Хромосома xy – У мужчин XY-хромосома. Имено сY-хромосомой происходят не жизнеспособные мутации. Что будет за существо с XYYY-хромосомой?

Y хромосома: scinquisitor

— Скажите, профессор! Вы рассказали, что через 5 миллионов лет Солнце достигнет таких размеров, что поглотит Землю. Это правда?
— Нет. Это произойдет только через 5 миллиардов лет.
— А! Ну, слава Богу!

Сегодня в прессе распространены известия о том, что скоро «мир останется без мужчин», что «мужская Y-хромосома — а вместе с нею и весь мужской род — находятся под угрозой вымирания», что «мужчины исчезнут как динозавры», «исчезнут с лица Земли», «исчезнут как биологический вид». Можно ли верить этим сенсациям? Что такое Y-хромосома и для чего она нужна? Что происходит с ней на самом деле? Правда ли существует угроза для мужского населения? Об этом — данная статья.

Наследственный материал человека организован в 22 пары неполовых хромосом (аутосом) и в две половые хромосомы. Половина хромосом достается нам от отца, половина — от матери. У женщин имеется две X-хромосомы, а у мужчин одна Х- и одна Y-хромосома. На самом деле, картина несколько более сложная. Примерно каждый пятисотый мужчина имеет две X- и одну Y-хромосому (XXY), а каждый тысячный имеет одну X и две Y (XYY). Каждая тысячная женщина имеет три Х (ХХХ).

Наличие более двух половых хромосом не смертельно, но может приводить к нарушениям развития. У XYY-мужчин нарушения выражены незначительно: наблюдаются небольшие ухудшения умственного развития, увеличенный рост, но при этом сохраняется фертильность (способность оставлять потомство). XXY-мужчины, как правило, бесплодны, у них меньше мужского полового гормона — тестостерона, менее развиты гениталии. ХХХ-женщины, как правило, фертильны, в некоторых случаях с отставанием в развитии. Изменение числа копий аутосом значительно более опасно: три копии 21-й хромосомы являются причиной развития синдрома Дауна, утроение любой из остальных хромосом несовместимо с жизнью.

Получается, что пол людей определяется наличием или отсутствием Y-хромосомы: если Y-хромосома есть, получается мужчина, если ее нет — женщина. Такая система определения пола не единственная возможная в мире животных. Например, у плодовой мушки дрозофилы пол определяется числом Х-хромосом и не зависит от наличия Y-хромосомы. У птиц, в отличие от людей, две одинаковые половые хромосомы наблюдаются у самцов, а у самок половые хромосомы разные. У утконоса (уникального яйцекладущего млекопитающего с клювом) имеется целых 10 половых хромосом, которые сцеплены в цепочки по пять: бывают ХХХХХХХХХХ-самки и XYXYXYXYXY-самцы. Более того, одна часть цепочки половых хромосом утконоса имеет сходство с половыми хромосомами птиц, а другая — с половыми хромосомами других млекопитающих.

В очень редких случаях среди людей, грызунов и некоторых других видов млекопитающих можно встретить самца без Y-хромосомы, а так же самку с Y-хромосомой. Было показано, что для определения пола необходима не вся Y-хромосома, а только малая ее часть, всего лишь один ген. Ген SRY, расположенный на Y-хромосоме, отвечает за развитие семенников. Если этот ген «перескочит» на другую хромосому, то может получиться XX-самец. Если в результате мутации ген SRY будет выведен из строя на Y-хромосоме, может быть получена XY-самка.

1991 году в научном журнале Nature была опубликована работа молекулярного биолога Питера Купмана, которому удалось встроить ген SRY c Y-хромосомы мышей в мышиные эмбрионы с двумя Х-хромосомами. Такие трансгенные мыши внешне оказались самцами. Так было подтверждено, что ключевое генетическое отличие между мужчиной и женщиной кроется в одном-единственном гене.

Но как один ген может так сильно повлиять на развитие человека? Оказалось, что ген SRY может активировать другие гены, отвечающие за развитие мужских половых признаков. У самки эти гены выключены, но появление гена SRY может привести к их включению. Иными словами, в геноме каждой женщины есть почти все необходимые инструкции для развития мужчины, но эти инструкции хранятся под замком. Ген SRY — ключ к этому замку.

Хотя работы Купмана показали, что одного гена достаточно, чтобы получить ХХ-мышей со всеми внешними признаками самцов, полученные самцы оказались бесплодны. Это означает, что для полноценного развития самца одного гена все-таки недостаточно. Тем не менее многие ученые склоняются к мнению, что количество генов, важных для развития полноценных мужчин, на Y-хромосоме невелико.

Последние данные свидетельствуют о том, что Y-хромосома стала половой хромосомой примерно 150 миллионов лет назад. Тогда Х- и Y-хромосомы были очень похожи, так же как современные неполовые хромосомы. С тех пор Y-хромосома неуклонно уменьшалась в размерах и утратила около 97% своих генов. Став половой хромосомой, она начала накапливать гены, полезные для мужчин, но вредные для женщин, и постепенно избавляться от всего остального.

Кроме того, Y-хромосома мутирует почти в 5 раз быстрее, чем остальные хромосомы. Считается, что это связано с тем, что появлению мужских половых клеток предшествует большое количество делений. Дело в том, что при каждом делении клеток необходимо копировать хромосомы, чтобы каждой новой клетке достался полноценный набор генетического материала. Но система копирования ДНК не идеальна: при каждом копировании возникают ошибки, своеобразные опечатки, мутации. Y-хромосома в каждом поколении проходит через большое количество копирований, потому что наследуется только через мужские половые клетки, а значит, накапливает больше ошибок, связанных с копированием. Аутосомы наследуются как от мужчин, так и от женщин, а значит, в половине поколений наследуются через женские половые клетки. Вследствие этого они в среднем проходят через меньшее число делений на одно поколение и накапливают меньше мутаций.

Если грубо посчитать скорость исчезновения генов с Y-хромосомы и количество оставшихся на ней генов, можно представить, что Y-хромосома утратит все свои гены примерно через десять миллионов лет. Сегодня ведется дискуссия о том, грозит ли Y-хромосоме полное исчезновение в будущем. Во-первых, опыты Купмана показывают, что Y-хромосома не так уж нужна: если пара-тройка важных для определения пола генов перескочат с Y-хромосомы на аутосому, мы получим новую систему определения пола. В такой системе от Y-хромосомы можно будет избавиться без особых последствий. Действительно, у некоторых видов грызунов в ходе эволюции Y-хромосома была полностью утрачена, что указывает на то, что описанный выше сценарий, действительно, возможен. Другая точка зрения гласит, что ничего с Y-хромосомой не случится. Сегодня показано, что существует ряд эволюционных механизмов, активно сохраняющих оставшиеся на Y-хромосоме гены. Совершено не обязательно, что Y-хромосома продолжит утрачивать оставшиеся на ней гены с той же скоростью, с которой она утрачивала их раньше. Несмотря на наличие разных точек зрения, ученые сходятся во мнении, что уменьшение Y не приведет к катастрофическим последствиям для человечества. Мужчины останутся.

www.novayagazeta.ru/data/2010/118/11.html

scinquisitor.livejournal.com

Хромосомы человека, структура, количество, набор, Х-хромосома, Y-хромосома : Все про гены!

      Генетическая информация каждого человека сохраняется в 23 парах хромосом, которые очень отличаются размерами и формой. Хромосома 1 — самая большая, ее размер более чем в три раза больше, чем размер 22 хромосомы. Двадцать третья пара хромосом — это две специальные хромосом, X и Y, которые определяют наш пол. Женщины имеют пару Х-хромосом (46, XX), в то время как у мужчин эта пара состоит из одной Х и одной Y хромосомы (46, XY).

 

   Основной составляющей каждой хромосомы является ДНК, а гены — это основные составляющие хромосомной ДНК. Молекула каждой хромосомы очень длинная, поэтому для компактности она плотно намотанная на специфические белки-гистоны. Это явление называется суперскручивание или суперкомпактизация. Для сравнения можно себе представить, что вся ДНК, которая содержится в ядре каждой клетки, в развернутом виде должна иметь длину около трех метров. Если вымерять длину всей ДНК организма человека, то, стоить отметить, что если нити ДНК сложить по длине, то этой двойной нитью можно было бы соединить Землю и Солнце около 70 раз. Длина ДНК одной хромосомы составляет в среднем 5 см.

 

    Почти в центре каждой хромосомы содержится ее центромера, небольшой участок, которая делит хромосому на две части, образуя при этом длинное плечо (q) и короткое плечо (р). Кроме того, для более детального и точного исследования хромосом используется метод окраски хромосом специальными красителями. Использование которых вызывает образование характерной полосатой структуры. Каждая хромосома имеет уникальную четкую полосатую структуру, а каждая полоска имеет номер, который помогает определить (локализировать) конкретную часть хромосомы (локус). Этот метод, при котором положение данного гена определяется размещением его на конкретной полосе хромосомы называется цитогенетическим картированием. Например, ген бета-гемоглобина (HBB) размещен на хромосоме 11p15.4. Это означает, что ген HBB расположен на коротком плече (р) хромосомы 11 и находится на 4 полосе 15 участка этой хромосомы.

 

     Появление новых методов анализа ДНК, позволяет более детально изучить структуру хромосом. Метод цитогенетического картирования, можно назвать взглядом с «высоты птичьего полета» в отношении тех техник, которые доступны сейчас для генетического исследования. Так, основной целью проведения известного проекта «Геном человека» является выявление и определение последовательности более чем 30000 генов ДНК человека.

 

      Кариограмма мужчины

 

  Это изображение 23 пар человеческих хромосом. Они окрашены и размещены по мере уменьшения размера. Наличие в последней паре Y хромосомы, свидетельствует о том, что этот набор хромосом — мужской.

vse-pro-geny.ru

Истинно женская Х-хромосома больше всего вредит мужчинам — МедНовости


Каждая женщина – это не просто загадка, а мозаика, состоящая из клеток с разными наборами активных хромосом. У человека 23 пары хромосом, и хромосомы одной пары несут одни и те же наборы генов. Исключение составляет пара половых хромосом. У мужчин одна из них называется X, а другая – Y, и они существенно отличаются своими наборами генов. X-хромосома значительно крупнее, чем Y, и содержит больше генов. Обе половые хромосомы женщин – Х, и они отличаются между собой также, как хромосомы внутри других 22 пар. У каждой женщины по две X-хромосомы, а у каждого мужчины – только по одной, и чтобы они были одинаково активны у женщин и мужчин, организм регулирует их работу. Для этого во всех клетках тела женщины одна из X-хромосом инактивируется. Какая именно из двух половых хромосом будет отключена, для каждой клетки решает случай, так что в части клеток тела женщины работает одна X-хромосома, а в оставшихся – другая.


Как следствие такой мозаичности у женщин редко проявляются болезни, связанные с повреждениями X-хромосом. Даже если у женщины оказывается X-хромосома с дефектом какого-либо гена, другая хромосома пары, работающая в половине клеток, спасает положение и не дает болезни проявиться. Чтобы болезнь, связанная с повреждением X-хромосомы «разыгралась» на полную мощь, женщине должны достаться целых две копии этой хромосомы с дефектом одного и того же гена. Это маловероятное событие. В то же время, если мужчина получает дефектную X-хромосому (она приходит от матери), у нее не будет пары, чтобы скомпенсировать ущерб, и заболевание покажет себя.


X-хромосома, к несчастью для мужчин, несет множество жизненно важных генов, так что ее поломка чревата печальными последствиями. Дальтонизм, гемофилия, миопатия Дюшена, синдром ломкой X-хромосомы, X-сцепленный иммунодефицит – это только самые известные генетические заболевания, от которых страдают почти исключительно мужчины.


Цветовая слепота


Распространено заблуждение, что дальтониками могут быть только мужчины. Это неверно, однако, женщины-дальтоники встречаются намного реже. Сложности с различением некоторых цветов испытывают лишь 0,4 процента женщин и около 5 процентов мужчин. Дальтонизм – это потеря или нарушение работы одного из пигментов, связанных с распознаванием света определенного цвета. Всего таких пигментов три, и они чувствительны к волнам красного, зеленого и синего цвета. Любой сложный цвет можно представить как комбинацию этих трех. В каждой клетке-колбочке, которые находятся в сетчатке и отвечают за распознавание цвета, находится лишь один тип пигмента. По неизвестным пока причинам, неполадки с работой пигментов, с помощью которых мы различаем красный и зеленый цвета, встречаются чаще, чем дефекты пигмента, необходимого, чтобы правильно узнавать синий цвет.


За синтез пигментов отвечают гены, находящиеся на X-хромосоме. Если мужчине досталась хромосома с дефектным геном, определяющим за узнавание, к примеру, красного цвета, то во всех колбочках его сетчатки будет активна лишь эта дефектная X-хромосома – другой у него просто нет. Поэтому у такого мужчины не будет колбочек, способных правильно распознать красный цвет. Сетчатка женщины имеет мозаичное строение, и если даже одна из X-хромосом несет поврежденный ген, эта хромосома будет активна лишь в части колбочек, отвечающих за распознавание соответствующего цвета. В других колбочках будет активна вторая хромосома, которая несет нормальный ген. Восприятие цвета у такой женщины будет немного измененным, но все же она будет способна различать все цвета, которые обычно различают люди.


Гемофилия


Другое известное заболевание, связанное с дефектами генов X-хромосомы – это гемофилия, нарушение свертывания крови. После травмы в крови здорового человека запускается сложная система реакций, приводящая к образованию нитей белка фибрина. Благодаря накоплению этих нитей, в месте повреждения кровь становится более густой и закупоривает рану. Если любая из стадий процесса нарушается, кровь не свертывается вовсе или делает это слишком медленно, так что больной может умереть от кровопотери даже после удаления зуба. Кроме того, больные с гемофилией страдают от спонтанных внутренних кровоизлияний из-за уязвимости стенок сосудов.


Каскад реакций, приводящий с итоге к образованию нитей фибрина и загустению крови, очень сложен, а чем сложнее система, тем больше мест, где она может сломаться. Известно три типа гемофилии, связанных с дефектами трех генов, кодирующих белки-участники каскада. Два из этих генов располагаются на X-хромосоме, поэтому гемофилией страдает один мужчина из 5000, а случаев заболеваний женщин за всю историю было зафиксировано лишь 60.


Миопатия Дюшена


Еще один важный ген, располагающийся на X-хромосоме – ген белка дистрофина, необходимого для поддержания целостности мембран мышечных клеток. При миопатии Дюшена работа этого гена нарушается, и дистрофин не образуется. У мужчин, которым досталась X-хромосома с таким поврежденным геном, развивается прогрессирующая мышечная слабость, в результате чего мальчики с такой болезнью уже к 12 годам не могут самостоятельно ходить. Как правило, больные погибают в возрасте около 20 лет из-за связанных со слабостью мышц нарушений дыхания. У девочек, получивших X-хромосому с неисправным геном дистрофина, из-за мозаичности белок отсутствует лишь в половине клеток тела. Поэтому женщины-носительницы дефектного гена дистрофина страдают лишь легкой мышечной слабостью, и то не всегда.


X-сцепленный тяжелый иммунодефицит


Больные с тяжелыми иммунодефицитами вынуждены жить в полностью стерильной среде, потому что они  крайне уязвимы перед инфекционными заболеваниями. X-сцепленный тяжелый иммунодефицит возникает из-за мутации в гене, который кодирует общий компонент нескольких рецепторов, необходимых для взаимодействия клеток иммунной системы. Как очевидно из названия болезни, этот ген тоже располагается в X-хромосоме. Из-за неработающих рецепторов иммунная система с самого начала развивается неправильно, ее клетки малочислены, плохо функционируют и не могут координировать свои действия. К счастью, это тяжелое заболевание встречается редко: им страдает один мальчик из 100000. У девочек появление этой болезни можно считать практически невероятным.


Синдром ломкой X-хромосомы


Еще один важный ген, расположенный на X-хромосоме – ген FMR1, необходимый для нормального развития нервной системы. Работа этого гена может быть нарушена из-за патологического процесса, при котором в гене увеличивается число повторяющихся фрагментов ДНК. Дело в том, что точное копирование повторяющегося числа единиц всегда представляет собой трудность. Представим себе, что нам нужно аккуратно переписать длинное число, в котором есть много одинаковых цифр подряд – легко ошибиться и написать на несколько цифер больше или меньше. Точно так и в ДНК. При делении клеток, когда ДНК удваивается, число повторов может случайно измениться. Именно из-за увеличения числа повторов в коротком фрагменте ДНК на X-хромосоме может появиться «ломкий» участок, который легко рвется при делении клеток. Ген FMR1 находится рядом с «ломким» участком, и его работа нарушается. В результате такой патологии возникает умственная отсталость, которая проявляется у мужчин с «ломкой» X-хромосомой более явственно, чем у женщин.


Всегда ли лучше иметь две X-хромосомы, чем одну?


Кажется, что иметь две X-хромосомы выгоднее, чем одну: меньше риск заболеваний из-за неудачных генов. Как насчет самцов, имеющих такой состав половых хромосом: XXY? Можно ли ожидать, что они будут иметь преимущество перед самцами с обычным составом половых хромосом XY? Оказывается, состав хромосом XXY – не благо, а совсем наоборот. Мужчины с таким набором хромосом страдают от синдрома Клайнфельтера, при котором наблюдается множество патологии, но нет никаких преимуществ.


Более того, известны заболевания, для которых характерны еще большие количества X-хромосом, вплоть до пяти на генотип. Такие патологии встречаются как у женщин, так и у мужчин. При наличии избыточных X-хромосом все они, кроме одной, инактивируются. Однако, пусть лишние X-хромосомы и не работают, чем их больше, тем тяжелее заболевание. Интересно, что особенно страдает от наличия избыточных X-хромосом интеллект – каждая лишняя хромосома этого типа ведет к понижению IQв среднем примерно на 15 пунктов. Получается, что иметь запасной вариант X-хромосомы хорошо, но не всегда (мужчинам от дополнительной X-хромосомы лучше не становится). Иметь много запасных вариантов этой половой хромосомы – не выгодно ни для женщин, ни для мужчин.


Чем же дополнительные неактивные X-хромосомы вредны, и почему каждая лишняя хромосома усугубляет тяжесть заболевания? Во-первых, лишние X-хромосомы выключаются далеко не сразу, а только спустя первые 16 суток развития эмбриона. А чем раньше во время развития возникает нарушение, тем более разнообразными и многочисленными будут его проявления. Поэтому лишние хромосомы могут успеть «навредить» достаточно фундаментально, так, что патологии будут проявляться в совершенно разных сферах.


Во-вторых, некоторые гены на инактивированных X-хромосомах каким-то образом избегают отключения. Хотя Xи Y-хромосомы очень непохожи, все же они образуют пару и имеют небольшое количество одинаковых генов. Если половых хромосом слишком много, и на всех них эти гены останутся активными, в клетках нарушается генный баланс. Поэтому чем больше лишних хромосом, тем тяжелее болезнь.


X-хромосома несет на себе множество жизненно важных генов, и неудивительно, что ее дефекты имеют крайне неприятные проявления. Женщинам от природы дана возможность «подстраховаться» за счет дополнительной копии хромосомы, которая может уменьшить тяжесть заболевания. Однако такая «запаска» хороша только в единственном числе, а все дополнительные X-хромосомы ведут к развитию тяжелых патологий. Ну а мужчинам, у которых нет второй X-хромосомы, с самого их зачатия достается больше риска. Увы.

medportal.ru

Бывает ли у женщин набор хромосом XY?

Со школьных лет с уроков биологии мы узнаем и запоминаем главное: пол человека определяется еще при зачатии и никоим образом не меняется, причем сочетание ХХ-хромосом определяет женщину, а ХУ — мужчину.

Только так и иначе быть не может. Значит, вопрос исчерпан?

Нет, все не так просто.

Мужчины и женщины различаются не только хромосомами, но и устройством половой системы (первичными и вторичными половыми признаками). А вот они появляются далеко не сразу.

Половые клетки начинают формироваться только на пятой неделе беременности, а к шестой — возникает зачаток будущих половых органов — легкая припухлость между ножек, абсолютно одинаковая у всех. Так что до шести недель, строго говоря, зародыш пола не имеет вовсе.

В норме к восьмой неделе в работу должна включится Y хромосома — по её «инструкциям» организм формирует яички и именно к этому периоду они начинают вырабатывать тестостерон и другие мужские гормоны (андрогены).

Включилась и заработала — к 11 неделе возникнут пенис и мошонка, в мозге будут заложены типично мужские структуры и на свет появится мальчик.

Ничего подобного не произошло — зародыш продолжит развитие по женскому типу и родится девочка.

Однако это в норме. В реальности бывает и иначе. Например, так, что у плода с набором XY хромосома Y по какой-либо причине «не срабатывает». Не получая тестостероновый «пинок», организм ребёнка формируется так, словно никакой Y и нет — как девочка. С типично женским мозгом (повышенная эмоциональность и эмпатия, многозадачность, высокая ассоциативность при пониженной логичности и так далее) и типично женским телом.

Получается физиологически и внешне женщина с набором хромосом мужчины.

Проблемы у такой женщины начнутся (если начнутся) позднее.


Причин и вариаций «поломки» развития пола великое множество. Чаще всего встречаются два.


В первом случае с самой Y хромосомой всё в порядке — она включается, когда надо, и работает как положено, т. е. яички у плода начинают формироваться и вырабатывать тестостерон. Сбой происходит в гене, отвечающем за так называемый андрогеновый рецептор — специальную молекулу в клеточной оболочке, которая должна реагировать на мужские гормоны (андрогены) и пропускать их внутрь клетки. В результате этого сбоя андрогеновый рецептор теряет чувствительность: мужские гормоны вырабатываются, но до клеток тела не доходят.

Получается этакий парадокс: Y хромосома есть и работает, тестостерон вырабатывается, но клетки зародыша его не получают — и организм послушно формирует девочку.

Такая «девочка» будет, как уже было сказано, внешне настоящей женщиной. Однако внутри у неё матка и яичники отсутствуют, а в брюшной полости имеются яички.

Сбой в работе андрогеновых рецепторов носит название синдрома нечувствительности к андрогенам (снндром тестекулярной феминизации или синдром Морриса). Это генетическое нарушение. Оно может проявляться по-разному: при легком типе на свет появляется мужчина нормального мужского телосложения с некоторыми проблемами сперматогенеза, при тяжелом — рождается «внешне женщина» (и ощущать себя будет именно женщиной).

Такая женщина, повторюсь, внешне ничем от обычных — правильных по хромосомам — не отличается. Даже, скорее, выигрывает: у нее высокий рост, хорошая физическая форма, привлекательная, очень женственная, фигура. Половые органы — совершенно нормальные, женские (влагалище — присутствует, грудь на месте).

Ген, ответственный за чувствительность к андрогенам, кстати, находится на X хромосоме, т. е. наследуется по материнской линии. Если он «сломан», вероятность рождения у носительницы здоровых детей — 50 %, девочки-носительницы — 25 %, генетического мальчика с внешностью девочки — 25 %.

Как легко понять, у человека с синдромом Морриса детей быть не может: у него нет яичников и матки (забеременеть и родить невозможно), а яички — не работают (невозможно выработать сперму для оплодотворения).

Выявляются такие «перевертыши», как правило, в подростковом возрасте. Во-первых, потому что у такой девочки не начинаются месячные (что понятно). Во-вторых, потому что начинающееся половое созревание провоцирует «включение» находящихся в брюшине яичек, что весьма часто приводит к их раковому перерождению. (Сказанное замечательно иллюстрирует эпизод «Внешность обманчива» из известного сериала «Доктор Хаус» — в нём как раз появляется пациентка, генетически являющаяся мужчиной).

Помимо высокой вероятности рака яичек, аменореи и бесплодия, никаких других проблем это нарушение не несет. И, само собой, не лечится: при выявлении предлагается удаление яичек и гормональная терапия.


Во втором случае проблема возникает с самой Y хромосомой. Есть в ней маленький ген SRY — он кодирует развитие семенников.

В случае повреждения этого гена клетки, которые должны были превратиться в половые железа, не развиваются (т. е. в положенное время не включается выработка мужских гормонов). Не получая дозу гормонов, организм плода формируется как женский. Причем не только внешне, но и внутренне — с маткой и маточными трубами.

Заподозрить проблему можно уже довольно рано. Такие «девочки» имеют довольно высокий рост, широкие плечи и узкие бедра (возможно и повышенную «волосатость»), при этом грудь у них не растёт, а менструации не наступают — по той простой причине, что яичники у них отсутствуют и женские половые гормоны не вырабатываются.

Впрочем, у них и мужских гормонов нет (при причине отсутствия яичек).

Нарушение в работе гена SRY, в результате которого не происходит формирование половых желез, называется гонодальной дисгенезией (синдромом Свайера). Он встречается в 3-4 случаях на каждые 1000 рождений.

Человек с синдромом Свайера совершенно стерилен. Выглядя внешне как женщина, он и ощущает себя женщиной. Лечения нет — рекомендуется гормональная терапия женскими половыми гормонами.

Кстати, в отличие от «перевертышей» с синдромом Морриса, женщины с синдромом Свайера детей иметь могут (и выносить, и родить) — методом ЭКО естественно, с донорской яйцеклеткой.

www.bolshoyvopros.ru

Хромосома Х. Круги незнания

Мысль достаточно тривиальная: чем больше мы узнаем о предмете, тем больше проблем возникает и тем шире становится круг нашего незнания.

Когда мы не знали, что такое наследственность, круг нашего незнания об этом предмете был очень узок, и самой важной проблемой казалось-правы ли анималькулисты, которые считали, что в каждом сперматозоиде содержится маленький человечек, или овисты, которые помещали этого человечка в яйцеклетку. Круг нашего незнания значительно расширился, когда мы узнали, что наследственный материал находится в хромосомах. Еще шире он стал, когда оказалось, что хромосомы разные. Выделили группу аутосом — хромосом, которые присутствуют в клетках мужчин и женщин, и пару половых хромосом. У женщин эта пара представлена двумя хромосомами X, а у мужчин одна X, а другая Y.

Буквой X в математике обозначается неизвестная величина. Что же, X — самая неизвестная хромосома? Это как на нее посмотреть. Из всех хромосом человека и других животных она — самая изученная. И поэтому круг нашего незнания о ней наиболее широк. Вернее, их несколько, этих кругов.

Круг 1: Определение пола

В школьном учебнике написано, что все клетки тела женщины имеют две Х-хромосомы, а мужчины — одну X и одну Y. При образовании половых клеток парные хромосомы расходятся в разные клетки так, что каждая яйцеклетка получает по одной X-хромосоме. Среди сперматозоидов половина несет Х-хромосому, половина — Y. В результате при оплодотворении получается половина девочек, XX, и половина мальчиков, XY. А кем будет новорожденный с хромосомам и XXY? Мальчиком. А с одной X без Y? Девочкой. Отсюда следует, что ключевую роль в определении пола играет Y-хромосома. Именно на Y-хромосоме находится ген-регулятор SRY. Он запускает дифференцировку XY эмбрионов по мужскому типу.

Ранние стадии эмбрионального развития XX- и XY-зародышей абсолютно идентичны. У тех и других в свое время образуются зачатки и мужского, и женского репродуктивного тракта, а зачатки половых желез -гонад и вовсе одинаковы. На определенном этапе эмбриогенеза у XY-зародышей недифференцированный зачаток гонад начинает развиваться по мужскому типу. После этого мужские гонады выделяют два гормона: один стимулирует развитие мужского полового тракта, другой — инволюцию женского. Иными словами, чтобы получить мальчика, надо кое-что сделать. Если не делать ничего — получится девочка.

Ген (или гены), которые делают это кое-что-запускают дифференцировку гонад по мужскому типу со всеми вытекающими последствиями, — находятся в Y-хромосоме. В редких случаях этот ген перемещается с Y на X, и тогда мы получаем XX особей мужского пола и соответственно XY особей женского пола.

Этот ген SRY (Sex reversal Y) сейчас выделен и расшифрован. Его роль в детерминации мужского пола была показана в прямом опыте. ДНК этого гена ввели в оплодотворенную ХХ-яйцеклетку мыши и получили ХХ-самца.

Итак, мы теперь имеем в руках ген мужского пола и знаем, что он работает. Мы также знаем, где, когда и как долго он работает. Где? В зачатке еще не дифференцированных по полу половых желез. Когда? Когда зачаток уже есть, но еще не дифференцирован. Как долго? У мыши день-полтора. Когда дифференцировка гонады завершается, он уже не нужен. Что он делает? Синтезирует белок, который связывается с другим геном, находящимся в девятой хромосоме человека, и активирует его к производству белка, который в свою очередь или непосредственно запускает дифференцировку гонад по мужскому типу, или опять же связывается с третьим геном, который неизвестно где находится и что делает.

Круг 2. Компенсация дозы

Интересно заметить : Х-хромосома млекопитающих содержит 5% от общего числа генов, a Y — такую малость, что и говорить не о чем. Но тогда получается, что у всякой женщины на 5% больше генов, чем у любого сколь угодно красивого и умного мужчины.

Есть несколько способов преодоления этого дисбаланса, или компенсации избыточной дозы генов у самок. У самцов насекомых единственная X-хромосома работает вдвое активнее, на уровне двух Х-хромосом насекомых-самок. У гермафродитов нематод, выполняющих самочьи функции, каждая из двух Х-хромосом работает вполсилы по сравнению с единственной Х-хромосомой самцов.

Млекопитающие выбрали третий путь. В каждой клетке организма самки работает только одна Х-хромосома, а вторая молчит: она практически полностью инактивирована и очень плотно упакована.

Инактивация происходит довольно рано в ходе эмбрионального развития. На самых ранних стадиях работают обе Х-хромосомы. Затем часть клеток специализируется на выполнении питающей функции. (Позднее эти клетки войдут в состав плаценты.) И в этих клетках необратимо «выходит из игры» — инактивируется одна из Х-хромосом, и именно та, что была получена от отца. Остальные клетки некоторое время остаются неспециализированными и при этом пользуются услугами обеих Х-хромосом. Они называются клетками внутренней массы эмбриона, и далее, в результате процесса дифференцировки, из них формируется собственно эмбрион. Этот процесс как раз и сопровождается выключением одной из Х-хромосом. Однако выбор хромосомы, подлежащей инактивации, происходит случайно: в одной клетке инактивируется отцовская Х-хромосома, в другой — материнская. (Так этот процесс идет у всех млекопитающих, включая человека и исключая сумчатых. У сумчатых во всех клетках инактивируется Х-хромосома, полученная от отца. Не спрашивайте меня почему. Так получилось.) При этом единожды сделанный выбор не пересматривается. Если в некой клетке-прародительнице отключилась материнская Х-хромосома, то во всех дочерних, внучатых и т. д. клетках она же останется выключенной.

Рассмотрим этот процесс на кошках. Ген рыжей окраски находится у них вХ-хромосоме. Если мы скрестим рыжую кошку с черным котом, то все их сыновья будут рыжими (X от матери, У от отца), а дочери — черепаховыми. В момент дифференцировки пигментных клеток у самок-эмбрионов в одних клетках инактивируется отцовская Х-хромсосома с черным геном, а в других материнская с рыжим геном. И те и другие производят клоны клеток, в которых сохраняется и воспроизводится неактивное состояние соответствующих Х-хромосом. Поскольку дочерние клетки обычно располагаются рядом, то мы и видим на шкурке у черепаховых кошек рыжие и черные пятна. В первых инактивирована X-хромосома с черным геном, во вторых-с рыжим.

Я уже сказал, что инактивированное состояние сохраняется стабильно в ряду клеточных поколений во всех клетках тела. Половые клетки — исключение из этого правила. В их предшественниках инактивация происходит, но при образовании самих половых клеток молчавшая несколько клеточных поколений Х-хромосома реактивируется. Это у самок. У самцов, наоборот, инактивируется единственная Х-хромосома. Но об этом мы поговорим подробнее в третьем круге, а пока вернемся к нашим самкам.

Наши предки имели недифференцированные половые хромосомы (1). Затем на одной из них возник ген-регулятор мужского пола — SRY (2). Для того, чтобы предотвратить перенос этого гена с Y-хромосомы на X, возник запрет на спаривание между большими частями этих хромосом (3). Часть Y-хромосомы, исключенная из спаривания, постепенно деградировала (4).

До сих пор мы находились в пределе круга знаний школьного учебника. А сейчас вступаем на круги незнания.
Оказывается, клетки умеют считать свои Х-хромосомы. Посчитав, они поступают по правилу : только одна Х-хро-мосома должна быть активна в диплоидной клетке (имеющей нормальный двойной набор аутосом). Все, что сверх этого, -должно быть инактивировано. То есть если клетка диплоидная, но имеет четыре Х-хромосомы, то три из них молчат. Если же клетка тетраплоидная (четверной набор аутосом) и те же четыре Х-хромосомы, то две молчат, две работают. Как клетки производят эту калькуляцию — никто не знает, хотя это очень любопытно. Ни одна из аутосом на такое не способна. Может быть, клетка учитывает объем ядра, который пропорционален плоидности?

Следующий вопрос: что-то (так и хочется сказать: кто-то) заставляет одну из Х-хромосом инактивироваться или она это делает сама и добровольно? Пока неясно. Мы можем подозревать, что сигнал приходит извне от загадочного счетного устройства. Далее опять пробел в наших знаниях, заполненный самыми правдоподобными фантазиями, которые ограничены (наконец-то!) некоторыми фактами. На Х-хромосоме существует ген, который активно работает на инактивированной Х-хромосоме. Продуктами данного гена являются очень большие молекулы специфической РНК, названой XIST — X-inactive specific transcript. Эти молекулы не используются в качестве матриц для синтеза белков, а работают сами по себе. Они, несомненно, принимают участие в установлении неактивного состояния, так как Х-хромосома, у которой отсутствует район гена XIST, никогда не инактивируется. Если же ген XIST искусственно перенести на аутосому, то она инактивируется. Ген XIST был выделен и проанализирован. Его активные участки оказались очень сходными у человека, мыши и других млекопитающих.

XIST действует только на ту хромосому, которая его произвела, а не инактивирует все подряд. Создается впечатление, что молекулы XIST действуют строго локально, как бы расползаясь вдоль по хромосоме от места синтеза. Молекулы XIST окутывают Х-хромосому, словно кокон и очень хочется написать — тем самым выключают ее из активной работы. Но увы. Строгих доказательств тому нет, а даже наоборот. Существуют данные, что удаление района гена XIST из уже инактивированной Х-хромосомы не приводит к восстановлению ее активного состояния. А как же тогда происходит поддержание неактивного состояния Х-хромосомы в ряду клеточных поколений, при чем тут XIST? Видимо, в момент установления инактивированного статуса, активный ген XIST жизненно необходим, а потом в нормальных инактивированных Х-хромосомах XIST синтезируется постоянно. Зачем? Кто его знает. Наверное, на всякий случай.

Я все время говорил, что одна из Х-хромосом у самок инактивируется. Но до сих пор умалчивал о том, что инактивация никогда не бывает полной. Ряд генов неактивной Х-хромосомы ускользает от инактивации. Понятно, почему (но непонятно как) избегает инактивации район спаривания с Y-хромосомой. Дело в том, что в данном районе находятся гены, присутствующие и на Х- и на Y-хромосомах: то есть и у XY-самцов таких генов по паре, и у XX-самок их столько же — этим генам не нужна компенсация дозы. Но откуда механизм Х-инактивации знает, что их трогать не надо, — остается загадкой.

И уж, казалось бы, совсем незачем инактивировать единственную Х-хромосому у самцов. Тем не менее это регулярно происходит. Но тут начинается уже третий круг незнания.

Круг З : Х-хромосома у самцов

Инактивация единственной Х-хромосомы у самцов происходит в предшественниках сперматозоидов. Они, клетки-предшественники, как и все клетки тела самцов, содержат двойной (диплоидный)набор аутосом и пару половых хромосом X и Y. В сперматозоидах же (как и в яйцеклетках) количество хромосом должно быть вдвое меньше — каждая хромосома в одном экземпляре. Тогда после оплодотворения двойной набор восстановится, и все начнется сначала. Как верно говорил В.И.Ленин, обращаясь не то к меньшевикам, не то к ликвидаторам, а может, и к отзовистам: «Прежде чем объединиться, необходимо размежеваться».

Процесс клеточного деления, при котором происходит редукция числа хромосом в половых клетках, называется мейозом. И в ходе этого процесса хромосомам, прежде чем размежеваться, приходится объединиться. На начальных стадиях мейоза каждая хромосома находит свою пару (не спрашивайте меня, как она это делает — это отдельная и преобширнейшая область незнания) и сливается с ней по всей длине. При этом хромосомы могут обмениваться участками. Когда спариваются две Х-хромосомы в мейозе у самок, проблем не возникает.

Хотя нет, проблема возникает, но заблаговременно устраняется. Проблема в том, что до вступления в мейоз одна из Х-хромосом находится в инактивированном и, следовательно, в плотно упакованном состоянии. Ее ДНК закрыта не только для транскрипции (синтеза РНК), но и для узнавания своей активной парой. Поэтому, а вернее, для этого она реактивируется непосредственно перед вступлением в мейоз (Понятно для чего, но непонятно как.)

У самцов в мейозе проблема прямо противоположного свойства . Х-хромосома одна и Y — одна, и они должны объединиться, чтобы потом размежеваться. А у них всего-то и общего друг с другом, что небольшой район спаривания. По сходству этих районов они друг друга и опознают, и в этом районе (простите за тавтологию) спариваются и обмениваются участками.

А что же те части, которые различны у Х- и Y-хромосом? Они остаются неспаренными. И, надо вам сказать, в половых клетках на этой стадии действует суровый закон — клетки, содержащие неспаренные хромосомы, на следующую стадию не пропускаются и подлежат уничтожению. Как тогда быть с неспаренными частями Х- и Y-хромосом? Правильно, надо их упаковать так, чтобы не нашли клеточные контролеры, то есть — инактивировать. Благо механизм такой инактивации уже есть и успешно используется в клетках тела самок — XIST. Так оной происходит, и XIST действительно принимает в этом участие. В мужском мейозе молекулы XIST плотно окутывают Х- и Y-хромосомы и делают их недоступными для контролеров неспаренности. Но можно ли сказать, что самцы используют механизм, открытый самками? Нет, нельзя.
Теперь мы должны войти в четвертый круг и поговорить о том, как много мы не знаем об эволюции половых хромосом.

Круг 4 : Эволюция половых хромосом

Когда-то давным-давно во времена динозавров у наших очень далеких предков Х- и Y-хромосомы были одинаковыми. Отличия заключались в том, что Y несла ген мужского пола, а X — нет. Они до сих пор остались почти одинаковыми у однопроходных млекопитающих — ехидны и утконоса. У сумчатых и плацентарных млекопитающих Х- и Y-хромосомы далеко и безнадежно разошлись.

Как и почему это произошло, мы не знаем и не узнаем уже никогда. Можем только строить гипотезы. Вот этим-то мы с вами сейчас и займемся. Итак, на Y-хромосоме находились гены детерминации мужского пола. Для того чтобы соблюдалось стабильное соотношение полов 1:1 (почему нужно именно 1:1 — это отдельная история), они должны были находиться там постоянно, а не скакать с Y на X и обратно. Наиболее простой способ предотвратить эти переходы — не давать спариваться в мейозе той части npото-Y-хромосомы, где были гены мужского пола, с той частью прото-Х-хромосомы, где таких генов не было. Если они не спариваются, то не могут обмениваться участками. Но неспаренные участки следовало спрятать от контролеров спаренности. Здесь-то и мог возникнуть и зафиксироваться механизм временной упаковки половых хромосом. Уже потом, гораздо позже, этот
механизм пригодился для постоянной инактивации избыточной дозы Х-хро-мосомных генов у самок.

Но как только прекратился обмен генами между Х- и Y-хромосомами, Y-хромосома начала катастрофически деградировать, терять активные гены и становиться все более отличной от X. Почему прекращение обмена вызвало деградацию? Дело в том, что спаривание парных хромосом выполняет очень важную функцию сверки генного состава.

Вновь возникающие дефекты при этом быстро и эффективно устраняются (как это происходит — еще один, и очень широкий, круг незнания). Прекращение спаривания делает очистку от дефектов невозможной. Дефекты накапливаются, гены разрушаются, и хромосома деградирует. Это процесс был воспроизведен в прямом эксперименте. В одну из аутосом дрозофилы ввели генетический фактор, который блокировал ее спаривание в мейозе. За считанные поколения эта хромосома деградировала. Можно предположить, что Y-хромосома после частичного развода с X прошла именно этот путь. Гены, необходимые для детерминации мужского пола, поддерживались в рабочем состоянии естественным отбором, все прочие гены накапливали дефекты и постепенно деградировали. С Х-хромосомами этого не произошло. Встречаясь при очередной смене поколений в клетках женщины, они спаривались друг с другом, сверяли свой генный состав и тем самим поддерживали все гены в рабочем состоянии.

Но Х-хромосоме тоже пришлось платить за развод с Y-хромосомой. Утрата активных генов на Y и возникновение дисбаланса между дозой генов у самцов и самок привели к необходимости компенсации избыточной дозы генов Х-хромосомы у самок. Для решения этой проблемы, по-видимому, и был использован ранее открытый самцами механизм.

Это в свою очередь наложило жесткий запрет на любые переходы генов с аутосом на половые хромосомы и обратно. Действительно, многие — если не все — аутосомные гены привыкли работать в паре, поэтому отключение одного из членов пары в X-хромосоме имело бы роковые последствия для носителей такой генной комбинации. К неблагоприятным последствиям может привести и перенос генов с Х-хромосомы на аутосому: такие гены не будут инактивироваться и вместо предусмотренной одной копии генов в клетках самок будут работах обе копии.

В результате генный состав Х-хромосом у плацентарных млекопитающих законсервировался. Все они имеют практически одинаковые по набору генов Х-хромосомы, в то время как их аутосомы претерпели значительные изменения в ходе эволюции.

Эволюция половых хромосом, таким образом, была сопряжена с паллиативными решениями возникающих проблем и противоречий. Эти решения создавали новые проблемы, которые тоже решались паллиативно, и так до бесконечности. Нашему творческому уму такой процесс кажется абсолютно бессмысленным и нецелесообразным. Результаты, достигнутые в ходе этого процесса (механизмы определения пола, дозовой компенсации, характер поведения хромосом в мужском и женском мейозе), также представляются неоправданно усложненными и нецелесообразными. Если взяться с умом и четко сформулировать цель, все это можно было бы организовать гораздо проще, надежней и экономичней. Но в том-то все и дело, что эволюция ни в коем случае не есть целенаправленный процесс. Эволюции в самом существе своем — это постоянный поиск мелких решений сиюминутных задач. Чаще всего решения находятся не самые лучшие из возможных. Более того, они порождают новые проблемы, которые требуют решений. И эти решения опять же оказываются паллиативами — и так до бесконечности.
А нам остается восхитительная задача: распутывать эти нескончаемые клубки проблем, все более и более расширяя круги нашего незнания.

Источник: Ufolog.ru

Другие статьи:

nlo-mir.ru

Какие хромосомы определяют пол потомства у людей и животных?

Хромосомы — длинные сегменты генов, которые содержат наследственную информацию. Они состоят из ДНК и белков, расположенных в ядре наших клеток. Хромосомы определяют все, от цвета волос и цвета глаз до пола. Являетесь ли вы мужчиной или женщиной, зависит от наличия или отсутствия определенных хромосом. Человеческие клетки содержат 23 пары или в общей сложности 46 хромосом.

Есть 22 пары аутосом (неполовые хромосомы) и одна пара гоносом (половых хромосом). Половыми хромосомами являются Х и Y хромосомы.

Половые клетки

При половом размножении человека сливаются два отдельных гамета и образовывается зигота. Гаметы — это половые клетки, продуцируемые типом клеточного деления, называемого мейозом. Они содержат только один набор хромосом и называются гаплоидами.

Мужская гамета, называемая сперматозоидом, относительно подвижна и обычно имеет жгутик. Женская гамета, называемая яйцеклеткой, является неподвижной и относительно большая в сравнении с мужской гаметой. Когда гаплоидные мужские и женские гаметы объединяются в процессе, называемом оплодотворением, они развиваются в зиготу. Зигота диплоидная, а это означает, что она содержит два набора хромосом.

Половые хромосомы XY

Мужские гаметы или сперматозоиды у людей и других млекопитающих являются гетерогаметическими и содержат один из двух типов половых хромосом.

Клетки спермы переносят хромосомы X или Y. Однако женские гаметы или яйцеклетки содержат только Х-хромосому и являются гомогаметическими. В этом случае клетка спермы определяет пол индивидуума. Если сперматозоидная клетка, содержащая Х-хромосому, оплодотворяет яйцеклетку, результирующая зигота будет XX женский пол. Если клетка спермы содержит Y-хромосому, тогда результирующая зигота будет XY — мужской пол.

Y-хромосомы несут необходимые гены для развития мужских гонад или яичек. Особи, у которых отсутствует Y-хромосома (XO или XX), развивают женские гонады или яичники. Для развития полностью функционирующих яичников необходимы две Х-хромосомы.

Гены, расположенные на Х-хромосоме, называются Х-сцепленные генами, и они определяют Х-сцепленное рецессивное наследование. Мутация, происходящая в одном из этих генов, может привести к развитию измененных черт. Поскольку самцы имеют только одну Х-хромосому, измененная черта всегда будет выражаться у самцов. У самок признак будет выражен не всегда, так как у них есть две Х-хромосомы. Измененная черта может быть замаскирована, если только одна Х-хромосома имеет мутацию, и черта является рецессивной.

Половые хромосомы XX

Кузнечики, тараканы и другие насекомые имеют сходную с человеком систему определения пола. Взрослым самцам не хватает Y-половой хромосомы и имеют только Х-хромосому. Они производят клетки спермы, которые содержат хромосому Х или хромосому без пола, которая обозначается как О. Самки имеют XX и производят яйцеклетки, содержащие Х-хромосому.

Если клетка спермы X оплодотворяет яйцеклетку, результирующая зигота будет XX — женский пол. Если клетка спермы, не содержащая половой хромосомы, оплодотворяет яйцеклетку, результирующая зигота будет XO — мужской пол.

Половые хромосомы ZW

Птицы, насекомые, такие как бабочки, лягушки, змеи и некоторые виды рыб, имеют разную систему определения пола. У этих животных именно женская гамета определяет пол. Женские гаметы могут содержать либо хромосому Z, либо хромосому W. Мужские гаметы содержат только Z-хромосому. У этих видов сочетание хромосом ZW означает женский пол, а  ZZ — мужской пол.

Партеногенез

Как насчет таких животных, как большинство видов ос, пчел и муравьев, у которых нет половых хромосом? Как определяется пол? У этих видов пол определяет оплодотворение. Если яйцо будет оплодотворено, то из него появится самка. Из неоплодотворенного яйца может появится самец. Самка диплоидна и содержит два набора хромосом, а гаплоидный самец содержит лишь один набор хромосом. Такое развитие самца из неоплодотворенного яйца и самки из оплодотворенного яйца является типом партеногенеза, известного как арренотокный партеногенез.

Экологическое определение пола

У черепах и крокодилов пол определяется температурой окружающей среды в определенный период развития оплодотворенного яйца. Яйца, которые инкубируются выше определенной температуры, развиваются в один пол, а яйца, инкубированные ниже определенной температуры, развиваются в другой пол.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

natworld.info

Author: alexxlab

Отправить ответ

avatar
  Подписаться  
Уведомление о