Решение заданий огэ по математике – ОГЭ по математике — решение и подробный разбор задач

Содержание

Разбор и решение задания №21 ОГЭ по математике

x2 +7x+12.

Составим квадратное уравнение для вычисления оставшихся двух корней:

x2 +7x+12=0

6. Решим его с помощью формул корней и дискриминанта

7. Получили три корня 3; -3; -4.

Ответ: 3;-3;-4.


Третий вариант задания

Решите уравнение

Алгоритм решения:
  1. Определить тип уравнения.
  2. Найти делители свободного члена уравнения.
  3. Определить среди делителей один из корней.
  4. Выполнить деление кубического многочлена на выражение х-а, где а – найденный корень.
  5. Записать получившийся в результате деления квадратный трехчлен и составим уравнение.
  6. Решить уравнение.
  7. Записать ответ.

1. Перед нами кубическое уравнение общего вида.

2. Найдем делители свободного члена уравнения. Это числа: 1; -1 и 2; -2.

3. Определим один из корней кубического уравнения среди делителей свободного члена .Для этого подставим каждый из этих делителей вместо x и проверим, какой их них является корнем:

- для x=1:  - подходит это и есть один из корней.

4. Теперь выполним деление кубического многочлена на x-1, воспользовавшись схемой Горнера, имеем:

Искать квадратный трехчлен можно другим способом, выполнив деление многочлена столбиком:

5. Получаем квадратный трехчлен

x2 +3x+2.

6. Составим и решим квадратное уравнение для вычисления оставшихся двух корней. Для этого воспользуемся формулами корней квадратного уравнения и дискриминантом.

7. Получили три корня -2; -1; 1.

Ответ: -2; -1; 1.


Демонстрационный вариант 2017 (сокращение дроби)

Сократите дробь

Решение:

Разложим 18 в числителе на множители 9 и 2:

Далее представим 9 как 3² и раскроем скобки в числителе:

При делении степени вычитаются, поэтому запишем:

Выполнив вычисления, получим:

Ответ: 96

spadilo.ru

Разбор и решение задания №26 ОГЭ по математике


Комплексная геометрическая задача


Разбор типовых вариантов заданий №26 ОГЭ по математике


Первый вариант задания

Биссектриса СМ треугольника ABC делит сторону АВ на отрезки AM = 5 и MB =10. Касательная к описанной окружности треугольника ABC, проходящая через точку С, пересекает прямую АВ в точке D. Найдите CD.

Алгоритм решения:
  1. Делаем чертеж.
  2. Определяем равенство угла между касательной и хордой и угла АВС.
  3. Определяем соотношение отрезков из свойства биссектрисы угла треугольника и найдем АВ.
  4. Показываем, что треугольники DAC и DCB подобны.
  5. Составляем соотношения сторон подобных треугольников.
  6. Составляем систему равенств.
  7. Решаем систему.
  8. Записываем ответ.
Решение:

1. Выполняем чертеж данной задачи:

2. Рассматриваем АСD. В нем:

Согласно свойству углов окружности, касательной и секущей, угол, который образован этими линиями, равен половине градусной меры дуги, заключенной между сторонами этого угла. ∠DСА равен половине градусной меры дуги АС, заключенной между его сторонами СD и СА.
Но вписанный ∠СВА опирается на ту же дугу АС и по свойству вписанного угла равен половине меры этой дуги. Следовательно, ∠ СВА=∠ АСD.
3. Согласно свойству биссектрисы угла треугольника, она делит

АВ на отрезки АМ и МВ, пропорциональные сторонам АС и ВС. Таким образом,

4. Рассмотрим DAC и DCB. У них:

∠ DCA = ∠ DBC по доказанному выше,

∠ D – общий.

Следовательно, DAC DCB по двум углам.

5. Из определения и свойств подобных треугольников имеем:

6. Составим систему равенств:

7. Решим систему:

Ответ: 10.


Второй вариант задания

Биссектриса СМ треугольника ABC делит сторону АВ на отрезки AM = 9 и MB = 12. Касательная к описанной окружности треугольника ABC, проходящая через точку С, пересекает прямую АВ в точке D. Найдите CD.

Алгоритм решения:
  1. Сделаем чертеж.
  2. Определим равенство углов CDB и АВС.
  3. Определим соотношение отрезков, воспользовавшись свойством биссектрисы угла треугольника, и определим длину АВ.
  4. Покажем, что треугольники DAC и DCB подобны.
  5. Составим соотношения сторон подобных треугольников.
  6. Составим систему равенств.
  7. Решим систему.
  8. Запишем ответ.
Решение:

1. Делаем чертеж.

2. Рассмотрим АСD. В нем, согласно свойству углов окружности, касательной и секущей,
угол, который образован этими линиями, равен половине градусной меры дуги, заключенной между сторонами этого угла.
⇒∠DСА равен половине градусной меры дуги АС, заключенной между его сторонами СD и СА.
Но вписанный ∠СВА опирается на ту же дугу АС и по свойству вписанного угла равен половине меры этой дуги. Следовательно, ∠ СВА=∠ АСD.
3. Согласно свойству биссектрисы угла треугольника, согласно которому она делит АВ на отрезки АМ и МВ, пропорциональные сторонам АС и ВС. Таким образом,

4. Рассмотрим DAC и DCB. У них:

∠ DCA = ∠ DBC по доказанному выше,

∠ D – общий.

Значит, DAC DCB по двум углам.

5. Из определения и свойств подобных треугольников имеем:

6. Составим систему равенств:

7. Решим систему:

Отсюда

Так как AD = DB-21, имеем:

Таким образом, искомая длина CD=36.

Ответ: 36.


Четвертый вариант задания

Точки М и N лежат на стороне АС треугольника ABC на расстояниях соответственно 9 и 11 от вершины А. Найдите радиус окружности, проходящей через точки М и N и касающейся луча АВ, если cos ∠BAC = √11 / 6

Алгоритм решения:
  1. Сделаем чертеж.
  2. Установим подобие треугольников AFM и ANF.
  3. Определим сторону FM.
  4. Определим ∠FNA.
  5. Найдем .
  6. Составим теорему синусов и найдем радиус окружности.
  7. Запишем ответ.
Решение:

1. Рассмотрим треугольники AFM и ANF. У них:

Угол A является общим, а

по доказанному выше.

Следовательно, треугольник AFM подобен треугольнику ANF по двум углам. Отсюда вытекает:

3. В треугольнике AFM сторона AF=3, сторона AM=9. Воспользуемся теоремой косинусов для определения FM:

Полученное значение означает, что AFM является равнобедренным. У него основание AF.

4. По свойству равнобедренного треугольника ∠FAM=∠AFM. Отсюда

5. Найдем

Значит,

6. Из FMN по теореме синусов:

где R – радиус описанной окружности.

Отсюда получим значение радиуса окружности:

Ответ: 5,4.


Пятый вариант задания

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания AC . Найдите радиус окружности, вписанной в треугольник ABC .

Решение:

Пусть O — центр данной окружности, а Q — центр окружности, вписанной в треугольник ABC .

Точка касания M окружностей делит AC пополам по условию.

Лучи AQ и AO — биссектрисы смежных углов, так как касательные к окружностям равноудалены от центра. Так как  AQ и AO — биссектрисы смежных углов, то угол OAQ прямой - смежные углы в сумме дают 180°, значит сумма их биссектрис:

180°/2 = 90°.

Далее рассмотрим прямоугольный треугольник OAQ. По свойству высоты в прямоугольном треугольнике, получаем:

AM² = MQ•MO

Отсюда:

QM = AM² / MO

QM = 6² / 8 = 4,5

Ответ: 4,5

spadilo.ru

Разбор и решение задания №23 ОГЭ по математике


Анализ графика функции


Разбор типовых вариантов заданий №23 ОГЭ по математике


Первый вариант задания

Постройте график функции

Определите, при каких значениях m прямая y = m имеет с графиком ровно две общие точки.

Алгоритм решения:
  1. Преобразуем формулу, которая задает функцию.
  2. Определяем вид и характерные точки функции на каждом промежутке.
  3. Изображаем график на координатной плоскости.
  4. Делаем вывод относительно количества точек пересечения.
  5. Записываем ответ.
Решение:

1. Преобразуем функцию в зависимости от знака переменной х.

Если .

Если

2. График функции заданных значениях х - часть параболы, ветви которой направлены вниз.

Вершина расположена в точке с координатами:

Найдем нули функции: График проходит через начало координат и точку (-2;-7).

Графиком второй функции является парабола, ветви которой направлены вверх.

Вершина ее находится в точке:

Определим нули параболы

3. Изображаем график функции на координатной плоскости:

4. Из построения легко видно, что прямая y = m имеет с графиком ровно две точки, когда проходит через вершину одной из парабол, образующих график данной функции.

Значит, две общие точки функция и прямая имеют при m = -2,25 или m = 12,25.

Ответ: -2,25; 12,25.


Второй вариант задания

Постройте график функции

Определите, при каких значениях m прямая y = m имеет с графиком ровно две общие точки.

Алгоритм решения:
  1. Преобразуем формулу, которая задает функцию.
  2. Определяем вид и характерные точки функции на каждом промежутке.
  3. Изображаем график на координатной плоскости.
  4. Делаем вывод относительно количества точек пересечения.
  5. Записываем ответ.
Решение:

1. Преобразуем формулу в зависимости от знака переменной х:

2. Графиком функции является парабола, ветви которой направлены вниз.

Вершина ее находится в точке :

Найдем нули функции: График проходит через начало координат и точку (0;4).

Графиком второй функции является парабола, ветви которой направлены вверх.

Вершина ее находится в точке:

Определим нули параболы

3. Изображаем график на координатной плоскости:

Из изображения видно, что прямая y= m имеет с графиком только две общих точки, когда m=-9 или m=4. На графике прямая изображена красной линией при каждом значении m.

Ответ: -9; 4.


Третий вариант задания

Постройте график функции

Определите, при каких значениях m прямая y = m имеет с графиком ровно две общие точки.

Алгоритм решения:
  1. Преобразуем формулу, которая задает функцию.
  2. Определяем вид и характерные точки функции на каждом промежутке.
  3. Изображаем график на координатной плоскости.
  4. Делаем вывод относительно количества точек пересечения.
  5. Записываем ответ.
Решение:

1. Преобразуем формулу функции в зависимости от знака переменной

2. Определяем вид функции и находим дополнительные точки для каждого участка графика.

График при - часть парабола, ветви которой направлены вниз. Потому как коэффициент а=-1 – отрицательный.

Определим вершину параболы  и .

Вершина находится в точке (-3; 9).

Парабола проходит еще через точки (0;0) и (0;6).

Если , ветви параболы направлены вверх. Найдем вершину:

,  (2; -4).

График проходит также через точки (0;0) и (0;4).

3. Строим искомый график:

Из построения видно, что прямая y=m имеет только 2 общие точки с графиком функции в случаях, когда m=-4 или m=9. На рисунке прямые изображены красным цветом.

Ответ: -4; 9.


Четвертый вариант задания
 

Постройте график функции

Определите, при каких значениях k прямая у = kx не имеет с графиком общих точек.

Алгоритм решения:
  1. Раскрываем модуль и преобразовываем формул функции.
  2. Определяем вид функции на каждом промежутке и находим дополнительные точки графика.
  3. Строим график.
  4. Определяем искомые значения k.
  5. Записываем ответ.
Решение:

1. Если x < 0, то

Дробь, получившаяся в результате, определена . График представляет собой часть гиперболы.

Точки для построения графика:

x

-5

-4

-3

-2

y

-1/5

-1/4

-1/3

-1/2

2. Если x > 0, то

Функция определена при График представляет собой часть гиперболы.

Точки для построения графика:

3. Построим график заданной функции:

4. Прямая y=kx не имеет общих точек с графиком, при k=-1; 0 и 1, потому как тогда прямая проходит через точки, не входящие в область определения заданной функции.

На графике прямые для k=-1; 1изображены красным.

При k = 0 прямая совпадает с осью абсцисс и тоже не имеет общих точек с графиком функции.

Ответ: -1; 0; 1.


Пятый вариант задания

Постройте график функции

Определите, при каких значениях k прямая y = kx не имеет с графиком общих точек.

Алгоритм решения:
  1. Раскрываем модуль и преобразовываем формул функции.
  2. Определяем вид функции на каждом промежутке и находим дополнительные точки графика.
  3. Строим график.
  4. Определяем искомые значения k.
  5. Записываем ответ.
Решение:

1. Раскрываем модуль и для каждого случая.

Если x < 0, то

определена при  и представляет собой часть гиперболы. Дополнительные точки для построения:

x

-5

-4

-3

-2

-1

y

-1/5

-1/4

-1/3

-1/2

-1

2. Если x > 0, то

определена при и представляет собой часть гиперболы.

Точки для построения графика:

x

1

2

3

4

5

y

-1

-1/2

-1/3

-1/4

-1/5

3. Изображаем график:

Прямая y=kx не имеет общих точек с графиком данной функции, когда k=-16; 0 и 16. Тогда прямые проходят черед точки с абсциссами ¼ и - ¼ . На рисунке эти прямые изображены красным.

При k = 0 прямая совпадает с осью абсцисс. Она тоже не имеет общих точек с графиком.

Ответ: -16; 0; 16.


Шестой вариант задания

Постройте график функции

и определите, при каких значениях с прямая y = c имеет с графиком ровно одну общую точку.

Разложим числитель дроби на множители:

При x ≠2 и x ≠ 3 функция принимает вид:

её график — парабола, из которой выколоты точки ( -2; -4) и ( 3; 6).

Прямая y = c имеет с графиком ровно одну общую точку либо тогда, когда проходит через вершину параболы, либо тогда, когда пересекает параболу в двух точках, одна из которых — выколотая.
Вершина параболы имеет координаты ( -0,5; -6,25 ).
Поэтому c = - 6,25, c = - 4 или c = 6.

Ответ: c = - 6,25, c = - 4 или c = 6.

spadilo.ru

Разбор и решение задания №16 ОГЭ по математике


Треугольники, четырёхугольники, многоугольники и их элементы


Перейдем к разбору модуля "Геометрия". В задании 16 проверяется умение выполнять действия с геометрическими фигурами, координатами и векторами. По спецификации ОГЭ здесь могут встретиться задания, связанные с необходимостью нахождения длин, углов и площадей.

Проверьте, что вы не ошибаетесь в определениях тригонометрических функций острого угла в прямоугольном треугольнике.

Кроме того, убедитесь, что все данные задачи отражены на вашем чертеже. При необходимости применяйте теорему Пифагора. Если сюжет задачи развивается в равнобедренном треугольнике, то учтите, что высота, опущенная из вершины такого треугольника, делит его на два равных прямоугольных треугольника и далее задача решается в прямоугольном треугольнике. Если события происходят в окружности, то, помимо всего прочего, надо учесть, что вписанный угол равен половине центрального угла, который опирается на ту же дугу. Пусть треугольник вписан в окружность. Если этот треугольник остроугольный, то центр окружности лежит внутри треугольника. Если этот треугольник тупоугольный, то центр окружности лежит вне треугольника. А если это прямоугольный треугольник, то центр окружности лежит на середине гипотенузы.

В 16 задании нам предстоит продемонстрировать свои знания в нахождении неизвестных элементов треугольника. Это могут быть углы, стороны, высоты, медианы или биссектрисы. Могут встретится задания на нахождение площади.


Теория к заданию №16


Так как задания №16 основаны на теории по теме "треугольники", рассмотрим базовые понятия, определения и формулы.

Вначале предлагаю рассмотреть углы на плоскости:

Многие задачи построены на нахождении медиан и биссектрис треугольника:

Биссектриса – отрезок, выходящий из вершины треугольника и делящий угол пополам.

  • Биссектриса делит противолежащую сторону на части , пропорциональные прилежащим сторонам: ab : ac = b : c
  • Биссектриса делит площадь треугольника, пропорционально прилежащим сторонам.
  • Центр окружности, вписанной в треугольник, лежит на пересечении биссектрис треугольника.

Медиана:

Теперь вспомним основные формулы нахождения площади треугольника:

Во многих задачах встречается понятие средняя линия:

Средняя линия – отрезок, соединяющий середины двух сторон треугольника.

  • Средняя линия параллельна третьей стороне и равна её половине.
  • Средняя линия отсекает подобный треугольник, площадь которого равна одной четверти от исходного.

Теперь рассмотрим частные случаи треугольников - равнобедренный, равносторонний, прямоугольный.

Перейдем к рассмотрению равнобедренного треугольника:

Равнобедренный треугольник - треугольник, у которого две стороны равны.

Свойства равнобедренного треугольника:

  • Углы, при основании треугольника, равны.
  • Высота, проведенная из вершины, является биссектрисой и медианой.

Рассмотрим равносторонний треугольник:

Равносторонний треугольник - треугольник, у которого все стороны равны.

  • Все углы равны 60°.
  • Каждая из высот является одновременно биссектрисой и медианой.
  • Центры описанной и вписанной окружностей совпадают.

Прямоугольный треугольник:


Разбор типовых вариантов заданий №16 ОГЭ по математике


Первый вариант задания

В треугольнике два угла равны 73° и 48°. Найдите его третий угол. Ответ дайте в градусах.

Решение:

Для решения этого задания достаточно знать правило - сумма углов в треугольнике равна 180°.

Нам известны два угла, значит можем найти третий:

180 - 73 - 48 = 59

Ответ: 59°


Второй вариант задания

Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 20, сторона BC равна 58, сторона AC равна 64. Найдите MN.

Решение:

Для решения этой задачи не нужно пользоваться всеми данными в условии. Для успешного решения необходимо знать, что такое средняя линия треугольника.

Средняя линия - это линия соединяющая середины сторон и параллельная основанию.

Средняя линия равна половине основания, которому она параллельна.

Таким образом, если точки M и N являются серединами сторон AB и BC, значит эта линия параллельна AC - третьей стороне. А это в свою очередь означает, что она равна половине AC:

MN =½ • AC = 64 / 2 = 32

Ответ: 32


Третий вариант задания

В треугольнике ABC известно, что AB = BC, ∠ABC = 122°. Найдите угол BCA. Ответ дайте в градусах.

Решение:

Если в треугольнике две стороны равны - значит он равнобедренный. А в равнобедренном треугольнике углы при основании равны. Так как сумма углов в треугольнике равна 180°, угол в вершине равен 122°, значит сумма углов при основании равна:

180 - 122 = 58°

Так как углы при основании равны, значит угол BCA равен углу BAC:

∠BCA = ∠BAC

58° = ∠BCA + ∠BAC = 2 ∠BCA

∠BCA = 58 / 2 = 29°

Ответ: 29°


Четвертый вариант задания

Сторона равностороннего треугольника равна 10√3. Найдите его медиану.

Решение:

Для решения этой задачи необходимо знать формулу медианы в равностороннем треугольнике, или уметь выводить её из теоремы Пифагора. В данном случае мы воспользуемся готовой формулой, и я советую вам её запомнить, чтобы не тратить время на вывод в каждом случае:

m = ( a • √3 )/ 2

Где m - медиана в равностороннем треугольнике, а a - сторона. Таким образом, для решения данной задачи подставим значение в формулу:

m = ( 10√3 • √3 )/ 2 = ( 10 • 3 )/ 2 = 30 / 2 = 15

Ответ: 15


Пятый вариант задания

Один из острых углов прямоугольного треугольника равен 23°. Найдите второй острый угол. Ответ дайте в градусах.

Решение:

Так как сумма углов в треугольнике равна 180°, а в прямоугольном треугольнике один из углов прямой, то сумма двух острых углов равна 90°. Отсюда можно вывести следующее правило:

Сумма острых углов в прямоугольном треугольнике равна 90°.

Следовательно, второй острый угол равен:

90 - 23 = 67°

Ответ:  67°.


Шестой вариант задания

В треугольнике ABC известно, что AC = 56, BM — медиана, BM = 48. Найдите AM.

Решение:

Для решения необходимо вспомнить определение медианы.

Медиана - отрезок, проведенный из вершины и делящий противоположную сторону на два равных отрезка.

Таким образом, медиана BM делит сторону AC (противоположную вершине B) пополам, следовательно^

AM = ½ AC = ½ 56 = 28

Ответ: 28.


Седьмой вариант задания

Два катета прямоугольного треугольника равны 15 и 4. Найдите его площадь.

Решение:

Формула площади для прямоугольного треугольника выглядит следующим образом:

Площадь прямоугольного треугольника равна половине произведения его катетов.

Это следует из того, что один из катетов является высотой к основанию, которым является второй катет.

Исходя из вышесказанного, можем решить задачу:

S = ½ • 15 • 4 = 30

Ответ: 30.


Восьмой вариант задания

Сторона равностороннего треугольника равна 12√3. Найдите его высоту.

Решение:

Вспоминаем, что в равностороннем треугольнике высота является и медианой и биссектрисой.

Для медианы, а значит и для высоты, формулу я приводил чуть выше:

m = ( a • √3 )/ 2

Подставим значение:

m = ( 12√3 • √3 )/ 2 = ( 12 • 3 )/ 2 = 36 / 2 = 18

Ответ: 18.


Девятый вариант задания

Катеты прямоугольного треугольника равны 12 и 16. Найдите гипотенузу этого треугольника.

Решение:

Воспользуемся теоремой Пифагора:

c² = 12² + 16² = 144 + 256 = 400

c = √400 = 20

Ответ: 20.


Десятый вариант задания

Биссектриса равностороннего треугольника равна 11√3. Найдите его сторону.

Решение:

До этого мы искали медиану, биссектрису или высоту равностороннего треугольника по формуле:

m = ( a • √3 )/ 2

Здесь же нам необходимо решить обратную задачу, найти a, если известно m.

Выразим a:

a = ( 2 • m ) / √3

Подставим значение:

a = ( 2 • m ) / √3 =  ( 2 • 11 •  √3 ) / √3 = 22

Ответ: 22


Одиннадцатый вариант задания (демонстрационный вариант ОГЭ 2017)

В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123° . Найдите величину угла ВАС. Ответ дайте в градусах.

Решение:

Для решения этого задания нужно помнить два факта:

  • Внутренний угол с внешним углом дают в сумме 180°
  • Углы при основании равнобедренного треугольника равны.

Из первого пункта следует, что угол BCA = 180 - 123 = 57°

Из второго - что ∠BCA = ∠BAC = 57°

Ответ: 57°

spadilo.ru

Разбор и решение задания №25 ОГЭ по математике


Четырехугольники


Разбор типовых вариантов заданий №25 ОГЭ по математике


Первый вариант задания

Окружности с центрами в точках I и J пересекаются в точках А и В, причём точки I и J лежат по одну сторону от прямой АВ. Докажите, что прямые АВ и IJ перпендикулярны.

Алгоритм решения:
  1. Делаем чертеж.
  2. Определяем место расположения точек I и J.
  3. Используем свойство серединного перпендикуляра.
  4. Делаем вывод.
Решение:

1. Делаем чертеж, согласно условия:

2. Определяем место расположения точек I и J:

Точка I равноудалена от точек A и B. Аналогично, точка J равноудалена от концов отрезка AB.

3. По свойству геометрического места точек, равноудаленных от концов отрезка, эти точки расположены на серединном перпендикуляре к отрезку AB.

А если две точки I и J лежат на серединном перпендикуляре, прямая IJ совпадает с ним.

Следовательно, прямые IJ и АВ перпендикулярны.


Второй вариант задания

Окружности с центрами в точках Е и F пересекаются в точках С и D, причём точки Е и F лежат по одну сторону от прямой CD. Докажите, что прямые CD и EF перпендикулярны.

Алгоритм решения:
  1. Делаем чертеж по условию задачи.
  2. Рассмотрим треугольники CEF и DEF и установим их равенство.
  3. Воспользуемся свойством равных фигур для определения вида треугольника CED.
  4. Используем свойство равнобедренного треугольника и делаем вывод.
Решение:

1. Делаем чертеж по условию задачи:

2. Рассмотрим треугольники CEF и DEF и установим их равенство:

У них CE=DE, как радиусы окружности с центром в точке Е,

Аналогично, CF = DF, как радиусы окружности с центром в точке F.

EF – общая сторона.

Значит, данные треугольники равны.

Тогда по свойству равных фигур .

Рассмотрим треугольник CED. У него CE=DE, поскольку это соответствующие стороны равных фигур. Значит, треугольник равнобедренный.

EF – биссектриса угла E. следовательно, EF – высота по свойству равнобедренного треугольника. Отсюда следует, что .

Утверждение доказано.


Третий вариант задания

Окружности с центрами в точках М и N пересекаются в точках S и Т, причём точки М и N лежат по одну сторону от прямой ST. Докажите, что прямые MN и ST перпендикулярны.

Алгоритм решения:
  1. Делаем чертеж по условию задачи.
  2. Рассмотрим треугольники SMN и TMN и установим их равенство.
  3. Воспользуемся свойством равных фигур для определения вида треугольника SMT.
  4. Используем свойство равнобедренного треугольника и делаем вывод.
Решение:

1. Делаем чертеж согласно условия задачи.

2. Рассмотрим треугольники SMN и TMN. Они равны по трем сторонам:

SM=TM как радиусы окружности с центром в точке М,

SN=TN как радиусы окружности с центром в точке N,

а MN – общая сторона (см. рисунок выше).

3. По свойству равных фигур,  , как соответствующие углы в равных треугольниках.

4. Рассмотрим треугольник SMT.

В нем по доказанному выше , а значит MN – биссектриса угла M. Данный треугольник равнобедренный с равными сторонами SM и TM.

Следовательно, MN – высота по свойству биссектрисы равнобедренного треугольника. Следовательно, .

Утверждение доказано.


Четвертый вариант задания

В выпуклом четырёхугольнике ABCD углы ВСА и BDA равны. Докажите, что углы ABD и ACD также равны.

Алгоритм решения:
  1. Выполняем рисунок по условию задачи.
  2. Устанавливаем подобие треугольников BOC и AOD.
  3. Записываем соотношение для сторон.
  4. Устанавливаем подобие треугольников AOB и DOC.
  5. Делаем вывод.
Решение:

1. Выполняем чертеж по условию задачи:

2. Рассматриваем треугольники BOC и AOD.У них:

углы ВСА и BDA равны по условию задачи,

углы BOC и AOD равны как вертикальные.

Значит, треугольники BOC и AOD подобны по двум углам.

3. Для подобных треугольников BOC и AOD записываем соотношение соответствующих сторон:

4. Рассматриваем треугольники AOB и DOC. У них:

углы AOB и DOC равны как вертикальные.

Следовательно, данные треугольники подобны.

По свойству подобных фигур соответствующие углы в треугольниках равны. Значит, , а поскольку эти углы совпадают с углами ABD и ACD , то .

Утверждение доказано.


Пятый вариант задания

В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC= ED. Докажите, что данный параллелограмм — прямоугольник.

Доказательство:

Рассмотрим треугольники BEC и AED. BE = EA, так как E - середина стороны AB по условию. EC= ED по условию, а BC = AD по свойству параллелограмма (противолежащие стороны равны). Таким образом, BE = EA, EC= ED, BC = AD. Следовательно, треугольники BEC и AED равны по трём сторонам.

В равных треугольниках - равные элементы. Значит, углы CBE и DAE равны. Так как их сумма равна 180° по свойству параллелограмма , то углы равны 90° (180 / 2 = 90 ) .

Следовательно, данный параллелограмм — прямоугольник.

spadilo.ru

Разбор и решение задания №24 ОГЭ по математике

Решение:

1. Выполняем соответствующий чертеж:

2. Трапеция ABCD имеет основаниями стороны ВС и AD, значит, они параллельны. Тогда в ней внутренние односторонние при пересечении прямых, которые содержат эти основания, секущей АВ. Следовательно, они удовлетворяют равенству: .

3. По построению, заданному условием задачи AF и BF являются биссектрисы данных углов. Тогда в треугольнике ABF

Отсюда получаем:

Таким образом, треугольник AFB прямоугольный, а сторона AB – его гипотенуза.

4. Используем теорему Пифагора:

Отсюда АВ=25.

Ответ 25.


Шестой вариант задания

Биссектрисы углов А и В при боковой стороне АВ трапеции ABCD пересекаются в точке F. Найдите АВ, если AF = 20, BF = 15.

Алгоритм решения:
  1. Делаем чертеж.
  2. Рассматриваем углы трапеции и проведенные биссектрисы.
  3. Определяем вид треугольника AFB.
  4. Находим длину АВ.
  5. Записываем ответ.
Решение:

1. Выполняем рисунок, соответствующий данному условию.

2. Рассмотрим трапецию ABCD. В ней как основания. Углы А и В составляют в сумме 1800, как углы при основаниях. Отсюда следует, что  как соседние при двух основаниях. По условию лучи AF и BF – биссектрисы этих углов, тогда их сумма

3. Рассматриваем треугольник ABF. В нем угол по свойству углов треугольника, т.е. построенный треугольник AFB – прямоугольный. И гипотенузой в нем является сторона AB.

4. Вычислим сторону по теореме Пифагора: АВ2 = AF2 + BF2

Следовательно, АВ=25.

Ответ: 25.

spadilo.ru

Решение заданий ОГЭ 1 по математике

Раздел сайта ШпаргалкаЕГЭ, посвященный ОГЭ (ГИА) часть 1, освещает одну из наиболее сложных математических тематик. Речь идет о таком подразделе, как Вычисления. Преобразование алгебраических выражений. При этом следует отметить, что специфика ресурса позволяет не просто ознакомиться с текстом задания и найти ответы и решения. В распоряжении пользователей находится целый арсенал приспособлений, позволяющий максимально освоить материал, которому посвящено 1 задание ОГЭ по математике.

Во-первых, к каждой задаче прикреплен качественный видеоролик, в котором подробно разъяснен определенный вариант решения. Во-вторых, на сайте размещены специальные инструменты, позволяющие ускорить проведение подсчетов. Кроме того, каждый учащийся может поработать с тренировочными заданиями, которые позволяют прочно закрепить изученный материал.

Таким образом, если вас интересует любая информация по ОГЭ (ГИА) 2016/2017 – задание No 1, сайт ШпаргалкаЕГЭ станет вашим незаменимым помощником и путеводителем по бескрайним просторам алгебраических выражений.

Отзывы учеников

  • Светлана Иванова

    К ЕГЭ по математике я готовилась сама, без репетитора. Ничего сверхъестественного я не делала: зубрила формулы и решала задачи на сайте ШпаргалкаЕГЭ.

    Вообще к части В я готовилась в основном в конце 10-го класса, в 11-ом я занималась только частью С. Мой результат — 75 баллов.

  • Влад Долгорукий

    Большое спасибо! Сервис нереально помог. К ЕГЭ готовился с репетитором. На занятиях использовали сайт для закрепления навыков решения различных типов задач, особенно части С. Всем рекомендую Генератор Вариантов.

  • Александр Шпик

    Hello People. Я продвигаю свою идеологию «Втопку книжки». Зайди в ВК или на сайт ShpargalkaEGE смотри ролики по задачам. Все, что не знаешь, включая самые мелочи конспектируй и учи. Не ленись закреплять результат. Мои баллы ЕГЭ — 82.

shpargalkaege.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *