получим равенство -A-2C=0 или A+2C=0.

    Учтем, что заданная плоскость перпендикулярна искомой. Поэтому A+B+C=0.

    Выразим коэффициенты Aи Bчерез C: A=-2C, B=C и подставим их в исходное уравнение: -2C(x-1)+C(y-1)+C(z-1)=0.

    Окончательно получаем -2x+y+z=0.

  3. Составить уравнение плоскости, проходящей через точку M(-2; 3; 6) перпендикулярно плоскостям 2x+3y-2z-4=0 и 3x+5y+z=0.

    Так как MÎ α, то A(x+2)+B(x-3)+C(z-6)=0.

    По условию задачи , поэтому

    Итак уравнение плоскости принимает вид 13(x+2)-8(y-3)+z-6=0 или 13x-8y+z+44=0.

ПРЯМАЯ В ПРОСТРАНСТВЕ.

ВЕКТОРНОЕ УРАВНЕНИЕ ПРЯМОЙ.

ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М1(x1, y1, z1), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы и коллинеарны, поэтому найдётся такое число t, что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М, лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что , и отсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x, y и z и точка М перемещается по прямой.

КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Пусть М1(x1, y1, z1) – точка, лежащая на прямой l, и – её направляющий вектор. Вновь возьмём на прямой произвольную точку М(x,y,z) и рассмотрим вектор .

Ясно, что векторы и коллинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,

канонические уравнения прямой.

Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметр t. Действительно, из параметрических уравнений получаем или .

Пример. Записать уравнение прямой в параметрическом виде.

Обозначим , отсюда x = 2 + 3t, y = –1 + 2t, z = 1 –t.

Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox. Тогда направляющий вектор прямой перпендикулярен Ox, следовательно, m=0. Следовательно, параметрические уравнения прямой примут вид

Исключая из уравнений параметр t, получим уравнения прямой в виде

Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде. Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, каноническим уравнениям соответствует прямая перпендикулярная осям Ox и Oy или параллельная оси Oz.

Примеры.

  1. Составить канонические и параметрические уравнения прямой, проходящей через точку М1(1;0;-2) параллельно вектору .

    Канонические уравнения: .

    Параметрические уравнения:

  2. Составить уравнения прямой, проходящей через две точки М1(-2;1;3), М2(-1;3;0).

    Составим канонические уравнения прямой. Для этого найдем направляющий вектор . Тогда l: .

ОБЩИЕ УРАВНЕНИЯ ПРЯМОЙ, КАК ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПЛОСКОСТЕЙ

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Вообще любые две не параллельные плоскости, заданные общими уравнениями

определяют прямую их пересечения. Эти уравнения называются общими уравнениями прямой.

Примеры.

Построить прямую, заданную уравнениями

Для построения прямой достаточно найти любые две ее точки. Проще всего выбрать точки пересечения прямой с координатными плоскостями. Например, точку пересечения с плоскостью xOy получим из уравнений прямой, полагая z= 0:

Решив эту систему, найдем точку M1(1;2;0).

Аналогично, полагая y= 0, получим точку пересечения прямой с плоскостью xOz:

От общих уравнений прямой можно перейтик её каноническим или параметрическим уравнениям. Для этого нужно найти какую-либо точку М1 на прямой и направляющий вектор прямой.

Координаты точки М1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и . Поэтому за направляющий вектор прямой l можно взять векторное произведение нормальных векторов:

.

Пример. Привести общие уравнения прямой к каноническому виду.

Найдём точку, лежащую на прямой. Для этого выберем произвольно одну из координат, например, y= 0 и решим систему уравнений:

Нормальные векторы плоскостей, определяющих прямую имеют координаты Поэтому направляющий вектор прямой будет

. Следовательно, l: .

УГОЛ МЕЖДУ ПРЯМЫМИ

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим

.

Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторов и :

Две прямые параллельны тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, т.е. l1 параллельна l2 тогда и только тогда, когда параллелен .

Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих коэффициентов равна нулю: .

Примеры.

  1. Найти угол между прямыми и .

  2. Найти уравнения прямой проходящей через точку М1(1;2;3) параллельно прямой l1:

    Поскольку искомая прямая l параллельна l1, то в качестве направляющего вектора искомой прямой l можно взять направляющий вектор прямой l1.

  3. Составить уравнения прямой, проходящей через точку М1(-4;0;2) и перпендикулярной прямым: и .

    Направляющий вектор прямой l можно найти как векторное произведение векторов и :

УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ

Углом между прямой и плоскостью будем называть угол, образованный прямой и её проекцией наплоскость. Пусть прямаяи плоскость заданы уравнениями

Рассмотрим векторы и . Если угол между ними острый, то он будет , где φ – угол между прямой и плоскостью. Тогда .

Если угол между векторами и тупой, то он равен . Следовательно . Поэтому в любом случае . Вспомнив формулу вычисления косинуса угла между векторами, получим .

Условие перпендикулярности прямой и плоскости. Прямая и плоскость перпендикулярны тогда и только тогда, когда направляющий вектор прямой и нормальный вектор плоскости коллинеарны, т.е. .

Условие параллельности прямой и плоскости. Прямая и плоскость параллельны тогда и только тогда, когда векторы и перпендикулярны.

Примеры.

  1. Написать уравнение плоскости, проходящей через точку М1(2;-3;4) параллельно прямым и .

    Так как M1Î α, то уравнение плоскости будем искать в виде

    .

    Применяя условие параллельности прямой и плоскости, получим систему линейных уравнений

    Отсюда

    Итак, или .

  2. Найти угол между прямой и плоскостью .

    Направляющий вектор прямой . Нормальный вектор плоскости . Следовательно,

  3. Найдите точку, симметричную данной М(0;-3;-2) относительно прямой .

    Составим уравнение плоскости α перпендикулярной l. MÎ α, . Следовательно, или .

    Найдём точку пересечения прямой l и α:

    Итак, N(0.5;-0.5;0.5). Пусть искомая точка М1 имеет координаты М1(x,y,z). Тогда очевидно равенство векторов , т.е. (0,5;2,5;2,5)=(х-0.5;у+0.5;z-0.5). Откуда x=1, y=2, z=3 или М1(1;2;3)..

ПРОЕКЦИИ ТОЧКИ. КОМПЛЕКСНЫЙ ЧЕРТЕЖ.

ПРОЕКЦИИ ТОЧКИ. КОМПЛЕКСНЫЙ ЧЕРТЕЖ.

ПРОЕКЦИИ ТОЧКИ. КОМПЛЕКСНЫЙ ЧЕРТЕЖ.

Чтобы построить изображение предмета, сначала изображают отдельные его элементы в виде простейших элементов пространства. Так, изображая геометрическое тело, следует построить его вершины, представленные точками; ребра, представленные прямыми и кривыми линиями; грани, представленные плоскостями и т.д

Правила построения изображений на чертежах в инженерной графике основываются на методе проекций. Одно изображение (проекция) геометрического тела не позволяет судить о его геометрической форме или форме простейших геометрических образов, составляющих это изображение. Таким образом, нельзя судить о положении точки в пространстве по одной ее проекции; положение ее в пространстве определяется двумя проекциями.

Рассмотрим пример построения проекции точки А, расположенной в пространстве двугранного угла (рис. 60). Одну из плоскостей проекции расположим горизонтально, назовем ее горизонтальной плоскостью проекций и обозначим буквой П1. Проекции элементов

пространства на ней будем обозначать с индексом 1 : А1, а1, S1 … и называть горизонтальными проекциями (точки, прямой, плоскости).

Вторую плоскость расположим вертикально перед наблюдателем, перпендикулярно первой, назовем ее вертикальной плоскостью проекций и обозначим П2. Проекции элементов пространства на ней будем обозначать с индексом 2: А2, <a2, S2 и называть фронтальными проекциями (точки, прямой, плоскости).П2=A2;

Проецирующие лучи АА1 и АА2 взаимно перпендикулярны и создают в пространстве проецирующую плоскость АА1АА2, перпендикулярную обеим сторонам проекций. Эта плоскость пересекает плоскости проекций по линиям, проходящим через проекции точки А.

Чтобы получить плоский чертеж, совместим горизонтальную плоскость проекций П1 с фронтальной плоскостью П2 вращением вокруг оси П21 (рис. 61, а). Тогда обе проекции точки окажутся на одной линии, перпендикулярной оси П21. Прямая А1А2, соединяющая горизонтальную А1 и фронтальную А2 проекции точки, называется вертикальной линией связи.

Полученный плоский чертеж называется комплексным чертежом. Он представляет собой изображение предмета на нескольких совмещенных плоскостях. Комплексный чертеж, состоящий из двух ортогональных проекций, связанных между собой, называется двухпроекционным. На этом чертеже горизонтальная и фронтальная проекции точки всегда лежат на одной вертикальной линии связи.

Две связанные между собой ортогональные проекции точки однозначно определяют ее положение относительно плоскостей проекций. Если определить положение точки а относительно этих плоскостей (рис. 61, б) ее высотой h (АА1 =h) и глубиной f(AA2 =f), то эти величины на комплексном чертеже существуют как отрезки вертикальной линии связи. Это обстоятельство позволяет легко реконструировать чертеж, т. е. определить по чертежу положение точки относительно плоскостей проекций. Для этого достаточно в точке А2 чертежа восстановить перпендикуляр к плоскости чертежа (считая ее фронтальной) длиной, равной глубине f. Конец этого перпендикуляра определит положение точки А относительно плоскости чертежа.

Для определения положения геометрического тела в пространстве и получения дополнительных сведений на их изображениях может возникнуть необходимость в построении третьей проекции. Тогда третью плоскость проекций располагают справа от наблюдателя перпендикулярно одновременно горизонтальной плоскости проекций П1 и фронтальной плоскости проекций П2 (рис. 62, а). В результате пересечения фронтальной П2 и профильной П3 плоскостей проекций получаем новую ось П23, которая располагается на комплексном чертеже параллельно вертикальной линии связи A1A2 (рис. 62, б). Третья проекция точки А — профильная — оказывается связанной с фронтальной проекцией А2 новой линией связи, которую называют горизонталь-

ной. Фронтальная и профильная проекции точки всегда лежат на одной горизонтальной линии связи. Причем A1A2 _|_ А2А1 и А2А3, _|_ П23.

Положение точки в пространстве в этом случае характеризуется ее широтой — расстоянием от нее до профильной плоскости проекций П3, которое обозначим буквой р.

Полученный комплексный чертеж точки называется трехпроек-ционным.

В трехпроекционном чертеже глубина точки АА2 проецируется без искажений на плоскости П1и П2 (рис. 62, а). Это обстоятельство позволяет построить третью — фронтальную проекцию точки А по ее горизонтальной А1 и фронтальной А2 проекциям (рис. 62, в). Для этого через фронтальную проекцию точки нужно провести горизонтальную линию связи A2A3 _|_A2A1. Затем в любом месте на чертеже провести ось проекций П23 _|_ А2А3, измерить глубину f точки на горизонтальном поле проекции и отложить ее по горизонтальной линии связи от оси проекций П23. Получим профильную проекцию А3 точки А.

Таким образом, на комплексном чертеже, состоящем из трех ортогональных проекций точки, две проекции находятся на одной линии связи; линии связи перпендикулярны соответствующим осям проекций; две проекции точки вполне определяют положение ее третьей проекции.

Необходимо отметить, что на комплексных чертежах, как правило, не ограничивают плоскости проекций и положение их задают осями (рис. 62, в). В тех случаях, когда условиями задачи этого не требу-

ется, проекции точек могут быть даны без изображения осей (рис. 63, а, б). Такая система называется безосновой. Линии связи могут также проводиться с разрывом (рис. 63, б).

Расположение проекций точек на комплексном чертеже зависит от положения точки в пространстве трехмерного угла. Рассмотрим некоторые случаи:

Две точки в пространстве могут быть расположены по-разному. В отдельном случае они могут быть расположены так, что проекции их на какой-нибудь плоскости проекций совпадают. Такие точки называются конкурирующими. На рис. 64, а приведен комплексный чертеж точек А и В. Они расположены так, что проекции их совпадают на плоскости П11 == В1]. Такие точки называются горизонтально конкурирующими. Если проекции точек A и В совпадают на плоскости

П2 (рис. 64, б), они называются фронтально конкурирующими. И если проекции точек А и В совпадают на плоскости П33 == B3] (рис. 64, в), они называются профильно конкурирующими.

По конкурирующим точкам определяют видимость на чертеже. У горизонтально конкурирующих точек будет видима та, у которой больше высота, у фронтально конкурирующих — та, у которой больше глубина, и у профильно конкурирующих — та, у которой больше широта.

Свойства трехпроекционного чертежа точки позволяют по горизонтальной и фронтальной ее проекциям строить третью на другие плоскости проекций, введенные взамен заданных.

На рис. 65, а показаны точка А и ее проекции — горизонтальная А1 и фронтальная А2. По условиям задачи необходимо произвести замену плоскостей П2. Новую плоскость проекции обозначим П4 и расположим перпендикулярно П1. На пересечении плоскостей П1 и П4 получим новую ось П14. Новая проекция точки А4 будет расположена на линии связи, проходящей через точку А1 и перпендикулярно оси П14.

Поскольку новая плоскость П4 заменяет фронтальную плоскость проекции П2, высота точки А изображается одинаково в натуральную величину и на плоскости П2, и на плоскости П4.

Это обстоятельство позволяет определить положение проекции A4, в системе плоскостей П1 _|_ П4 (рис. 65, б) на комплексном чертеже. Для этого достаточно измерить высоту точки на заменяемой плоско-

сти проекции П2, отложить ее на новой линии связи от новой оси проекций — и новая проекция точки А4 будет построена.

Если новую плоскость проекций ввести взамен горизонтальной плоскости проекций, т. е. П4 _|_ П2 (рис. 66, а), тогда в новой системе плоскостей новая проекция точки будет находиться на одной линии связи с фронтальной проекцией, причем А2А4 _|_. В этом случае глубина точки одинакова и на плоскости П1, и на плоскости П4. На этом основании строят А4 (рис. 66, б) на линии связи А2А4 на таком расстоянии от новой оси П14 на каком А1 находится от оси П21.

Как уже отмечалось, построение новых дополнительных проекций всегда связано с конкретными задачами. В дальнейшем будет рассмотрен ряд метрических и позиционных задач, решаемых с применением метода замены плоскостей проекций. В задачах, где введение одной дополнительной плоскости не даст желаемого результата, вводят еще одну дополнительную плоскость, которую обозначают П5. Ее располагают перпендикулярно уже введенной плоскости П4 (рис. 67, а), т. е. П5П4 и производят построение, аналогичное ранее рассмотренным. Теперь расстояния измеряют на заменяемой второй из основных плоскостей проекций (на рис. 67, б на плоскости П1) и откладывают их на новой линии связи А4А5, от новой оси проекций П54. В новой системе плоскостей П4П5 получают новый двухпроекционный чертеж, состоящий из ортогональных проекций А4 и А5, связанных линией связи

Три основные плоскости проекций 1_|_П2 _|_ П3) могут рассматриваться и как координатные плоскости. Тогда оси проекций становятся координатными осями: осью абсцисс х, П13 —осью координат у,П23 —осью аппликат z.

Начало координат (точка О) располагается в точке пересечения осей координат (рис. 68, а).

Чтобы отнести точку А к натуральной системе координат Oxyz, надо построить ортогональную проекцию точки А на плоскости хОу. Затем проекцию А1 ортогонально проецировать на ось х в точку Ах. Тогда получим пространственную координатную ломаную АА1АХО, отрезки которой параллельны осям координат и соответственно называются: ОАХ — отрезком абсциссы; АХ А1 — отрезком ординат; А1А — отрезком аппликаты.

Измерив координатные отрезки единицей длины l, получим три отвлеченных числа — три координаты точки А:

х = OAX абсцисса; у = AxA1— ордината; z = AA1 — аппликата.

Если точка задана своими координатами А (х, у, z), то можно построить ее комплексный чертеж, задав соответствующую единицу длины l (например, l = 1 мм). Абсцисса точки определяет положение

вертикальной линии связи (рис. 68, б). Горизонтальная проекция точки определяется величиной ординаты, а фронтальная — величиной аппликаты.

Контакты для заказа чертежей

Справочная по строит. черч.

Телефон

89042493591

кроме выходных

задать вопрос, узнать о возможности, сроках и цене изготовления чертежей можно по аське:

587-149-933

Новости:

Открылся наш сайт

Здесь вы можете заказать красивые цветы из ткани на платье и заколки.

Геометрия

— вычисление произвольных точек из уравнения плоскости

геометрия — вычисление произвольных точек из уравнения плоскости — Mathematics Stack Exchange
Сеть обмена стеков

Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Подписаться

Mathematics Stack Exchange — это сайт вопросов и ответов для людей, изучающих математику на любом уровне, и профессионалов в смежных областях.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 9к раз

$ \ begingroup $

Я понимаю, как можно вычислить плоское уравнение (ax + by + cz = d) из трех точек, но как сделать наоборот?

Как можно вычислить произвольные точки из уравнения плоскости?

Создан 23 апр. 2}} $$

  • Направления вдоль плоскости (не единичные векторы) и перпендикулярно к $ \ hat {n} $.2 \ end {pmatrix} \ end {align} $$

  • Вы можете проверить, что $ \ hat {e} _1 \ cdot \ hat {n} = 0 $, $ \ hat {e} _2 \ cdot \ hat {n} = 0 $ и $ \ hat {e} _1 \ cdot \ hat {e} _2 = 0 $, где $ \ cdot $ — точечное (внутреннее) произведение.

    Подтверждение через GeoGebra

    ПРИМЕЧАНИЯ. Измените уравнение, чтобы было ясно, что вы ищете свойства плоскости, когда задана плоскость в форме уравнения.

    Author: alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *