Электромагнитная теория света
.
Рассматривая электромагнитное поле в начале своей “Динамической теории”, Максвелл подчркнул, что пространство, окружающее тела, находящиеся в электрическом или магнитном состоянии, “может наполнено любым родом материи” или из него может быть удалена “вся плотная материя”, “как это имеет место в трубках Гейсслера или вдругих, так называемых вакумных трубках”.
“Однако, — продолжает Максвелл,-всегда имееется достаточное количество материи для того, чтобы воспринимать и передавать волновые движения света материи для того, чтобы воспринимать и передавать волновые движения света и тепла. И так как передача излучений не слишком сильно изменяется, если так называемый вакуум заменить прозрачными тлами с заметной плотностью, то мы вынуждены допустить, что эти волновые движения относятся к эфирной субстанции, а не к плотной материи, присутствие которой только в какой-то мере изменяет движение эфира”.
Максвелл полагает поэтому, что эфир обладает способностью “проникающей среды, обладающей малой, но реальной плотностью, обладающей способностью быть приводимой в движение и передавать движения от одной части к другой с большой, но не бесконечной скоростью”, причем “движение одной части каким-то обазом зависит от движения остальных частей и в то же самое времяэти связи должны быть способны к определенному роду упругого смещения, поскольку сообщение движения не является мгновенным, а требует времени”.
Таким образом, Максвелл настойчиво ищет в своих эфирах черты, сходные с обыкновенным веществом. В этом он видит “рациональное объяснение” его свойств. НО вместе с тем Максвелл далек от построений каких-либо конкретных моделий эфира, которые пытались измышлять его предшественники и современники. Максвелл, подобно Фарадею, нигде не настаивает на наглядности всех свойств эфира. Эфир, по представлениям Максвелла, хотя и имееет некоторое сходство с обыкновенным веществом, но в то же время это все же субстнанция особого рода, которую нельзя описать в обычных терминах или наглядно представить.
Максвелл напоминает об открытом Фарадеем (1845) явлении магнитного вращения плоскости света в прозрачных диамагнитных средах и обнаруженном Верде (1856) вращении плоскости поляризации обратного направления и в парамагнитных средах. Он ссылается также на В. Томсона, указавшего, что для объяснения магнитного вращения плоскости поляризации необходимо допустить появление в самой среде вращательного движения под влиянием магнитного поля.
“Вращение плоскости поляризации вследствие магнитного воздействия,-пишет Максвелл,-наблюдается только в средах, обладающих заметной плотностью”, в вакууме вращение плоскости поляризации как известно, не наблюдается. “Но свойства магнитного поля,-продолжает Максвелл,-не так уже сильно изменеяются при замене одной среды другою или вакуумом, чтобы позволить нам допустить, что плотная среда дает нечто большее, чнм простое изменение движения эфира. Мы поэтому имеем законное основание поставить вопрос: не происходит ли движение эфирной среды везде, где бы ни наблюдались магнитные эффекты?”.
Шаг за шагом приближается Максвелл в VI части своего доклада, носящей необычное заглавие “Электромагнитная теория света”. Прошло уже четырнадцать лет с тех пор, как Фарадей отметил, что передачу магнитной силы можно считать функцией эфира, ибо вряд ли можно считать вероятным, что эфир, если он существует, нужен только для того, чтобы передавать излучение”.
Однако ни открытие магнитнооптических явлений, ни эта глубокая мысль фарадея не привлекали к себе внимание физиков. Фарадея почитали только как искусного экспериментатора, а теоритические воззрения этого “самоучки” молчаливо отрицались пдавляющим большинством ученых, мысль которых продолжалась вращаться в привычном круге понятий. Максвелл был первым физиком, внимательно вчитывавшимся в труды Фарадея. И вот в “Динамической теории элктромагнитного поля” (1864) он впервые развил его мысль.
“В начале этого доклада,-говорил Максвелл,- мы пользовались оптической гипотенузой упругой среды, через которую распространяютяс колебания света, чтобы показать, что мы имееем серьезные основания искать в этой же среде причину других явлений в той же мере, как и причину световых явлений. Мы рассмотрели электромагнитные явления, пытаясь их объяснить свойствами поля, окружающего наэлектризованные или намагниченные тела. Таким путем мы пришли к определенным уравнениям, выражающим определенные свойства того, что составляет электромагнитное поле, которые выведены только из электромагнитных явлений, достаточными для объяснения распространения света через ту же самую субстанцию”.
Максвелл рассматривает распространение плоской волны через поле со скоростью V , причем все электромагнитные величины принимаются функциями выражения
w=lx + my = nz -Vt
где, l,m,n -направляющие косинусы луча. Оказывается, что, во-первых,
l a + m b + n g = 0
где, a , b , g -составляющие вектора магнитной силы. Таким образом, направление вектора колеблющейся магнитной силы является перпендикулярным к направлению распространения волны, т.е. волны оказываются поперечными, “и такие волны могут обладать всеми свойствами поляризованного света”. Для скорости распространения волны Максвелл получает (в привычных нам выражениях)
V = 1/ Ö e m
Имея в виду, что для воздуха e иm равны примерно единице, Максвелл получает V=v. “Согласно электромагнитным опытам Вебера и Кольрауша,-говорит он, — v = 310 700 000 метров в секунду является количеством электростатических единиц в одной электромагнитной единице электричества, и это согласно нашему результату должно быть равно скорости света в воздухе или вакууме”.
Сопоставив это значение скорости света с данными измерений Физо и Фуко, Максвелл продолжает: “Значение v было определено путем измерения электродвижущей силы, при помощи которой заряжается известной емкости, разряжая конденсатор через гальванометр, чтобы измерить количество электричества в нем в электромагнитных единицах. Единственным применением света в этих опытах было использование его для того, чтобы видеть инструменты. Значение V , найденное Фуко, было полученно путем определения угла, на который поворачивается вращающеееся зеркало, пока отраженный им свет прошел туда и обратно вдоль измеренного пути. При этом никак не пользовались электричеством и магнетизмом. Совпадение результатов, по-видимому, показывает, что свет и магнетизм являются проявлением свойств одной и той же субстанции и что свет является электромагнитным возмущкением, распространяющимся через посредством поля в соответствии с законами электромагнетизма”.
Анализируя в своем “Трактате” экспериментальные данные Вебера и Кольрауша, Максвелл полагал, что полученное ими численное значение константы с несколько завышено, так как “свойство твердых диэлектриков, которе назвали электрической абсорбацией, затрудняет точное определение емкости лейденской банки. Приблизительная емкость изменяется в зависимости от времени, которое проходит от момента заряжения и разряда банки до момента измерения потенциаля, и, чем больше это время, тем больше величина, получаемая для емкости банки”. Это вполне справедливое замечание Максвелла показывает, что он на основании изучения трудов Фарадея значительно глубже понимал эксперимент, чем Вебер и Кольрауш, оставившие без всякого внимания явление остаточсной поляризации диэлектриков, которое неизбежно должно было искажать их численные данные. Впрочем, он не ограничился критикой работы Вебера и Кольрауша, а в 1868 г. сам предпринял экспериментальную проверку числового значения константы с .
botanim.ru
Классическая электромагнитная теория света
В физике световые явления являются оптическими, так как относятся к данному подразделу. Действия этого феномена не ограничиваются лишь тем, чтобы окружающие людей предметы были заметны. Кроме этого, солнечное освещение передает тепловую энергию в пространстве, в результате этого тела нагреваются. На основе этого были выдвинуты определенные гипотезы о природе данного явления.
Энергетический перенос осуществляется телами и волнами, распространяющимися в среде, таким образом, излучение состоит из частиц, называемыми корпускулами. Так их назвал Ньютон, после него появились новые исследователи, которые усовершенствовали эту систему, были Гюйгенс, Фуко и пр. Электромагнитная теория света была выдвинута чуть позднее Максвеллом.
Истоки и развитие теории света
Благодаря самой первой гипотезе Ньютоном была сформирована корпускулярная система, где четко разъяснялась сущность оптических явлений. Цветовые различные излучения описывались как структурные составляющие, входящие в эту теорию. Интерференцию и дифракцию объяснил ученый из Голландии Гюйгенс в XVI веке. Этот исследователь выдвинул и описал теорию света на основе волн. Однако все созданные системы были не оправданы, так как не разъясняли саму сущность и основу оптических явлений. В результате долгих поисков вопросы истинности и подлинности световых излучений, а также их сущность и основа остались нерешенными.
Спустя несколько столетий несколько исследователей под началом Фуко, Френеля начали выдвигать иные гипотезы, благодаря чему выяснилось теоретическое преимущество волн перед корпускулами. Однако и у этой теории были недостатки и недоработки. По сути, это созданное описание предполагало наличие некоего вещества, которое находится в пространстве, ввиду того, что Солнце и Земля на далеком расстоянии друг от друга. В случае, если свет свободно падает и проходит через эти объекты, следовательно, в них присутствует поперечные механизмы.
Дальнейшее становление и совершенствование теории
На основе всей этой гипотезы возникли предпосылки для создания новой теории о мировом эфире, который заполняет тела и молекулы. А с учетом особенностей этого вещества оно должно быть твердым, в результате ученые пришли к выводу, что он обладает упругими свойствами. По сути, эфир должен оказывать влияние на земной шар в пространстве, но этого не происходит. Таким образом, это вещество ничем не оправдано, кроме того, что через него струится световое излучение, и оно обладает твердостью. На основе таких противоречий данная гипотеза была поставлена под сомнение, лишена смысла и дальнейших исследований.
Труды Максвелла
Волновые свойства света и электромагнитная теория света, можно сказать, стали единым целым, когда Максвелл начал свои исследования. В ходе изучения было обнаружено, что скорость распространения указанных величин совпадают, если находятся в вакууме. В результате эмпирического обоснования, Максвеллом выдвинута и доказана гипотеза об истинной природе света, которая удачно подтверждалась годами и другими практиками, опытом. Таким образом, в позапрошлом столетии создалась электромагнитная теория света, применяющаяся и сегодня. Позже она будет признана классической.
Волновые свойства света: электромагнитная теория света
На основе новой гипотезы была выведена формула λ = c/ν, которая указывает на то, что при расчете частоты можно найти длину. Световые излучения являются электромагнитными волнами, но только в том случае, если они ощутимы для человека. Кроме того, такими можно назвать и к ним относятся с колебанием от 4·1014 до 7,5 · 1014 Гц. В данном диапазоне частота колебаний может варьироваться и цвет излучения разный, причем на каждом отрезке или интервале будет характерный и соответствующий для него цвет. В результате по частоте указанной величины находится длина волны в вакууме.
При расчете видно, что световое излучение может быть от 400 нм до 700 нм (фиолетовый и красный цвета). При переходе оттенок и частота сохраняются и зависят от волновой длины, которая меняется на основе скорости распространения и указывается для вакуума. Электромагнитная теория света Максвелла основана на научном обосновании, где излучение оказывает давление на составляющие тела и непосредственно на него. Правда, позже эта концепция была проверена и доказана эмпирическим путем Лебедевым.
Электромагнитная и квантовая теория света
Излучение и распределение светящихся тел по частотам колебаний не согласуется с законами, которые были выведены из волновой гипотезы. Подобное утверждение исходит из анализа состава этих механизмов. Физик из Германии Планк попытался найти объяснение такому результату. Позже он пришел к выводу, что излучение происходит в виде определенных порций – квант, затем эту массу стали называть фотоны.
В результате анализ оптических явлений привел к выводу, что световое испускание и поглощение объяснялись с помощью массового состава. В то время как те, что распространялись в среде, были разъяснены волновой теорией. Таким образом, чтобы полностью изучить и описать данные механизмы требуется новая концепция. Причем новая система должна была объяснять и объединять различные свойства света, то есть корпускулярные и волновые.
Развитие квантовой теории
В результате труды Бора, Эйнштейна, Планка были положены в основу этой усовершенствованной структуры, которая была названа квантовой. На сегодняшний день эта система описывает и поясняет не только классическую электромагнитную теорию света, но и другие разделы физического знания. По существу, новая концепция легла в основу множества свойств и явлений, протекающих в телах и пространстве, а кроме этого, огромное количество ситуаций предсказала и разъяснила.
По существу, электромагнитная теория света кратко описывается как явление, в основе которого присутствуют различные доминанты. Например, корпускулярные и волновые переменные оптики имеют связь и выражаются формулой Планка: ε = ℎν, здесь присутствуют квантовая энергия, электромагнитного излучения колебания и их частота, постоянный коэффициент, который не меняется ни для каких явлений. Согласно новой теории, оптическая система с определенными варьирующимися механизмами состоит из фотонов с силой. Таким образом, теорема звучит так: квантовая энергия прямо пропорциональна электромагнитному излучению и его частотным колебаниям.
Планк и его труды
Аксиома c = νλ, в результате формулы Планка производится ε = hc / λ, так можно прийти к выводу, что указанное выше явление — обратное длине волны при оптическом влиянии в вакууме. Опыты, проведенные в закрытом пространстве, показали, что пока существует фотон, он будет двигаться по определенной скорости и замедлить свой темп не сможет. Однако поглощается частицами веществ, которые встретятся ему на пути, в результате происходит взаимообмен, и он исчезает. В отличие от протонов и нейтронов не имеет массы покоя.
Электромагнитные волны и теории света до сих пор не поясняют противоречивые явления, например, в одной системе будут ярко выраженные свойства, а в другой корпускулярные, но, тем не менее, все они объединены излучением. На основе концепции квант существующие свойства присутствуют в самой природе оптической структуры и в общей материи. То есть частицы обладают волновыми свойствами, а эти в свою очередь корпускулярными.
Световые источники
Основы электромагнитной теории света опираются на аксиому, которая гласит: молекулы, атомы тел создают видимое излучение, которое называется источником оптического явления. Существует огромное количество предметов, производящих этот механизм: лампа, спички, трубки и др. Причем каждую подобную вещь можно условно разделить на равнозначные группировки, которые определяются по способу накала частиц, реализующих излучение.
Структурированные источники света
Изначальное происхождение свечения происходит из-за возбуждения атомов и молекул ввиду хаотического движения в теле частиц. Это возникает, потому что температура достаточно высока. Излучаемая энергия повышается за счет того, что их внутренняя сила возрастает и накаляется. Такие предметы относятся к первой группе источников света.
Накаливание атомов и молекул возникает на основе летящих частиц веществ, причем это не минимальное скопление, а целый поток. Температура здесь не играет особой роли. Такое свечение называют люминесценцией. То есть оно всегда возникает ввиду того, что тело поглощает внешнюю энергию, вызванную электромагнитным излучением, химической реакцией, протонами, нейтронами и пр.
А источники называются люминесцентными. Определение электромагнитной теории света этой системы звучит следующим образом: если после поглощения телом энергии проходит некоторое время, измеримое опытным путем, и затем оно производит излучение не из-за температурных показателей, следовательно, оно относится к вышеуказанной группе.
Детальный разбор люминесценции
Однако подобные характеристики не полностью описывают эту группу, ввиду того, что она обладает несколькими видами. По сути, после поглощения энергии тела пребывают в накаливании, затем испускают излучение. Время возбуждения, как правило, варьируется и зависит от множества параметров, зачастую не превышает нескольких часов. Таким образом, способ накаливания может быть нескольких типов.
Разреженный газ начинает испускать излучение после того, как через него прошел прямой ток. Такой процесс называется электролюминесценцией. Наблюдается в полупроводниках и светодиодах. Происходит это таким образом, что пропускание тока дает рекомбинацию электронов и дырок, за счет этого механизма и возникает оптическое явление. То есть, преобразовывается энергия из электрической в световую, обратный внутренний фотоэффект. Кремний считается инфракрасным излучателем, а фосфид галлия и карбид кремния реализуют видимое явление.
Сущность фотолюминесценции
Тело поглощает свет, а также твердые вещества и жидкости излучают длинные волны, которые отличаются по всем параметрам от изначальных фотонов. Для накала используется ультрафиолетовый накал. Данный способ возбуждения называется фотолюминесценцией. Возникает оно в видимой части спектра. Излучение трансформируется, именно этот факт был доказан английским ученым Стоксом в XVIII веке и теперь является аксиоматическим правилом.
Квантовая и электромагнитная теория света описывают концепцию Стокса следующим образом: молекула поглощает порцию излучения, затем передает ее другим частицам в процессе теплообмена, остатки энергии испускают оптическое явление. При формуле hν = hν0 – A, выходит, что частота излучения люминесценции ниже поглощенной частоты, в результате получается, что длина волны больше.
Временные рамки распространения оптического явления
Электромагнитная теория света и теорема классической физики указывают на факт того, что скорость указанной величины велика. Ведь расстояние от Солнца до Земли он проходит за несколько минут. Множество ученых пыталось анализировать прямую линию времени и то, как проходит свет через одно расстояние к другому, но им в основе так это и не удалось.
По сути, электромагнитная теория света основана на скорости, которая является главной константой физики, но при этом не предсказуемой, а возможной. Были созданы формулы, и после проверок выяснилось, что распространение и движение электромагнитных волн зависит от среды пребывания. Причем, определяется эта переменная абсолютным показателем преломления пространства, где размещается указанная величина. В любое вещество способно проникнуть световое излучение, в результате магнитная проницаемость понижается, ввиду этого скорость оптики определяется диэлектрической константой.
fb.ru
ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТА это что такое ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТА: определение — История.НЭС
Электромагнитная теория света
В первой трети XIX в. произошел переворот в оптических представлениях. В результате работ Т. Юнга (Англия) Уравнение Максвелла и О. Ж. Френеля (Франция) старая ньютоновская корпускулярная теория, рассматривавшая свет как поток светоносных частиц, была отвергнута. Возродились на новой основе и в новом физико-математическом истолковании представления Гюйгенса о свете как волновом движении эфира. Крупным достижением физики XIX в. была выдвинутая английским ученым Джемсом Кларком Максвеллом (1831—1879) электромагнитная теория света (1865 г.), обобщившая опыты и теоретические построения многих физиков различных стран в области электромагнетизма, термодинамики и оптики.
Последователь Эрстедта и Фарадея, Максвелл разработал теорию электромагнитного поля. Математическим выражением нового учения явилась система уравнений, в равной мере относящихся как к электромагнитным, так и к оптическим явлениям и описывающих структуру электромагнитного поля. Из уравнений Максвелла в качестве основного следствия вытекал вывод о существовании электромагнитных волн, распространяющихся со скоростью света, и устанавливалась связь света с электромагнетизмом. Позднее существование электромагнитных волн было экспериментально доказано Генрихом Герцем (1857—1894) и явилось основой для всей радиотехники.
Физико-математические построения Максвелла сыграли важную роль в дальнейшем развитии естествознания и техники. Однако теория Максвелла не давала исчерпывающей характеристики всех электромагнитных явлений. Максвелл, как и все физики XIX в., исходил еще из предположения о существовании эфира — последней из мнимых «невесомых жидкостей», которая пережила и флогистон и теплород, но которой в конце концов предстояло разделить их судьбу.
В «Диалектике природы» Энгельс отмечал, что в области электричества еще предстоит сделать открытие, «подобное открытию Дальтона», т. е. атомистике, — открытие, «даю цее всей науке средоточие, а исследованию — прочную основу».(Ф Энгельс, Диалектика природы, стр. 84.) Прогноз Энгельса подтвердился, после того как была разработана электронная теория и учение об электричестве оказалось неразрывно связано с учением о строении атома.
Оцените определение:
Источник: Всемирная история. Энциклопедия. Том 6 (1961 г.)
ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТА
В свое время Ньютон был убежден в том, что свет состоит из мельчайших частичек, скорость перемещения которых практически бесконечна, — говорит Т.Редже в предыстории вопроса. — Его современник Гюйгенс, напротив, был сторонником волнового механизма распространения света, подобного процессу распространения звука в воздухе или в любой материальной среде. Непререкаемый авторитет Ньютона не допустил признания гипотезы Гюйгенса. В 1700 году Юнг, Френель и некоторые другие ученые приступили к исследованию оптических явлений, непонятных с точки зрения представлений Ньютона. Эти явления прямо указывали на волновую природу света. Как ни парадоксально, но среди этих явлений были и кольца Ньютона, хорошо известные фотографам и возникающие, когда диапозитив помещается между стеклянными пластинами. Яркая окраска некоторых насекомых также возникает в результате сложных процессов интерференции световых волн, происходящих в тонких слоях жидких кристаллов, расположенных на поверхности тела насекомых». Однако, несмотря на очевидные успехи волновой механической теории света во второй половине XIX века, она была подвергнута сомнению по двум причинам. Одна — опыты Фарадея, открывшего действие магнитного поля на свет. Другая — исследования связи между электрическими и магнитными явлениями, которые проводил Максвелл. «Открытие электромагнитной природы света является великолепной иллюстрацией диалектики развития содержания и формы, — пишет П.С. Кудрявцев. — Новое содержание — электромагнитные волны — было выражено в старой форме картезианских вихрей. Несоответствие нового содержания, появившегося в результате развития электромагнетизма, не только старой форме теории дальнодействия, но и механической теории эфира ощущал уже Фарадей, искавший для выражения этого содержания новую форму. Такую форму он усматривал в силовых линиях, которые следовало рассматривать не статически, а динамически. Развитию этой мысли посвящены его работы „Мысли о лучевых вибрациях“ (1846) и „О физических линиях магнитной силы“ (1851). Открытие Фарадеем в 1845 году связи между магнетизмом и светом явилось новым содержанием в учении о свете и вместе с тем еще раз указывало на строгую поперечность световых колебаний. Все это плохо укладывалось в старую форму механического эфира». Фарадей выдвигает идею силовых линий, в которых происходят поперечные колебания. «Нельзя ли, — пишет он, — предположить, что колебания, которые в известной теории (волновой теории света. — Прим. авт.) принимаются за основу излучения и связанных с ним явлений, происходят в линиях сил, соединяющих частицы, а следовательно, массы материи в одно целое. Эта идея, если ее допустить, освободит нас от эфира, являющегося с другой точки зрения той средой, в которой происходят эти колебания». Ученый указывает, что колебания, происходящие в линиях сил, представляют собой не механический процесс, а новую форму движения, «некий высший тип колебания». Подобные колебания поперечны и потому могут «объяснить чудесные разнообразные явления поляризации». Они не похожи на продольные звуковые волны в жидкостях и газах. Его теория, как он говорит, «пытается устранить эфир, но не колебания». Эти магнитные колебания распространяются с конечной скоростью: «…Появление изменения в одном конце силы заставляет предполагать последующее изменение на другом. Распространение света, а потому, вероятно, всех лучистых действий, требует времени, и чтобы колебание линий силы могло объяснить явления излучения, необходимо, чтобы такое колебание также занимало время». Поиски новой формы привели ученого к становлению важной идеи поперечных магнитных колебаний, распространяющихся, как и свет, с конечной скоростью. Но это и есть центральная идея электромагнитной теории света — мысль, возникшая еще в 1832 году. Максвелл отмечал в записке к В.Бреггу: «Электромагнитная теория света, предложенная им (Фарадеем) в „Мыслях о лучевых вибрациях“ (май, 1846) или „Экспериментальных исследованиях“, — это по существу то же, что я начал развивать в этой статье („Динамическая теория поля“ (май, 1865), за исключением того, что в 1846 году не было данных для вычисления скорости распространения». Подобное признание, однако, не принижает заслуг в исследовании электромагнитного поля Джеймса Максвелла. Джеймс Максвелл (1831–1879) родился в Эдинбурге. Вскоре после рождения мальчика родители увезли его в свое имение Гленлэр. Сначала приглашали учителей на дом. Потом решено было отдать Джеймса в новую школу, носившую громкое название Эдинбургской академии. Максвелл окончил академию одним из первых, и перед ним распахнулись двери Эдинбургского университета. Будучи студентом, Максвелл выполнил серьезное исследование по теории упругости, получившее высокую оценку специалистов. И теперь перед ним встал вопрос о перспективе его дальнейшей учебы в Кембридже. Объем знаний Максвелла, мощь его интеллекта и самостоятельность мышления позволили ему добиться высокого места в своем выпуске. Он и занял второе место. Молодой бакалавр был оставлен в Кембридже — Тринити-колледже в качестве преподавателя. Однако его волновали научные проблемы. Помимо его старого увлечения — геометрии и проблемы цветов, которой он начал заниматься еще в 1852 году, Максвелл заинтересовался электричеством. 20 февраля 1854 года Максвелл сообщает Томсону о своем намерении «атаковать электричество». Результат «атаки» — сочинение «О Фарадеевых силовых линиях» — первое из трех основных трудов Максвелла, посвященных изучению электромагнитного поля. Слово «поле» впервые появилось в том самом письме Томсону, но ни в этом, ни в последующем сочинении, посвященном силовым линиям, Максвелл его не употребляет. Это понятие снова появится только в 1864 году в работе «Динамическая теория электромагнитного поля». Он публикует две основные работы по созданной им теории электромагнитного поля: «О физических силовых линиях» (1861–1862 годы) и «Динамическая теория электромагнитного поля» (1864–1865 годы). За десять лет Максвелл вырос в крупнейшего ученого, творца фундаментальной теории электромагнитных явлений, ставшей, наряду с механикой, термодинамикой и статистической физикой, одним из устоев классической теоретической физики. «Трактат по электричеству и магнетизму» — главный труд Максвелла и вершина его научного творчества. В нем он подвел итоги многолетней работы по электромагнетизму, начавшейся еще в начале 1854 года. Предисловие к «Трактату» датировано 1 февраля 1873 года. Девятнадцать лет работал Максвелл над своим основополагающим трудом! Исследования, произведенные Максвеллом, привели его к выводу, что в природе должны существовать электромагнитные волны, скорость распространения которых в безвоздушном пространстве равна скорости света — 300 000 километров в секунду. Возникнув, электромагнитное поле распространяется в пространстве со скоростью света, занимая все больший и больший объем. Максвелл утверждал, что волны света имеют ту же природу, что и волны, возникающие вокруг провода, в котором есть переменный электрический ток. Они отличаются друг от друга только длиной. Очень короткие волны и есть видимый свет. «Предположение Максвелла о том, что изменения электрического поля влекут за собой возникновение потока магнитной индукции, явилось следующим шагом вперед, — пишет А.А. Коробко-Стефанов. — Таким образом, возникшее переменное электрическое поле вокруг магнитного, в свою очередь, создает переменное магнитное поле, охватывающее электрическое, которое вновь возбуждает электрическое, и т. д. Быстропеременные электрические и магнитные поля, распространяющиеся со скоростью света, образуют электромагнитное поле. Электромагнитное поле распространяется в пространстве от точки к точке, создавая электромагнитные волны. Электромагнитное поле в каждой точке характеризуется напряженностью электрического и магнитного полей. Напряженность электрического и магнитного полей — величины векторные, так как характеризуются не только величиной, но и направлением. Векторы напряженности полей взаимно перпендикулярны и перпендикулярны к направлению распространения». Поэтому электромагнитная волна является поперечной. Из теории Максвелла вытекало, что электромагнитные волны возникают в том случае, если изменения напряженности электрического и магнитного полей будут происходить очень быстро. Справедливость максвелловских представлений опытным путем доказал Генрих Герц. В восьмидесятые годы девятнадцатого века Герц приступил к изучению электромагнитных явлений, работая в аудитории длиной 14 метров и шириной 12 метров. Он обнаружил, что если расстояние приемника от вибратора менее одного метра, то характер распределения электрической силы аналогичен полю диполя и убывает обратно пропорционально кубу расстояния. Однако на расстояниях, превышающих 3 метра, поле убывает значительно медленнее и неодинаково в различных направлениях. В направлении оси вибратора действие убывает значительно быстрее, чем в направлении, перпендикулярном оси, и едва заметно на расстоянии 4 метров, тогда как в перпендикулярном направлении оно достигает расстояний, больших 12 метров. Этот результат противоречит всем законам теории дальнодействия. Герц продолжал исследование в волновой зоне своего вибратора, поле которого он позже рассчитал теоретически. В ряде последующих работ Герц неопровержимо доказал существование электромагнитных волн, распространяющихся с конечной скоростью. «Результаты опытов, поставленных мною над быстрыми электрическими колебаниями, — писал Герц в своей восьмой статье 1888 года, — показали мне, что теория Максвелла обладает преимуществом перед всеми другими теориями электродинамики». Поле в этой волновой зоне в различные моменты времени Герц изобразил с помощью картины силовых линий. Эти рисунки Герца вошли во все учебники электричества. Расчеты Герца легли в основу теории излучения антенн и классической теории излучения атомов и молекул. Таким образом, Герц в процессе своих исследований окончательно и безоговорочно перешел на точку зрения Максвелла, придал удобную форму его уравнениям, дополнил теорию Максвелла теорией электромагнитного излучения. Герц получил экспериментально электромагнитные волны, предсказанные теорией Максвелла, и показал их тождество с волнами света. В 1889 году Герц прочитал доклад «О соотношении между светом и электричеством» на 62-м съезде немецких естествоиспытателей и врачей. Здесь он подводит итоги своих опытов в следующих словах: «Все эти опыты очень просты в принципе, но, тем не менее, они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла… Насколько маловероятным казалось ранее ее воззрение на сущность света, настолько трудно теперь не разделить это воззрение». В 1890 году Герц опубликовал две статьи: «Об основных уравнениях электродинамики в покоящихся телах» и «Об основных уравнениях электродинамики для движущихся тел». Эти статьи содержали исследования о распространении «лучей электрической силы» и, в сущности, давали то каноническое изложение максвелловской теории электрического поля, которое вошло с тех пор в учебники.
Оцените определение:
Источник: 100 великих научных открытий
interpretive.ru
Электромагнитная теория света
.
Рассматривая электромагнитное поле в начале своей “Динамической теории”, Максвелл подчркнул, что пространство, окружающее тела, находящиеся в электрическом или магнитном состоянии, “может наполнено любым родом материи” или из него может быть удалена “вся плотная материя”, “как это имеет место в трубках Гейсслера или вдругих, так называемых вакумных трубках”.
“Однако, — продолжает Максвелл,-всегда имееется достаточное количество материи для того, чтобы воспринимать и передавать волновые движения света материи для того, чтобы воспринимать и передавать волновые движения света и тепла. И так как передача излучений не слишком сильно изменяется, если так называемый вакуум заменить прозрачными тлами с заметной плотностью, то мы вынуждены допустить, что эти волновые движения относятся к эфирной субстанции, а не к плотной материи, присутствие которой только в какой-то мере изменяет движение эфира”.
Максвелл полагает поэтому, что эфир обладает способностью “проникающей среды, обладающей малой, но реальной плотностью, обладающей способностью быть приводимой в движение и передавать движения от одной части к другой с большой, но не бесконечной скоростью”, причем “движение одной части каким-то обазом зависит от движения остальных частей и в то же самое времяэти связи должны быть способны к определенному роду упругого смещения, поскольку сообщение движения не является мгновенным, а требует времени”.
Таким образом, Максвелл настойчиво ищет в своих эфирах черты, сходные с обыкновенным веществом. В этом он видит “рациональное объяснение” его свойств. НО вместе с тем Максвелл далек от построений каких-либо конкретных моделий эфира, которые пытались измышлять его предшественники и современники. Максвелл, подобно Фарадею, нигде не настаивает на наглядности всех свойств эфира. Эфир, по представлениям Максвелла, хотя и имееет некоторое сходство с обыкновенным веществом, но в то же время это все же субстнанция особого рода, которую нельзя описать в обычных терминах или наглядно представить.
Максвелл напоминает об открытом Фарадеем (1845) явлении магнитного вращения плоскости света в прозрачных диамагнитных средах и обнаруженном Верде (1856) вращении плоскости поляризации обратного направления и в парамагнитных средах. Он ссылается также на В. Томсона, указавшего, что для объяснения магнитного вращения плоскости поляризации необходимо допустить появление в самой среде вращательного движения под влиянием магнитного поля.
“Вращение плоскости поляризации вследствие магнитного воздействия,-пишет Максвелл,-наблюдается только в средах, обладающих заметной плотностью”, в вакууме вращение плоскости поляризации как известно, не наблюдается. “Но свойства магнитного поля,-продолжает Максвелл,-не так уже сильно изменеяются при замене одной среды другою или вакуумом, чтобы позволить нам допустить, что плотная среда дает нечто большее, чнм простое изменение движения эфира. Мы поэтому имеем законное основание поставить вопрос: не происходит ли движение эфирной среды везде, где бы ни наблюдались магнитные эффекты?”.
Шаг за шагом приближается Максвелл в VI части своего доклада, носящей необычное заглавие “Электромагнитная теория света”. Прошло уже четырнадцать лет с тех пор, как Фарадей отметил, что передачу магнитной силы можно считать функцией эфира, ибо вряд ли можно считать вероятным, что эфир, если он существует, нужен только для того, чтобы передавать излучение”.
Однако ни открытие магнитнооптических явлений, ни эта глубокая мысль фарадея не привлекали к себе внимание физиков. Фарадея почитали только как искусного экспериментатора, а теоритические воззрения этого “самоучки” молчаливо отрицались пдавляющим большинством ученых, мысль которых продолжалась вращаться в привычном круге понятий. Максвелл был первым физиком, внимательно вчитывавшимся в труды Фарадея. И вот в “Динамической теории элктромагнитного поля” (1864) он впервые развил его мысль.
“В начале этого доклада,-говорил Максвелл,- мы пользовались оптической гипотенузой упругой среды, через которую распространяютяс колебания света, чтобы показать, что мы имееем серьезные основания искать в этой же среде причину других явлений в той же мере, как и причину световых явлений. Мы рассмотрели электромагнитные явления, пытаясь их объяснить свойствами поля, окружающего наэлектризованные или намагниченные тела. Таким путем мы пришли к определенным уравнениям, выражающим определенные свойства того, что составляет электромагнитное поле, которые выведены только из электромагнитных явлений, достаточными для объяснения распространения света через ту же самую субстанцию”.
Максвелл рассматривает распространение плоской волны через поле со скоростью V , причем все электромагнитные величины принимаются функциями выражения
w=lx + my = nz -Vt
где, l,m,n -направляющие косинусы луча. Оказывается, что, во-первых,
l a + m b + n g = 0
где, a , b , g -составляющие вектора магнитной силы. Таким образом, направление вектора колеблющейся магнитной силы является перпендикулярным к направлению распространения волны, т.е. волны оказываются поперечными, “и такие волны могут обладать всеми свойствами поляризованного света”. Для скорости распространения волны Максвелл получает (в привычных нам выражениях)
V = 1/ Ö e m
Имея в виду, что для воздуха e иm равны примерно единице, Максвелл получает V=v. “Согласно электромагнитным опытам Вебера и Кольрауша,-говорит он, — v = 310 700 000 метров в секунду является количеством электростатических единиц в одной электромагнитной единице электричества, и это согласно нашему результату должно быть равно скорости света в воздухе или вакууме”.
Сопоставив это значение скорости света с данными измерений Физо и Фуко, Максвелл продолжает: “Значение v было определено путем измерения электродвижущей силы, при помощи которой заряжается известной емкости, разряжая конденсатор через гальванометр, чтобы измерить количество электричества в нем в электромагнитных единицах. Единственным применением света в этих опытах было использование его для того, чтобы видеть инструменты. Значение V , найденное Фуко, было полученно путем определения угла, на который поворачивается вращающеееся зеркало, пока отраженный им свет прошел туда и обратно вдоль измеренного пути. При этом никак не пользовались электричеством и магнетизмом. Совпадение результатов, по-видимому, показывает, что свет и магнетизм являются проявлением свойств одной и той же субстанции и что свет является электромагнитным возмущкением, распространяющимся через посредством поля в соответствии с законами электромагнетизма”.
Анализируя в своем “Трактате” экспериментальные данные Вебера и Кольрауша, Максвелл полагал, что полученное ими численное значение константы с несколько завышено, так как “свойство твердых диэлектриков, которе назвали электрической абсорбацией, затрудняет точное определение емкости лейденской банки. Приблизительная емкость изменяется в зависимости от времени, которое проходит от момента заряжения и разряда банки до момента измерения потенциаля, и, чем больше это время, тем больше величина, получаемая для емкости банки”. Это вполне справедливое замечание Максвелла показывает, что он на основании изучения трудов Фарадея значительно глубже понимал эксперимент, чем Вебер и Кольрауш, оставившие без всякого внимания явление остаточсной поляризации диэлектриков, которое неизбежно должно было искажать их численные данные. Впрочем, он не ограничился критикой работы Вебера и Кольрауша, а в 1868 г. сам предпринял экспериментальную проверку числового значения константы с .
botanim.ru
ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТА. 100 великих научных открытий
ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТА
«В свое время Ньютон был убежден в том, что свет состоит из мельчайших частичек, скорость перемещения которых практически бесконечна, — говорит Т.Редже в предыстории вопроса. — Его современник Гюйгенс, напротив, был сторонником волнового механизма распространения света, подобного процессу распространения звука в воздухе или в любой материальной среде. Непререкаемый авторитет Ньютона не допустил признания гипотезы Гюйгенса.
В 1700 году Юнг, Френель и некоторые другие ученые приступили к исследованию оптических явлений, непонятных с точки зрения представлений Ньютона. Эти явления прямо указывали на волновую природу света. Как ни парадоксально, но среди этих явлений были и кольца Ньютона, хорошо известные фотографам и возникающие, когда диапозитив помещается между стеклянными пластинами. Яркая окраска некоторых насекомых также возникает в результате сложных процессов интерференции световых волн, происходящих в тонких слоях жидких кристаллов, расположенных на поверхности тела насекомых».
Однако, несмотря на очевидные успехи волновой механической теории света во второй половине XIX века, она была подвергнута сомнению по двум причинам. Одна — опыты Фарадея, открывшего действие магнитного поля на свет. Другая — исследования связи между электрическими и магнитными явлениями, которые проводил Максвелл. «Открытие электромагнитной природы света является великолепной иллюстрацией диалектики развития содержания и формы, — пишет П.С. Кудрявцев. — Новое содержание — электромагнитные волны — было выражено в старой форме картезианских вихрей.
Несоответствие нового содержания, появившегося в результате развития электромагнетизма, не только старой форме теории дальнодействия, но и механической теории эфира ощущал уже Фарадей, искавший для выражения этого содержания новую форму. Такую форму он усматривал в силовых линиях, которые следовало рассматривать не статически, а динамически. Развитию этой мысли посвящены его работы „Мысли о лучевых вибрациях“ (1846) и „О физических линиях магнитной силы“ (1851).
Открытие Фарадеем в 1845 году связи между магнетизмом и светом явилось новым содержанием в учении о свете и вместе с тем еще раз указывало на строгую поперечность световых колебаний. Все это плохо укладывалось в старую форму механического эфира». Фарадей выдвигает идею силовых линий, в которых происходят поперечные колебания. «Нельзя ли, — пишет он, — предположить, что колебания, которые в известной теории (волновой теории света. — Прим. авт.) принимаются за основу излучения и связанных с ним явлений, происходят в линиях сил, соединяющих частицы, а следовательно, массы материи в одно целое. Эта идея, если ее допустить, освободит нас от эфира, являющегося с другой точки зрения той средой, в которой происходят эти колебания».
Ученый указывает, что колебания, происходящие в линиях сил, представляют собой не механический процесс, а новую форму движения, «некий высший тип колебания». Подобные колебания поперечны и потому могут «объяснить чудесные разнообразные явления поляризации». Они не похожи на продольные звуковые волны в жидкостях и газах. Его теория, как он говорит, «пытается устранить эфир, но не колебания». Эти магнитные колебания распространяются с конечной скоростью:
«…Появление изменения в одном конце силы заставляет предполагать последующее изменение на другом. Распространение света, а потому, вероятно, всех лучистых действий, требует времени, и чтобы колебание линий силы могло объяснить явления излучения, необходимо, чтобы такое колебание также занимало время».
Поиски новой формы привели ученого к становлению важной идеи поперечных магнитных колебаний, распространяющихся, как и свет, с конечной скоростью. Но это и есть центральная идея электромагнитной теории света — мысль, возникшая еще в 1832 году.
Максвелл отмечал в записке к В.Бреггу: «Электромагнитная теория света, предложенная им (Фарадеем) в „Мыслях о лучевых вибрациях“ (май, 1846) или „Экспериментальных исследованиях“, — это по существу то же, что я начал развивать в этой статье („Динамическая теория поля“ (май, 1865), за исключением того, что в 1846 году не было данных для вычисления скорости распространения».
Подобное признание, однако, не принижает заслуг в исследовании электромагнитного поля Джеймса Максвелла.
Джеймс Максвелл (1831–1879) родился в Эдинбурге. Вскоре после рождения мальчика родители увезли его в свое имение Гленлэр. Сначала приглашали учителей на дом. Потом решено было отдать Джеймса в новую школу, носившую громкое название Эдинбургской академии. Максвелл окончил академию одним из первых, и перед ним распахнулись двери Эдинбургского университета.
Будучи студентом, Максвелл выполнил серьезное исследование по теории упругости, получившее высокую оценку специалистов. И теперь перед ним встал вопрос о перспективе его дальнейшей учебы в Кембридже. Объем знаний Максвелла, мощь его интеллекта и самостоятельность мышления позволили ему добиться высокого места в своем выпуске. Он и занял второе место.
Молодой бакалавр был оставлен в Кембридже — Тринити-колледже в качестве преподавателя. Однако его волновали научные проблемы. Помимо его старого увлечения — геометрии и проблемы цветов, которой он начал заниматься еще в 1852 году, Максвелл заинтересовался электричеством.
20 февраля 1854 года Максвелл сообщает Томсону о своем намерении «атаковать электричество». Результат «атаки» — сочинение «О Фарадеевых силовых линиях» — первое из трех основных трудов Максвелла, посвященных изучению электромагнитного поля. Слово «поле» впервые появилось в том самом письме Томсону, но ни в этом, ни в последующем сочинении, посвященном силовым линиям, Максвелл его не употребляет. Это понятие снова появится только в 1864 году в работе «Динамическая теория электромагнитного поля».
Он публикует две основные работы по созданной им теории электромагнитного поля: «О физических силовых линиях» (1861–1862 годы) и «Динамическая теория электромагнитного поля» (1864–1865 годы). За десять лет Максвелл вырос в крупнейшего ученого, творца фундаментальной теории электромагнитных явлений, ставшей, наряду с механикой, термодинамикой и статистической физикой, одним из устоев классической теоретической физики.
«Трактат по электричеству и магнетизму» — главный труд Максвелла и вершина его научного творчества. В нем он подвел итоги многолетней работы по электромагнетизму, начавшейся еще в начале 1854 года. Предисловие к «Трактату» датировано 1 февраля 1873 года. Девятнадцать лет работал Максвелл над своим основополагающим трудом!
Исследования, произведенные Максвеллом, привели его к выводу, что в природе должны существовать электромагнитные волны, скорость распространения которых в безвоздушном пространстве равна скорости света — 300 000 километров в секунду.
Возникнув, электромагнитное поле распространяется в пространстве со скоростью света, занимая все больший и больший объем. Максвелл утверждал, что волны света имеют ту же природу, что и волны, возникающие вокруг провода, в котором есть переменный электрический ток. Они отличаются друг от друга только длиной. Очень короткие волны и есть видимый свет.
«Предположение Максвелла о том, что изменения электрического поля влекут за собой возникновение потока магнитной индукции, явилось следующим шагом вперед, — пишет А.А. Коробко-Стефанов. — Таким образом, возникшее переменное электрическое поле вокруг магнитного, в свою очередь, создает переменное магнитное поле, охватывающее электрическое, которое вновь возбуждает электрическое, и т. д.
Быстропеременные электрические и магнитные поля, распространяющиеся со скоростью света, образуют электромагнитное поле. Электромагнитное поле распространяется в пространстве от точки к точке, создавая электромагнитные волны. Электромагнитное поле в каждой точке характеризуется напряженностью электрического и магнитного полей. Напряженность электрического и магнитного полей — величины векторные, так как характеризуются не только величиной, но и направлением. Векторы напряженности полей взаимно перпендикулярны и перпендикулярны к направлению распространения».
Поэтому электромагнитная волна является поперечной.
Из теории Максвелла вытекало, что электромагнитные волны возникают в том случае, если изменения напряженности электрического и магнитного полей будут происходить очень быстро.
Справедливость максвелловских представлений опытным путем доказал Генрих Герц. В восьмидесятые годы девятнадцатого века Герц приступил к изучению электромагнитных явлений, работая в аудитории длиной 14 метров и шириной 12 метров. Он обнаружил, что если расстояние приемника от вибратора менее одного метра, то характер распределения электрической силы аналогичен полю диполя и убывает обратно пропорционально кубу расстояния. Однако на расстояниях, превышающих 3 метра, поле убывает значительно медленнее и неодинаково в различных направлениях. В направлении оси вибратора действие убывает значительно быстрее, чем в направлении, перпендикулярном оси, и едва заметно на расстоянии 4 метров, тогда как в перпендикулярном направлении оно достигает расстояний, больших 12 метров.
Этот результат противоречит всем законам теории дальнодействия. Герц продолжал исследование в волновой зоне своего вибратора, поле которого он позже рассчитал теоретически. В ряде последующих работ Герц неопровержимо доказал существование электромагнитных волн, распространяющихся с конечной скоростью. «Результаты опытов, поставленных мною над быстрыми электрическими колебаниями, — писал Герц в своей восьмой статье 1888 года, — показали мне, что теория Максвелла обладает преимуществом перед всеми другими теориями электродинамики».
Поле в этой волновой зоне в различные моменты времени Герц изобразил с помощью картины силовых линий. Эти рисунки Герца вошли во все учебники электричества. Расчеты Герца легли в основу теории излучения антенн и классической теории излучения атомов и молекул.
Таким образом, Герц в процессе своих исследований окончательно и безоговорочно перешел на точку зрения Максвелла, придал удобную форму его уравнениям, дополнил теорию Максвелла теорией электромагнитного излучения. Герц получил экспериментально электромагнитные волны, предсказанные теорией Максвелла, и показал их тождество с волнами света.
В 1889 году Герц прочитал доклад «О соотношении между светом и электричеством» на 62-м съезде немецких естествоиспытателей и врачей.
Здесь он подводит итоги своих опытов в следующих словах: «Все эти опыты очень просты в принципе, но, тем не менее, они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла… Насколько маловероятным казалось ранее ее воззрение на сущность света, настолько трудно теперь не разделить это воззрение».
В 1890 году Герц опубликовал две статьи: «Об основных уравнениях электродинамики в покоящихся телах» и «Об основных уравнениях электродинамики для движущихся тел». Эти статьи содержали исследования о распространении «лучей электрической силы» и, в сущности, давали то каноническое изложение максвелловской теории электрического поля, которое вошло с тех пор в учебники.
Поделитесь на страничкеСледующая глава >
info.wikireading.ru
Навигация: DJVU Библиотека Photogallery Брокгауз и Ефрон knolik.com Статистика: | Значение слова «Электромагнитная теория света» в Энциклопедическом словаре Брокгауза и ЕфронаЭлектромагнитная теория света
2. Свет не есть движение упругого твердого тела механики. Всякая теория света должна дать уравнения, которым удовлетворяет световой вектор во всяком месте среды и на её границах. Пока мы рассматриваем не все явления света сразу или рассматриваем явления света независимо от других физических явлений, таких теорий может быть столько, сколько разных физических значений мы можем приписать световому вектору. Естественно поэтому остановиться на самом простом таком значении, именно отождествить то, что названо выше геом. колеб., с самим световым вектором. В этом и заключается теория Грина (Green, 1837), первая строго развитая теория света, в которой эфир является упругим твердым телом нашей механики, только телом несжимаемым, потому что иначе в нем были бы возможны продольные волны. Таковые получались бы при всяком отражения и, встречая новую отражающую поверхность, давали бы частью и поперечные волны, так что, напр., при проходе луча через призму мы бы имели вообще двойное преломление. Такой «твердый» эфир был бы похож своими свойствами на желе. Если ρ плотность тела, а n коэфф. упругости, назыв. крепостью (rigidity), то скорость поперечных волн есть V = Ö п/ρ. Принимая у эфира очень малую плотность и соответственно очень малое же n, получим тело, которое для процессов, быстро протекающих во времени, будет вести себя как твердое тело, но в то же время будет обладать свойствами жидкости в случаях «медленных» движений, вроде движений небесных тел. Но эта механическая теория света давала резко несогласные с опытом выражения яркостей отраженного и преломленного лучей света на границе двух прозрачных сред. Делались попытки привести теорию в согласие с опытом при помощи разного рода допущений о силах, нарочно вводимых на границе двух сред (Кирхгофф [Kirchhoff, 1876] и др.), но этими произвольными допущениями эфиру приписывались свойства, которых нет у упругого твердого тела обычной механики. Правда, в 1888 г. сэр В. Томсон (Sir W. Thomson) пытался рассматривать эфир как упругое тело в роде пены, где скорость продольных волн может быть и нулем. Тогда для явлений отражения света получаются знаменитые формулы Френеля, но, как показал Н. Н. Шиллер, тогда самый процесс в эфире является неопределенным. Если же допустить скорость продольных волн просто очень малой, то окажется возможным появление света на границе двух тел долгое время спустя после того, как эти границы были освещены. Неудовлетворительность механической теории света выяснилась окончательно в средине 80-х годов XIX века. Между тем уже 20 лет ранее Максвелл (J. С. Maxwell) указал, что это механическое толкование смысла светового вектора не только не обязательно и из опытов никоим образом не вытекает, но что с гораздо большим правом можно отождествить световой вектор с некоторыми величинами Э. характера, связав таким образом области электрических, магнитных и световых явлений в одну. 3. Электромагнитные явления как механические процессы в эфире. Когда к середине XIX века были изучены не только экспериментально, но и теоретически, явления электростатики (см.), представление об электричестве как некотором веществе естественно приводило к мысли, что те свойства тел, какие мы определяем словом «электризация», принадлежат, по преимуществу, так назыв. проводникам электричества. Наэлектризованный металлический шар, напр., имеет в себе запас энергии. Но уже в 1842 г. В. Томсон доказал, что эту энергию можно приписать и пространству, окружающему наэлектризованное тело, так назыв. изолятору, причем тогда именно в проводниках энергии не окажется вовсе. С этой точки зрения становилось понятным странное обстоятельство, что в явлениях электростатики не играет никакой роли вещество самого проводника, а все определяется одними геометрическими условиями. Когда же Фарадей обнаружил в явлениях электричества особую роль изоляторов, причем оказалось, что взаимодействие наэлектризованных тел как раз зависит от среды, их разделяющей, для Фарадея стало несомненным, что наблюдаемые нами притяжения и отталкивания наэлектризованных тел имеют свою причину не в этих телах, а в разделяющей их среде. Эта последняя — изолятор — обладая энергией, т. е. находясь в некотором состоянии движения или напряжения (деформация), отличном от состояния равновесия, толкает друг к другу или друг от друга тела, которые мы назыв. наэлектризованными. Взаимодействие тел таким образом является кажущимся, подобно тому как мы имеем кажущиеся притяжения и отталкивания плавающих тел или, напр., тел, приклеенных к натянутой перепонке. Не замечая присутствия жидкости или перепонки, мы могли бы изучать законы этих взаимодействий и приписывать послания самим телам. Но электрические взаимодействия наблюдаются и в безвоздушном пространстве, стало быть, если эти взаимодействия кажущиеся, есть некоторая материальная среда и там, где мы не видим обычной материи, т. е. нам приходится сделать то же заключение, какое мы делаем по поводу явлений света и какое нас привело к открытию эфира. Если же есть эфир, он должен служить и для чего-либо иного, а не только для явлений света, рассуждал Фарадей и заключил, что, вероятно, тот же световой эфир является и носителем электрической энергии, т. е. причиной электростатических притяжений и отталкиваний. Молекулы тел и здесь лишь изменяют свойства эфира. Когда мы наблюдаем взаимодействие наэлектризованных тел, среда между ними (эфир) приходит в особое состояние, распределенное по линиям сил, заполняющим всю среду. Эти линии мы видим, когда, как это делал Фарадей, поместим наэлектризованные тела в жидкий изолятор (терпентин) и подмешаем к последнему мелко настриженных шелковинок. Последние распределятся цепями криволинейной формы, которые и суть линии сил. Кроме явлений электростатики, мы имеем еще явление так наз. постоянного электрического тока, явление несомненно кинетического характера. Здесь что-то движется в проводнике или около него, хотя мы и не знаем, что именно движется и с какой скоростью, и просто поэтому говорим: «движется электричество». Этот кинетический характер явления особенно ясно выступает в так наз. электролитах, где электрический процесс связан с механическим переносом вещества в двух прямопротивоположных направлениях. Если электричество в покое есть проявление некоторых механических процессов в окружающей среде, то понятно, что электричество в движении будет проявлением изменения этих механических процессов со временем и местом. Стало быть, законы взаимодействия тел, наэлектризованных, и тел, обтекаемых токами, должны быть различны. И действительно, мы знаем, что проводники с токами взаимодействуют между собой подобно некоторым магнитам, что и привело к представлению об эквивалентности токов и магнитов и признанию магнитов комбинациями электрических токов молекулярного характера. Таким образом, и взаимодействия токов между собой, и магнитов между собой, и токов с магнитами представляются тоже кажущимися, обусловленными тоже известными механическими процессами в той же среде, каковая вызывает и взаимодействие наэлектризованных тел. В этих новых явлениях железные опилки, насыпанные вблизи токов и магнитов, располагаются тоже цепочками, образуя новые линии сил, называемые магнитными. Эти линии снова указывают на известное распределение в среде каких-то механических свойств, но теперь эти свойства кинетического характера. Когда устанавливается или исчезает электризация тел, или намагничение, или электр. ток; когда передвигаются наэлектризованные тела, токи, магниты — в среде, в известных местах, нарушаются установившиеся уже процессы, в них вносится возмущение, которое, конечно, не может остаться пригвожденным к одному месту среды, а будет передаваться во все стороны с некоторой скоростью. Силовые линии будут постепенно менять свое положение в пространстве соответственно изменению механических явлений в среде, и возмущение механическое мы воспримем как некоторый новый процесс электромагнитного характера, как некоторые новые электрические и магнитные силы. В этом, как известно, и состоят явления так наз. индукции. Поэтому, раз для передачи механического состояния к удаленным точкам среды надо время, то же время понадобится и для проявления в этих точках новых электрических процессов. Наконец, мы можем себе представить, что электромагнитное состояние среды в каком-нибудь её месте меняется со временем периодически; тогда и линии сил будут периодически менять свое положение в пространстве, будут как бы вибрировать. Не есть ли эти вибрации то, что мы называем светом, и скорость света не есть ли скорость распространения электромагнитных возмущений? Таковы были идеи Фарадея (1846), в которых заключается основание современной Э. теории света. Основная идея здесь — признание невозможности действия двух тел друг на друга помимо промежуточной среды, эта идея владела Фарадеем в течение всей его жизни. Эти же идеи далее развивал В. Томсон, указав (1847) возможность механического объяснения электромагнитных явлений как некоторых процессов в упругом теле, правда, особого рода. Точно также Гаусс (Gauss, 1845) искал ключ к электромагнитным явлениям в доказательстве распространения электромагнитных процессов с конечной скоростью, но безуспешно. Честь облечь идеи Фарадея в математическую форму и дать таким образом возможность вывести из них определенные количественные соотношения принадлежит Максвеллу, начавшему работать в этом направлении с 1855 г. 4. Первая Максвеллова теория света и электричества (1861 —1862 гг.) исходила из вполне точных и определенных механических представлений и создалась под влиянием работ В. Томсона. Пусть мы имеем постоянные токи и магниты; железные опилки покажут нам направление линий магнитной силы в любой точке промежуточной среды. Если теперь каждая линия силы есть ось вихря в жидкости, которой мы представляем себе заполненным все пространство, и если все эти вихри вращаются в одну сторону, гидродинамическое давление в жидкости будет слагаться из везде одинакового гидростатического давления и из натяжения вдоль линии сил, пропорционального квадрату скорости жидкости в вихре. Вследствие такого неравенства давлений среда стремится расшириться нормально линиям сил, эти линии стремятся сократиться, и упругие силы этого рода и заставляют двигаться определенными образом токи и магниты, которые при этом нам кажутся притягивающимися или отталкивающимися. Эти кажущиеся взаимодействия оказываются совершенно согласными с наблюдаемыми, если принять, что магнитная сила пропорциональна скорости вихревого движения. Но если мы имеем электрический ток, кругом него есть магнитные силы, т. е. линии вихрей. Каким образом два близ лежащих вихря могут иметь вращение в одну сторону? [В настоящее время мы знаем, что это совершенно возможно.] Максвелл допускает поэтому между соседними вихрями (последние —молекулярных размеров) слой особых, крайне мелких, ультрамолекулярных частичек, могущих вращаться около оси, параллельной оси вихря, и при этом двигаться поступательно. Это — нечто вроде подвижных зубчатых колес в некоторых машинах. Тогда, если представить себе, что во всякой молекуле тела таких частиц очень много и что процесс электрического тока состоит именно в поступательном движении этих частиц, то последние, вращаясь при этом создадут первую вихревую линию (линию магнитной силы) около тока; этот вихрь приведет в движение следующий ряд частичек; они создадут новую линию вихря, лежащую далее от тока, и т. д. И Максвелл показывает, что число частиц, таким образом проходящих через сечение проводника, так же связано со скоростью вихревого движения, как сила электрического тока с магнитной силой. Теплота, развиваемая током, по закону Джоуля (Joule, 1841), есть результата перехода частиц из одной молекулы в другую. Но для того, чтобы частицы могли возбудить вихри и последние заставить частицы катиться, между теми и другими должна быть сила. Максвелл показывает, что эта сила есть то, что мы наз. электрической силой. Явление индукции токов есть, с этой точки зрения, не что иное как процесс постепенной установки или исчезновения стационарного движения в вихрях нашей жидкости. Если ток или магнит движется, то меняется скорость вихревого движения, т. е. меняется движение частичек, стало быть, появляется электрический ток — индуктивный. Различие между проводниками и изоляторами в том, что в первых частицы переходят от молекулы к молекуле, движутся стационарно, тогда как в изоляторах возможно лишь небольшое смещение частиц из положения равновесия внутри молекулы, а затем они уже остаются в новом положении, вращаясь там, где есть вихри, и оставаясь в покое, где магнитной силы нет. Соответственно таким свойствам частиц, наэлектризованный проводник покрыт ими как слоем, и взаимное давление частиц дает то, что мы наз. в электростатике потенциалом. В изоляторе частицы не в естественном положении, а смещены, потому что частицы на поверхности наэлектризованного проводника деформируют те части среды, где нет частиц, а эти деформированные клетки, в свою очередь, смещают свои частицы. Диэлектрик, т. е. изолятор, в этом случай находится в особом состоянии диэлектрической поляризации. Так как при возникновении и при исчезновении этого состояния частицы хотя бы немного, но движутся, а их движение есть электрический ток, то значит и в диэлектриках в это время происходит процесс, эквивалентный току, но не сопровождаемый выделением тепла. Максвелл далее рассматривает всякое тело имеющим одновременно свойства и проводника, и диэлектрика. В таком теле полный электрический ток слагается из двух частей: из движения частиц от молекулы к молекуле и из изменения поляризации со временем. Наконец, клетки жидкости между частицами имеют, по Максвеллу, некоторую крепость, нужную для распространения упругих поперечных колебаний. Тогда оказывается, что взаимодействие двух тел, которые мы называем наэлектризованными, есть кажущееся, вследствие того, что окружающий тела диэлектрик находится в особом состоянии деформации. Таким образом, Максвелл дает полную механическую картину всех явлений электричества и магнетизма, хотя и сам считает ее грубой моделью того, что есть на самом деле в природе. Но эта теория замечательна в четырех отношениях. Во-первых, в ней впервые даны все уравнения, нужные для объяснения Э. явлений с точки зрения действия среды, и даны для всякой точки этой среды; во-вторых, в ней Максвелл разрушил перегородку между проводниками и непроводниками; в-третьих, введенные в теорию и странные, на первый взгляд, частицы, «меньшие атома», оказались 30 лет спустя реально существующими и, наконец, в-четвертых, в этой теории Максвелл впервые высказал, что «свет есть поперечные волны в той самой среде, которая является причиной электрических и магнитных явлений«. И действительно, в среде Максвелла всякому механическому процессу в среде соответствует определенный электромагнитный; значит, поперечные волны в среде, как упругом теле, есть в то же время распространение Э. процессов и с той же скоростью. Поэтому эта скорость должна определиться и чисто электр. путем. И действительно, Максвелл показывает, что скорость этих волн в воздухе, т. е. скорость света, равна одному замечательному числу чисто Э. происхождения. Дело в том, что, принимая за единицу количества электричества такое, которое действует на другое, ему равное, с силой в одну дину на 1 cm расстояния в воздухе, мы можем измерить некоторое количество электричества Е в этих единицах, напр., хотя бы измеряя силу притяжения двух шариков, имеющих заряды + Е и —Е. С другой стороны, определяя единицу количества магнетизма, как такое количество, которое действует на другое, ему равное, с силой в одну дину на 1 cm расстояния в воздухе, мы можем установить иную единицу для количества, электричества, пользуясь тем, что электрический ток оказывает магнитное действие. Эта новая единица, так называемая электромагнитная, не только не равна выше данной, так называемой электростатической, но и не однородна с ней. Здесь мы, до известной степени, поступаем аналогично тому, как если бы мы для измерения длины выбрали с одной стороны некоторую длину за единицу, с другой стороны, некоторое время. Как в этом примере единицы неоднородны и их отношение есть некоторая скорость, так и отношение единицы количества электричества электромагнитной к единице электростатической есть некоторая скорость в воздухе V0. Ее можно определить, если выше упомянутые шарики соединить проволокой и измерить получающийся электрический ток по его магнитному действию; вместо числа Е получим число е и Е/е = V0. Максвелл и обнаружил, что V0 есть как раз скорость поперечных волн в воздухе, а так как опыты давно показывали, что V0 = 300000 km в сек., то, значит, скорость этих волн есть скорость света. Скорость последнего в какой-либо иной среде будет менее в N раз, где N наз. показателем преломления; Максвелл показывает, что скорость электрических волн в иной среде будет менее в Ö K μ раз, где K есть диэлектрическая, а μ магнитная постоянная среды (в K раз уменьшается взаимодействие двух наэлектризованных тел, если воздух между ними заменить данной средой; в μ раз уменьшается взаимодействие двух магнитов, если воздух между ними заменить данной средой). Если волны в обоих случаях тождественны, то должно быть N2 = K μ. В старой оптике показатель преломления определялся неизвестными нам свойствами эфира; в теории Максвелла он оказался связанным с доступными измерению величинами электрического характера. В кристаллах показатели преломления зависят от направления; то же должно иметь место для K μ . 5. Вторая Максвеллова теория света и электричества. Та грубая механическая модель, которой пользовался Максвелл, позволила ему получить все уравнения, нужные для описания явлений электрич., магн. и света. Оставалось придумать иной вывод этих уравнений. Очевидно при этом, что такой вывод мог бы быть трех типов: или мы будем все время оставаться на почве чисто механических представлений, или мы будем пользоваться исключительно электр. и магн. представлениями, или, наконец, мы будем пользоваться представлениями и механическими, и электромагнитными. Последним способом и воспользовался Максвелл в своей второй теории (1864), которую он в окончательном виде опубликовал в 1873 г. Эфир обладает энергией как кинетической, так и потенциальной, причем последняя обусловлена его упругими свойствами. В нем всякая, взятая отдельно, часть механически связана со всей средой, и потому всякое нарушение равновесия, возникшее в одном месте, лишь постепенно, с конечной скоростью передается в другие части среды. С потенциальной энергией среды мы имеем дело, главным образом, в явлениях электростатики. Именно энергия наэлектризованных проводников заключается не в них, а в эфире, вне их; в эфире есть гидростатическое давление, везде одинаковое, и, сверх того, натяжение вдоль линий сил, вдвое большее. Поэтому энергия диэлектриков вокруг наэлектризованных проводников подобна энергии деформированного упругого тела. Только мы не знаем, какие деформации испытывает эфир в этом случае. По Максвеллу, электризация проводников всецело есть проявление этой деформации, а потому ей должен соответствовать в эфире (диэлектрике) и некоторый электрический процесс. Максвелл принимает его состоящим в том, что всякий очень маленький цилиндрик с осью, направленной по линии сил, оказывается наэлектризованным на своих основаниях равными и противоположными по знаку количествами электричества. Благодаря этому, два рядом лежащие цилиндрика проявляют свои электрические свойства лишь на наружных концах, а стало быть, и вся среда обнаружит электрические свойства лишь на концах силовых линий. В этом явлении и состоит поляризация диэлектриков; все заряды проводников есть проявление этой поляризации, а изменение её со временем есть электрический ток, т. е. движение электричества. Когда мы имеем стационарный электрический ток в проводнике, энергия здесь, во-первых, кинетическая, во-вторых, она не может находиться исключительно в проводнике, как энергия текущей по трубке жидкости находится в этой трубке, потому что энергия жидкости не зависит от движений, происходящих вне трубки, в других трубках, а энергия тока зависит и всякое изменением в ней сейчас же сказывается и на других близлежащих проводниках. Это проявляется именно в явлениях индукции. Но и при незнании, что именно движется в проводнике и вне его, когда мы имеем электр. ток, и какое здесь движение, механика дает возможность сделать некоторые общие заключения о свойствах системы. Так, достаточно рассматривать силу тока как величину, связанную с некоторой скоростью движения, чтобы обнаружить целый ряд свойств тока. Таким образом, Максвелл показывает, что законы индукции токов и механического взаимодействия между ними суть простые следствия того, что рассматриваемая система есть система механическая, в которой происходят стационарные движения. Эти соотношения мы могли бы написать, ни разу не упоминая терминов «электричество» или «магнетизм». Пользуясь затем эквивалентностью токов и магнитов, Максвелл устанавливает связь между магнитными силами и токами, и, наконец, определяет полный ток как сумму двух: тока вследствие проводимости среды по закону Ома (Ohm, 1825) и тока вследствие изменения поляризации среды со временем. Тогда оказалось что, если, напр., поляризация эта меняется со временем периодически, в среде образуется волна, которая будет строго поперечна и будет иметь скорость V 0/ Ö Km в среде с постоянными K,m; эта волна будет поглощаться в проводниках, где её энергия будет превращаться в теплоту. Эта волна может быть названа электрической; но она может быть также названа и магнитной, потому что изменение поляризаций со временем есть электрич. ток, а ток всегда сопровождается магнитными действиями и магнитная сила всегда нормальна направлению тока. Поэтому и здесь во всяком месте среды будет изменение и магнитной силы с тем же периодом, магнитная сила будет нормальна к электрической силе и иметь ту же скорость распространения. В механической теории света Грина вопрос о том, совпадает ли световой вектор с плоскостью поляризации или перпендикулярен к ней, оставался нерешенным. В Э. плоской волне Максвелла сразу являются два вектора взаимно перпендикулярных; любое из этих направлений можно считать за плоскость поляризации волны. Таким образом, электр. волна Максвелла оказалась обладающей свойствами световой, т. е. опять свет явился электромагнитным процессом. Максвелл сам распространил свою теорию и на случай кристаллической среды, показав, что теория ведет к согласным с опытом оптическим законам Френеля. Максвелл, наконец, предсказал одно совсем неожиданное явление. Мы видели, что в поляризованном диэлектрике есть механические давления; мы видели также, что взаимодействие токов между собой и с магнитами тоже может быть объяснено другой системой механических давлений. Если теперь в среде есть одновременно и электр. процессы, и магн., обе системы давлений налагаются друг на друга. Когда в среде идет электр. волна (плоская), мы будем иметь как раз этот случай наложения; оказывается, что тогда все эти упругие силы сведутся к одному давлению, направленному вдоль луча и равному энергии единицы объема среды. Понятно, в волне энергия меняется со временем, значит и давление это будет переменно, но в среднем за период оно нe будет нулем. Поэтому волна, падая на пластинку, ее вполне поглощающую, приведет эту пластинку в движение; давление будет вдвое более, если пластинка — идеальное зеркало. Теория Грина не давала этого результата; там механически невозможно давление вдоль луча. Поэтому предсказание Максвелла является решающим для всей теории, ехреrimentum crucis своего рода. 6. Позднейшие теории света и электричества. Вторая теория Максвелла является как бы сборной: то автор остается на почве совершенно неопределенных механических представлений, то пользуется опытными соотношениями между электр. током и вызываемыми им магнитными силами, то, наконец, (в электростатике) как бы прибегает к модели, но не механической, а электрической. Все это вызывало и до сих пор вызывает появление новых Э. теорий света и электричества, стремящихся иным путем придти к тем же конечным уравнениям Максвелла. Но здесь встречаются значительные затруднения. Представляя себе эфир как некоторую среду, отдельные части которой находятся в движении и состоянии деформации, мы можем получить целый ряд механических теорий, различающихся лишь механическим смыслом, приписываемым им электр. и магн. При этом приходится приписывать эфиру специальные ad hoc придуманные свойства и, сверх того, нередко приходить к невозможным или невероятным результатам. Так, оставаясь на почве старого представления В. Томсона о том, что электр. сила есть скорость течения (Больцман [Boltzmann], 1893), получаем чрезвычайно большую величину этой скорости; рассматривая же магнитную силу как скорость течения (Зоммерфельд [Sommerfeld], 1892), придем к невозможности иметь замкнутую наэлектризованную поверхность, как это показал Больцман. Можно также рассматривать магнитную силу как скорость вращательного движения в жидкости (первая теория Максвелла), но не прибегать далее к особым частицам (Эберт [Ebert], 1894), как это делал Максвелл; тогда встречаем то же затруднение, на которое указал Больцман по поводу теории Зоммерфельда и т. д. Много важного внесли в теорию работы Гельмгольца (Helmholtz, 1892) и Больцмана (1891). Первый показал, что к процессам электр. характера приложим тот принцип механики, который называется принципом наименьшего действия: это прямое подтверждение идеи Фарадея и Максвелла о том, что в явлениях электр. характера мы имеем дело с процессами, подчиняющимися обычным законам механики. Второй, интерпретируя теорию Максвелла, указал на то, что движения в эфире, происхождение которых нам неизвестно, но которые мы познаем косвенно в явлениях света и электричества, принадлежат к особому классу замечательных движений, исследованных Гельмгольцем и названных им циклическими, т. е. движениями, совершающимися по замкнутым кривым линиям. Но выше упомянуто, что может быть и третий тип теории — чисто электрического характера. Такой теорией, замечательной во многих отношениях, является теория Гельмгольца (1871). Она пытается получить Максвелловский результат распространения Э. волн с конечной скоростью — скоростью света, не решая a priori вопроса о том, есть ли вообще действие на расстоянии или нет. Гельмгольц допускает, что электр. и магн. действия могут передаваться от тела к телу и через абсолютно пустое пространство. Но если пустота замещена некоторым телом, напр. эфиром, действие на расстоянии приводит последний в особое состояние поляризации — электрической, когда действуют электр. силы, и магнитной, когда действуют силы магнитные. Вследствие этого эфир характеризуется особыми постоянными количествами, определяющими поляризацию e 0, υ 0; всякая иная среда отличается от эфира иной величиной постоянных (e , υ). Тогда оказывается, что скорость продольных электр. волн может быть легко принята бесконечно большой, т. е. таких волн в среде не будет; но скорость поперечных волн в эфире (или что практически то же — в воздухе) оказывается равной не отношению единиц V0 как в теории Максвелла, а V0Ö (1 + 1/ 4p e 0). Чем сильнее влияние поляризации сравнительно с действием на расстоянии, тем больше e 0 и в предельном случае, когда действия на расстоянии вовсе нет, e 0 становится бесконечно большим, скорость поперечных волн делается V0 и все уравнения теории Гельмгольца переходят в уравнения теории Максвелла. Таким образом, оказывается возможным на опыте решить вопрос о том, есть ли в электр. явлениях действие на расстоянии или нет. Еще в 1857 г. Кирхгофф показал, что вдоль металлических проволок могут идти электр. волны (как звуковые волны по трубам) и именно со скоростью V0/Ö Km, и этот результат получен на почве старых представлений об электр. и магн. Этот же результат получается и в теории Максвелла. Таким образом, различие двух взглядов в этих явлениях не сказывается; оно обнаруживается лишь, когда электр. волны свободны. Все опыты определения этих скоростей настолько трудны, что вряд ли в скором времени удастся доказать, (как и определения скорости света), что ε 0 измеряется, напр., миллионами. Вообще же, чем точнее опыты измерения этих скоростей, тем большее число получается для ε 0. Если не прибегать к помощи действия на расстоянии, то вывод уравнений Максвелла чисто электр. путем представляется затруднительным. Поэтому Герц (Hertz, 1890) вовсе отказался Статья про слово «Электромагнитная теория света» в Энциклопедическом словаре Брокгауза и Ефрона была прочитана 1903 раз |
Брокгауз и Ефрон, избраное |
be.sci-lib.com
ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТАВажнейшим достижением периода конца XIX века в области физики явилось выдвижение Максвеллом электромагнитной теории света. Тем самым были обобщены в одной всеобъемлющей теории и получили простую математическую формулу результаты опытов и теоретических построений двух поколений физиков в различных областях этой науки — электричестве, магнетизме и оптике. Хотя такое обобщение само по себе и представляло победу математической физики, все же оно нуждалось для своего подтверждения в установлении точных единиц для измерения электричества — задача, которая была поставлена возникновением электротехнической промышленности. В свою очередь уравнения Максвелла должны были составить теоретическую базу будущего электромашиностроения, представлявшего собой сложную взаимозависимость теории и практики. В начале пользовались оптической гипотезой упругой среды, через которую распространяются колебания света, чтобы показать, что имеются серьезные основания искать в этой же среде причину других явлений в той же мере, как и причину световых явлений. Мы рассмотрели электромагнитные явления, пытаясь их объяснить свойствами поля, окружающего наэлектризованные или намагниченные тела. Таким путем пришли к определенным уравнениям, выражающим определенные свойства электромагнитного поля. Исследовалось, являются ли свойства того, что составляет электромагнитное поле которые выведены только из электромагнитных явлений, достаточными для объяснения распространения света через ту же самую субстанцию. Единственной средой, в которой производились опыты для определения значения k, был воздух, в котором равно единице, откуда имеется V=v. Согласно электромагнитным опытам Вебера и Кольрауша, v== 310740000 м/с является количеством электростатических единиц в одной электромагнитной единице электричества, и это, согласно нашему результату, должно быть равно скорости света в воздухе или вакууме. Скорость света в воздухе по опытам Физо равна V = 314 858 000 [м/с], а согласно более точным опытам Фуко, V = 298 000 000 [м/с]. Скорость света в пространстве, окружающем Землю, выведенная из коэффициента аберрации и из радиуса земной орбиты, равна V = 308 000 000 [м/с]. Следовательно, скорость света, определенная экспериментально, достаточно хорошо совпадает с величиной V, выведенной из единственного ряда экспериментов, которыми мы до сих пор располагаем. Значение V было определено путем измерения электродвижущей силы, используемой для зарядки конденсатора известной емкости, который затем разряжается через гальванометр, чтобы выразить количество электричества в нем в электромагнитных единицах. Единственным применением света в этих опытах было использование его для того, чтобы видеть инструменты. Значение V, найденное Фуко, было получено путем определения угла, на который поворачивается вращающееся зеркало, пока отраженный им свет прошел туда и обратно вдоль измеренного пути. При этом не пользовались каким-либо образом электричеством и магнетизмом. Совпадение результатов, по-видимому, показывает, что свет и магнетизм являются проявлениями свойств одной и той же субстанции и что свет является электромагнитным возмущением, распространяющимся через поле в соответствии с законами электромагнетизма. Уравнения электромагнитного поля, выведенные из чисто экспериментальных фактов, показывают, что могут распространяться только поперечные колебания. Если выйти за пределы нашего экспериментального знания и предположить определенную плотность субстанции, которую мы могли бы назвать электрической жидкостью, и выбрать стеклянное или смоляное электричество в качестве представителей этой жидкости, тогда мы могли бы иметь продольные колебания, распространяющиеся со скоростью, зависящей от этой плотности. Однако мы не имеем никаких данных, относящихся к плотности электричества, и мы даже не знаем, считать ли нам стеклянное электричество субстанцией или отсутствием субстанции. Следовательно, наука об электромагнетизме ведет к совершенно таким же заключениям, как и оптика в отношении направления возмущений, которые могут распространяться через поле; обе эти науки утверждают поперечность этих колебаний и обе дают ту же самую скорость распространения. С другой стороны, обе науки бессильны, когда к ним обращаются с вопросом о подтверждении или отрицании существования продольных колебаний. |
alexlat.ucoz.ru