Задачи на производную – Задачи с производными

Производные(задачи)

II. ДИФФЕРЕНЦИРОВАНИЕ

  1. Понятие производной. Производная функции .

  2. Геометрический смысл производной. Уравнения касательной и нормали к графику функции.

  3. Понятие дифференцируемости функции и дифференциала. Условие дифференцируемости. Связь дифференциала с производной.

  4. Геометрический смысл дифференциала.

  5. Непрерывность дифференцируемой функции.

  6. Дифференцирование постоянной и суммы, произведения и частного.

  7. Производная сложной функции.

  8. Инвариантность формы дифференциала.

  9. Производная обратной функции.

  10. Производные обратных тригонометрических функций.

Задача 5. Найти производную.

5.1.5.2.

5.3. 5.4.

5.5. 5.6.

5.7. 5.8.

5.9. 5.10.

5.11.

5.12.

5.13. 5.14.

5.15. 5.16.

5.17. 5.18.

5.19. 5.20.

5.21. 5.22.

5.23. 5.24.

5.25. 5.26.

5.27. 5.28.

5.29. 5.30.

5.31.

Задача 6. Найти производную.

6.1. 6.2.

6.3. 6.4.

6.5. 6.6.

6.7. 6.8.

6.9. 6.10.

6.11. 6.12.

6.13.

6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

6.20.

6.21. 6.22.

6.23. 6.24.

6.25.

6.26.

6.27.

6.28.

6.29. 6.30.

6.31.

Задача 8. Найти производную.

8.1. 8.2.

8.3. 8.4.

8.5. 8.6.

8.7. 8.8.

8.9. 8.10.

8.11. 8.12.

8.13. 8.14.

8.15. 8.16.

8.17. 8.18.

8.19. 8.20.

8.21. 8.22.

8.23. 8.24.

8.25. 8.26.

8.27. 8.28.

8.29. 8.30.

8.31.

Задача 9. Найти производную.

9.1. 9.2.

9.3.

9.4.

9.5. 9.6.

9.7.

9.8.

9.9. 9.10.

9.11. 9.12.

9.13. 9.14.

9.15. 9.16.

9.17.

9.18.

9.19.

9.20.

9.21. 9.22.

9.23. 9.24.

9.25. 9.26.

9.27.

9.28.

9.29.

9.30.

9.31.

Задача 17. Найти производную -го порядка.

17.1. 17.2.

17.3. 17.4.

17.5. 17.6.

17.7. 17.8.

17.9. 17.10.

17.11. 17.12.

17.13. 17.14.

17.15. 17.16.

17.17. 17.18.

17.19. 17.20.

17.21.

17.22.

17.23. 17.24.

17.25. 17.26.

17.27. 17.28.

17.29. 17.30.

17.31.

Задача 18. Найти производную указанного порядка.

18.1. 18.2.

18.3. 18.4.

18.5. 18.6.

18.7. 18.8.

18.9. 18.10.

18.11. 18.12.

18.13. 18.14.

18.15. 18.16.

18.17. 18.18.

18.19. 18.20.

18.21. 18.22.

18.23. 18.24.

18.25. 18.26.

18.27. 18.28.

18.29. 18.30.

18.31.

studfiles.net

Найти производную: алгоритм и примеры решений

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную, надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного — в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

.

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

.

Из таблицы производных выясняем, что производная «икса» равна единице, а производная синуса — косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

.

Пример 2. Найти производную функции

.

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

                          

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны, т.е.

                              

Правило 2. Если функции

и

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

                     

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой. 

Следствие 1. Постоянный множитель можно выносить за знак производной:

                          

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

                     

Правило 3. Если функции

и

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

                  

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные — в статье «Производная произведения и частного функций».

Здесь же (далее) — более простые примеры на производную произведения и частного, на которых Вы увереннее освоите алгоритмы вычислений.

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое uv, в котором u — число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка — механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями.

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие «Производная суммы дробей со степенями и корнями».

Если же перед Вами задача вроде , то Вам на занятие «Производные простых тригонометрических функций».

Пример 3. Найти производную функции

.

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители — суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, «икс» у нас превращается в единицу, а минус 5 — в ноль. Во втором выражении «икс» умножен на 2, так что двойку умножаем на ту же единицу как производную «икса». Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие «Производная суммы дробей со степенями и корнями».

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок «Производные простых тригонометрических функций».

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых — квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого — квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на :

Ещё больше домашних заданий на нахождение производных

Пример 12. Найти производную функции

.

Решение. Применяя правила вычисления производной алгебраической суммы функций, вынесения постоянного множителя за знак производной и формулу производной степени (в таблице производных — под номером 3), получим

.

Пример 13. Найти производную функции

Решение. Применим правило дифференцирования произведения, а затем найдём производные сомножителей, так же, как в предыдущей задаче, пользуясь формулой 3 из таблицы производных. Тогда получим

Пример 14. Найти производную функции

Решение. Как и в примерах 4 и 6, применим правило дифференцирования частного:

Теперь вычислим производные в числителе и перед нами уже требуемый результат:

Пример 15.Найти производную функции

Шаг1. Применяем правило дифференцирования суммы:

Шаг2. Найдём производную первого слагаемого. Это табличная производная квадратного корня (в таблице производных — номер 5):

Шаг3. В частном знаменатель — также корень, только не квадратный. Поэтому преобразуем этот корень в степень:

и далее дифференцируем частное, не забывая, что число 2 в первом слагаемом числителя — это константа, производная которой равна нулю, и, следовательно всё первое слагаемое равно нулю:

Корень из константы, как не трудно догадаться, является также константой, а производная константы, как мы знаем из таблицы производных, равна нулю:

,

а производная, требуемая в условии задачи:

Ещё больше домашних заданий на нахождение производных

Напоминаем, что чуть более сложные примеры на производную произведения и частного — в статьях «Производная произведения и частного функций» и «Производная суммы дробей со степенями и корнями».

Также настоятельно рекомендуем изучить производную сложной функции.

Поделиться с друзьями

Весь блок «Производная»

function-x.ru

Производные(задачи)

II. ДИФФЕРЕНЦИРОВАНИЕ

  1. Понятие производной. Производная функции .

  2. Геометрический смысл производной. Уравнения касательной и нормали к графику функции.

  3. Понятие дифференцируемости функции и дифференциала. Условие дифференцируемости. Связь дифференциала с производной.

  4. Геометрический смысл дифференциала.

  5. Непрерывность дифференцируемой функции.

  6. Дифференцирование постоянной и суммы, произведения и частного.

  7. Производная сложной функции.

  8. Инвариантность формы дифференциала.

  9. Производная обратной функции.

  10. Производные обратных тригонометрических функций.

Задача 5. Найти производную.

5.1.5.2.

5.3. 5.4.

5.5. 5.6.

5.7. 5.8.

5.9. 5.10.

5.11. 5.12.

5.13. 5.14.

5.15. 5.16.

5.17. 5.18.

5.19. 5.20.

5.21. 5.22.

5.23. 5.24.

5.25. 5.26.

5.27. 5.28.

5.29. 5.30.

5.31.

Задача 6. Найти производную.

6.1. 6.2.

6.3. 6.4.

6.5. 6.6.

6.7. 6.8.

6.9. 6.10.

6.11. 6.12.

6.13.

6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

6.20.

6.21. 6.22.

6.23. 6.24.

6.25.

6.26.

6.27.

6.28.

6.29. 6.30.

6.31.

Задача 8. Найти производную.

8.1. 8.2.

8.3. 8.4.

8.5. 8.6.

8.7. 8.8.

8.9. 8.10.

8.11. 8.12.

8.13. 8.14.

8.15. 8.16.

8.17. 8.18.

8.19. 8.20.

8.21. 8.22.

8.23. 8.24.

8.25. 8.26.

8.27. 8.28.

8.29. 8.30.

8.31.

Задача 9. Найти производную.

9.1. 9.2.

9.3.

9.4.

9.5. 9.6.

9.7.

9.8.

9.9. 9.10.

9.11. 9.12.

9.13. 9.14.

9.15. 9.16.

9.17.

9.18.

9.19.

9.20.

9.21. 9.22.

9.23. 9.24.

9.25. 9.26.

9.27.

9.28.

9.29.

9.30.

9.31.

Задача 17. Найти производную -го порядка.

17.1. 17.2.

17.3. 17.4.

17.5. 17.6.

17.7. 17.8.

17.9. 17.10.

17.11. 17.12.

17.13. 17.14.

17.15. 17.16.

17.17. 17.18.

17.19. 17.20.

17.21. 17.22.

17.23. 17.24.

17.25. 17.26.

17.27. 17.28.

17.29. 17.30.

17.31.

Задача 18. Найти производную указанного порядка.

18.1. 18.2.

18.3. 18.4.

18.5. 18.6.

18.7. 18.8.

18.9. 18.10.

18.11. 18.12.

18.13. 18.14.

18.15. 18.16.

18.17. 18.18.

18.19. 18.20.

18.21. 18.22.

18.23. 18.24.

18.25. 18.26.

18.27. 18.28.

18.29. 18.30.

18.31.

studfiles.net

Задачи на производную и касательную

В этом году в Задании 7 из  Открытого банка заданий для подготовки к ЕГЭ  по математике появились новые задачи. Давайте разберем их решение.

Прототип задания B8 (№ 317543)

На рисунке изображен график функции y=f(x)  и отмечены точки -2, -1, 1, 2. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

 Как мы знаем, производной  называется

предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю:

Производная в точке показывает скорость изменения функции в данной точке. Чем быстрее изменяется функция, то есть чем больше приращение функции, тем больше угол наклона касательной. Поскольку в задаче требуется определить точку, в которой значение производной наибольшее, исключим из рассмотрения точки с абсциссами -1 и 1 — в этих точках функция убывает, и производная в них отрицательна.

Функция возрастает в точках -2 и 2. Однако, возрастает она в них по-разному — в точке -2 график функции поднимается круче, чем в точке 2, и следовательно, приращение  функции в этой точки, а, значит и производная — больше.

Ответ: -2

И аналогичная задача:

Прототип задания B8 (№ 317544)

На рисунке изображен график функции  и отмечены точки -2, -1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

Решение этой задачи аналогично решению предыдущей «с точностью до наоборот»

Нас интересует точка, в которой производная принимает наименьшее значение, то есть мы ищем точку, в которой функция уменьшается наиболее быстро — на графике это точка, в которой самый крутой «спуск». Это точка с абсциссой 4.

Ответ: 4.

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Типовые задачи на производную с иррациональными функциями

Тема: Производная

Урок: Типовые задачи на производную с иррациональными функциями

Важнейшие задачи на производную с иррациональными функциями – это задачи на экстремум. Прежде всего, нужно вспомнить технику дифференцирования.

Повторим ее на следующем примере.

 Дана функция . Найти .

Напомним, что .

.  — постоянная величина, так как в данном выражении нет переменной, а . Отсюда, .

Следующее действие – найти производную в конкретной точке.

. Таким образом, нашли производную в данной точке. Значит, первая типовая задача, есть там иррациональность или нет, решается стандартным образом. Если нужно найти производную в конкретной точке, ищем производную в любой точке , а потом подставляем нужное значение.

Построить график функции .  

Сначала надо попытаться все сделать без производной и понять эскиз графика функции.

1. Интервалы знакопостоянства функции.

:  .

Найдем корни (нули) функции:  или .

Во всех точках области определения функция положительна, значит, график будет находиться над осью  (см. рис.1).

Рис. 1. Интервалы знакопостоянства функции .

2. Построить график  в окрестности каждого корня.

Функция в точке  равна нулю. Справа и слева от точки  функция положительна, значит, в точке  функция имеет экстремум, производная должна это подтвердить. В точке  функция тоже рана нулю. Значит, функция ведет себя следующим образом (см. рис.2):

Рис. 2. Схематический график функции  в окрестности каждого корня.

Точек разрыва нет, и когда , то . Значит, график функции выглядит следующим образом (см. рис.3):

Рис. 3. Схематический график функции при .

Построили эскиз графика функции.

3. Проведем исследование функции  с помощью производной и выясним интервалы знакопостоянства производной.

Приравняем производную к нулю и найдем критические точки:

    отсюда .

Оба значения  принадлежат области определения.

Найдем интервалы знакопостоянства производной. Сделаем иллюстрацию (см. рис.4):

Рис. 4. Интервалы знакопостоянства производной.

Итак,  — точка максимума, так как производная меняет знак с «+» на «-» (см. рис.4). Найдем значение функции в этой точке:

.  Точка  — точка минимума, так как производная меняет знак с «-» на «+». Вычислим .

Таким образом, можем построить график функции  (см. рис. 5).

Рис. 5. График функции .

Дано уравнение . Найти положительное значение параметра , при котором уравнение  имеет ровно два различных решения.

Решение.

Воспользуемся графиком функции  (см. рис.5). При  уравнение имеет два различных корня, но  по условию  поэтому .

Ответ: При .

Итак, мы рассмотрели  функцию , где есть иррациональность, исследование и построение графика. Методика построения графика функции следующая: построить эскиз графика функции без использования производной (интервалы знакопостоянства функции, поведение функции в окрестности точек разрыва области определения, в окрестности корней и бесконечно удаленных точек). Потом исследование с помощью производной уточняет график функции.

Построить график функции .

Решение.

Эта функция иррациональная. Методику применяем ту же самую. Сначала попытаемся построить эскиз графика функции без производной.

:  .

Найдем нули функции.

   или . Определим знак функции на каждом интервале (см. рис.6).

Рис. 6. Интервалы знакопостоянства функции.

Итак, знаем, что на промежутке  график функции будет находиться над осью , а на промежутке  — под осью .

Построим график функции в окрестности каждого корня (см. рис.7).

Рис. 7. Схематический график функции в окрестности каждого корня.

Если , то . График идет следующим образом (см. рис.8):

Рис. 8. Эскиз графика функции .

Мы предполагаем, что на промежутке  должен быть экстремум (см.рис.8). На все вопросы даст ответ производная.

Проведем исследование функции с помощью производной.

Приравняем производную к нулю, получим:

, отсюда  — единственная точка области определения функции, в которой производная равна нулю. Найдем интервалы знакопостоянства производной (см. рис.9):

Рис. 9. Интервалы знакопостоянства производной.

Осталось вычислить значение функции в точке .

Итак, координаты точки экстремума таковы:

interneturok.ru

Как найти производную функции, примеры решения

Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.

Как найти?

Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования:

  1. Вынос константы за знак производной:
  2. Производная суммы/разности функций:
  3. Производная произведения двух функций:
  4. Производная дроби:
  5. Производная сложной функции:

Примеры решения

Пример 1
Найти производную функции
Решение

Производная суммы/разности функций равна сумме/разности производных:

Используя правило производной степенной функции имеем:

Так же было учтено, что производная от константы равна нулю.

Ответ
Пример 2
Найти производную функции
Решение

По правилу производной разности:

По таблице интегрирования находим:

С учетом того, что аргумент натурального логарифма отличен от , то нужно домножить ещё на производную самого аргумента:

После упрощения получаем:

Ответ
Пример 3
Найти производную функции
Решение

В данном примере стоит произведение двух функций, а производная произведения находится по формуле номер 3:

Производная первой функции вычисляется как разность фунций:

Вторая функция является показательной, производная которой находится по формуле: :

Продолжаем решение с учетом найденных производных:

Ответ
Пример 4
Найти производную функции
Решение

Производную дроби найдем по четвертой формуле. Положим и . Тогда их производные по таблице основных элементарных функций равны:

Используя формулу №4 получаем:

Выносим множитель в числителе за скобку:

Ответ
Пример 5
Найти производную функции
Решение

Данная функция является сложной, потому производную будем брать по цепочке. Сначала от внешней функции, затем от внутренней. При этом выполняя их перемножение.

Заметим, что аргумент синуса отличен от , поэтому тоже является сложной функцией:

Учитывая определение котангенса перепишем полученную производную в удобном компактном виде:

Ответ

xn--24-6kcaa2awqnc8dd.xn--p1ai

Примеры решений производных

  • Попробуйте найти производные от приведенных ниже функций.
  • Нажмите на изображение или стрелку, чтобы попасть на страницу с подробным решением.

Примеры решений производных от явных функций

Найдите производные    следующих функций, зависящих от переменной x:
  Решение > > >
  Решение > > >
  Решение > > >
  > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >
  > > > Здесь , , , – постоянные.
  > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >

Примеры решений производных высших порядков от явных функций

Найти производные первого и второго порядка следующей функции:
.
Решение > > >

Найти производную третьего порядка:
.
Решение > > >

Найти производную шестого порядка следующей функции:
.
Решение > > >

Вычислить n-ю производную функции
.
Решение > > >

Найти n-ю производную следующей функции:
,
где и – постоянные.
Решение > > >

Примеры решения производных от функций, заданных параметрическим способом

Найдите производную от функции, заданной параметрическим способом:

Решение > > >

Найдите производную , где и выражены через параметр :

Решение > > >

Найдите производные второго    и третьего    порядка от функции, заданной параметрическим способом:

Решение > > >

Примеры решений производных от неявных функций

Найдите производную первого порядка от функции, заданной неявно уравнением:
.
Решение > > >

Найти производную второго порядка от неявно заданной функции:
.
Решение > > >

Найти производную третьего порядка при от функции, заданной уравнением:
.
Решение > > >

Автор: Олег Одинцов.     Опубликовано:   Изменено:

1cov-edu.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *