Закон это в биологии определение – Закон это определение в биологии

Содержание

Биогенетический закон — это… Что такое Биогенетический закон?

Биогенетический закон Геккеля-Мюллера (также известен под названиями «закон Геккеля», «закон Мюллера-Геккеля», «закон Дарвина-Мюллера-Геккеля», «основной биогенетический закон»): каждое живое существо в своем индивидуальном развитии (онтогенез) повторяет в известной степени формы, пройденные его предками или его видом (филогенез)[1].

Зародыши по Геккелю. Рисунок из книги Ремане (1892), воспроизводящий исходную иллюстрацию Геккеля

Сыграл важную роль в истории развития науки, однако в настоящее время в своем исходном виде не признается современной биологической наукой.[2][3] По современной трактовке биогенетического закона, предложенной русским биологом А. Н. Северцовым в начале 20 века, в онтогенезе происходит повторение признаков не взрослых особей предков, а их зародышей.[4]

История создания

Фактически «биогенетический закон» был сформулирован ещё задолго до возникновения дарвинизма.

Немецкий анатом и эмбриолог Мартин Ратке (1793—1860) в 1825 г. описал жаберные щели и дуги у эмбрионов млекопитающих и птиц — один из наиболее ярких примеров рекапитуляции

[источник не указан 469 дней].

В 1824—1826 годах Этьен Серра сформулировал «закон параллелизма Меккеля-Серра»: каждый организм в своем эмбриональном развитии повторяет взрослые формы более примитивных животных[источник не указан 469 дней].

В 1828 году Карл Максимович Бэр, основываясь на данных Ратке и на результатах собственных исследований развития позвоночных, сформулировал закон зародышевого сходства: «Эмбрионы последовательно переходят в своем развитии от общих признаков типа ко все более специальным признакам. Позднее всего развиваются признаки, указывающие на принадлежность эмбриона к определенному роду, виду, и, наконец, развитие завершается появлением характерных особенностей данной особи». Бэр не придавал этому «закону» эволюционного смысла (он до конца жизни так и не принял эволюционного учения Дарвина), однако позднее этот закон стал рассматриваться как «эмбриологическое доказательство эволюции» (см. Макроэволюция) и свидетельство происхождения животных одного типа от общего предка.

«Биогенетический закон» как следствие эволюционного развития организмов впервые был сформулирован (довольно нечётко) английским естествоиспытателем Чарльзом Дарвином в его книге «Происхождение видов» в 1859 г: «Интерес эмбриологии значительно повысится, если мы будем видеть в зародыше более или менее затененный образ общего прародителя, во взрослом или личиностном его состоянии, всех членов одного и того же большого класса» (Дарвин Ч. Соч. М.-Л., 1939, т. 3, с. 636.)[5]

За 2 года до формулировки Эрнстом Геккелем биогенетического закона сходную формулировку предложил на основе своих исследований развития ракообразных работавший в Бразилии немецкий зоолог Фриц Мюллер[6]. В своей книге «За Дарвина» (Für Darwin), изданной в 1864 году, он выделяет курсивом мысль: «историческое развитие вида будет отражаться в истории его индивидуального развития».

Краткая афористичная формулировка этого закона была дана немецким естествоиспытателем Эрнстом Геккелем в 1866 г. Краткая формулировка закона звучит следующим образом: Онтогенез есть рекапитуляция филогенеза (во многих переводах — «Онтогенез есть быстрое и краткое повторение филогенеза»).

Примеры выполнения биогенетического закона

Яркий пример выполнения биогенетического закона — развитие лягушки, включающее в себя стадию головастика, который по своему строению гораздо больше похож на рыб, чем на земноводных:

У головастика, как и у низших рыб и рыбьих мальков, основой скелета служит хорда, только впоследствии в туловищной части обрастающая хрящевыми позвонками. Череп у головастика хрящевой, и к нему примыкают хорошо развитые хрящевые дуги; дыхание жаберное. Кровеносная система также построена по рыбьему типу: предсердие ещё не разделилось на правую и левую половины, кровь в сердце поступает только венозная, а оттуда через артериальный ствол идёт к жабрам. Если бы развитие головастика остановилось на этой стадии и не шло дальше, мы должны были бы без всяких колебаний отнести такое животное к надклассу рыб.

[7]

Зародыши не только земноводных, но и всех без исключения позвоночных животных также имеют на ранних стадиях развития жаберные щели, двухкамерное сердце и другие признаки, характерные для рыб. Например, птичий зародыш в первые дни насиживания также представляет собой хвостатое рыбообразное существо с жаберными щелями. На этой стадии будущий птенец обнаруживает сходство и с низшими рыбами, и с личинками амфибий, и с ранними стадиями развития других позвоночных животных (в том числе и человека[7][8]). На последующих стадиях развития зародыш птицы становится похожим на пресмыкающихся:

И пока у куриного зародыша до конца первой недели и задние, и передние конечности имеют вид одинаковых лапок, пока хвост ещё не успел исчезнуть, а из сосочков ещё не сформировались перья, он по всем своим признакам стоит ближе к пресмыкающимся, чем к взрослым птицам.

[7]

Зародыш человека в ходе эмбриогенеза проходит через аналогичные стадии. Затем, за период примерно между четвертой и шестой неделями развития он превращается из рыбоподобного организма в организм, неотличимый от зародыша обезьяны, и только потом приобретает человеческие черты.[9][10]

Такое повторение признаков предков в ходе индивидуального развития особи Геккель назвал рекапитуляция.

Существует множество других примеров рекапитуляций, которые подтверждают выполнение «биогенетического закона» в некоторых случаях. Так, при размножении наземного рака-отшельника пальмового вора его самки перед вылуплением личинок заходят в море, и там из яиц выходят планктонные креветкообразные личинки зоэа, имеющие вполне симметричное брюшко. Затем они превращаются в глаукотоэ и оседают на дно, где находят подходящие раковины брюхоногих моллюсков. Некоторое время они ведут образ жизни, характерный для большинства раков-отшельников, и на этой стадии имеют характерное для этой группы мягкое спиральное брюшко с асимметричными конечностями и дышат жабрами. Выросшие до определенных размеров пальмовые воры покидают раковину, выходят на сушу, приобретают жесткое укороченное брюшко, похожее на абдомен крабов, и навсегда утрачивают способность дышать в воде.

Столь полное выполнение биогенетического закона возможно в тех случаях, когда эволюция онтогенеза происходит путем его удлинения — «надставки стадий»:

  1. a1 — a2
  2. a1′ — a2′ — a3′
  3. a1″ — a2″ — a3″ — a4″

(На этой схеме сверху вниз расположены виды-предки и виды-потомки, а слева направо — стадии их онтогенеза.)

Факты, противоречащие биогенетическому закону

Уже в XIX веке было известно достаточно фактов, противоречащих биогенетическому закону. Так, были известны многочисленные примеры неотении, при которой в ходе эволюции происходит укорочение онтогенеза и выпадение его конечных стадий. В случае неотении взрослая стадия вида-потомка напоминает личиночную стадию вида-предка, а не наоборот, как этого следовало бы ожидать при полной рекапитуляции.

Также было хорошо известно, что, вопреки «закону зародышевого сходства» и «биогенетическому закону», весьма резко различаются по строению самые ранние стадии развития зародышей позвоночных — бластула и гаструла — и лишь на более поздних стадиях развития наблюдается «узел сходства» — стадия, на которой закладывается план строения, характерный для позвоночных, и зародыши всех классов действительно похожи друг на друга. Различия ранних стадий связаны с разным количеством желтка в яйцеклетках: при его увеличении дробление становится сначала неравномерным, а затем (у рыб, птиц и рептилий) неполным поверхностным. В результате меняется и строение бластулы — целобластула имеется у видов с маленьким количеством желтка, амфибластула — со средним и дискобластула — с большим. Кроме того, ход развития на ранних стадиях резко изменяется у наземных позвоночных в связи с появлением зародышевых оболочек.

Связь биогенетического закона с дарвинизмом

Биогенетический закон часто рассматривается как подтверждение дарвиновской теории эволюции, хотя он вовсе не следует из классического эволюционного учения.

Например, если вид А3 возник путём эволюции из более древнего вида А1 через ряд переходных форм (A1 =>А2 => A3), то, в соответствии с биогенетическим законом (в его модифицированном варианте), возможен и обратный процесс, при котором вид А3 превращается в А2 путем укорочения развития и выпадения его конечных стадий (неотения или педогенез).

Дарвинизм и синтетическая теория эволюции, напротив, отрицают возможность полного возврата к предковым формам (Закон необратимости эволюции Долло). Причиной этого, в частности, являются перестройки эмбрионального развития на его ранних стадиях (архаллаксисы по А. Н. Северцову), при которых генетические программы развития меняются настолько существенно, что их полное восстановление в ходе дальнейшей эволюции становится практически невероятным.

Научная критика биогенетического закона и дальнейшее развитие учения о связи онтогенеза и филогенеза

Накопление фактов и теоретические разработки показали, что биогенетический закон в формулировке Геккеля в чистом виде никогда не выполняется. Рекапитуляция может быть только частичной.

Эти факты заставили многих эмбриологов полностью отвергать биогенетической закон в Геккелевских формулировках. Так, С. Гилберт пишет: «Такая точка зрения (о повторении онтогенезом филогенеза) была научно дискредитирована даже раньше, чем была предложена,… Поэтому она распространилась в биологии и общественных науках… прежде, чем было показано, что в ее основе лежат ложные предпосылки»[11].

Столь же резко высказываются Р. Рэфф и Т. Кофмен[12]:»Вторичное открытие и развитие Менделевской генетики на рубеже двух столетий покажет, что в сущности биогенетический закон — это всего лишь иллюзия» (с.30), «Последний удар биогенетическому закону был нанесен тогда, когда стало ясно, что …морфологические адаптации имеют важное значение… для всех стадий онтогенеза» (с.31).

В каком-то смысле в биогенетическом законе перепутаны причины и следствия. Филогенез есть последовательность онтогенезов, следовательно, изменения взрослых форм в ходе филогенеза могут основываться только на изменениях онтогенеза. К такому пониманию соотношения онтогенеза и филогенеза пришел, в частности, А. Н. Северцов, который в 1912—1939 гг разработал теорию филэмбриогенезов[13][1]. Согласно Северцову, все эмбриональные и личиночные признаки делятся на ценогенезы и филэмбриогенезы. Термин «ценогенез», предложенный Геккелем, Северцов трактовал иначе; для Геккеля ценогенез (любые новые признаки, искажавшие рекапитуляцию) был противоположностью палингенеза (сохранения в развитии неизменных признаков, имевшихся и у предков). Северцов термином «ценогенез» обозначал признаки, которые служат приспособлениями к эмбриональному или личиночному образу жизни и у взрослых форм не встречаются, так как не могут иметь для них адаптивного значения. К ценогенезам Северцов относил, например, зародышевые оболочки амниот (амнион, хорион, аллантоис), плаценту млекопитающих, яйцевой зуб зародышей птиц и рептилий и др.

Филэмбриогенезы — это такие изменения онтогенеза, которые в ходе эволюции приводят к изменению признаков взрослых особей. Северцов разделил филэмбриогенезы на анаболии, девиации и архаллаксисы. Анаболия — удлинение онтогенеза, сопровождающееся надставкой стадий. Только при этом способе эволюции наблюдается рекапитуляция — признаки зародышей или личинок потомков напоминают признаки взрослых предков. При девиации происходят изменения на средних стадиях развития, что приводят к более резким изменениям в строении взрослого организма, чем при анаболии. При этом способе эволюции онтогенеза рекапитулировать признаки предковых форм могут лишь ранние стадии потомков. При архаллаксисах изменения происходят на самых ранних стадиях онтогенеза, изменения в строении взрослого организма наиболее часто существенны, а рекапитуляции невозможны.

Литература

  • Дарвин Ч., Происхождение видов…, Соч., т. 3, М., 1939
  • Мюллер Ф. и Геккель Э., Основной биогенетический закон, М.— Л., 1940
  • Козо-Полянский Б. М., Основной биогенетический закон с ботанической точки зрения, Воронеж, 1937
  • Северцов А. Н., Морфологические закономерности эволюции, М.—Л., 1939
  • Шмальгаузен И. И., Организм как целое в индивидуальном и историческом развитии, М.—Л., 1942
  • Мирзоян Э. Н., Индивидуальное развитие и эволюция, М., 1963.

Примечания

  1. Значение «Биогенетический закон» в Большой советской энциклопедии
  2. Gerhard Medicus (1992). «The Inapplicability of the Biogenetic Rule to Behavioral Development» (PDF). Human Development 35 (1): 1–8. ISSN 0018-716X/92/0351/0001-0008. Проверено 2008-04-30.
  3. Северцов А. Н., Морфологические закономерности эволюции, М.—Л., 1939
  4. Биогенетический закон — Биологический словарь
  5. Н. Н. Воронцов. Эрнст Геккель и судьбы учения Дарвина
  6. Биогенетический закон Геккеля-Мюллера
  7. 1 2 3 А.А Яхонтов. Зоология для учителя. М., Просвещение, 1985
  8. Доказательства эволюции: палеонтология, эмбриология
  9. Антропогенез Человека разумного
  10. И. И. Мечников. Этюды о природе человека
  11. Гилберт С. Биология развития. М., Мир, 1993, т.1, с. 146
  12. Р. Рэфф, Т. Кофмен. Эмбрионы, гены и эволюция. М., Мир, 1986, с.30-31
  13. Н. Н. Иорданский. Эволюция жизни. М.: Академия, 2001. 425 с.

См. также

Ссылки

dikc.academic.ru

Биогенетический закон — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 ноября 2018; проверки требуют 7 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 ноября 2018; проверки требуют 7 правок.

Биогенетический закон Геккеля—Мюллера (также известен под названиями «закон Геккеля», «основной биогенетический закон»): каждое живое существо в своём индивидуальном развитии (онтогенез) повторяет, в известной степени, формы, пройденные его предками или его видом (филогенез)[1].

Зародыши по Геккелю. Рисунок из книги Ремане (1892), воспроизводящий исходную иллюстрацию Геккеля

Биогенетический закон сыграл заметную роль в истории развития науки, однако в ХХ веке был опровергнут и не признается современной биологической наукой [2][3] (см. далее).

ru.wikipedia.org

история, суть, применение :: SYL.ru

Многие сталкивались с таким понятием, как биогенетические законы развития, но мало кто может объяснить их смысл. Сейчас этот термин употребляется редко из-за критики современных ученых. В чем суть биогенетического закона? Кратко это понятие можно описать так: каждый живой организм в своем развитии проходит в определенной степени те же этапы, что и его предки.

Исторические сведения

Впервые биогенетический закон сформулирован Чарлзом Дарвином в его известном труде «Происхождение видов», изданном в 1859 году. Однако его формулировка была довольно туманной. Более четкое определение понятию биогенетический закон развития дал Эрнст Геккель – знаменитый немецкий ученый, который ввел в обращение такие термины, как онтогенез, экология, филогенез и некоторые другие, а также знаменитый своей теорией о происхождении многоклеточных организмов.

Формулировка Геккеля гласила, что онтогенез организма является повторением филогенеза, то есть исторического развития организмов того же вида. Биогенетический закон долгое время называли «законом Геккеля», как дань уважения блестящему ученому.

Независимо от Геккеля собственное определение биогенетического закона сформулировал другой немецкий естествоиспытатель Фриц Мюллер в 1864 году.

Связь с эволюционной теорией

Модифицированное определение биогенетического закона, согласно которой один вид может приобрести признаки вида, существовавшего ранее, подтверждает эволюционную теорию. Из-за сокращения этапов онтогенеза и архаллаксисов организм приобретает некоторые черты, свойственные его давним предкам, однако приобрести все свойственные им признаки он не может. Это подтверждает второй закон термодинамики для живых организмов (невозможность самопроизвольного уменьшения энтропии в открытой системе) и закон необратимости эволюционных процессов (восстановление утраченных в ходе эволюционного процесса признаков невозможно).

Критика

Биогенетический закон в том виде, в котором его сформулировал Эрнст Геккель, подвергся жесткой критике со стороны исследователей. Большинство ученых сочли доводы коллеги недоказуемыми. Еще в конце 19-го века, когда исследователи захотели узнать, в чем суть биогенетического закона, они обнаружили некоторые противоречия и несоответствия истине. Из наблюдений и экспериментов стало ясно, что онтогенез не полностью, а только отчасти повторяет этапы филогенеза. Примером этого является явление неотении – сокращение онтогенеза и выпадение его отдельных стадий. Неотения характерна для личинок амбистом – аксолотлей, которые из-за индивидуальных гормональных особенностей достигают половой зрелости на стадии личинки.

Понятие, обратное неотении, — анаболия, — определяется как удлинение онтогенеза, появление дополнительных стадий в развитии организма. При такой форме онтогенеза зародыш действительно проходит те же стадии развития, что и его взрослые предки. Однако при анаболии не исключена возможность того, что на поздней стадии развития онтогенез не пойдет другим путем и организм не приобретет определенные отличия от взрослых особей его же вида. То есть, полное повторение всех этапов развития предков того же вида невозможно, так как онтогенез организма происходит под влиянием различных факторов (воздействие окружающей среды, спонтанные мутации в геноме), а не только за счет реализации генетического материала.

Российский биолог А. Северцов ввел термин архаллаксис – такое изменение онтогенеза, при котором самые ранние стадии развития организма отличаются от филогенеза его предков. Очевидно, что рекапитуляция (повторение) признаков, свойственных взрослым особям этого же вида, невозможно, и организм приобретает новые, ранее не свойственные его виду признаки.

Итог

Из ряда научных исследований стало ясно, что сформулированный Геккелем биогенетический закон имеет множество исключений и противоречий. Ученый был уверен в том, что онтогенез полностью повторяет филогенез. В этом была его ошибка. На самом деле филогенез сформирован из ряда онтогенезов представителей определенного вида, а не наоборот. Сейчас термин «биогенетический закон» не применяется в научной литературе.

www.syl.ru

Основные законы эволюции живого вещества в биосфере

Перечисленные законы являются эмпирическими и предложенными в период развития экологии, когда она была большей частью наблюдательной наукой.

Закон необратимости эволюционных процессов

Закон необратимости эволюционных процессов (Луи Долло) — эволюционные процессы необратимы. Организм не может вернуться хотя бы частично к предшествующему состоянию.

Закон ускорения темпов эволюции

Закон ускорения темпов эволюции — в течение геологического времени происходит ускорение биологической эволюции. Наблюдается закономерное сокращение протяжённости геологических эр (так, палеозойская эра длилась 340 млн лет, мезозойская эра — 170 млн лет, кайнозойская эра — 60 млн лет), что отражает ускорение темпов эволюции. Между началом и концом каждой эры наступали кардинальные изменения в составе фауны и флоры.

Закон неравномерности эволюционного развити

Закон неравномерности эволюционного развития — эволюция отдельных групп организмов протекает с разной скоростью. Существуют консервативные группы, практически не изменившиеся в ходе геологического времени. Наиболее консервативными оказались некоторые бактерии, по существу не изменившиеся со времени раннего докембрия. К «живым ископаемым» (термин Ч.Дарвина) относятся древовидные папоротники, головоногий моллюск наутилус и другие. Консервативные формы составляют небольшую часть известных организмов.

Закон увеличения разнообразия организмов

Закон увеличения разнообразия организмов — в ходе эволюции биосферы количество видов организмов возрастало по экспоненте и достигло современного значения, которое оценивается разными специалистами от 5 до 10 млн видов.

Закон скачкообразного характера эволюции

Закон скачкообразного характера эволюции — на фоне общей тенденции ускорения эволюции наблюдались отдельные эпохи повышенного видообразования. Промежутки между этими эпохами характеризовались затуханием видообразования и вымиранием организмов.

Закон цефализации

Закон цефализации — в ходе геологического времени происходит необратимое развитие головного мозга. Цефализация особенно ярко наблюдается в ряду позвоночных животных — от рыб до человека.

Этот закон эмпирически вывел североамериканский геолог и биолог Д. Д. Дана (1813-1895). Его соотечественник, Д. Ле-Конт (1823-1901), назвал этот закон «психозойской эрой»[1].

Биохимические законы

В.И.Вернадский вывел два фундаментальных закона (сам он назвал их «принципами») развития биосферы.

Первый биогеохимический закон — биогенная миграция химических элементов в биосфере стремится к своему максимальному проявлению. Анализ геологических данных показывает, что распространение жизни, живых существ (давление жизни) неуклонно нарастает. Живые организмы способны занимать самые различные экологические ниши, сохраняться в самых неблагоприятных условиях (в горячих и серных источниках, на дне океанов, на ледниках). Это дало основание говорить о «всюдности» жизни (термин Вернадского).

Второй биохимический закон — эволюция видов, приводящая к созданию форм жизни, устойчивых в биосфере, должна идти в направлении, увеличивающем проявление биогенной миграции атомов в биосфере. Согласно этому закону, в биосфере право на жизнь получают только виды, необходимые самой биосфере для выполнения определённых функций и усиления тем самым биогенной миграции химических элементов.

По законам Вернадского, биосфера на определённой стадии своего развития преобразуется в сферу разума — ноосферу.

Биогенетический закон

Биогенетический закон Геккеля-Мюллера: каждое живое существо в своем индивидуальном развитии (онтогенез) повторяет в известной степени формы, пройденные его предками или его видом (филогенез).

Примечания

См. также

Ссылки

  1. В.Ф.Левченко Модели в теории биологической эволюции
  2. А.С.Раутиан Букет законов эволюции
  3. А.С.Раутиан Палеонтология как источник сведений о закономерностях и факторах эволюции
  4. Л.П.Татаринов Необратимость эволюции и её направленность
  5. А.П.Руденко Химическая эволюция и биогенез
  6. Г.А.Петрова Параллели Эволюции

Источники информации

  1. Камишлов М. М. Эволюция биосферы. — М.:Наука, 1979
  2. Справочник школьника: 5-11 классы. — СПб.: Сова; М.:ЭКСМО-Пресс, 2001.

dic.academic.ru

Биогенетический закон [Геккеля-Мюллера] — теория, учение, гипотеза, положения, формулировка, доказательства, принципы, вики — WikiWhat

Основная статья: Эмбриологические доказательства эволюции

Содержание (план)

Биогенетический закон Геккеля-Мюллера гласит о кратком повторении филогенеза в онтогенезе. Этот закон был открыт во второй поло­вине XIX в. немецкими учёными Э. Геккелем и Ф. Мюллером.

Биоге­нетический закон находит отражение в развитии многих представителей животного мира. Так, головастик повторяет стадию развития рыб, которые являются предками земно­водных. Биогенетический закон справедлив также и по отношению к растениям. Например, у всходов культурных сортов хлопчатника по­являются сначала целостные пласти­ночные листья, из которых затем развиваются двух-, трёх-, четырёх-, пятилопастные листья. У диких видов хлопчатника G. raimondii и G. klotzschianum листья на стебле пред­ставляют собой цельную пластину. Следовательно, культурные сорта хлопчатника в процессе своего индивидуального развития вкратце повторяют историческое развитие своих предков.

Однако в процессе индивидуального развития повторяются не все, а только некоторые этапы исторического развития предков, остальные же выпадают. Это объясняется тем, что историческое развитие предков длится миллионы лет, а индиви­дуальное развитие — непродолжительное время. Кроме того, в онтогенезе повторяются не стадии взрослых форм предков, а их эмбриональные этапы развития.

Теория филэмбриогенеза

Естественно, возникает вопрос: если филогенез оказывает влияние на онтогенез, то не может ли онтогенез оказать влияние на филогенез? Следует подчеркнуть, что в онтогенезе не только выпадают некоторые этапы развития предков, но и происходят изменения, не наблю­давшиеся в филогенезе. Это доказал русский учёный А. Н. Северцов своей теорией филэмбриогенеза. Материал с сайта http://wikiwhat.ru

Известно, что мутационная изменчивость происходит на разных этапах эмбрионального развития особи. Организмы с полезными мутациями выживают в борьбе за существование и естественном отборе, передавая полезные мутации из поколения в поколение, и, в конце концов, изменяют ход филогенеза. Например, у пресмыкающихся клетки эпителия кожи, а под ним и соединительной ткани, развиваясь, образуют чешуйки. А у млекопитающих производные эпителиальной и соединительной ткани, изменяясь, образуют под кожей волосяной мешок.

На этой странице материал по темам:
  • 7 законов мюллера

  • Геккель мюллер закон год

  • Краткое сообщение геккель биогенетический закон

  • Биогенетический закон геккеля мюллера относится к доказательствам эволюции

  • Закон шеккель мюллера

Вопросы к этой статье:
  • Кто является автором теории филэмбриогенеза?

wikiwhat.ru

Что такое биология? Определение термина

С первых дней жизни человек неразрывно связан с биологией. Знакомство с этой наукой начинается еще со школьной парты, но сталкиваться с биологическими процессами или явлениями нам приходится каждый день. Далее в статье мы рассмотрим, что такое биология. Определение этого термина поможет лучше понять, что же входит в круг интересов названной науки.

Что изучает биология

Первое, что рассматривается при изучении какой-либо науки, — это теоретическое объяснение ее значения. Так, существует несколько сформулированных определений, что такое биология. Мы рассмотрим несколько из них. Например:

  • Биология — это наука обо всех живых организмах, обитающих на Земле, их взаимодействии друг с другом и с окружающей средой. Подобное разъяснение наиболее распространено в учебной школьной литературе.
  • Биология — это комплекс учений, который занимается рассмотрением и познанием живых объектов природы. Человек, животные, растения, микроорганизмы — все это представители живых организмов.
  • А самое короткое определение звучит так: биология — это наука о жизни.

Происхождение термина имеет древнегреческие корни. Если перевести дословно, то перед нами будет еще одно определение, что такое биология. Слово состоит из двух частей: «био» — «жизнь», и «логос» – «учение». То есть все, что тем или иным образом имеет отношение к жизни, попадает в сферу изучения биологии.

Подразделы биологии

Определение биологии станет более полным при перечислении разделов, входящих в эту науку:

  1. Зоология. Она занимается изучением животного мира, классификацией животных, их внутренней и внешней морфологией, жизнедеятельностью, взаимосвязью с миром, влиянием на человеческую жизнь. Кроме того, зоология рассматривает редкие, а также вымершие виды животных.
  2. Ботаника. Это раздел биологии, имеющий отношение к растительному миру. Она занимается изучением видов растений, их строения и физиологических процессов. Помимо основных вопросов, связанных с морфологией растений, эта категория биологии изучает применение растений в промышленности, жизни человека.
  3. Анатомия рассматривает внутреннее и внешнее строение организма человека и животных, систем органов, взаимодействие систем.

Каждый биологический раздел имеет ряд собственных подкатегорий, каждая из которых занимается изучением более узких тем раздела. В этом случае определений биологии будет несколько.

Что изучает биология

Поскольку определения биологии гласят, что это наука о живом, следовательно, объектами ее изучения являются живые организмы. К таковым относятся:

  • человек;
  • растения;
  • животные;
  • микроорганизмы.

Биология занимается изучением и более точных структур организма. К ним относятся:

  1. Клеточные, молекулярные — это рассмотрение организмов на уровне клеток и более мелких составляющих.
  2. Тканевые — комплекс клеток одной направленности складывается в тканевые структуры.
  3. Органные — клетки и ткани, выполняющие одну функцию, образуют органы.
  4. Организменные — система клеток, тканей и органов и их взаимодействие между собой, образует полноценный живой организм.
  5. Популяционные — структура направлена на изучение жизни особей одного вида на единой территории, а также их взаимодействие внутри системы и с другими видами.
  6. Биосферные.

Биология тесно связана с медициной, поэтому ее учения являются также и медицинскими темами. Изучение микроорганизмов, а также молекулярных структур живых веществ способствует получению новых медикаментозных средств по борьбе с различными заболеваниями.

С какими науками пересекается биология

Биология — это наука, которая обладает тесным взаимодействием с различными науками других направлений. К ним относятся:

  1. Химия. Биология и химия обладают тесным переплетением тем и неразрывно связаны друг с другом. Ведь в биологических объектах непрерывно происходят различные биохимические процессы. Простым примером можно назвать дыхание организмов, фотосинтез растений, метаболизм.
  2. Физика. Даже в биологии есть подраздел, называющийся биофизикой, который исследует физические процессы, связанные с жизнедеятельностью организмов.

Как видите, биология — многогранная наука. Определение, что такое биология, можно перефразировать по разному, но смысл остается один — это учение о живых организмах.

fb.ru

Термины генетики | Биология

На протяжении истории генетики термины (понятия), используемые в ней, пополнялись и уточнялись. Определения основным терминам были даны еще до появления молекулярной генетики, во времена так называемой «классической генетики». Но до сих пор некоторые понятия не имеют четкого определения.

Генетическая терминология в полном объеме многообразна, здесь будут упомянуты только основные понятия и обозначения.

С точки зрения классической генетики ген является единицей наследственности, структурой, кодирующей отдельный признак. Когда же была выяснена структура ДНК, то понятие гена несколько видоизменилось. Чаще встречается такое определение: ген — это участок ДНК, на котором закодирован определенный полипептид или молекула РНК. Однако, дальнейшие исследования показали, что иногда один и тот же участок ДНК может кодировать разные белки (например, по разному происходит созревание пре-иРНК).

Каждый ген, отвечающий за проявление того или иного признака, может существовать в состоянии разных аллелей, которые по-разному проявляют один и тот же признак. Например, цвет глаз — это признак, кодируемый определенным геном. А голубые глаза, карие, зеленые — это проявление разных аллелей (состояний) гена. Аллели по-другому называют аллельными генами. Аллели — это варианты одного гена, которые возникают в результате его мутаций.

Каждая диплоидная клетка имеет по два аллеля каждого гена (так как у каждой хромосомы есть гомологичная ей). А совокупность всех аллелей организма называется генотипом. Можно дать и другое определение генотипу: генотип — это совокупность всех генов организма.

В то время как фенотип — это совокупность морфологических, физиологических, поведенческих признаков организма. По аналогии с фенотипом существует и понятие фена. Фен — это внешнее (в виде признака) проявление гена. То есть фен — это генетически обусловленный признак. Поскольку на проявление признака могут влиять несколько генов, или один ген определять несколько признаков и др., то определение фена не так однозначно.

Термины «генотип» и «фенотип» в генетике не всегда употребляются по отношению ко всем генам и признакам организма. Часто ими пользуются при анализе небольшой части генов или даже одного гена.

Генотипы популяции формируют ее генофонд. Таким образом, генофонд — совокупность аллелей популяции.

В генетики есть такое понятие как геном, которому трудно дать однозначное определение. Часто под геномом понимают совокупность генетического материала, заключенного в гаплоидном наборе хромосом определенного вида. Отсюда можно сделать вывод, что геномы особей одного вида идентичны, а геномы особей разных видов — различны.

Геномика — это наука о геномах.

В генетике очень часто встречаются такие термины как «гомозигота» и «гетерозигота». Обычно они используются по отношению к аллелям одного гена, которые присутствуют в организме. Так, гомозигота — это организм, в клетках которого два одинаковых аллеля анализируемого гена. У гетерозиготы имеется два разных аллеля исследуемого гена.

Язык генетики подразумевает и ряд обозначений. Гены обозначают буквами обычно латинского алфавита. Доминантные гены — большими (заглавными) буквами, рецессивные — малыми (строчными). Иногда в обозначении гена участвуют несколько букв. При множественном аллелизме к букве гена добавляют верхний индекс, который может быть как числом, так и буквой. Нижний индекс (в виде цифры) используют по отношению к полимерным генам (чей эффект в проявлении признака суммируется).

При изображении различных скрещиваний на схемах используют следующие обозначения. P — родительские организмы; F1, F2 и т. д. — первое, второе и т. д. поколения потомков; G — гаметы; ×, ♂, ♀ — знаки скрещивания, мужского и женского организма.

biology.su

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *