Ядрышко особенности строения и функции таблица – 13. Строение ядра. Ядрышко строение и функции.

Содержание

13. Строение ядра. Ядрышко строение и функции.

Ядро – структура, обеспечивающая генетическую детерминацию и регуляцию белкового синтеза. Строение:

-ядерная оболочка(кариолемма)

-ядерный сок(кариоплазма)

-ядрышко

-хроматин

Ядрышко-плотное тельце внутри ядра.

-формируется на определенных локусах хромосом(ядрышковых организаторах) где находятся гены, кодирующие р-рнк и т-рнк

-Ядрышко образуется на внехромосомных каплях.

Функции: обеспечивает синтез р-РНК ,т-РНК и рибосом.

14. Строение, свойства и функции хромосом.

Строение – состоят из ДНК и белков, образующих хроматин. Некоторые хромосомы имеют вторичную перетяжку(спутник).

Ультраструктура хромосом:

Каждая хромосома состоит из 2х хроматид ,хроматиды соединены первичной перетяжкой или центромерой.

Центромера делит хромосому на 2 плеча. Каждая хроматида состоит из 2х полухроматид.

Полухроматиды образованны хромонемами, которые состоят из микрофибрилл

Функции:

— Хранение и передача генетической информации.

— Использование генетической информации для поддержания клеточной организации.

— Регуляция считывания наследственной информации.

— Удвоение генетического материала.

Свойства хромосом:

— Парность.

— Индивидуальность (хромосомы отличаются друг от друга).

— Непрерывность (каждая хромосома образуется то хромосомы).

— Постоянство числа.

15. Нуклеиновые кислоты их виды строение локализация в клетке значение.

Нуклеиновые кислоты – биологические полимеры.

ДНК – биологический полимер, состоящий из 2 нуклеотидных цепей. Мономером является нуклеотид.

Строение: Азотистое основание(аденин ,гуанин,цитазин,тими), дезоксирибоза, остаток фосфорной кислоты. ДНК находится в хромосомах, митохондриях, пластидах.

Значение:

— Хранение наследственной информации.

— Передача наследств информ.

— Реализация наследственной информ в ходе биологического синтеза.

РНК – одноцепочечный биологический полимер. Мономером является нуклеотид.

Строение: Азотистое основание(аденин ,гуанин,цитозин,урацил), рибоза, остаток фосфорной кислоты. РНК находится в ядрах и рибосомах.

Виды:

— Т-РНК – транспортировка аминокислот к рибосоме. (10%).

— Р-РНК – структурный компонент рибосом и полисом. Контролирует начало и конец синтеза белка. (85%).

-И-РНК – содержит информацию о строении белковой молекулы

16. Генетический код. Его сущность, свойства. Понятие о кодоне.

Генетический код – это схема расположения следующих друг за другом азотистых оснований в ДНК, определяющих место аминокислот в молекуле белка.

Свойства:

— Триплетность – три азотистых основания, следующих друг за другом.(одна аминокислота кодирует три нуклеотида молекулы ДНК)

— Избыточность-могут кодировать одну и туже аминокислоту несколькими триплетами или кодонами.

— Специфичность – определённую аминокислоту, кодируют строго определённые триплеты.

— Неперерываемость – считывание информации в гене происходит последовательно, триплет за триплетом.

Универсальность – генетический код является единым для всех живых организмов на земле.

— Колленеарность – последовательность ДНК строго соответствует последовательности аминокислот в молекуле белка.

— Непрерывность – между нуклеотидами в ДНК нет никаких дополнительных знаков, разделяющих эти нуклеотиды.

Кодон – тройка рядом стоящих нуклеотидов.

studfiles.net

особенности строения, функции ядра и значение для клетки

Ядро – главное составляющее живой клетки, которое несет наследственную информацию, закодированную набором генов. Оно занимает центральное положение в клетке. Размеры варьируются, форма обычно сферичная или овальная. В диаметре ядро в разных клетках может быть от 8 до 25мкм. Есть исключения, примеру, яйцеклетки рыб имеют ядра диаметром в 1 мм.

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами. Хромосомы несут в себе основную генетическую информацию каждого человека. Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

  • Равноплечие;
  • разноплечие,
  • одноплечие.

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается. Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк. Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

  1. Принимает участие в синтезе белка, рибосомной РНК.
  2. Регулирует функциональную активность клетки.
  3. Сохранение генетической информации, точная ее репликация и передача потомству.

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

animals-world.ru

Строение ядра. Ядрышко строение и функции.

Количество просмотров публикации Строение ядра. Ядрышко строение и функции. — 1333

Мембранные органеллы цитоплазмы, их строение и функции.

Эндоплазматическая сеть (ЭПС) — одномембранная система канальцев, трубочек, цис­терн, которая пронизывает всю цитоплазму. Она разделяет ее на отдельные отсеки, в кото­рых идет синтез различных веществ, обеспечивает сообщение между отдельными частями клетки и транспорт веществ. Различают глад­кую и гранулярную ЭПС. На гладкой — идет синтез липидов, метаболизме углеводов, дезактивации вредных веществ. На гранулярной — располага­ются рибосомы и синтезируется белок, транспорт и поставка.

— Аппарат Гольджи — одномембранная струк­тура, состоящая из пузырьков и цистерн, связанная с ЭПС и собранная в небольших зонах. Обеспечивает упаковку и вынос синтезируемых веществ из клетки, образование лизосом, сортировка белков.

Лизосомы — шарообразные тельца, ограниченные одиночной мембраной, размером 0,2-0,4 мкм, содержа­щие гидролитические ферменты, которые рас­щепляют высокомолекулярные вещества, т. е обеспечивают внутриклеточное переваривание.

Пероксисомы — небольшие (размером 0,3—1,5 мкм) овальной формы тельца, ограниченные мембраной, содержащие грануляр­ный матрикс, в центре которого часто видны кристаллоподобные структуры, состоящие из фибрилл и трубочек. Пероксисомы особенно характерны для клеток печени и почек. Во фракции пероксисом обнаружи­ваются ферменты окисления аминокислот, при работе которых образуется перекись водорода.

— Митохондрии — полуавтономные двумембранные структуры продолговатой формы. На­ружная мембрана гладкая, а внутренняя имеет складки — кристы, увеличивающие ее поверх­ность. Внутри митохондрия заполнена матриксом, в котором находятся кольцевая молекула ДНК, РНК, рибосомы. Количество митохондрий в клетках различ­но, с ростом клеток их число увеличивается в результате делœения. Митохондрии — это ʼʼэнер­гетические станцииʼʼ клетки. В процессе дыха­ния в них происходит окончательное окисление веществ кислородом воздуха. Выделяющаяся энергия запасается в молекулах АТФ, синтез ко­торых происходит в этих структурах.

ядро открыто в 1831ᴦ. Броуном. В клетке должна быть от одного до нескольких ядер, чаще округлых расположенных в центре клетки. Ядро присутствует во всœех эукариотах, но в тромбоцитах крови ядра утрачиваются и клетки погибают.

Ядро – структура, обеспечивающая генетическую детерминацию и регуляцию белкового синтеза. Строение: ядерная оболочка, хроматин, ядерный сок, ядрышко.

Ядерная оболочка состоит их 2 мембран типичного строения между кот перенуклеарное пространство, соединяющееся с каналом ЭПС. На наружной ядерной мембране много рибосом. внутренняя мембрана связана с внутриядерным матриксом, состоящим из белков, кот удерживает хроматин(Ф-ции:защитная и транспортная).

Ядерный сок – по физ. Состоянию аналогичен гиалоплазме, но имеет др.
Размещено на реф.рф
набор белков, нуклеотиды, ДНК и РНК.

Хроматин – вещество образованное ДНК и белками. Из него во время делœения клетки образуется хромосомы. Он виден в ядре на стадии интерфазы в виде глыбок.

В ядрышке выделяют нитчатый и зернистый компоненты. Нитчатый компонент состоит из белка и гигантской РНК – предшественницы, которая затем образует более мелкие рРНК. В процессе созревания фибриллы преобразуются в зёрна (гранулы). Функции: обеспечивает образование и созревание рРНК.

referatwork.ru

Строение и функции ядра

Как правило, эукариотическая клетка имеет одно ядро, но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра — сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра — обычно от 3 до 10 мкм.

Строение ядра:
1 — наруж­ная мембрана; 2 — внут­ренняя мемб­рана; 3 — поры; 4 — ядрышко; 5 — гетеро­хроматин; 6 — эухро­матин.

Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами — узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры (3), через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная (1) мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя (2) мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

Кариоплазма (ядерный сок, нуклеоплазма) — внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды.

Ядрышко (4) представляет собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и варьирует от 1 до 7 и более. Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают. Ядрышко образуется на определенных участках хромосом, несущих информацию о структуре рРНК. Такие участки называются ядрышковым организатором и содержат многочисленные копии генов, кодирующих рРНК. Из рРНК и белков, поступающих из цитоплазмы, формируются субъединицы рибосом. Таким образом, ядрышко представляет собой скопление рРНК и рибосомальных субъединиц на разных этапах их формирования.

Хроматин — внутренние нуклеопротеидные структуры ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП). В зависимости от функционального состояния хроматина различают: гетерохроматин (5) и эухроматин (6). Эухроматин — генетически активные, гетерохроматин — генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин — форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра: 1) хранение наследственной информации и передача ее дочерним клеткам в процессе деления, 2) регуляция жизнедеятельности клетки путем регуляции синтеза различных белков, 3) место образования субъединиц рибосом.

Яндекс.ДиректВсе объявления

Хромосомы

Хромосомы — это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин — различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%).

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определенную трехмерную структуру, или конформацию. Можно выделить следующие уровни пространственной укладки ДНК и ДНП: 1) нуклеосомный (накручивание ДНК на белковые глобулы), 2) нуклеомерный, 3) хромомерный, 4) хромонемный, 5) хромосомный.

В процессе преобразования хроматина в хромосомы ДНП образует не только спирали и суперспирали, но еще петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

Хромосомы: 1 — метацентрическая; 2 — субметацентрическая; 3, 4 — акроцентрические. Строение хромосомы: 5 — центромера; 6 — вторичная перетяжка; 7 — спутник; 8 — хроматиды; 9 — теломеры.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид (8). Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник — участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б) субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).

Соматические клетки содержат диплоидный (двойной — 2n) набор хромосом, половые клетки — гаплоидный (одинарный — n). Диплоидный набор аскариды равен 2, дрозофилы — 8, шимпанзе — 48, речного рака — 196. Хромосомы диплоидного набора разбиваются на пары; хромосомы одной пары имеют одинаковое строение, размеры, набор генов и называются гомологичными.

Кариотип — совокупность сведений о числе, размерах и строении метафазных хромосом. Идиограмма — графическое изображение кариотипа. У представителей разных видов кариотипы разные, одного вида — одинаковые. Аутосомы — хромосомы, одинаковые для мужского и женского кариотипов. Половые хромосомы — хромосомы, по которым мужской кариотип отличается от женского.

Хромосомный набор человека (2n = 46, n = 23) содержит 22 пары аутосом и 1 пару половых хромосом. Аутосомы распределены по группам и пронумерованы:

Половые хромосомы не относятся ни к одной из групп и не имеют номера. Половые хромосомы женщины — ХХ, мужчины — ХУ. Х-хромосома — средняя субметацентрическая, У-хромосома — мелкая акроцентрическая.

В области вторичных перетяжек хромосом групп D и G находятся копии генов, несущих информацию о строении рРНК, поэтому хромосомы групп D и G называются ядрышкообразующими.

Функции хромосом: 1) хранение наследственной информации, 2) передача генетического материала от материнской клетки к дочерним.

Лекция №9.
Строение прокариотической клетки. Вирусы

К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты — одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз.


Похожие статьи:

poznayka.org

Функции ядрышка в клетке каковы? Ядрышко: строение и функции

Клетка является элементарной единицей живых организмов на Земле и имеет сложную химическую организацию структур, называемых органеллами. К ним относится ядрышко, строение и функции которого мы изучим в данной статье.

Особенности эукариотических ядер

Ядросодержащие клетки в своем составе содержат немембранные органеллы округлой формы, более плотные, чем кариоплазма, и называемые ядрышками или нуклеолами. Они были обнаружены ещё в 19 веке. Сейчас нуклеолы достаточно полно изучены благодаря электронной микроскопии. Практически до 50-х годов 20 века функции ядрышек не были определены, и ученые рассматривали эту органеллу, скорее, как резервуар запасных веществ, используемых во время митоза.

Современными исследованиями установлено, что органоид включает в себя гранулы нуклеопротеидной природы. Более того, биохимические опыты подтвердили, что органелла содержит большое количество белков. Именно они и обуславливают её высокую плотность. Кроме протеидов, в составе ядрышек присутствует РНК и небольшое количество ДНК.

Клеточный цикл

Интересно, что в жизни клетки, которая состоит из периода покоя (интерфазы) и деления (мейоза – у половых, митоза – у соматических клеток), ядрышки сохраняются непостоянно. Так, в интерфазе ядро с ядрышком, функции которых – сохранение генома и образование белоксинтезирующих органелл, присутствуют обязательно. В начале клеточного деления, а именно в профазе, они исчезают и заново образуются лишь в конце телофазы, сохраняясь в клетке до следующего деления или до апоптоза – её гибели.

Ядрышковый организатор

В 30-х годах прошлого века учеными было установлено, что образование ядрышек контролируется определенными участками некоторых хромосом. Они содержат гены, хранящие информацию о том, какое строение и каковы функции ядрышка в клетке. Существует корреляция между количеством ядрышковых организаторов и самих органелл. Например, шпорцевая лягушка содержит в своем кариотипе две ядрышкообразующие хромосомы и, соответственно, в ядрах её соматических клеток находится две нуклеолы.

Так как функции ядрышка, а также его наличие тесно связаны с делением клетки и образованием рибосом, сами органеллы отсутствуют в высокоспециализированных тканях головного мозга, крови, а также в бластомерах дробящейся зиготы.

Амплификация нуклеол

В синтетической стадии интерфазы наряду с самоудвоением ДНК происходит избыточная репликация числа генов рРНК. Так как основные функции ядрышка – продуцирование рибосом, то в связи со сверхсинтезом локусов ДНК, несущих информацию о РНК, резко возрастает количество этих органелл. Нуклеопротеиды, не связанные с хромосомами, начинают функционировать автономно. Как результат — в ядре образуется множество нуклеол, дистанцирующихся от ядрышкообразующих хромосом. Это явление называется амплификацией генов рРНК. Продолжая изучать функции ядрышка в клетке, отметим, что наиболее активный их синтез происходит в профазе редукционного деления мейоза, вследствие чего овоциты первого порядка могут содержать несколько сотен ядрышек.

Биологическое значение этого явления становится понятным, если учесть, что на ранних этапах эмбриогенеза: дроблении и бластуляции, необходимо огромное количество рибосом, синтезирующих главный строительный материал – белок. Амплификация – достаточно распространенный процесс, он происходит в овогенезе растений, насекомых, земноводных, дрожжей, а также у некоторых протист.

Гистохимический состав органеллы

Продолжим изучение эукариотических клеток и их структур, и рассмотрим ядрышко, строение и функции которого взаимосвязаны. Установлено, что оно содержит три вида элементов:

  1. Нуклеонемы (нитевидные образования). Они неоднородны и содержат фибриллы и глыбки. Входя в состав как растительных, так и животных клеток, нуклеонемы образуют фибриллярные центры. Цитохимическое строение и функции ядрышка зависят также от присутствия в нем матрикса – сети опорных белковых молекул третичной структуры.
  2. Вакуоли (светлые участки).
  3. Зернистые гранулы (нуклеолины).

С точки зрения химического анализа, этот органоид почти полностью состоит из РНК и белка, а ДНК находится только на его периферии, образуя кольцеобразную структуру – околоядрышковый хроматин.

Итак, мы установили, что в состав ядрышка входят пять образований: фибриллярный и гранулярный центры, хроматин, белковый ретикулум и плотный фибриллярный компонент.

Виды ядрышек

Биохимическое строение этих органоидов зависит от типа клеток, в которых они присутствуют, а также от особенностей их метаболизма. Различают 5 основных структурных типов нуклеол. Первый – ретикулярный, наиболее распространен и характеризуется изобилием плотного фибриллярного материала, глыбок нуклеопротеидов и нуклеонем. Процесс переписывания информации с ядрышковых организаторов происходит очень активно, поэтому фибриллярные центры плохо видны в поле зрения микроскопа.

Так как главные функции ядрышка в клетке – синтез рибосомных субъединиц, из которых образуются белоксинтезирующие органеллы, то ретикулярный тип организации присущ как растительным, так и животным клеткам. Кольцевидный тип ядрышек встречается в клетках соединительной ткани: лимфоцитах и эндотелиоцитах, у которых гены рРНК практически не транскрибируются. Остаточные ядрышки встречаются в клетках, полностью утративших способность к транскрипции, например, у нормобластов и энтероцитов.

Сегрегированный вид присущ клеткам, испытавшим интоксикацию канцерогенами, антибиотиками. И, наконец, компактный тип ядрышка характеризуется множеством фибриллярных центров и небольшим количеством нуклеонем.

Белковый ядрышковый матрикс

Продолжим изучение внутреннего строения структур ядра и определим, каковы функции ядрышка в метаболизме клетки. Известно, что около 60% сухой массы этого органоида приходится на белки, входящие в состав хроматина, рибосомных частиц, а также на собственно ядрышковые белки. Остановимся на них подробнее. Часть протеидов задействована в процессинге – формировании зрелых рибосомных РНК. К ним относятся РНК-полимераза 1 и нуклеаза, которые удаляют лишние триплеты с концов молекулы рРНК. Белок фибрилларин находится в плотном фибриллярном компоненте и, так же, как и нуклеаза, осуществляет процессинг. Еще один белок – нуклеолин. Вместе с фибрилларином он находится в ПФК и ФЦ ядрышек и в ядрышковых организаторах хромосом профазы митоза.

Такой полипептид, как нуклеофозин располагается в гранулярной зоне и плотном фибриллярном компоненте, он участвует в формировании рибосом из 40 S и 60 S субъединиц.

Какую функцию выполняет ядрышко

Синтез рибосомной РНК – главное задание, которое должна выполнить нуклеола. В это время на её поверхности (а именно в фибриллярных центрах) происходит транскрипция при участии фермента РНК-полимеразы. На данном ядрышковом организаторе синтезируются сотни пре-рибосом, называемых рибонуклеопротеидными глобулами. Из них образуются рибосомные субъединицы, которые через ядерные поры покидают кариоплазму и оказываются в цитоплазме клетки. Малая субъединица 40S соединяется с информационной РНК и только после этого к ним прикрепляется большая субъединица 40S. Образуется зрелая рибосома, способная осуществлять трансляцию – синтез клеточных белков.

В данной статье нами было изучено строение и функции ядрышка в растительных и животных клетках.

fb.ru

Строение клетки. Цитоплазма. Органоиды. Ядро. Их функции

  • ГДЗ
  • 1 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Информатика
    • Природоведение
    • Основы здоровья
    • Музыка
    • Литература
    • Окружающий мир
    • Человек и мир
  • 2 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Белорусский язык
    • Украинский язык
    • Информатика
    • Природоведение
    • Основы здоровья
    • Музыка
    • Литература
    • Окружающий мир
    • Человек и мир
    • Технология
  • 3 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Белорусский язык
    • Украинский язык
    • Информатика
    • Музыка
    • Литература
    • Окружающий мир
    • Испанский язык
  • 4 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Белорусский язык
    • Украинский язык
    • Информатика
    • Основы здоровья
    • Музыка
    • Литература
    • Окружающий мир
    • Человек и мир
    • Испанский язык
  • 5 Класс

resheba.me

15. Ядро, его строение и функции

Клеточное ядро состоит из оболочки, ядерного сока, ядрышка и хроматина. Функциональная роль ядерной оболочки заключается в обособлении генетического материала клетки от цитоплазмы, а также регуляции взаимодействий ядра и цитоплазмы. Пронизана ядерная оболочка порами, обеспечивающими связь с цитоплазмой. Ядерная оболочка состоит из 2 мембран, разделенных перинуклеарным пространством. Это пространство может сообщаться с канальцами цитоплазматической сети. Основу ядерного сока, или матрикса, составляют белка. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль обеспечении нормального функционирования генетического материала. В составе ядерного сока присутствуют нитчатые белки, с которыми связано выполнение опорной функции, в матриксе также находятся первичный продукты транскрипции ген информации. Ядро имеет одно или несколько ядрышек. Оно состоит из РНК и белка. Формируется оно на определенных участках некоторых хромосом. Ядрышко – это структура, которая участвует в синтезе и созревании рРНК Хроматиновые структуры в виде глыбок, рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки. Различают эухроматин и гетерохроматин Главная функция ядра — хранение и передача наследственной информации — связана с хромосомами. Кроме того, ядро участвует в реализации этой информации с помощью синтеза белка.

16. Хромосомы – структурные компоненты ядра. Строение, состав, функции. Понятие о кариотипе, кариограмма

Хромосомы неделящейся клетки имеют вид длинных тонких нитей. Каждая хромосома перед делением клетки состоит из двух одинаковых нитей — хроматид, которые соединяются между в области перетяжки – центромеры. Хромосомы состоят из ДНК и белков. Поскольку нуклеотидный состав ДНК различается у разных видов, состав хромосом уникален для каждого вида. Молекулы ДНК обеспечивают хранение и передачу наследственной информации от клетки к клетке и от организма к организму. Основные функции ядра – хранение и передача наследственной информации осуществляется хромосомами Диплоидный набор хромосом клетки, характеризующийся их числом, величиной и формой, называется кариотипом. Нормальный кариотип человека включает 46 хромосом, или 23 пары: из них 22 пары аутосом и одна пара – половых хромосом Для того, чтобы легче разобраться в сложном комплексе хромосом, составляющем кариотип, их располагают в виде идиограммы. В идиограмме хромосомы располагаются попарно в порядке убывающей величины, исключение делается для половых хромосом. Самой крупной паре присвоен №1, самой мелкой — №22. Идентификация хромосом только по величине встречает большие затруднения: ряд хромосом имеет сходные размеры. Однако в последнее время путем использования разного рода красителей установлена четкая дифференцировка хромосом человека по их длине на красящиеся специальными методами и не красящиеся полосы. Постоянство числа, индивидуальность и сложность строения, авторепродукция и непрерывность в последовательных генерациях клеток говорят о большой биологической роли хромосом. Хромосомы действительно являются хранителями информации.

studfiles.net

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *