Как решать задачи по генетике на биологии?
Изучение основных законов наследственности и изменчивости организмов является одной из наиболее сложных, но очень перспективных задач, стоящих перед современным естествознанием. В данной статье мы рассмотрим как основные теоретические понятия и постулаты науки, так и разберемся с тем, как решать задачи по генетике.
Актуальность изучения закономерностей наследственности
Две важнейшие отрасли современной науки – медицина и селекция – развиваются благодаря исследованиям ученых-генетиков. Сама же биологическая дисциплина, название которой было предложено в 1906 году английским ученым У. Бетсоном, является не столько теоретической, сколько практической. Всем, кто решит серьезно разобраться в механизме наследования различных признаков (например, таких как цвет глаз, волос, группа крови), придется сначала изучить законы наследственности и изменчивости, а также выяснить, как решать задачи по генетике человека. Именно этим вопросом мы и займемся.
Основные понятия и термины
Каждая отрасль имеет специфический, только ей присущий, набор основных определений. Если речь зашла о науке, изучающей процессы передачи наследственных признаков, под последними будем понимать следующие термины: ген, генотип, фенотип, родительские особи, гибриды, гаметы и так далее. С каждым из них мы встретимся, когда будем изучать правила, объясняющие нам, как решать задачи по биологии на генетику. Но в начале мы изучим гибридологический метод. Ведь именно он лежит в основе генетических исследований. Он был предложен чешским естествоиспытателем Г. Менделем в 19 веке.
Как наследуются признаки?
Закономерности передачи свойств организма были открыты Менделем благодаря опытам, которые он проводил с широко известным растением — горохом посевным. Гибридологический метод представляет собой скрещивание двух единиц, которые отличаются друг от друга одной парой признаков (моногибридное скрещивание). Если в опыте участвуют организмы, которые имеют несколько пар альтернативных (противоположных) признаков, тогда говорят о полигибридном скрещивании. Ученый предложил следующую форму записи хода гибридизации двух растений гороха, которые отличаются окраской семян. А — желтая краска, а – зеленая.
В этой записи F1 – гибриды первого (I) поколения. Они все абсолютно единообразны (одинаковы), так как содержат доминантный ген А, контролирующий желтую окраску семян. Вышеприведенная запись соответствует первому закону Менделя (Правило единообразия гибридов F1). Знание его объясняет учащимся, как решать задачи по генетике. 9 класс имеет программу по биологии, в которой детально изучается гибридологический метод генетических исследований. В ней также рассматривается и второе (ІІ) правило Менделя, называемое законом расщепления. Согласно ему, у гибридов F2, полученных от скрещивания двух гибридов первого поколения друг с другом, наблюдается расщепление в соотношении по фенотипу 3 к 1, а по генотипу 1 к 2 и к 1.
Используя вышеприведенные формулы, вы поймете, как решать задачи по генетике без ошибок, если в их условиях можно применить первый или уже известный II закон Менделя, учитывая, что скрещивание происходит при полном доминировании одного из генов.
Закон независимого комбинирования состояний признаков
Если родительские особи различаются двумя парами альтернативных признаков, например, окраской семян и их формой, у таких растений, как горох посевной, тогда в ходе генетического скрещивания нужно использовать решетку Пиннета.
Абсолютно все гибриды, которые являются первым поколением, подчиняются правилу единообразия Менделя. То есть они желтые, с гладкой поверхностью. Продолжая скрещивать между собой растения из F1, мы получим гибриды второго поколения. Чтобы выяснить, как решать задачи по генетике, 10 класс на уроках биологии использует запись дигибридного скрещивания, применяя формулу расщепления по фенотипу 9:3:3:1. При условии, что гены расположены в различных парах, можно использовать третий постулат Менделя – закон независимых комбинирований состояний признаков.
Как наследуются группы крови?
Механизм передачи такого признака, как группа крови у человека, не соответствует закономерностям, рассмотренным нами ранее. То есть он не подчиняется первому и второму закону Менделя. Это объясняется тем, что такой признак, как группа крови, согласно исследованиям Ландштейнера, контролируется тремя аллелями гена I: А, В и 0. Соответственно генотипы будут такими:
- Первая группа – 00.
- Вторая – АА или А0.
- Третья группа – ВВ или В0.
- Четвертая – АВ.
Ген 0 является рецессивной аллелью к генам А и В. А четвертая группа является результатом кодоминирования (взаимного присутствия генов А и В). Именно это правило нужно обязательно учитывать, чтобы знать, как решать задачи по генетике на группы крови. Но это еще не все. Для установления генотипов детей по группе крови, родившихся от родителей с различными ее группами, воспользуемся таблицей, расположенной ниже.
Теория наследственности Моргана
Возвратимся к разделу нашей статьи «Закон независимого комбинирования состояний признаков», в котором мы рассмотрели, как решать задачи по генетике. Дигибридное скрещивание, как и сам ІІІ закон Менделя, которому оно подчиняется, применимо для аллельных генов, находящихся в гомологичных хромосомах каждой пары.
В середине 20 века американский ученый-генетик Т. Морган доказал, что большинство признаков контролируется генами, которые расположены в одной и той же хромосоме. Они имеют линейное расположение и образуют группы сцепления. И их количество равно именно гаплоидному набору хромосом. В процессе мейоза, приводящего к образованию гамет, в половые клетки попадают не отдельные гены, как считал Мендель, а целые их комплексы, названные Морганом группами сцепления.
Кроссинговер
Во время профазы I (ее еще называют первым делением мейоза) между внутренними хроматидами гомологичных хромосом происходит обмен участками (лукусами). Это явление получило название кроссинговера. Оно лежит в основе наследственной изменчивости. Кроссинговер особенно важен для изучения разделов биологии, занимающихся изучением наследственных заболеваний человека. Применяя постулаты, изложенные в хромосомной теории наследственности Моргана, мы определим алгоритм, отвечающий на вопрос, как решать задачи по генетике.
Сцепленные с полом случаи наследования являются частным случаем передачи генов, которые расположены в одной и той же хромосоме. Расстояние, которое существует между генами в группах сцепления, выражается в процентах — морганидах. А сила сцепления между данными генами прямо пропорциональна расстоянию. Поэтому кроссинговер чаще всего возникает между генами, которые располагаются далеко друг от друга. Рассмотрим явление сцепленного наследования более подробно. Но в начале вспомним, какие элементы наследственности отвечают за половые признаки организмов.
Половые хромосомы
В кариотипе человека они имеют специфическое строение: у женских особей представлены двумя одинаковыми Х-хромосомами, а у мужчин в половой паре, кроме Х-хромосомы, есть еще и У-вариант, отличающийся как по форме, так и по набору генов. Это значит, что он не гомологичен Х-хромосоме. Такие наследственные болезни человека, как гемофилия и дальтонизм, возникают вследствие «поломки» отдельных генов в Х-хромосоме. Например, от брака носительницы гемофилии со здоровым мужчиной возможно рождение такого потомства.
Выше приведенный ход генетического скрещивания подтверждает факт сцепления гена, контролирующего свертываемость крови, с половой Х-хромосомой. Данная научная информация используется для обучения учащихся приемам, определяющим, как решать задачи по генетике. 11 класс имеет программу по биологии, в которой детально рассматриваются такие разделы, как «генетика», «медицина» и «генетика человека». Они позволяют учащимся изучить наследственные болезни человека и знать причины, по которым они возникают.
Взаимодействие генов
Передача наследственных признаков — процесс достаточно сложный. Приведенные ранее схемы становятся понятными только при наличии у учащихся базового минимума знаний. Он необходим, так как обеспечивает механизмы, дающие ответ на вопрос о том, как научиться решать задачи по биологии. Генетика изучает формы взаимодействие генов. Это полимерия, эпистаз, комплементарность. Поговорим о них подробней.
Пример наследования слуха у человека является иллюстрацией такого типа взаимодействия, как комплементарность. Слух контролируется двумя парами различных генов. Первая отвечает за нормальное развитие улитки внутреннего уха, а вторая – за функционирование слухового нерва. В браке глухих родителей, каждый из которых является рецессивной гомозиготой по каждой одной из двух пар генов, рождаются дети с нормальным слухом. В их генотипе присутствуют оба доминантных гена, контролирующих нормальное развитие слухового аппарата.
Плейотропия
Это интересный случай взаимодействия генов, при котором от одного гена, присутствующего в генотипе, зависит фенотипическое проявление сразу нескольких признаков. Например, на западе Пакистана обнаружены человеческие популяции некоторых представителей. У них отсутствуют потовые железы на определенных участках тела. Одновременно у таких людей диагностировали отсутствие некоторых коренных зубов. Они не смогли сформироваться в процессе онтогенеза.
У животных, например, каракульских овец, присутствует доминантный ген W, который контролирует как окраску меха, так и нормальное развитие желудка. Рассмотрим, как наследуется ген W при скрещивании двух гетерозиготных особей. Оказывается, что в их потомстве ¼ ягнят, имеющих генотип WW, погибает из-за аномалий в развитии желудка. При этом ½ (имеющие серый мех) гетерозиготные и жизнеспособные, а ¼ — это особи с черным мехом и нормальным развитием желудка (их генотип WW).
Генотип – целостная система
Множественное действие генов, полигибридное скрещивание, явление сцепленного наследования служат неоспоримым доказательством того факта, что совокупность генов нашего организма является целостной системой, хотя и представлена индивидуальными аллелями генов. Они могут наследоваться по законам Менделя, независимо или локусами, сцеплено подчиняясь постулатам теории Моргана. Рассматривая правила, отвечающие за то, как решать задачи по генетике, мы убедились, что фенотип любого организма формируется под воздействием как аллельных, так и неаллельных генов, влияющих на развитие одного или нескольких признаков.
fb.ru
Задача по генетике | ЕГЭ по биологии
Закономерности наследственности, их цитологические основы. Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно- и дигибридное скрещивание). Законы Т. Моргана: сцепленное наследование признаков, нарушение сцепления генов. Генетика пола. Наследование признаков, сцепленных с полом. Взаимодействие генов. Генотип как целостная система. Генетика человека. Методы изучения генетики человека. Решение генетических задач. Составление схем скрещивания
Закономерности наследственности, их цитологические основы
Согласно хромосомной теории наследственности каждая пара генов локализована в паре гомологичных хромосом, причем каждая из хромосом несет только по одному из этих факторов. Если представить, что гены являются точечными объектами на прямых — хромосомах, то схематически гомозиготные особи могут быть записаны как A||A или a||a, тогда как гетерозиготная — A||a. При образовании гамет в процессе мейоза каждый из генов пары гетерозиготы окажется в одной из половых клеток.
Например, если скрестить двух гетерозиготных особей, то при условии образования у каждой из них только пары гамет возможно получение всего лишь четырех дочерних организмов, три из которых будут нести хотя бы один доминантный ген А, и только один будет гомозиготен по рецессивному гену а, т. е. закономерности наследственности носят статистический характер.
В тех случаях, если гены располагаются в разных хромосомах, то при образовании гамет распределение между ними аллелей из данной пары гомологичных хромосом происходит совершенно независимо от распределения аллелей из других пар. Именно случайное расположение гомологичных хромосом на экваторе веретена в метафазе I мейоза и их последующее расхождение в анафазе I ведет к разнообразию рекомбинаций аллелей в гаметах.
Число возможных сочетаний аллелей в мужских или женских гаметах можно определить по общей формуле 2 n, где n — число хромосом, характерное для гаплоидного набора. У человека n = 23, а возможное число сочетаний составляет 223 = 8388608. Последующее объединение гамет при оплодотворении является также случайным, и поэтому в потомстве можно зафиксировать независимое расщепление по каждой паре признаков.
Однако число признаков у каждого организма во много раз больше числа его хромосом, которые можно различить под микроскопом, следовательно, каждая хромосома должна содержать множество факторов. Если представить себе, что у некоторой особи, гетерозиготной по двум парам генов, расположенных в гомологичных хромосомах, образуются гаметы, то следует учитывать не только вероятность образования гамет с исходными хромосомами, но и гамет, получивших измененные в результате кроссинговера в профазе I мейоза хромосомы. Следовательно, в потомстве возникнут новые сочетания признаков. Данные, полученные в экспериментах на дрозофиле, легли в основу
Другое фундаментальное подтверждение цитологической основы наследственности было получено при исследовании различных заболеваний. Так, у человека одна из форм рака обусловлена утратой маленького участка одной из хромосом.
Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно- и дигибридное скрещивание)
Основные закономерности независимого наследования признаков были открыты Г. Менделем, который достиг успеха, применив в своих исследованиях новый на тот момент гибридологический метод.
Успех Г. Менделя был обеспечен следующими факторами:
- удачным выбором объекта исследования (гороха посевного), который имеет короткий срок вегетации, является самоопыляемым растением, дает значительное количество семян и представлен большим количеством сортов с хорошо различимыми признаками;
- использованием только чистых линий гороха, которые на протяжении нескольких поколений не давали расщепления признаков в потомстве;
- концентрацией только на одном-двух признаках;
- планированием эксперимента и составлением четких схем скрещивания;
- точным количественным подсчетом полученного потомства.
Для исследования Г. Мендель отобрал только семь признаков, имеющих альтернативные (контрастные) проявления. Уже в первых скрещиваниях он обратил внимание, что в потомстве первого поколения при скрещивании растений с желтыми и зелеными семенами все потомство имело желтые семена. Аналогичные результаты были получены и при исследовании других признаков. Признаки, которые преобладали в первом поколении, Г. Мендель назвал доминантными. Те же из них, которые не проявлялись в первом поколении, получили название рецессивных.
Особи, которые давали расщепление в потомстве, получили название
Признаки гороха, наследование которых изучено Г. Менделем
Признак | Вариант проявления | |
Доминантный | Рецессивный | |
Окраска семян | Желтая | Зеленая |
Форма семян | Гладкая | Морщинистая |
Форма плода (боба) | Простой | Членистый |
Окраска плода | Зеленая | Желтая |
Окраска венчика цветка | Красная | Белая |
Положение цветков | Пазушные | Верхушечные |
Длина стебля | Длинный | Короткий |
Скрещивание, при котором исследуется проявление только одного признака, называется моногибридным. В таком случае прослеживаются закономерности наследования только двух вариантов одного признака, развитие которых обусловлено парой аллельных генов. Например, признак «окраска венчика цветка» у гороха имеет только два проявления — красная и белая. Все остальные признаки, свойственные данным организмам, во внимание не принимаются и не учитываются в расчетах.
Схема моногибридного скрещивания такова:
Скрестив два растения гороха, одно из которых имело желтые семена, а другое — зеленые, в первом поколении Г. Мендель получал растения исключительно с желтыми семенами, независимо от того, какое растение было выбрано в качестве материнского, а какое — отцовского. Такие же результаты были получены и в скрещиваниях по другим признакам, что дало Г. Менделю основания сформулировать закон единообразия гибридов первого поколения, который также называют
Первый закон Менделя:
При скрещивании гомозиготных родительских форм, отличающихся по одной паре альтернативных признаков, все гибриды первого поколения будут единообразны как по генотипу, так и по фенотипу.
А — желтые семена; а — зеленые семена.
При самоопылении (скрещивании) гибридов первого поколения оказалось, что 6022 семени имеют желтую окраску, а 2001 — зеленую, что примерно соответствует соотношению 3:1. Обнаруженная закономерность получила название закона расщепления, или второго закона Менделя.
Второй закон Менделя:
При скрещивании гетерозиготных гибридов первого поколения в потомстве будет наблюдаться преобладание одного из признаков в соотношении 3:1 по фенотипу (1:2:1 по генотипу).
Однако по фенотипу особи далеко не всегда удается установить ее генотип, поскольку как гомозиготы по доминантному гену ( АА), так и гетерозиготы (Аа) будут иметь в фенотипе проявление доминантного гена. Поэтому для организмов с перекрестным оплодотворением применяют анализирующее скрещивание — скрещивание, при котором организм с неизвестным генотипом скрещивается с гомозиготой по рецессивному гену для проверки генотипа. При этом гомозиготные особи по доминантному гену расщепления в потомстве не дают, тогда как в потомстве гетерозиготных наблюдается равное количество особей как с доминантным, так и с рецессивным признаками:
Основываясь на результатах собственных экспериментов, Г. Мендель предположил, что наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде. Поскольку связь между поколениями осуществляется через гаметы, то он допустил, что в процессе их образования в каждую из гамет попадает только один фактор из пары (т. е. гаметы генетически чисты), а при оплодотворении пара восстанавливается. Эти предположения получили название
Правило чистоты гамет:
При гаметогенезе гены одной пары разделяются, т. е. каждая гамета несет только один вариант гена.
Однако организмы отличаются друг от друга по многим признакам, поэтому установить закономерности их наследования возможно только при анализе двух и более признаков в потомстве.
Скрещивание, при котором рассматривается наследование и производится точный количественный учет потомства по двум парам признаков, называется дигибридным. Если же анализируется проявление большего числа наследственных признаков, то это уже полигибридное скрещивание.
Схема дигибридного скрещивания:
При большем разнообразии гамет определение генотипов потомков становится затруднительным, поэтому для анализа широко используется решетка Пеннета, в которую по горизонтали заносятся мужские гаметы, а по вертикали — женские. Генотипы потомков определяются сочетанием генов в столбцах и строках.
$♀$/$♂$ | aB | ab |
AB | AaBB | AaBb |
Ab | AaBb | Aabb |
Для дигибридного скрещивания Г. Мендель выбрал два признака: окраску семян (желтую и зеленую) и их форму (гладкую и морщинистую). В первом поколении соблюдался закон единообразия гибридов первого поколения, а во втором поколении было 315 желтых гладких семян, 108 — зеленых гладких, 101 — желтое морщинистое и 32 зеленых морщинистых. Подсчет показал, что расщепление приближалось к 9:3:3:1, но по каждому из признаков сохранялось соотношение 3:1 (желтые — зеленые, гладкие — морщинистые). Эта закономерность получила название закона независимого расщепления признаков, или третьего закона Менделя.
Третий закон Менделя:
При скрещивании гомозиготных родительских форм, отличающихся по двум и более парам признаков, во втором поколении будет происходить независимое расщепление данных признаков в соотношении 3:1 (9:3:3:1 при дигибридном скрещивании).
$♀$/$♂$ | AB | Ab | aB | ab |
AB | AABB | AABb | AaBB | AaBb |
Ab | AABb | AAbb | AaBb | Aabb |
aB | AaBB | AaBb | aaBB | aaBb |
ab | AaBb | Aabb | aaBb | aabb |
$F_2 {9A_B_}↙{\text»желтые гладкие»} : {3A_bb}↙{\text»желтые морщинистые»} : {3aaB_}↙{\text»зеленые гладкие»} : {1aabb}↙{\text»зеленые морщинистые»}$
Третий закон Менделя применим только к случаям независимого наследования, когда гены расположены в разных парах гомологичных хромосом. В тех случаях, когда гены расположены в одной паре гомологичных хромосом, действительны закономерности сцепленного наследования. Закономерности независимого наследования признаков, установленные Г. Менделем, также часто нарушаются и при взаимодействии генов.
Законы Т. Моргана: сцепленное наследование признаков, нарушение сцепления генов
Новый организм получает от родителей не россыпь генов, а целые хромосомы, при этом количество признаков и соответственно определяющих их генов гораздо больше, чем хромосом. В соответствии с хромосомной теорией наследственности, гены, расположенные в одной хромосоме, наследуются сцепленно. Вследствие этого при дигибридном скрещивании они не дают ожидаемого расщепления 9:3:3:1 и не подчиняются третьему закону Менделя. Можно было бы ожидать, что сцепление генов является полным, и при скрещивании гомозиготных по данным генам особей и во втором поколении дает исходные фенотипы в соотношении 3:1, а при анализирующем скрещивании гибридов первого поколения расщепление должно составлять 1:1.
Для проверки этого предположения американский генетик Т. Морган выбрал у дрозофилы пару генов, контролирующих окраску тела (серое — черное) и форму крыла (длинные — зачаточные), которые расположены в одной паре гомологичных хромосом. Серое тело и длинные крылья являются доминантными признаками. При скрещивании гомозиготной мухи с серым телом и длинными крыльями и гомозиготной мухи с черным телом и зачаточными крыль ями во втором поколении действительно были получены в основном родительские фенотипы в соотношении, близком к 3:1, однако имелось и незначительное количество особей с новыми комбинациями этих признаков. Данные особи называются рекомбинантными.
Однако, проведя анализирующее скрещивание гибридов первого поколения с гомозиготами по рецессивным генам, Т. Морган обнаружил, что 41,5 % особей имели серое тело и длинные крылья, 41,5 % — черное тело и зачаточные крылья, 8,5 % — серое тело и зачаточные крылья, и 8,5 % — черное тело и зачаточные крылья. Он связал полученное расщепление с кроссинговером, происходящим в профазе I мейоза и предложил считать единицей расстояния между генами в хромосоме 1 % кроссинговера, впоследствии названный в его честь морганидой.
Закономерности сцепленного наследования, установленные в ходе экспериментов на дрозофиле, получили название закона Т. Моргана.
Закон Моргана:
Гены, локализованные в одной хромосоме, занимают определенное место, называемое локусом, и наследуются сцепленно, причем сила сцепления обратно пропорциональна расстоянию между генами.
Гены, расположенные в хромосоме непосредственно друг за другом (вероятность кроссинговера крайне мала), называются сцепленными полностью, а если между ними находится еще хотя бы один ген, то они сцеплены не полностью и их сцепление нарушается при кроссинговере в результате обмена участками гомологичных хромосом.
Явления сцепления генов и кроссинговера позволяют построить карты хромосом с нанесенным на них порядком расположения генов. Генетические карты хромосом созданы для многих генетически хорошо изученных объектов: дрозофилы, мыши, человека, кукурузы, пшеницы, гороха и др. Изучение генетических карт позволяет сравнивать строение генома у различных видов организмов, что имеет важное значение для генетики и селекции, а также эволюционных исследований.
Генетика пола
Пол — это совокупность морфологических и физиологических особенностей организма, обеспечивающих половое размножение, сущность которого сводится к оплодотворению, то есть слиянию мужских и женских половых клеток в зиготу, из которой развивается новый организм.
Признаки, по которым один пол отличается от другого, делят на первичные и вторичные. К первичным половым признакам относятся половые органы, а все остальные — ко вторичным.
У человека вторичными половыми признаками являются тип телосложения, тембр голоса, преобладание мышечной или жировой ткани, наличие оволосения на лице, кадыка, молочных желез. Так, у женщин таз обычно шире плеч, преобладает жировая ткань, выражены молочные железы, голос — высокий. Мужчины же отличаются от них более широкими плечами, преобладанием мышечной ткани, наличием оволосения на лице и кадыка, а также низким голосом. Человечество издавна интересовал вопрос, почему особи мужского и женского пола рождаются в соотношении приблизительно 1:1. Объяснение этому было получено при изучении кариотипов насекомых. Оказалось, что у самок некоторых клопов, кузнечиков и бабочек на одну хромосому больше, чем у самцов. В свою очередь самцы продуцируют гаметы, различающиеся по количеству хромосом, тем самым заранее определяя пол потомка. Однако впоследствии было выяснено, что у большинства организмов количество хромосом у самцов и самок все же не различается, но у одного из полов есть пара хромосом, которые не подходят друг другу по размерам, а у другого все хромосомы парные.
В кариотипе человека также обнаружили подобное различие: у мужчин есть две непарные хромосомы. По форме эти хромосомы в начале деления напоминают латинские буквы Х и Y, и поэтому были названы Х- и Y-хромосомами. Сперматозоиды мужчины могут нести одну из этих хромосом и определять пол будущего ребенка. В связи с этим хромосомы человека и многих других организмов делят на две группы: аутосомы и гетерохромосомы, или половые хромосомы.
К аутосомам относят хромосомы, одинаковые для обоих полов, тогда как половые хромосомы — это хромосомы, отличающиеся у разных полов и несущие информацию о половых признаках. В тех случаях, когда пол несет одинаковые половые хромосомы, например ХХ, говорят, что он гомозиготен, или гомогаметен (образует одинаковые гаметы). Другой же пол, имеющий разные половые хромосомы (XY), называется гемизиготным (не имеющим полного эквивалента аллельных генов), или гетерогаметным. У человека, большинства млекопитающих, мушки дрозофилы и других организмов гомогаметен женский пол (ХХ), а мужской — гетерогаметен (XY), тогда как у птиц гомогаметен мужской пол (ZZ, или XX), а женский — гетерогаметен (ZW, или XY).
Х-хромосома является крупной неравноплечей хромосомой, которая несет свыше 1500 генов, причем многие мутантные их аллели вызывают у человека развитие тяжелых наследственных заболеваний, таких как гемофилия и дальтонизм. Y-хромосома, напротив, очень маленькая, в ней содержится всего около десятка генов, в том числе специфические гены, ответственные за развитие по мужскому типу.
Кариотип мужчины записывается как $♂$ 46, XY, а кариотип женщины — как $♀$ 46, ХХ.
Поскольку гаметы с половыми хромосомами продуцируются у самцов с равной вероятностью, то ожидаемое соотношение полов в потомстве составляет 1:1, что и совпадает с фактически наблюдаемым.
Пчелы отличаются от других организмов тем, что самки у них развиваются из оплодотворенных яиц, а самцы — из неоплодотворенных. Соотношение полов у них отличается от указанного выше, так как процесс оплодотворения регулирует матка, в половых путях которой с весны запасаются сперматозоиды на весь год.
У ряда организмов пол может определяться иным способом: до оплодотворения или после него, в зависимости от условий внешней среды.
Наследование признаков, сцепленных с полом
Так как некоторые гены находятся в половых хромосомах, неодинаковых у представителей противоположных полов, то характер наследования признаков, кодируемых данными генами, отличается от общего. Такой тип наследования называется крис-кросс наследованием, поскольку мужчины наследуют признаки матери, а женщины — отца. Признаки, определяемые генами, которые находятся в половых хромосомах, называются сцепленными с полом. Примерами признаков, сцепленных с полом, являются рецессивные признаки гемофилии и дальтонизма, которые в основном проявляются у мужчин, так как в Y-хромосоме нет аллельных генов. Женщины болеют такими болезнями только в том случае, если и от отца, и от матери они получили такие признаки.
Например, если мать была гетерозиготным носителем гемофилии, то у половины ее сыновей свертываемость крови будет нарушена:
ХH — нормальное свертывание крови
Хh — несвертываемость крови (гемофилия)
Признаки, закодированные в генах Y-хромосомы, передаются сугубо по мужской линии и называются голандрическими (наличие перепонки между пальцами ног, повышенное оволосение края ушной раковины).
Взаимодействие генов
Проверка закономерностей независимого наследования на различных объектах уже в начале XX века показала, что, например, у ночной красавицы при скрещивании растений с красным и белым венчиком у гибридов первого поколения венчики окрашены в розовый цвет, тогда как во втором поколении имеются особи с красными, розовыми и белыми цветками в соотношении 1:2:1. Это навело исследователей на мысль, что аллельные гены могут оказывать определенное влияние друг на друга. Впоследствии было также установлено, что и неаллельные гены способствуют проявлению признаков других генов или подавляют их. Данные наблюдения стали основой представления о генотипе как о системе взаимодействующих генов. В настоящее время различают взаимодействие аллельных и неаллельных генов.
Ко взаимодействию аллельных генов относят полное и неполное доминирование, кодоминирование и сверхдоминирование. Полным доминированием считают все случаи взаимодействия аллельных генов, при которых в гетерозиготе наблюдается проявление исключительно доминантного признака, как, например, окраска и форма семени у гороха.
Неполное доминирование — это тип взаимодействия аллельных генов, при котором проявление рецессивного аллеля в большей или меньшей степени ослабляет проявление доминантного, как в случае окраски венчика ночной красавицы (белая + красная = розовая) и шерсти у крупного рогатого скота.
Кодоминированием называют такой тип взаимодействия аллельных генов, при котором оба аллеля проявляются, не ослабляя эффектов друг друга. Типичным примером кодоминирования является наследование групп крови по системе AB0.
Наследование групп крови по системе AB0
Группа крови | Фенотип | Генотип | |
агглютиногены | агглютинины | ||
I (0) | — | $α$, $β$ | ii |
II (A) | А | $β$ | IAIA или IAi |
III (B) | В | $α$ | IBIB или IBi |
IV (AB) | А и В | — | IAIB |
Как видно из таблицы, I, II и III группы крови наследуются по типу полного доминирования, тогда как IV (АВ) группа (генотип — IAIB) является случаем кодоминирования.
Сверхдоминирование — это явление, при котором в гетерозиготном состоянии доминантный признак проявляется намного сильнее, чем в гомозиготном; сверхдоминирование часто используется в селекции и считается причиной гетерозиса — явления гибридной силы.
Особым случаем взаимодействия аллельных генов можно считать так называемые летальные гены, которые в гомозиготном состоянии приводят к гибели организма чаще всего в эмбриональном периоде. Причиной гибели потомства является плейотропное действие генов серой окраски шерсти у каракулевых овец, платиновой окраски у лис и отсутствие чешуи у зеркальных карпов. При скрещивании двух гетерозиготных по этим генам особей расщепление по исследуемому признаку в потомстве будет равняться 2:1 вследствие гибели 1/4 потомства.
Основными типами взаимодействия неаллельных генов являются комплементарность, эпистаз и полимерия. Комплементарность — это тип взаимодействия неаллельных генов, при котором для проявления определенного состояния признака необходимо присутствие как минимум двух доминантных аллелей разных пар. Например, у тыквы при скрещивании растений со сферическими (ААbb) и длинными (aaBB) плодами в первом поколении появляются растения с дисковидными плодами (AaBb).
К эпистазу относят такие явления взаимодействия неаллельных генов, при которых один неаллельный ген подавляет развитие признака другого. Например, у кур окраска оперения определяется одним доминантным геном, тогда как другой доминантный ген подавляет развитие окраски, в результате чего большинство кур имеет белое оперение.
Полимерией называют явление, при котором неаллельные гены оказывают одинаковое влияние на развитие признака. Таким образом чаще всего кодируются количественные признаки. Например, цвет кожи человека определяется как минимум четырьмя парами неаллельных генов — чем больше доминантных аллелей в генотипе, тем темнее кожа.
Генотип как целостная система
Генотип не является механической суммой генов, поскольку возможность проявления гена и форма его проявления зависят от условий среды. В данном случае под средой понимается не только окружающая среда, но и генотипическая среда — другие гены.
Проявление качественных признаков редко зависит от условий окружающей среды, хотя, если у горностаевого кролика выбрить участок тела с белой шерстью и прикладывать к нему пузырь со льдом, то со временем на этом месте вырастет черная шерсть.
Развитие количественных признаков намного сильнее зависит от условий окружающей среды. Например, если современные сорта пшеницы возделывать без применения минеральных удобрений, то ее урожайность будет существенно отличаться от генетически запрограммированных 100 и более центнеров с гектара.
Таким образом, в генотипе записаны лишь «способности» организма, однако проявляются они только во взаимодействии с условиями окружающей среды.
Кроме того, гены взаимодействуют друг с другом и, оказавшись в одном генотипе, могут сильно влиять на проявление действия соседних генов. Таким образом, для каждого отдельно взятого гена существует генотипическая среда. Возможно, что развитие любого признака связано с действием многих генов. Кроме того, выявлена зависимость нескольких признаков от одного гена. Например, у овса окраска цветочных чешуй и длина их ости определяются одним геном. У дрозофилы ген белой окраски глаза одновременно влияет на цвет тела и внутренних органов, длину крыльев, снижение плодовитости и уменьшение продолжительности жизни. Не исключено, что каждый ген одновременно является геном основного действия для «своего» признака и модификатором для других признаков. Таким образом, фенотип — это результат взаимодействия генов всего генотипа с окружающей средой в онтогенезе особи.
В связи с этим известный российский генетик М. Е. Лобашев определил генотип как систему взаимодействующих генов. Сложилась эта целостная система в процессе эволюции органического мира, при этом выживали лишь те организмы, у которых взаимодействие генов давало наиболее благоприятную реакцию в онтогенезе.
Генетика человека
Для человека как биологического вида в полной мере справедливы генетические закономерности наследственности и изменчивости, установленные для растений и животных. Вместе с тем генетика человека, изучающая закономерности наследственности и изменчивости у человека на всех уровнях его организации и существования, занимает особое место среди других разделов генетики.
Генетика человека одновременно является фундаментальной и прикладной наукой, поскольку занимается исследованием наследственных болезней человека, которых в настоящее время описано уже более 4 тыс. Она стимулирует развитие современных направлений общей и молекулярной генетики, молекулярной биологии и клинической медицины. В зависимости от проблематики генетика человека делится на несколько направлений, развившихся в самостоятельные науки: генетика нормальных признаков человека, медицинская генетика, генетика поведения и интеллекта, популяционная генетика человека. В связи с этим в наше время человек как генетический объект исследован едва ли не лучше, чем основные модельные объекты генетики: дрозофила, арабидопсис и др.
Биосоциальная природа человека накладывает значительный отпечаток на исследования в области его генетики вследствие позднего полового созревания и больших временных разрывов между поколениями, малочисленности потомства, невозможности направленных скрещиваний для генетического анализа, отсутствия чистых линий, недостаточной точности регистрации наследственных признаков и небольших родословных, невозможности создания одинаковых и строго контролируемых условий для развития потомков от разных браков, сравнительно большого числа плохо различающихся хромосом и невозможности экспериментального получения мутаций.
Методы изучения генетики человека
Методы, применяемые в генетике человека, принципиально не отличаются от общепринятых для других объектов — это генеалогический, близнецовый, цитогенетический, дерматоглифический, молекулярно-биологический и популяционно-статистический методы, метод гибридизации соматических клеток и метод моделирования. Их использование в генетике человека учитывает специфику человека как генетического объекта.
Близнецовый метод помогает определить вклад наследственности и влияние условий окружающей среды на проявление признака на основе анализа совпадения этих признаков у однояйцевых и разнояйцевых близнецов. Так, у большинства однояйцевых близнецов совпадают группы крови, цвет глаз и волос, а также целый ряд других признаков, тогда как корью болеют одновременно оба типа близнецов.
Дерматоглифический метод основан на исследовании индивидуальных особенностей кожных рисунков пальцев рук (дактилоскопия), ладоней и ступней ног. На основе этих особенностей он зачастую позволяет своевременно выявить наследственные заболевания, в частности хромосомные аномалии, такие как синдром Дауна, Шерешевского – Тернера и др.
Генеалогический метод — это метод составления родословных, с помощью которых определяют характер наследования изучаемых признаков, в том числе наследственных болезней, и прогнозируют рождение потомков с соответствующими признаками. Он позволил выявить наследственную природу таких заболеваний, как гемофилия, дальтонизм, хорея Гентингтона и др. еще до открытия основных закономерностей наследственности. При составлении родословных ведут записи о каждом из членов семьи и учитывают степень родства между ними. Далее на основании полученных данных с помощью специальной символики строится родословное древо.
Генеалогический метод можно использовать на одной семье, если есть сведения о достаточном количестве прямых родственников человека, родословная которого составляется — пробанда, — по отцовской и материнской линиям, в противном случае собирают сведения о нескольких семьях, в которых проявляется данный признак. Генеалогический метод позволяет установить не только наследуемость признака, но и характер наследования: доминантный или рецессивный, аутосомный или сцепленный с полом и т. д. Так, по портретам австрийских монархов Габсбургов было установлено наследование прогнатии (сильно выпяченной нижней губы) и «королевской гемофилии » у потомков британской королевы Виктории.
Решение генетических задач. Составление схем скрещивания
Все разнообразие генетических задач можно свести к трем типам:
- Расчетные задачи.
- Задачи на определение генотипа.
- Задачи на установление типа наследования признака.
Особенностью расчетных задач является наличие информации о наследовании признака и фенотипах родителей, по которым легко установить и генотипы родителей. В них требуется установить генотипы и фенотипы потомства.
Задача 1. Какую окраску будут иметь семена сорго, полученного в результате скрещивания чистых линий этого растения с темной и светлой окраской семян, если известно, что темная окраска доминирует над светлой? Какую окраску будут иметь семена растений, полученных от самоопыления этих гибридов?
Решение.
1. Обозначаем гены:
А — темная окраска семян, а — светлая окраска семян.
2. Составляем схему скрещивания:
а) сначала записываем генотипы родителей, которые по условию задачи являются гомозиготными:
$Р {♀АА}↙{\text»темные семена»}×{♂аа}↙{\text»светлые семена»}$
б) затем записываем гаметы в соответствии с правилом чистоты гамет:
Гаметы А a
в) попарно сливаем гаметы и записываем генотипы потомков:
F1 Аа
г) согласно закону доминирования все гибриды первого поколения будут иметь темную окраску, поэтому подписываем под генотипом фенотип.
Фенотип темные семена
3. Записываем схему следующего скрещивания:
Ответ: в первом поколении все растения будут иметь темную окраску семян, а во втором 3/4 растений будут иметь темные семена, а 1/4 — светлые.
Задача 2. У крыс черная окраска шерсти доминирует над бурой, а нормальная длина хвоста — над укороченным хвостом. Сколько потомков во втором поколении от скрещивания гомозиготных крыс с черной шерстью и нормальным хвостом с гомозиготными крысами с бурой шерстью и укороченным хвостом имели черную шерсть и укороченный хвост, если всего родилось 80 крысят?
Решение.
1. Записываем условие задачи:
А — черная шерсть, а — бурая шерсть;
В — нормальная длина хвоста, b — укороченный хвост.
F2 А_bb ?
2. Записываем схему скрещивания:
Примечание. Следует помнить, что буквенные обозначения генов записываются в алфавитном порядке, при этом в генотипах прописная буква всегда будет идти перед строчной: А — перед а, В — перед b и т. д.
Из решетки Пеннета следует, что доля крысят с черной шерстью и укороченным хвостом составляла 3/16.
3. Рассчитываем количество крысят с указанным фенотипом в потомстве второго поколения:
80 × 3/16 × 15.
Ответ: 15 крысят имели черную шерсть и укороченный хвост.
В задачах на определение генотипа также приводится характер наследования признака и ставится задание определить генотипы потомства по генотипам родителей или наоборот.
Задача 3. В семье, где отец имел ІІІ (В) группу крови по системе AB0, а мать — ІІ (А) группу, родился ребенок с І (0) группой крови. Определите генотипы родителей.
Решение.
1. Вспоминаем характер наследования групп крови:
Наследование групп крови по системе AB0
Фенотип | Генотип |
I (0) | ii |
II (A) | IAIA или IAi |
III (B) | IBIB или IBi |
IV (AB) | IAIB |
2. Так как возможно по два варианта генотипов со II и III группами крови, схему скрещивания записываем следующим образом:
3. Из приведенной схемы скрещивания видим, что ребенок получил от каждого из родителей рецессивные аллели i, следовательно, родители были гетерозиготными по генам группы крови.
4. Дополняем схему скрещивания и проводим проверку наших предположений:
Таким образом, наши предположения подтвердились.
Ответ: родители гетерозиготны по генам групп крови: генотип матери — IAi, генотип отца — IВi.
Задача 4. Дальтонизм (цветовая слепота) наследуется как сцепленный с полом рецессивный признак. Какие дети могут родиться у мужчины и женщины, которые нормально различают цвета, хотя их родители были дальтониками, а матери и их родственники здоровы?
Решение.
1. Обозначаем гены:
ХD — нормальное цветовое зрение;
Хd — дальтонизм.
2. Устанавливаем генотипы мужчины и женщины, отцы которых были дальтониками.
3. Записываем схему скрещивания для определения возможных генотипов детей:
Ответ: у всех девочек будет нормальное цветовое зрение (однако 1/2 девочек будет носителями гена дальтонизма), 1/2 мальчиков будет здорова, а 1/2 будет больна дальтонизмом.
В задачах на определение характера наследования признака приводятся только фенотипы родителей и потомства. Вопросами таких задач является именно выяснение характера наследования признака.
Задача 5. От скрещивания кур с короткими ногами было получено 240 цыплят, 161 из которых были коротконогими, а остальные — длинноногими. Как наследуется этот признак?
Решение.
1. Определяем расщепление в потомстве:
161 : 79 $≈$ 2 : 1.
Такое расщепление характерно для скрещиваний в случае летальных генов.
2. Так как кур с короткими ногами было вдвое больше, чем с длинными, допустим, что это доминантный признак, и именно этой аллели свойственен летальный эффект. Тогда исходные куры были гетерозиготными. Обозначаем гены:
С — короткие ноги, с — длинные ноги.
3. Записываем схему скрещивания:
Наши предположения подтвердились.
Ответ: коротконогость доминирует над длинноногостью, этой аллели свойствен летальный эффект.
examer.ru
Рекомендации по решению генетических задач.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное автономное образовательное
учреждение высшего образования
«КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ имени В.И. Вернадского» ПРИБРЕЖНЕНСКИЙ АГРАРНЫЙ КОЛЛЕДЖ (ФИЛИАЛ)
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ
ПО РЕШЕНИЮ ГЕНЕТИЧЕСКИХ ЗАДАЧ
ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОУД. 15 БИОЛОГИЯ
Для специальностей:
36.02.01 Ветеринария
35.02.05 Агрономия
36.02.02 Зоотехния
с. Прибрежное, 2015 г.
Организация: Прибрежненский аграрный колледж (филиал)
ФГАОУ ВО «Крымский федеральный университет имени В.И. Вернадского»
Автор: Османова Э.А. преподаватель общеобразовательных и социально-гуманитарных дисциплин.
Рецензент: Бобер Н.П. преподаватель ветеринарно-технологических дисциплин.
Аннотация
В пособии приведены рекомендации по организации практической работы. Методические рекомендации составлены в помощь студентам при изучении закономерностей наследственностии изменчивости. Пособие содержит материал по генетике, представленный в виде схем скрещиваний и теоретических объяснений закономерностей наследования признаков.
Данные рекомендации способствует развитию знаний и умений обучающихся, постепенному и целенаправленному развитию познавательных потребностей, установке на самостоятельное пополнение знаний.
Методические рекомендации рассмотрены и утверждены на заседании цикловой комиссии общеобразовательных и социально –гуманитарных дисциплин.
Рассмотрено и одобрено на
заседание цикловой комиссии
общеобразовательных и
социально- гуманитарных дисциплин
Протокол №____ от «___» ___________2015 г.
_________________________Е.С. Афанасьева
СодержаниеВведение…………………………………………………………………………4
Основные термины и понятия генетики……………………………………….5 Глава 1. Общие рекомендации по решению генетических задачТехника решения задач……………………………………………………6
Оформление задач по генетике…………………………………………..7
Правила при решении задач по генетике………………………………..7
Глава 2. Примеры решения генетических задач
2.1. Закономерности наследования при моногибридном скрещивании…….8
2.2. Неполное доминирование. Анализирующее скрещивание……………. 9
2.3. Закономерности наследования при дигибридном скрещивании ………10
2.4. Сцепленное с полом наследование…………………………………….. 11
2.5. Закономерности наследования групп крови………………………….. 12
Глава 3. Генетические задачи…………………………………………………..13
Список литературы………………………………………………………………15
Введение.
Методические рекомендации составлены согласно программе среднего профессионального образования по биологии. Разработка содержит материал по генетике, представленный в виде схем скрещиваний и теоретических объяснений закономерностей наследования признаков, приведена основная терминология, необходимая для понимания и успешного решения генетических задач, условные обозначения, приведены примеры решения задач на разные типы наследования.
Обучающиеся с помощью методических рекомендаций могут самостоятельно освоить методику решения генетических задач.
Основные термины и понятия генетики.
Ген (с современных позиций) – это участок молекулы ДНК, содержащий информацию о первичной структуре одного белка. Гены находятся в хромосомах, где они расположены линейно, образуя «группы сцепления».
Аллельные гены – это пара генов, определяющих контрастные (альтернативные) признаки организма. Каждый ген этой пары называется аллелью. Аллельные гены расположены в одних и тех же участках локусах гомологичных (парных) хромосом.
Альтернативные признаки – это взаимоисключающие, контрастные признаки (например, жёлтые и зелёные семена гороха).
Доминантный признак – это признак, проявляющийся у гибридов первого поколения при скрещивании представителей чистых линий.
Рецессивный признак не проявляется у гибридов первого поколения при скрещивании представителей чистых линий.
Гомозигота – клетка или организм, содержащие одинаковые аллели одного и того же гена (АА или аа).
Гетерозигота– клетка или организм, содержащие разные аллели одного и того же гена (Аа).
Генотип – совокупность всех генов организма.
Фенотип – совокупность признаков организма, формирующихся при взаимодействии генотипа с окружающей средой.
Гибридологический метод – изучение признаков родительских форм, проявляющихся в ряду поколений у потомства, полученного путём гибридизации (скрещивания).
Моногибридное скрещивание – это скрещивание форм, отличающихся друг от друга по одной паре изучаемых контрастных (альтернативных) признаков, которые передаются по наследству.
Дигибридное скрещивание – это скрещивание форм, отличающихся друг от друга по двум парам изучаемых альтернативных признаков.
Глава 1. Общие рекомендации по решению генетических задач.
1.1.Техника решения задач
Алгоритм | Символика |
1. Краткая запись условий задачи. Введение буквенных обозначений генов, обычно А и В. Определение типа наследования (доминантность, рецессивность), если это не указано. 2. Запись фенотипов и схемы скрещивания словами. 3.Определение фенотипов в соответствии с условиями. Запись генотипов символам генов под фенотипами. 4. Определение гамет. Выяснение их числа и находящихся в них генов на основе установленных генотипов. 5. Составление решетки Пеннета. 6. Анализ решетки согласно поставленным вопросам. 7. Краткая запись ответов | 1. Р – перента – родители. Родительские организмы, взятые для скрещивания, отличающиеся наследственными задатками. 2.F – филис – дети. Гибридное потомство. 3. F1 –гибриды I поколения, F2 – гибриды II поколения. 4. G- гаметы А а …. 5. А, В – доминантные гены, отвечающие за доминантные признаки (например, желтую окраску и гладкую поверхность семян гороха). 6. а, в – рецессивные гены, отвечающие за развитие рецессивных признаков (например, зелёной окраски семян гороха и морщинистой поверхности семян гороха). 7. А, а – аллельные гены, определяющие конкретный признак. 8. АА, ВВ – доминантные гомозиготы, аа, вв – рецессивные гомозиготы. 9. Х – знак скрещивания. 10. ♀ — символ, обозначающий женский пол особи (символ Венеры – зеркальце с ручкой). 11.♂ — символ, обозначающий мужской пол особи (символ Марса – копьё и щит). |
1.2. Оформление задач по генетике.
На первом (слева) месте пишется женская (материнская) особь, на втором (справа) пишется мужская (отцовская) особь.
Аллельные гены пишутся рядом (ААВВ).
При записи генотипа буквы пишутся в алфавитном порядке (ааВВ, а не ВВаа).
Под генотипом пишут фенотип.
Фенотипы и гаметы пишутся строго под соответствующим генотипом.
Записывается ход решения с объяснениями. Можно оформлять в решётке Пеннета.
Записывается вывод.
Запись типа «первый ребенок родится больным, а второй здоровым» неправильна, поскольку результаты указывают лишь на вероятность рождения тех или иных особей.
1.3. Правила при решении задач по генетике.
Если при скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается расщепление признаков, то эти особи гетерозиготны.
Если в результате скрещивания особей, отличающихся фенотипически по одной паре признаков, получается потомство, у которого наблюдается расщепление по этой же паре признаков, то одна из родительских особей гетерозиготна, а другая – гомозиготна по рецессивному признаку.
Если при скрещивании фенотипически одинаковых особей (по одной паре признаков) в первом поколении гибридов происходит расщепление признаков на три фенотипические группы в отношениях 1:2:1, то это свидетельствует о неполном доминировании и о том, что родительские особи гетерозиготны.
Глава 2. Примеры решения генетических задач.
2.1.Закономерности наследования при моногибридном скрещивании.
Задача 1.
У тыквы дисковидная форма плода доминирует над шаровидной. Гомозиготную шаровидную тыкву опылили пыльцой такой же тыквы. Какими будут гибриды первого поколения?
Дано: А – дисков. а – шаров. Р: ♀ аа ♂ аа | Решение: Р: ♀ аа х ♂ аа G: а а F1: аа |
F1 — ?
Ответ: все гибриды первого поколения будут шаровидными.
Задача 2.
У морских свинок черная окраска шерсти доминирует над белой. Скрестили двух гетерозиготных самца и самку. Какими будут гибриды первого поколения?
Дано: А – черн. а – белая Р: ♀ Аа ♂ Аа | Решение: Р: ♀ Аа х ♂ Аа G: А А а а F1: АА, Аа, Аа, аа |
F1 — ? ч чч б
Ответ: ¾ гибридов первого поколения будут черными, ¼ — белыми.
2.2.Неполное доминирование. Анализирующее скрещивание.
Задача 1.
При скрещивании между собой чистопородных белых кур потомство оказывается белым, а при скрещивании черных кур – черным. Потомство от белой и черной особи оказывается пестрым. Какое оперение будет у потомков белого петуха и пестрой курицы?
Дано: ББ — белые ЧЧ – черные БЧ — пестрые Р: ♀ БЧ ♂ ББ | Решение: Р: ♀ БЧ х ♂ ББ G: Б Б Ч F1: ББ, БЧ б п |
F1 — ? Ответ: половина потомков будет белыми, половина –
пестрыми.
Задача 2.
У спаниелей чёрный цвет шерсти доминирует над кофейным, а короткая шерсть – над длинной. Охотник купил собаку чёрного цвета с короткой шерстью и, чтобы быть уверенным, что она чистопородна, провёл анализирующее скрещивание. Родилось 4 щенка: 2 короткошерстных чёрного цвета и 2 короткошерстных кофейного цвета. Каков генотип купленной охотником собаки.
Дано: А – черн. а – кофейн. В – кор.ш. в — длин.ш. Р: ♀ А* В* ♂ аавв F1: 2 А* В* 2 ааВ* | Решение: Р: ♀ А* В* х ♂ аавв F1: 2А*В*, 2ааВ* Зная, что один аллель (одна буква) в генотипе – от мамы, а другой – от папы, определяем генотипы купленной охотником собаки; АаВВ Ответ: купленная охотником собака гетерозиготна по первой аллели — АаВВ. |
♀ — ?
2.3.Закономерности наследования при дигибридном скрещивании.
Задача 1.
Голубоглазый праворукий юноша (отец его был левшой), женился на кареглазой левше (все её родственники — кареглазые). Какие возможно будут дети от этого брака, если карие глаза и праворукость — доминантные признаки?
Дано: А – кар. а – голуб. В – правор. в – левор. Р: ♀ АА вв ♂ ааВв | Решение: Р: ♀ АА вв х ♂ ааВв G: Ав аВ ав F1: АаВв Аавв к п к л Ответ: все дети в этой семье будут кареглазыми, вероятность рождения право – и леворуких детей – по 50%. |
F1 — ?
Задача 2.
У единорогов с планеты Крина белый цвет зависит от доминантного гена В, а желтый – от его рецессивной аллели b. Бег рысью зависит от доминантного гена Р, а ходьба шагом – от рецессивного р. Каким будет фенотип первого поколения при скрещивании гомозиготного белого единорога-шагоходца с гомозиготным желтым рысаком? Какое потомство и будет получено при скрещивании двух особей первого поколения?
Дано: В – бел. в – желт. Р – рысь р — шаг Р: ♀ ВВрр ♂ ввРР | Решение: 1) Р: ♀ ВВрр х ♂ ввРР G: Вр вР F1: ВвРр–бел. рысаки 2) F1: ♀ ВвРр х ♂ВвРр G: ВР ВР Вр Вр вР вР вр вр |
F2 — ?
F2:
G | ВР | Вр | вР | вр |
ВР | ВВРР б р | ВВРр бр | ВвРР бр | ВвРр бр |
Вр | ВВРр бр | ВВрр бр | ВвРр бр | Вврр бш |
вР | ВвРр бр | ВвРр бр | ввРР жр | ввРр жр |
Вр | ВвРр бш | Вврр бш | ввРр жр | вврр жш |
Ответ: 9/16 – белых рысаков, 3/16 – белых шагоходцев,
3/16 – желтых рысаков, 1/16 – желтых шагоходцев.
2.4.Сцепленное с полом наследование.
Задача 1.
Какое может быть зрение у детей от брака мужчины и женщины, нормально различающих цвета, если известно, что отцы у них страдали дальтонизмом?
Дано: D-норма d-дальтонизм Р: ♀ ХDХd ♂ ХD У | Решение: Р: ♀ ХDХdх ♂ ХD У G: ХDХd ХD У F1: ♀ ХDХD ХDХd ♂ ХD У Хd У |
F1 — ? Ответ: вероятность рождения сыновей, не страдающих
дальтонизмом – 50%.
Задача 2.
Могут ли дети мужчины, страдающего гемофилией и женщины без аномалий (отец которой был болен гемофилией) быть здоровыми?
Дано: Р: ♀ ХDХd ♂ Хd У | Решение: Р: ♀ ХDХdх ♂ Хd У G: ХDХd Хd У F1: ♀ ХDХd ХdХd ♂ ХD У Хd У |
F1 — ? Ответ: вероятность рождения здоровых детей – 50%.
2.5. Закономерности наследования групп крови.
Различают 4 группы крови.
Группа крови — наследственный признак, зависящий от одного гена, имеющего не 2, как обычно, а 3 аллели. Обозначаются символами: А, В, О.
А и В доминируют над О, но не подавляют друг друга. I гр.- ОО; II гр.- АО, III — ВО, ВВ; IV гр. — АВ.
Задача 1.
Какие группы крови могут быть у детей, если у обоих родителей 4 группа крови?
Дано: Р: ♀ АВ ♂ АВ | Решение: Р: ♀ АВ х ♂ АВ G: А В А В F1: АА, АВ, АВ, ВВ 2 4 4 3 |
F1 — ?
Ответ: вероятность рождения детей с 4 группой крови — 50%,
со 2 и 3 – по 25%.
Задача 2.
Можно ли переливать кровь ребёнку от матери, если у неё группа крови АВ, а у отца – О?
Дано: Р: ♀ АВ ♂ ОО | Решение: Р: ♀ АВ х ♂ ОО G: А В О F1: АО ВО 2 3 |
F1 — ? Ответ: нельзя.
Глава 3. Генетические задачи.
Задача 1. При скрещивании темных морских свинок (шиншилла) с белым (альбинос) получаются гибриды с промежуточной (полутемной) окраской. Какое потомство получится в результате скрещивания гибрида с альбиносом?
Задача 2. У канареек доминантный ген определяет зеленую окраску оперения и сцеплен с полом. Оба родители зеленые. В потомстве получены зеленый самец и коричневая самка. Каковы генотипы родителей?
Задача 3. У кошек короткая шерсть доминирует над длинной шерстью. Длинношерстная кошка при скрещивании с короткошерстным котом принесла трех короткошерстных и двух длинношерстных котят. Определите генотипы родительских и гибридных форм.
Задача 4. В семье, где отец болен гемофилией, а мать фенотипически здорова и имеет благополучный генотип, родился мальчик. Какова вероятность наличия у него гемофилии?
Задача 5. Скрещены две породы кроликов: пятнистые нормально – шёрстные и полностью окрашенные ангорские. В F1 все кролики пятнистые нормально — шёрстные. В результате анализирующего скрещивания получено 24 пятнистых ангорских, 134 полностью окрашенных ангорских, 149 пятнистых с нормальной шерстью и 20 полностью окрашенных с нормальной шерстью. Объясните результаты скрещивания, определите, какие признаки кроликов доминируют, запишите генотипы всех названных кроликов.
Задача 6. При скрещивании черных кур (А) с забрызгано – белыми (а) в белом поколении получаются голубые куры. Какое число составят голубые куры из 908 цыплят второго поколения? Ответ поясните.
Задача 7. Фенилкетонурия (нарушения обмена аминокислоты – фенилаланина) наследуется как рецессивный признак. Муж гетерозиготен по гену фенилкетонурии, а жена гомозиготна по доминантному аллелю этого гена. Какова вероятность рождения у них больного ребенка?
Задача 8. Каковы генотипы родителей и детей, если у родителей с нерыжими волосами 4детей, из них 2 рыжеволосые? (Помни, что фактическое расщепление признаков у потомства может совпадать с теоретически ожидаемым расщеплением только при большом количестве потомства.)
Задача 9. Окраска цветов у ночной красавицы наследуется по промежуточному типу, а высота растения доминирует над карликовостью Произведено скрещивания гомозиготного ночной красавицы красными цветами, нормальным ростом и растения, имеющего белые цветки, карликовый рост. Какими будут гибриды первого и второго.
Список литературы.
Гуляев Г.В. Задачник по генетике, — М., Колос, 1980.
Жданов Н. В. Решение задач при изучении темы «Генетика популяций». — Киров, пед. инст., 1995.
Задачи по генетике для поступающих в ВУЗы. – г. Волгоград, Учитель, 1995.
Кочергин Б. Н., Кочергина Н. А. Задачи по молекулярной биологии и генетике, — Минск, Народная асвета, 1982.
Краткий сборник генетических задач, — Ижевск, 1993.
Методическая разработка для уч-ся биологического отделения ВЗМШ при МГУ Законы Менделя, — М., 1981.
Методические указания для самостоятельной подготовки к практическим занятиям по общей генетике. — Пермь, мед.инст. 1986.
Муртазин Г. М. Задачи и упражнения по общей биологии. – М., 1981.
Орлова Н. Н. «.Малый практикум по общей генетике /сборник задач. — Изд. МГУ, 1985.
Сборник задач по биологии/ учебно-методическое пособие для поступающих в мед.инст. — Киров, 1998.
Соколовская Б. Х. Сто задач по молекулярной биологии и генетике. — М., 1981.
Фридман М.В. Задачи по генетике на школьной олимпиаде МГУ /журнал Биология для школьников №2 – 2003.
Щеглов Н. И. Сборник задач и упражнений по генетике. — МП Экоинвест, 1991.
http://www.ege.edu.ru/
http://www.fipi.ru
multiurok.ru
Biokan — Примеры решения задачь
Примеры решения задач по генетике.
Наследования при моногибридном скрещивании.
Задача №1
Напишите генотипы, соответствующие следующим фенотипам:
Голубой цвет глаз; Карий цвет глаз;
Вьющиеся волосы; Прямые волосы.
Ответ: голубой цвет глаз и прямые волосы – это рецессивные признаки, поэтому их обозначают – аа.
Карий цвет глаз и волнистые волосы – это доминантные признаки, их обозначают – АА или Аа
Задача №2
Условие: Определите генотипы потомства от брака кареглазых гетерозиготных родителей.
Дано: А – карие глаза
а – голубые глаза
_______________________
Определить F1-?
Гетерозиготные кареглазые родители Аа
P ♀ Аа ♂ Аа
Q А а А а
F1 АА Аа Аа аа
карие карие карие голубые
Происходит расщепление признаков, согласно второму закону Менделя:
По фенотипу 3:1
По генотипу 1:2:1
Закономерности наследования при дигибридном скрещивании
Задача №1
Условие: Единственный ребенок близоруких кареглазых родителей имеет голубые глаза и нормальное зрение.
Определить: а) генотипы всех трех членив семьи;
б) рождение каких детей можно ожидать в этой семье.
Решение:
а) Дано: А – карие глаза
а – голубые глаза
В – близорукость
В – нормальное зрение
______________________________
Определите генотипы Р и F1
Генотип ребенка – аавв
По генотипу ребенка определяем гаметы, которые он мог получить от отца т матери.
F1 аавв – ребенок с голубыми глазами и нормальным зрением
Q ав ав
от одного от другого
родителя родителя
Гаметы, несущие рецессивные признаки, должны быть в генотипе обоих родителей, значит, их генотипы АаВв.
б) Дано:
А – карие глаза Р ♀ АаВв ♂ АаВв
а – голубые глаза
В – близорукость Q АВ; Ав; АВ; Ав;
в – нормальное зрение аВ; ав аВ; ав
Р – АаВв –
кареглазые,
близорукие.
______________________
F1 – решетка Пеннета
F1
| АВ | Ав | аВ | Ав |
АВ | ААВВ к.б. | ААВв к.б | АаВВ к.б | АаВв к.б. |
Ав | ААВв к.б. | ААвв к.б. | АаВв к.б. | Аавв к.н. |
аВ | АаВВ к.б. | АаВв к.б | ааВВ г.б | ааВв г.б. |
ав | АаВв к.б. | Аавв к.н. | ааВв г.б. | Аавв г.н. |
По генотипу считаем
1. ААВВ – карегл. близорук.
2. ААВв – карегл. близорук.
3. АаВВ – карегл. близорук.
4. АаВв – карегл. близорук.
5. ААвв – карегл. норм. (1)
6. Аавв – карегл. норм. (2)
7. ааВВ – голубогл. близорук. (1)
8. ааВв – голубогл. близорук. (2)
9. аавв – голубогл. норм.
Ответ :
Генотипов – 9; фенотипов – 4 (карегл. близорук., карегл. норма., голубогл. норм., голубогл. близорук.)
Количество по фенотипу:
Карегл. близоруких – 9/16 9:3:3:1
Карегл. нормальных -1/16
Сцепленное с полом наследование
Задача №1
Условие: Рецессивный ген, обуславливающий цветовую слепоту (дальтонизм), локализован в х- хромосоме.
Напишите генотипы мужчины и женщины, страдающих цветовой слепотой.
Дано: А – норма Решение
а – дальтонизм
Х – сцеплено Ха Ха Х а У
____________________
Определить генотипы
Группы крови
Различают четыре группы крови.
Группа крови – наследственный признак, зависящий от одного гена, имеющего не 2, как обычно, а 3 аллели.
I (0) – обусловлена наличием рецессивного гена — а , и может быть только в гомозиготном состоянии. Ее генотип – аа;
II (А) – обусловлена наличием доминантного гена – А, и может быть как в гомо- так и в гетерозиготном состоянии. Ее генотип – аА аА ; аА аа ;
III (В) – обусловлена наличием доминантного гена – В, и может быть как в гомо- так и в гетерозиготном состоянии. Ее генотип – аВ аВ ; аВ ав ;
IV (АВ) — обусловлена наличием двух доминантных взаимодействующий доминантных генов – А и В, и может быть только в гетерозиготном состоянии. Ее генотип – аА аВ.
Задача
Отец имеет IV группу крови, а мать – I. Какие группы крови можно ожидать от этого брака.
Дано: I – аа Решение
IV — аА аВ Р ♀ аа ♂ аА аВ
__________________ Q
F1 — ?
F1 аА а ; аВа
II группа III группа
Ответ: 50% — II группа крови;
50% — III группа крови.
www.biokan.ru
Вариант 1.
а) отец – гемофилик, а мать – здорова; б) отец – гемофилик, а мать – носительница?
|
Вариант 2.
|
Вариант 3.
|
Вариант 4.
|
Вариант 5.
|
Вариант 6.
|
Вариант 7.
|
Вариант 8.
|
Вариант 9.
|
Вариант 10.
|
Вариант 11.
|
Вариант 12.
|
Вариант 13.
У здоровых супругов родился ребенок, больной диабетом. Какова вероятность рождения здорового ребенка в данной семье?
|
multiurok.ru
Решение задач по генетике — биология, уроки
Урок № 11 класс
Практикум по решению задач на сцепленное наследование генов
и наследование, сцепленное с полом
Цель урока: продолжить формирование умений решать генетические задачи, применять теоретические знания на практике.
Оборудование: сборники задач по генетике, таблицы по общей биологии.
Ход урока
Проверка домашнего задания.
Каков хромосомный механизм определения пола?
В чем отличие хромосомного набора самца от хромосомного набора самки?
Как называются гены, находящиеся в одной хромосоме?
Раскройте сущность явления наследования, сцепленного с полом?
Сколько групп сцепления у мужчин и женщин?
Что такое кроссинговер? Какую роль он играет в явлении сцепления генов?
Решение генетических задач.
Задача № 1. Доминантные гены катаракты и элиптоцитоза расположены в первой аутосоме. Определите вероятные фенотипы и генотипы детей от брака здоровой женщины и дигетерозиготного мужчины. Кроссинговер отсутствует.
Дано: Решение:
А – катаракта Р: аb АВ
а – здоровы аb аb
В – элиптоцитоз
b – здоровы
Р: ○ – здорова G
□ — АаВв
Найти: генотипы,
фенотипы в F1 F1 АВ аb
аb аb
больной здоровый
Ответ: 50 % детей имеют обе аномалии, 50 % детей здоровы.
Задача № 2. При скрещивании пятнистых нормальношерстных кроликов со сплошь окрашенными ангорскими крольчихами гибриды были пятнистые нормальношерстные. В потомстве от анализирующего скрещивания получено:
52 – пятнистых ангорских;
288 – сплошь окрашенных ангорских;
46 – сплошь окрашенных нормальношерстных;
314 – пятнистых нормальношерстных.
Объясните результаты.
Дано: Решение:
А – пятнистая шерсть Р: АВ аb
а – сплошь окрашенная шерсть аb аb
В – нормальная длина шерсти
b – ангорская шерсть
Р: ○ – сплошь окрашенная ангорская G
□ – пятнистая нормальная шерсть
Найти: расстояние между генами
окраски и длины (С)
F1 АВ ab Ab aB
аb аb ab ab
314 288 52 46
Очевидно, что шерсть нормальной длины доминирует над ангорской, а пятнистая окраска – над сплошной. Гены окраски и длины шерсти сцеплены, так как при расщеплении в анализирующем скрещивании наблюдается неравномерное соотношение фенотипических классов (в отличие от менделеевского 9 : 3: 3: 1 для F2 в дигибридном скрещивании).
Кроссоверные классы легко определить по меньшей численности или сравнивая классы с исходными родителями. Ясно, что здесь кроссоверные кролики 52 пятнистых ангорских и 46 сплошь окрашенных нормальношерстных. Для определения относительного расстояния между генами окраски и длины шерсти нужно вычислить процент кроссоверных кроликов от всего потомства:
С = (52 + 46) : (52 + 288 + 46 + 314) х 100 % = 14 %
Задача № 3. от родителей, имевших по фенотипу нормальное цветовое зрение, родилось несколько детей с нормальным зрением и один мальчик дальтоник. Чем это объяснить? Каковы генотипы родителей и детей?
Дано: Решение:
ХD – здоровый Скрытым носителем дальтонизма может быть
Хd – дальтоник только мать, поскольку у отца ген дальтонизма
Р – нормальное зрение проявился бы фенотипически. Следовательно,
F1 – у всех нормальное генотип матери ХD Хd, а генотип отца – ХDУ.
зрение и один мальчик
ХdУ Р: ХD Хd ХDУ
Найти: Р-? G
F1 — ? (генотипы)
F1: ХD ХD : ХDУ : ХD Хd : ХdУ
здор. здор. здор. дальтоник
Ответ: Р: ХD Хd , ХDУ;
F1: 1 ХD ХD: 1 ХDУ : 1 ХD Хd : 1 ХdУ.
Задача № 4. Алкогольная зависимость определяется доминантным аутосомным геном (А), а потребность в курении табака – сцепленным с полом рецессивным геном (b). Курящий и пьющий мужчина женится на женщине, которая не курит и не пьет. Мужчина гетерозиготен по гену алкоголизма, а женщина гетерозиготна по гену табакокурения.
А. С какой вероятностью в этой семье могут родиться дети со склонностью к алкоголизму?
Б. С какой вероятностью могут родиться дети со склонностью к курению?
В. С какой вероятностью могут родиться дети со склонностью к курению и алкоголизму одновременно?
Г. С какой вероятностью эти дети будут мальчиками?
Дано: Решение:
А – алкогольная зависимость Р: ааХВХb АаХbУ
а – отсутствие алкогольной
зависимости G
ХВ – отсутствие потребности
в курении
Хb – потребность в курении
Р: □ – курящий пьющий
(гетерозиготен по гену F1:
алкоголизма) ♂ АХb АУ аХb аУ
○ – без вредных привычек ♀
(гетерозиготна по гену аХВ АаХВХb АаХВУ ааХВХb ааХВУ
табакокурения) алк. алк. без вредных без вредных
не куритне куритпривычекпривычек
Найти: F1 — ? аХbАаХbХbАаХbУ ааХbХb ааХbУ
1.склонные к алкоголизму? алк.курит алк. курит курит курит
2.склонные к курению?
3.склонные к курению
и алкоголизму?
4.□ – с вредными привычками?
Ответ:50 % потомства склонна к алкоголизму;
50 % — склонны к курению;
25 % детей склонны к курению и алкоголизму;
12,5 % мальчиков с вредными привычками (и пьют и курят).
Задача № 5. Гладкая поверхность семян кукурузы доминирует над морщинистой, окрашенные семена доминируют над неокрашенными. Оба признака сцеплены. При скрещивании кукурузы с гладкими окрашенными семенами с растением, имеющим морщинистые неокрашенные семена, получено такое потомство: окрашенных гладких – 4152 особи, окрашенных морщинистых – 149, неокрашенных гладких – 152, неокрашенных морщинистых – 4163. Определите расстояние между генами?
Дано: Решение:
А – гладкая поверхность Р: АВ аb
а — морщинистая аb аb
В – окрашенные
в – неокрашенные G
Р: ♀ глад.окр. х ♂ морщ.неокр.
F1 4152 – окраш.глад.
149 – окраш.морщ.
152 – неокр.глад. F1:АВ ab Ab aB
4163 – неокр.морщ. аb аb ab ab
4152 4163 152 149
Найти: расстояние между окр.гл. неокр.морщ. неокр.гл. окр.морщ.
генами?
Всего особей получено в результате
скрещивания – 8616, из них 301 особей
являются кроссоверными. Находим
расстояние между генами окраски и формы
семян.
С = (152+149): (8616)х100% = 3,5 % или
3,5 морганид.
Ответ: расстояние между генами составляет 3,5 морганиды.
Домашнее задание:
Задача. Кареглазая женщина с нормальным зрением выходит замуж за кареглазого мужчину. У них родилась голубоглазая дочь – дальтоник. Карий цвет глаз доминирует над голубым, а дальтонизм определяется рецессивным геном, находящимся в Х – хромосоме. Какова вероятность того, что следующий ребенок в этой семье будет иметь такой же фенотип?
kopilkaurokov.ru
Задачи по генетике — Шпаргалка — Задачи по генетике
приобрестиШпаргалка — Задачи по генетике
скачать (252 kb.)
Доступные файлы (1):
n1.doc
Задачи по генетике
Моногибридное скрещивание
№1. Один ребёнок в семье родился здоровым, а второй имел тяжёлую наследственную болезнь и умер сразу после рождения.
Какова вероятность того, что следующий ребёнок в этой семье будет здоровым? Рассматривается одна пара аутосомных генов.
Решение. Анализируем генотипы родителей: оба родителя здоровы, они не могут иметь данную наследственную болезнь, т.к. она приводит к гибели организма сразу после рождения.
Если предположить, что данное заболевание проявляется по доминантному типу и здоровый признак является рецессивным, тогда оба родителя рецессивны. Тогда у них не может родиться больной ребёнок, что противоречит условию задачи.
Если данная болезнь является рецессивной, а ген здорового признака наследуется по доминантному типу, тогда оба родителя должны быть гетерозиготными и у них могут быть как здоровые дети, так и больные. Составляем схему скрещивания:
Ответ: Соотношение в потомстве 3:1, вероятность рождения здорового ребёнка в этой семье составляет 75%.
№2. Растение высокого роста подвергли опылению с гомозиготным организмом, имеющим нормальный рост стебля. В потомстве было получено 20 растений нормального роста и 10 растений высокого роста.
Какому расщеплению соответствует данное скрещивание – 3:1 или 1:1?
Решение: Гомозиготный организм может быть двух видов: доминантным (АА) или рецессивным (аа). Если предположить, что нормальный рост стебля определяется доминантным геном, тогда всё потомство будет “единообразным”, а это противоречит условию задачи.
Чтобы произошло “расщепление”, растение нормального роста должно иметь рецессивный генотип, а растение высокого роста должно быть гетерозиготным.
Ответ: Соотношение по фенотипу и генотипу в потомстве составляет 1:1.
№3. При скрещивании чёрных кроликов между собой в потомстве получили чёрных и белых крольчат.
Составить схему скрещивания, если известно, что за цвет шерсти отвечает одна пара аутосомных генов.
Решение: Родительские организмы имеют одинаковые фенотипы – чёрный цвет, а в потомстве произошло “расщепление”. Согласно второму закону Г. Менделя, ген, ответственный за развитие чёрного цвета, доминирует и скрещиванию подвергаются гетерозиготные организмы.
№4. У Саши и Паши глаза серые, а у их сестры Маши глаза зелёные. Мать этих детей сероглазая, хотя оба её родителя имели зелёные глаза. Ген, ответственный за цвет глаз расположен в неполовой хромосоме (аутосоме).
Определить генотипы родителей и детей. Составить схему скрещивания.
Решение: По материнскому организму и по её родителям определяем, что серый цвет глаз является рецессивным признаком (второй закон Г. Менделя).
Т.к. в потомстве наблюдается “расщепление”, то отцовский организм должен иметь зелёный цвет глаз и гетерозиготный генотип.
№5. Мать брюнетка; отец блондин, в его родословной брюнетов не было. Родились три ребёнка: две дочери блондинки и сын брюнет.
Ген данного признака расположен в аутосоме.
Проанализировать генотипы потомства и родителей.
Решение: Генотип отцовского организма должен быть гомозиготным, т.к. в его родословной наблюдается чистая линия по цвету волос. Гомозиготный генотип бывает доминантным (АА) или рецессивным (аа).
Если генотип отца гомозиготный доминантный, то в потомстве не будет детей с тёмными волосами – проявится “единообразие”, что противоречит условию задачи. Следовательно, генотип отца рецессивный. Материнский организм должен быть гетерозиготным.
Ответ: Соотношение по фенотипу и генотипу в потомстве составляет 1:1 или 50% 50%.
№6. У человека проявляется заболевание – серповидно-клеточная анемия. Эта болезнь выражается в том, что эритроциты крови имеют не круглую форму, а серповидную, в результате чего транспортируется меньше кислорода.
Серповидно-клеточная анемия наследуется как неполностью доминантный признак, причём гомозиготное состояние гена приводит к гибели организма в детском возрасте.
В семье оба супруга имеют признаки анемии.
Какова процентная вероятность рождения у них здорового ребёнка?
Решение: Составляем схему скрещивания:
Ответ: 25% здоровых детей в данной семье.
Дигибридное скрещивание независимое наследование генов
№1. Мутации генов, вызывающие укорочение конечностей (а) и длинношерстость (в) у овец, передаются в следующее поколение по рецессивному типу. Их доминантные аллели формируют нормальные конечности (А) и короткую шерсть (В). Гены не сцеплены.
В хозяйстве разводились бараны и овцы с доминантными признаками и было получено в потомстве 2336 ягнят. Из них 425 длинношерстых с нормальными конечностями и 143 длинношерстых с короткими конечностями.
Определить количество короткошерстых ягнят и сколько среди них с нормальными конечностями?
Решение. Определяем генотипы родителей по рецессивному потомству. Согласно правилу “чистоты гамет” в потомстве по каждому признаку один ген от отцовского организма, другой ген от материнского организма, следовательно, генотипы родителей дигетерозиготные.
1). Находим количество длинношерстных ягнят: 425 + 143 = 568.
2). Находим количество короткошерстных: 2336 – 568 = 1768.
3). Определяем количество короткошерстных с нормальными конечностями:
1768 ———- 12 ч.
х ———— 9 ч. х = 1326.
№2. У человека ген негритянской окраска кожи (В) полностью доминирует над геном европейской кожи (в), а заболевание серповидно-клеточная анемия проявляется неполностью доминантным геном (A), причём аллельные гены в гомозиготном состоянии (AA) приводят к разрушению эритроцитов, и данный организм становится нежизнеспособным.
Гены обоих признаков расположены в разных хромосомах.
Чистородная негроидная женщина от белого мужчины родила двух мулатов. Один ребёнок не имел признаков анемии, а второй умер от малокровия.
Какова вероятность рождения следующего ребёнка, не имеющего признаков анемии?
Решение. Составляем схему скрещивания:
Ответ: Вероятность рождения здорового ребёнка в данной семье составляет 1/4 = 25%
№3. Рецессивные гены (а) и (с) определяют проявление таких заболеваний у человека, как глухота и альбинизм. Их доминантные аллели контролируют наследование нормального слуха (А) и синтез пигмента меланина (С).
Гены не сцеплены.
Родители имеют нормальный слух; мать брюнетка, отец альбинос. Родились три однояйцовых близнеца больные по двум признакам.
Какова вероятность того, что следующий ребёнок в этой семье будет иметь оба заболевания?
Решение
По правилу “чистоты гамет” определили, что родители дигетерозиготные:
Ответ: Вероятность рождения ребёнка имеющего оба заболевания составляет 1/8 = 12,5%
№4. Изучаются две пары аутосомных генов, проявляющих независимое наследование.
Петух с розовидным гребнем и оперёнными ногами скрещивается с двумя курицами, имеющих розовидный гребень и оперённые ноги.
От первой курицы были получены цыплята с оперёнными ногами, из них часть имела розовидный гребень, а другая часть – простой гребень.
Цыплята от второй курицы имели розовидный гребень, и часть из них с оперёнными ногами и часть с неоперёнными.
Определить генотипы петуха и двух куриц.
Решение
По условию задачи оба родителя имеют одинаковые фенотипы, а в потомстве от двух скрещиваний произошло расщепление по каждому признаку. Согласно закону Г.Менделя, только гетерозиготные организмы могут дать “расщепление” в потомстве. Составляем две схемы скрещивания.
Взаимодействие неаллельных генов
№1. Изучаются две пары неаллельных несцепленных генов определяющих окраску меха у горностая.
Доминантный ген одной пары (А) определяет чёрный цвет, а его рецессивный аллель (а) – голубую окраску.
Доминантный ген другой пары (В) способствует проявлению пигментации организма, его рецессивный аллель (в) не синтезирует пигмент.
При скрещивании чёрных особей между собой в потомстве оказались особи с голубой окраской меха, чёрные и альбиносы.
Проанализировать генотипы родителей и теоретическое соотношение в потомстве.
Решение.
Ответ: 9 чёрных, 3 альбиноса, 4 голубой окраски.
№2. Наследование окраски оперения у кур определяется двумя парами неаллельных несцепленных генов, расположенных в аутосоме.
Доминантный ген одной пары (А) определяет синтез пигмента меланина, что обеспечивает наличие окраски. Рецессивный ген (а) не приводит к синтезу пигмента и куры оказываются белыми (перьевой альбинизм).
Доминантный ген другой пары (В) подавляет действие генов первой пары, в результате чего синтез пигмента не происходит, и куры также становятся альбиносами. Его рецессивный аллель (в) падавляющего действия не оказывает.
Скрещиваются два организма гетерозиготные по двум парам аллелей.
Определить в потомстве соотношение кур с окрашенным оперением и альбиносов.
Решение.
Ответ: 13 белых, 3 окрашенных.
№3. У овса цвет зёрен определяется двумя парами неаллельных несцепленных генов.
Один доминантный ген (А) определяет чёрный цвет, другой доминантный ген (В) – серый цвет. Ген чёрного цвета подавляет ген серого цвета.
Оба рецессивных аллеля определяют белый цвет зёрен.
При опылении дигетерозиготных организмов в потомстве оказались растения с чёрными, серыми и белыми зёрнами.
Определить генотипы родительских организмов и фенотипическое соотношение в потомстве.
Решение.
Ответ: 12 чёрных, 3 серых, 1 белый.
Наследование генов, расположенных в половых хромосомах
№1. Ген нормальной свёртываемости крови (А) у человека наследуется по доминантному типу и сцеплен с Х-хромосомой. Рецессивная мутация этого гена (а) приводит к гемофилии – несвёртываемости крови.
У-хромосома аллельного гена не имеет.
Определить процентную вероятность рождения здоровых детей в молодой семье, если невеста имеет нормальную свёртываемость крови, хотя её родная сестра с признаками гемофилии. У жениха мать страдает этим заболеванием, а отец здоров.
Решение. 1) Определяем генотип невесты. По условию задачи сестра невесты имеет рецессивный генотип ХаХа, значит обе сестры получают ген гемофилии (от своего отца). Поэтому здоровая невеста гетерозиготна.
2) Определяем генотип жениха. Мать жениха с признаками гемофилии ХаХа, следовательно, по хромосомной теории пола, рецессивный ген она передаёт сыну ХаУ.
Ответ: соотношение по фенотипу 1:1, 50% детей здоровы.
№2. Изучается одна пара аллельных генов в Х-хромосоме, регулирующая цветовое зрение у человека.
Нормальное цветовое зрение является доминантным признаком, а дальтонизм проявляется по рецессивному типу.
Проанализировать генотип материнского организма.
Известно, что у матери два сына, у одного из них больная жена и здоровый ребёнок. В семье второго – дочь с признаками дальтонизма и сын, цветовое зрение которого в норме.
Решение. 1) Определяем генотип первого сына. По условию задачи у него больная жена и здоровый ребёнок – это может быть только дочь ХАХа. Рецессивный ген дочь получила от матери, а доминантный ген от отца, следовательно, генотип мужского организма доминантный (ХАУ).
2) Определяем генотип второго сына. Его дочь больна ХаХа, значит, один из рецессивных аллелей она получила от отца, поэтому генотип мужского организма рецессивный (ХаУ—).
3) Определяем генотип материнского организма по её сыновьям:
Ответ: генотип матери гетерозиготный ХАХа.
№3. Альбинизм у человека определяется рецессивным геном (а), расположенным в аутосоме, а одна из форм диабета определяется рецессивным геном (в), сцепленным с половой Х-хромосомой.
Доминантные гены отвечают за пигментацию (А) и нормальный обмен веществ (В).
У-хромосома генов не содержит.
Супруги имеют тёмный цвет волос. Матери обоих страдали диабетом, а отцы – здоровы.
Родился один ребёнок больной по двум признакам.
Определить процентную вероятность рождения в данной семье здоровых и больных детей.
Решение. Применяя правило “чистоты гамет” определяем генотипы родителей по цвету волос – генотипы гетерозиготные Аа.
По хромосомной теории пола определили, что отец болен диабетом ХвУ—, а мать здорова ХВХв.
Составляем решётку Пеннета – по горизонтали выписывают гаметы отцовского организма, по вертикали гаметы материнского организма.
Ответ: шесть организмов из шестнадцати доминантны по двум признакам – вероятность рождения составляет 6/16 = 37,5%. Десять больных: 10/16 = 62,5%, из них двое больных по двум признакам: 2/16 = 12,5%.
№4. Два рецессивных гена, расположенных в различных участках Х-хромосомы, вызывают у человека такие заболевания как гемофилия и мышечная дистрофия. Их доминантные аллели контролируют нормальную свёртываемость крови и мышечный тонус.
У-хромосома аллельных генов не содержит.
У невесты мать страдает дистрофией, но по родословной имеет нормальную свёртываемость крови, а отец был болен гемофилией, но без каких либо дистрофических признаков.
У жениха проявляются оба заболевания.
Проанализировать потомство в данной семье.
Решение.
Ответ: все дети имеют заболевание, 50% с гемофилией и 50% с дистрофией.
Наследование сцепленных генов. Явление кроссинговера
№1. Ген роста у человека и ген, определяющий количество пальцев на конечностях, находятся в одной группе сцепления на расстоянии 8 морганид.
Нормальный рост и пять пальцев на кистях рук являются рецессивными признаками. Высокий рост и полидактилия (шестипалость) проявляются по аутосомно-доминантному типу.
Жена имеет нормальный рост и по пять пальцев на руке. Муж гетерозиготен по двум парам аллелей, причём ген высокого роста он унаследовал от отца, а ген шестипалости от матери.
Определить в потомстве процентное соотношение вероятных фенотипов.
Решение.
Ответ: 46% 46% 4% 4%
№2. Два гена, регулирующих реакции обмена веществ в организме человека, сцеплены с Х-хромосомой и расположены друг от друга на расстоянии 32 морганид. У-хромосома аллельных генов не содержит.
Доминантные гены контролируют нормальный обмен веществ.
Воздействия различных мутагенных факторов изменяют последовательностъ нуклеотидов в данных участках Х-хромосомы, что приводит к отклонениям в синтезе веществ и наследственным заболеваниям по рецессивному типу.
От здоровых родителей рождается больной ребёнок, имеющий два мутантных гена в генотипе.
Какова процентная вероятность рождения следующего ребёнка с нарушением обмена веществ?
Решение. По условию задачи в данной семье больной ребёнок – это сын вХаУ т.к. от здорового отца дочери больными быть не могут.
Сын получил рецессивные гены от матери, следовательно, генотип матери гетерозиготный
Составляем схему скрещивания:
Ответ: вероятность рождения больных детей составляет 33%, из них 17% больных по двум заболеваниям обмена веществ, 8% по одному заболеванию и 8% по другому.
Задачи по генетике
nashaucheba.ru