Формула скорости через период: Период, радиус и скорость

Содержание

Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Физика для самых маленьких. Шпаргалки. Школа.  / / Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости

Поделиться:   

Движение по окружности. Уравнение движения по окружности. Угловая скорость.


Нормальное = центростремительное ускорение. Период, частота обращения (вращения).
Связь линейной и угловой скорости.
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.
Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www. dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator

Физика. Период и частота | Частная школа. 9 класс

Конспект по физике для 9 класса «Период и частота». Что такое период обращения. Что такое частота обращения. Как вычислить скорость и ускорение тела, движущегося по окружности, если известны его период и частота обращения.

Конспекты по физике    Учебник физики    Тесты по физике


Период и частота

Измерить скорость тела, движущегося по окружности, не всегда просто. Однако её можно вычислить, используя такие понятия, как период и частота обращения.

ПЕРИОД

Когда тело движется по окружности с постоянной по модулю скоростью, через определённые промежутки времени движение повторяется снова и снова. Примером этому может служить движение на обычной детской карусели.

Время, в течение которого тело совершает один полный оборот, называют периодом обращения

. Период обращения принято обозначать буквой Т. Единица этой физической величины в СИ — секунда.

С понятием периода обращения вы уже знакомились при изучении географии. Например, период обращения Земли вокруг своей оси составляет 23 ч 56 мин 4 с, а период обращения Земли вокруг Солнца — 1,00004 земных года. Самый короткий период обращения вокруг Солнца в нашей Солнечной системе имеет планета Меркурий. Её период обращения составляет 0,24085 земных лет. Интересно, что самая большая планета Солнечной системы — Юпитер — имеет самый короткий период обращения вокруг своей оси — всего 9 ч 50 мин. В 226 000 000 лет оценивается период обращения Солнечной системы вокруг ядра Галактики.

ЧАСТОТА

Число оборотов в единицу времени, которое совершает тело при движении по окружности, называют частотой обращения. Частоту обращения обозначают греческой буквой

ν.

Если, катаясь на карусели в парке, мы совершаем один оборот за 20 с, то период обращения в этом случае Т = 20 с.  Как определить частоту обращения при этом движении? Сколько оборотов совершает карусель за 1 с?

Очевидно, ν = 1/Т = 1/20 1, т. е. за 1 с карусель совершает одну двадцатую часть своего полного оборота.

Таким образом, частота обращения является величиной, обратной периоду обращения:

Именно поэтому единица этой физической величины обратна секунде, т. е. 1/с, или с-1.

СВЯЗЬ МОДУЛЯ СКОРОСТИ С ПЕРИОДОМ И ЧАСТОТОЙ ОБРАЩЕНИЯ

Чтобы определить модуль скорости тела, движущегося по окружности, достаточно знать радиус окружности R и период или частоту обращения. Действительно, один полный оборот тело совершает за время, равное периоду обращения Т. Путь, пройденный телом, в этом случае равен длине окружности:

l = 2πR. Тогда можно записать:

или с учётом формулы (1):

С учётом формул (2) и (3) можно найти центростремительное ускорение тела, выразив скорость через период или частоту обращения:

Часто мгновенную скорость движения по окружности называют линейной скоростью.

Модуль скорости движения тела по окружности рассчитывается по формуле:

Умение описывать движение тела по окружности чрезвычайно важно, так как движение по криволинейной траектории можно приближённо представить как движение по дугам окружностей различных радиусов.

РЕШЕНИЕ ЗАДАЧ

Задача 1. Найдём модуль скорости вращения ребёнка на карусели, если радиус окружности, по которой происходит движение, равен 2,3 м, а время, за которое карусель совершает один полный оборот, равно 20 с.

Ответ: υ = 0,722 м/с.

 

Задача 2.  Земля делает один оборот вокруг Солнца за 365 дней. Расстояние от Солнца до Земли составляет 149,6 • 106 км. Определим линейную скорость движения Земли вокруг Солнца, считая орбиту окружностью.

Ответ: υ ≈ 30 км/с.

 


Вы смотрели Конспект по физике для 9 класса «Период и частота».

Вернуться к Списку конспектов по физике (Оглавление).

Центрифугирование: как определить ускорение (число g) в зависимости от скорости вращения и диаметра ротора

Центрифугирование – способ разделения неоднородных, дисперсных жидких систем на фракции по плотности под действием центробежных сил. Центрифугирование осуществляют в центрифугах, принцип работы которых основан на создании центробежной силы, увеличивающей скорость разделения компонентов смеси по сравнению со скоростью их разделения только под влиянием силы тяжести. Разделение веществ с помощью центрифугирования основано на разном поведении частиц в центробежном поле. В центробежном поле частицы, имеющие разную плотность, форму или размеры, осаждаются с разной скоростью.

Скорость осаждения, или седиментации, зависит от центробежного ускорения (g), прямо пропорционального угловой скорости ротора (w, рад/с) и расстоянию между частицей и осью вращения (r, см): g = v2x r. Поскольку один оборот ротора составляет радиан, то угловую скорость можно записать так:

v = p x n/60, где n – скорость в оборотах в минуту, π — константа, выражающая отношение длины окружности к длине её диаметра. Угловая скорость – характеристика скорости вращения тела, измеряется обычно в радианах в секунду, полный оборот (360°) составляет радиан.

Центробежное ускорение тогда будет равно: g =p2x r x n2/900.

Центробежное ускорение обычно выражается в единицах g (ускорение свободного падения, равное 980 м/с2) и называется относительным центробежным ускорением (ОЦУ), т.е. ОЦУ=g/980 или ОЦУ = 1,11 x 10

-5 x r x n2 .

Относительное ускорение центрифуги (rcf) задается, как кратное от ускорения свободного падения (g). Оно является безразмерной величиной и служит для сравнения производительности разделения и осаждения. Относительное ускорение центрифуги (rcf) зависит от частоты вращения и радиуса центрифугирования.

Существует номограмма, выражающая зависимость относительного ускорения центрифуги (rcf) от скорости вращения ротора (n) и радиуса (r) – среднего радиуса вращения столбика жидкости в центрифужной пробирке (т.е. расстояния от оси вращения до середины столбика жидкости). Радиус измеряется (см) от оси вращения ротора до середины столбика жидкости в пробирке, когда держатель находится в положении центрифугирования.

Номограмма для определения относительного ускорения центрифуги (rcf) в зависимости от скорости вращения и диаметра ротора

r – радиус ротора, см

n – скорость вращения ротора, оборотов в минуту

rcf (relative centrifuge force) – относительное ускорение центрифуги

Радиус центрифугирования rmax– это расстояние от оси вращения ротора до дна гнезда ротора.

Для определения ускорения с помощью линейки совмещаем значения радиуса и числа оборотов на и на шкале rcf определяем его величину.

Пример: на шкале А отмечаем значение rрадиуса для ротора – 7,2 см, на шкале С отмечаем значение скорости ротора –14,000 об/мин, соединяем эти две точки. Точка пересечения образованного отрезка со шкалой В показывает значение ускорения для данного ротора. В данном случае ускорение равно 15’000.

Формулы кинематики с пояснениями по физике / Блог / Справочник :: Бингоскул

Кинематика — раздел физики, занимающийся исследованием законов движения идеальных тел.

Основные формулы с пояснениями, которые помогут в решении заданий ЕГЭ по физике: движение, скорость, ускорение.

 

Путь, время, скорость

S=v *t

  • S — путь
  • v — скорость
  • t — время


Равномерное движение

x=x_0 + v*t

  • x — координата
  • x0 — начальная координата
  • v — скорость
  • t — время
Равномерно ускоренное движение:
ускорение

a=\frac { v — v_0 } { t }

  • a — ускорение
  • v — скорость
  • v0 — начальная скорость
  • t — время
Равномерно ускоренное движение:
скорость

v=v_0 + at

  • v — скорость
  • v0 — начальная скорость
  • a — ускорение
  • t — время
Равномерно ускоренное движение:
путь

S=vt + \frac { at^2 } { 2 }

  • s — путь
  • v — скорость
  • t — время
  • a — ускорение
Равномерно ускоренное движение:
координата

x=x_0 + vt + \frac { at^2 } { 2 }

  • x — координата
  • x0 — начальная координата
  • v — скорость
  • t — время
  • a — ускорение


Высота тела, брошенного вертикально вверх (вниз)

h=h_0 + v_ { 0 } t — \frac { gt^2 } { 2 }

  • h — высота
  • h0 — начальная высота
  • v0 — начальная скорость
  • t — время
  • g — ускорение свободного падения


Скорость тела, брошенного вертикально вверх (вниз)

v=v_0 — gt

  • v — скорость
  • v0 — начальная скорость
  • g — ускорение свободного падения
  • t — время


Скорость, ускорение, время

v=at

  • v — скорость
  • a — ускорение
  • t — время


Скорость свободно падающего тела

v=gt

  • v — скорость
  • g — ускорение свободного падения
  • t — время


Центростремительное ускорение

a=\frac { v^2 } { R }

  • a — центростремительное ускорение
  • v — скорость
  • R — радиус


Угловая скорость

\omega=\frac { \phi } { t }

  • ω — угловая скорость
  • φ — угол
  • t — время


Равномерное круговое движение

l=R\phi

  • l — длина дуги окружности
  • R — радиус
  • φ — угол
Равномерное круговое движение: линейная скорость

v=R \omega

  • v — линейная скорость
  • R — радиус
  • ω — угловая скорость

 

Период вращения

T=\frac { t } { N }

  • T — период
  • t — время
  • N — число вращений


T=\frac { 2 \pi R } { v }

  • T — период
  • R — радиус
  • v — линейная скорость

T=\frac { 2 \pi } { \omega }

  • T — период
  • ω — угловая скорость


Центростремительное ускорение

a=\frac { 4 \pi^ { 2 } R } { T^2 }

  • a — центростремительное ускорение
  • R — радиус
  • T — период вращения

a=4 \pi^ { 2 } Rn^2

  • a — центростремительное ускорение
  • R — радиус
  • n — частота вращения


Частота вращения

n=\frac { 1 } { T }

  • n — частота вращения
  • T — период вращения


Центростремительное ускорение

a=\omega ^ { 2 } R

  • a — центростремительное ускорение
  • ω — угловая скорость
  • R — радиус


Дальность броска тела, брошенного под углом к горизонту

x=v_0t \cos(\alpha)

  • x — координата (дальность)
  • v0 — начальная скорость
  • t — время
  • α — угол

Высота подъема тела, брошенного под углом к горизонту

y=v_0t \sin (\alpha) — \frac { gt^2 } { 2 }

  • y — координата (высота подъема )
  • v0 — начальная скорость
  • t — время
  • g — ускорение свободного падения
  • α — угол


Вертикальная скорость тела, брошенного под углом к горизонту

v_y=v_0* \sin (\alpha) — gt

  • vy — вертикальная скорость
  • v0 — начальная скорость
  • α — угол
  • g — ускорение свободного падения
  • t — время


Максимальная высота подъема тела, брошенного под углом к горизонту

h_max =\frac { v_0^2* \sin (\alpha)^ { 2 } } { 2g }

  • hмакс — максимальная высота
  • v0 — начальная скорость
  • α — угол
  • g — ускорение свободного падения


Общее время движения тела, брошенного под углом к горизонту

t=\frac { 2v_0 * \sin (\alpha) } { g }

  • t — время
  • v0 — начальная скорость
  • α — угол
  • g — ускорение свободного падения


Дальность броска тела, брошенного горизонтально

x=x_0 + vt

  • x — координата (дальность)
  • x0 — начальная координата
  • v — скорость
  • t — время


Высота подъема тела, брошенного горизонтально

y=y_0 — \frac { gt^2 } { 2 }

  • y — координата (высота подъема)
  • y0 — начальная координата (высота)
  • g — ускорение свободного падения
  • t — время


Общее время движения тела, брошенного горизонтально

t_max=\sqrt { \frac { 2h } { g } }

  • tмакс — максимальное время
  • h — высота
  • g — ускорение свободного падения

Смотри также:

Основные определения и формулы