Химический состав клетки неорганические вещества и органические вещества – Биология для студентов — 12. Химический состав клетки. Химические элементы и их биологическая роль. Неорганические вещества в клетке

Содержание

Химический состав клетки.

В живых организмах содержится большое количество химических элементов. Они образуют два класса соединений – органические и неорганические.

Неорганические вещества, входящие в состав клетки.

В клетках разных организмов обнаружено около 70 элементов периодической системы химических элементов Д.И. Менделеева, но лишь 24 из них имеют установленное значение и встречаются постоянно во всех типах клеток.

Наибольший удельный вес в элементном составе клетки приходится на кислород, углерод, водород и азот. Это так называемые основные или биогенные элементы. На долю этих элементов приходится более 95% массы клеток, причем их относительное содержание в живом веществе гораздо выше, чем в земной коре.

Жизненно важными являются кальций, фосфор, сера, калий, хлор, натрий, магний и железо. Их содержание в клетке исчисляется десятыми и сотыми долями процента. Перечисленные элементы составляют группу макроэлементов.

Другие химические элементы: медь, кобальт, марганец, молибден, цинк, бор, фтор, хром, селен, алюминий, йод, кремний – содержатся исключительно в малых количествах (менее 0,01% массы клеток). Они относятся к группе микроэлентов.

Процентное содержание в организме того или иного элемента никоим образом не характеризует степень важности и необходимости в организме. Так, например, многие микроэлементы входят в состав различных биологически активных веществ – ферментов, витаминов, гормонов, оказывают влияние на рост и развитие, кроветворение, процессы клеточного дыхания и т.д.

Вода. Играет важную роль в жизни клеток и живых организмов в целом. Помимо того, что она входит в их состав, для многих организмов это еще и среда обитания. Роль воды в клетке определяется ее свойствами. Свойства эти довольно уникальны и связаны главным образом с малыми размерами молекул воды, с полярностью ее молекул и с их способностью соединяться друг с другом водородными связями.

Молекулы воды имеют нелинейную пространственную структуру. Атомы в молекуле воды удерживаются посредством полярных ковалентных связей, которые связывают один атом кислорода с двумя атомами водорода. Полярность ковалентных связей объясняется в данном случае сильной электроотрицательностью атомов кислорода по отношению к атому водорода; атом кислорода оттягивает на себя электроны их общих электронных пар.

Вследствие этого на атоме кислорода возникает частично отрицательный заряд, а на атомах водорода – частично положительный. Между атомами кислорода и водорода соседних молекул воды возникают водородные связи.

Вода является превосходным растворителем для полярных веществ, например солей, сахаров, спиртов, кислот. Вещества, растворимые в воде, называются гидрофильными.

Не растворимые в воде вещества называются гидрофобными.

Вода обладает высокой теплоемкостью. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство обеспечивает поддержание теплового баланса организма при значительных перепадах температуры в окружающей среде. Кроме того, вода обладает высокой теплопроводностью, что позволяет организму поддерживать одинаковую температуру во всем его объеме. Вода обладает также высокой

теплотой парообразования, т.е. способностью молекул уносить с собой значительное количество тепла, охлаждая организм. Это свойство воды используется при потоотделении у млекопитающих, тепловой одышке у крокодилов и транспирации (испарении) у растений, предотвращая их перегрев.

studfiles.net

Органические и неорганические вещества. Неорганические вещества клетки :: SYL.ru

Впервые химические вещества классифицировал в конце IX столетия арабский ученый Абу Бакр ар-Рази. Он, опираясь на происхождение веществ, распределили их по трем группам. В первой группе он отвел место минеральным, во второй – растительным и в третьей – животным веществам.

Этой классификации было суждено просуществовать почти целое тысячелетие. Лишь в XIX веке из тех групп сформировали две – органические и неорганические вещества. Химические вещества обоих типов строятся благодаря девяноста элементам, внесенным в таблицу Д. И. Менделеева.

Группа неорганических веществ

Среди неорганических соединений различают простые и сложные вещества. Группа простых веществ объединяет металлы, неметаллы и благородные газы. Сложные вещества представлены оксидами, гидроксидами, кислотами и солями. Все неорганические вещества могут строиться из любых химических элементов.

Группа органических веществ

В состав всех органических соединений в обязательном порядке входит углерод и водород (в этом их принципиальное отличие от минеральных веществ). Вещества, образованные C и H называются углеводородами – простейшими органическими соединениями. В составе производных углеводородов находится азот и кислород. Они, в свою очередь, классифицированы на кислород- и азотсодержащие соединения.

Группа кислородсодержащих веществ представлена спиртами и эфирами, альдегидами и кетонами, карбоновыми кислотами, жирами, восками и углеводами. К азотсодержащим соединениям причислены амины, аминокислоты, нитросоединения и белки. У гетероциклических веществ положение двояко – они, в зависимости от строения, могут относиться и к тому и к другому виду углеводородов.

Химические вещества клетки

Существование клеток возможно, если в их состав входят органические и неорганические вещества. Они погибают, когда в них отсутствует вода, минеральные соли. Клетки умирают, если сильно обеднены нуклеиновыми кислотами, жирами, углеводами и белками.

Они способны к нормальной жизнедеятельности, если в них находится несколько тысяч соединений органической и неорганической природы, способных вступать во множество различных химических реакций. Биохимические процессы, текущие в клетке – основа ее жизнедеятельности, нормального развития и функционирования.

Химические элементы, насыщающие клетку

Клетки живых систем содержат группы химических элементов. Они обогащены макро-, микро- и ультрамикроэлементами.

  • Макроэлементы, прежде всего, представлены углеродом, водородом, кислородом и азотом. Эти неорганические вещества клетки образуют практически все ее органические соединения. А еще к ним причислены жизненно необходимые элементы. Клетка не способна жить и развиваться без кальция, фосфора, серы, калия, хлора, натрия, магния и железа.
  • Группа микроэлементов образована цинком, хромом, кобальтом и медью.
  • Ультрамикроэлементы - еще одна группа, представляющая важнейшие неорганические вещества клетки. Группа сформирована золотом и серебром, оказывающим бактерицидное действие, ртутью, препятствующей обратному всасыванию воды, заполняющей почечные канальцы, оказывающей влияние на ферменты. В нее же включена платина и цезий. Определенную роль в ней отводят селену, дефицит которого ведет к различным видам рака.

Вода в составе клетки

Важность воды, распространенного на земле вещества для жизни клетки, неоспорима. В ней растворяются многие органические и неорганические вещества. Вода – та благодатная среда, где протекает невероятное количество химических реакций. Она способна растворять продукты распада и обмена. Благодаря ей клетку покидают шлаки и токсины.

Эта жидкость наделена высокой теплопроводностью. Это позволяет теплу равномерно распространяться по тканям тела. У нее существенная теплоемкость (способность поглощать теплоту, когда собственная температура изменяется минимально). Такая способность не позволяет возникать в клетке резким перепадам температур.

Вода обладает исключительно высоким поверхностным натяжением. Благодаря ему растворенные неорганические вещества, как и органические, без труда передвигаются по тканям. Множество небольших организмов, используя особенность поверхностного натяжения, держатся на водной поверхности и свободно по ней скользят.

Тургор растительных клеток зависит от воды. С опорной функцией у определенных видов животных справляется именно вода, а не какие-нибудь другие неорганические вещества. Биология выявила и изучила животных с гидростатическими скелетами. К ним относятся представители иглокожих, круглых и кольчатых червей, медуз и актиний.

Воду содержат клетки смазывающих жидкостей. Ей наполнены клетки слизей, облегчающих прохождение веществ по желудочно-кишечному тракту. Благодаря воде формируется влажная среда в дыхательных путях. Водой насыщенны клетки слюны, желчи, слез и прочего.

Насыщенность клеток водой

Работающие клетки заполнены водой на 80 % от их общего объема. Жидкость пребывает в них в свободной и связанной форме. Белковые молекулы прочно соединяются со связанной водой. Они, окруженные водной оболочкой, изолируются друг от дружки.

Молекулы воды полярны. Они образуют водородные связи. Благодаря водородным мостикам вода обладает высокой теплопроводностью. Связанная вода позволяет клеткам выдерживать пониженные температуры. На долю свободной воды приходится 95 %. Она способствует растворению веществ, вовлекаемых в клеточный обмен.

Высокоактивные клетки в тканях мозга содержат до 85 % воды. Мышечные клетки насыщены водой на 70 %. Менее активным клеткам, образующим жировую ткань, достаточно 40 % воды. Она в живых клетках не только растворяет неорганические химические вещества, она ключевой участник гидролиза органических соединений. Под ее воздействием органические вещества, расщепляясь, превращаются в промежуточные и конечные вещества.

Важность минеральных солей для клетки

Минеральные соли представлены в клетках катионами калия, натрия, кальция, магния и анионами HPO4

2-, H2PO4-, Cl-, HCO3-. Правильные пропорции анионов и катионов создают необходимую для жизни клетки кислотность. Во многих клетках поддерживается слабощелочная среда, которая практически не меняется и обеспечивает их стабильное функционирование.

Концентрация катионов и анионов в клетках отлична от их соотношения в межклеточном пространстве. Причина тому – активная регуляция, направленная на транспортировку химических соединений. Такое течение процессов обуславливает постоянство химических составов в живых клетках. После гибели клеток концентрация химических соединений в межклеточном пространстве и цитоплазме обретает равновесие.

Неорганические вещества в химической организации клетки

В химическом составе живых клеток нет каких-либо особых элементов, характерных только для них. Это определяет единство химических составов живых и неживых объектов. Неорганические вещества в составе клетки играют огромную роль.

Сера и азот помогают формироваться белкам. Фосфор участвует в синтезе ДНК и РНК. Магний - важная составляющая ферментов и молекул хлорофилла. Медь необходима окислительным ферментам. Железо – центр молекулы гемоглобина, цинк входит в состав гормонов, вырабатываемых поджелудочной железой.

Важность неорганических соединений для клеток

Соединения азота преобразуют белки, аминокислоты, ДНК, РНК и АТФ. В растительных клетках ионы аммония и нитраты в процессе окислительно-восстановительных реакций превращаются в NH2, становятся участниками синтеза аминокислот. Живые организмы используют аминокислоты для формирования собственных белков, необходимых для строительства тел. После гибели организмов белки вливаются в круговорот веществ, при их распаде азот выделяется в свободной форме.

Неорганические вещества, в составе которых есть калий, играют роль «насоса». Благодаря «калиевому насосу» в клетки сквозь мембрану проникают вещества, в которых они остро нуждаются. Калиевые соединения приводят к активизации жизнедеятельности клеток, благодаря им проводятся возбуждения и импульсы. Концентрация ионов калия в клетках весьма высока в отличие от окружающей среды. Ионы калия после гибели живых организмов легко переходят в природное окружение.

Вещества, содержащие фосфор, способствуют формированию мембранных структур и тканей. В их присутствии образуются ферменты и нуклеиновые кислоты. Солями фосфора в той или иной степени насыщены различные слои почвы. Корневые выделения растений, растворяя фосфаты, усваивают их. Вслед за отмиранием организмов остатки фосфатов, подвергаются минерализации, превращаясь в соли.

Неорганические вещества, содержащие кальций, способствуют формированию межклеточного вещества и кристаллов в растительных клетках. Кальций из них проникает в кровь, регулируя процесс ее свертывания. Благодаря ему формируются кости, раковины, известковые скелеты, коралловые полипы у живых организмов. Клетки содержат ионы кальция и кристаллы его солей.

www.syl.ru

Шпаргалка - Химический состав клетки

Опорный конспект по теме: «Химический состав клетки»

В микроскопической клетке содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях.

Соединения в %

Не органические органические

Вода 70-80 белки 10-20

Неорганические вещества 1.0-1.5 углеводы 0.2-2.0

Жиры 1-5

Нуклеиновые кислоты 1.0-2.0

АТФ и другие низкомолекулярные

органические вещества 0.1-0.5

I . Неорганические вещества

1. ВОДА.

А. Вода — важнейший компонент клетки. Ей принадлежит существенная и многообразная роль в жизни клетки.

· Вода определяет физические свойства клетки – объём, упругость.

· Велико значение в образовании структуры молекул органических веществ, в частности, белков.

· Велико значение воды как растворителя.

· Является непосредственным участником многих химических реакций.

В. Вещества растворимые в воде гидрофильные (от греческого «гидрос» — вода, «филео» — любовь).

— спирты, амины, углеводы, белки, соли, низкокалорийные органические вещества и др.).

нерастворимые в воде гидрофобные (от греческого «гидрос» – вода, «фобос» – страх, ненависть).

-жиры, клетчатка.

2. СОЛИ.

А. Для процессов жизнедеятельности из входящих в состав солей катионов наиболее важны: К+, Na+, Ca2+, Mg2+ из анионов: HPO­­4 ²ˉ, h3 PO4 ˉ, Clˉ, HCO3 ˉ

В. Концентрация катионов и анионов в клетке и в среде её обитания, как правило, резко различна. Так, внутри клетки всегда довольно высокая концентрация ионов калия и очень малая ионов натрия. Напротив, в окружающей среде – в плазме крови, в морской воде – мало ионов калия и много ионов натрия. Пока клетка жива, это соотношение ионов внутри и вне клетки стойко поддерживается.

С. Неорганические вещества содержаться в клетке не только в растворённом, но и в твёрдом состоянии. В частности, прочность и твёрдость костной ткани обеспечивается фосфатом кальция, а раковин моллюсков – карбонатом кальция.

II. Органические вещества

1. Белки.

Из органических веществ клетки на первом месте по количеству и значению стоят белки. В состав входят атомы углерода, водорода, кислорода, азота, а также Me-Fe, Zn, Cu. Белкам присуща огромная мон. масса.

Строение белков Среди органических соединений белки самые сложные. Они относятся к соединениям называемым полимерами. Её мономером являются нуклеотиды, состоящие нуклеиновые кислоты, т.е. первичная структура белка – это последовательное соединение аминокислот, остающееся за счёт образования пептидной связи.

Вторичное строение белка- это закрученная в спираль полипептидная цепочка.

Третичная структура белка- пространственное расположение закрученной в спираль полипептидной цепочки.

Четвертичная структура белка- существует в белках, в состав молекул которых входит более одной полипептидной цепочки.

Свойства и функции белков

Свойства:

1. Существуют белки совершенно нерастворимые в воде.

2. Малоактивные и химически устойчивые к воздействию агентов

3. Есть белки, имеющие вид нитей или молекулы в виде жирков диаметром 5-7мм. Под влиянием различных физических и химических факторов (высокой t°, ряда химических веществ, облучения, механического воздействия) слабые связи, поддерживающие вторичное и третичное строение белка – рвутся и молекула развёртывается. Нарушение природного строения белка называется денатурацией.

Функции:

1. Строительная. Из белковсостоят мембраны клеток и клеточных органоидов.

2. Каталитическая. Они ускоряют реакции в десятки, сотни, млн. раз

3. Сигнальная. В поверхностную мембрану клетки встроены молекулы белков, способных изменять своё третичное строение в ответ на действие факторов внешней среды.

4. Двигательная. Все виды движения, к которым способны клетки, выполняют особые сократительные белки.

5. Транспортная. Способны присоединять различные вещества и переносить их из одного места в другое.

6. Защитная

7. Энергетическая. При расщеплении 1г. белка освобождается 17,6 кДЖ

2. Углеводы.

Представляю собой сложные органические соединения, в их состав входят атомы углерода, кислорода, водорода.

Сложные – полимеры с мономерами в виде моносахаридов (глюкоза, рибоза, дезоксирибоза).

Биологическая роль

— Играют роль источника энергии. При расщеплении углевода освобождается 17,6 кДЖ

— Выполняют строительную функцию: из целлюлозы сост. Стенки растительных клеток.

3. Липиды .

Представляют собой органические вещества, нерастворимые в воде, но растворимые в бензине, эфире, ацетоне. Из липидов самые распространенные и известные жиры, а также лецитин, холестерин и витамины А, D и гормоны.

Биологическое значение велико и многообразно

— Строительная функция

— Энергетическая функция (жир)

— Источник воды

— Защитная функция ( низкая теплопроводность)

4. Нуклеиновые кислоты – ДНК, РНК, АТФ.

ДНК дезоксирибонуклеиновая кислота РНК рибонуклеиновая кислота АТФ аденозинтрифосфорная кислота

1. Молекула ДНК – представляет собой две спирали замкнутые одна вокруг другой. ДНК содержится в ядре клетки, в митохондриях и хлоропластах. И является носителем наследственности.

2.Полимер состоит из монополимеров-нуклеотидов: остатки фосфорной кислоты, дезоксирибоза, азотистое основание (аденин + тимин)

(цитозин + гуанин)

Односпиральная молекула, нуклеотид состоит из: рибозы, остатков фосфорной кислоты, азотистого основания (аденин гуанин, цитозин, урацил). Более короткая молекула. Находится в ядре, цитоплазме и митохондриях.

Виды РНК:

— Транспортные РНК (т-РНК) связывают аминокислоты и транспортируют их к месту синтеза белка.

— Информационные (и-РНК). Переносят информацию о структуре белка от ДНК к месту синтеза белка.

— Рибосомные РНК (р-РНК) Входят в состав рибосом

По химическому строение относится к нуклеотидам, состоящим из трёх остатков фосфорной кислоты, рибозы и остатков азотистого основания (аденина). АТФ играет центральную роль в энергетическом обмене клетки. Является непосредственным источников энергообеспечения любой клеточной функции. Под влиянием специфических ферментов она подвергается гидролизу. Эта реакция сопровождается освобождением энергии.
Опорный конспект по биологии

ученицы средней школы №401

Веренич Анны

www.ronl.ru

Химический состав клетки Органические и неорганические вещества

Химический состав клетки Органические и неорганические вещества

Элементный состав клеток • 80% всех химических элементов встречается в живых организмах • Кислород – 60% • Углерод – 20% • Водород – 10% • Азот, кальций, фосфор, хлор, калий, сера, натрий, магний - 5% все вместе • Остальные элементы не более 0, 1%

Вода • • • В клетках костной ткани 20% В головном мозге 85% 2/3 массы человека вода 95% - медуза 10 – 12% семена растений

Свойства воды обусловлены строением молекулы

Характеристика воды • • Легко проникает через мембраны Хороший растворитель для полярных соединений Транспортная функция воды Высокая теплоёмкость при минимальном изменении собственной температуры Защищает клетку от перегрева за счёт испарения Высокая теплопроводность (распределение тепла между клетками) Растворитель для смазочных веществ (суставы) Плотность воды максимальна при 4 градусах С (лёд защищает водоёмы от промерзания)

Гидрофильные и гидрофобные вещества • Гидрофильные: соли, сахара, аминокислоты и другие вещества хорошо растворимые в воде • Гидрофобные: жиры (практически не растворимые в воде)

Соли • Образованы: • катионами калия, натрия, магния и др. металлов • анионами Cl, HCO 3, HSO 4 и ДР. • Разное число ионов натрия и калия на наружной и внутренней стороне мембран создаёт мембранный потенциал, необходимый для проведения возбуждения по нерву и мышце • Ионы калия и натрия – активаторы многих ферментов

Неорганические кислоты и их соли • Соляная создаёт кислую среду в желудке, способствуя перевариванию белков • Остатки фосфорной кислоты, присоединяясь к ферментам и др. белкам изменяют их физиологическую активность • Остатки серной кислоты присоединяясь к нерастворимым в воде чужеродным веществам придаёт им растворимость и способствует выведению из организма

Неорганические кислоты и их соли • Калиевые и натриевые соли азотной и фосфорной кислот, кальциевая соль серной кислоты – составная часть минерального питания растений (удобрения)

Биополимеры • Органические соединения, входящие в состав клеток и продуктов их жизнедеятельности • Полимер – многозвеньевая цепь • Мономер – единица строения полимера, более простое вещество • Регулярные полимеры: абабаба, аааа (крахмал, гликоген, целлюлоза) • Нерегулярные: не имеют закономерности повторяемости мономеров (белки)

Углеводы • • Состав: С, Н, О; Сn(Н 2 О)m Простые глюкоза (С 6 Н 12 О 6) Дисахариды (сахароза) О-О Полисахариды (крахмал, целлюлоза, гликоген) О-О-О-О

Функции углеводов • Энергетическая (расщепляются до углекислого газа и воды с выделением энергии) • Запасающая (крахмал, гликоген) • Структурная (целлюлоза) • Сигнальная, узнавание, распознавание (гликокаликс)

Липиды • • Жиры и жироподобные вещества Гидрофобные, неполярные соединения Функции: Энергетическая, Запасающая Регуляторная (входят в состав гормонов) Структурная (липидный слой клеточных мембран)

Белки • Биополимеры, мономеры – аминокислоты • Известно 20 аминокислот в составе живых клеток

Аминокислоты Содержат аминогруппу и карбоксильную группу, образуют ковалентную связь за счёт выделения молекулы воды (пептидная связь)

Структура белка • Первичная структура (полипептидная цепь) определяется порядком расположения аминокислот ( поддерживается пептидными связями) • Вторичная, спиральная структура поддерживается водородными связями между группами N-H и С-О, расположенными в разных витках

• Третичная структура белка – клубок поддерживается связями между положительно и отрицательно заряженными радикалами аминокислот и гидрофобными связями • Четвертичная структура образуется несколькими полипептидными цепями (гемоглобин)

Свойства белка • Денатурация – утрата сложной структуры • Ренатурация – восстановление структуры • Способность белков к обратимому изменению пространственной структуры в ответ на воздействие физических или химических факторов лежит в основе раздражимости – важнейшего свойства живых организмов

Функции белков • • • Структурная Ферментативная Регуляторная Защитная Энергетическая

Нуклеиновые кислоты • ДНК – дезоксирибонуклеиновая кислота • Мономеры нуклеотиды Состав нуклеотида • Одно из азотистых оснований: аденин, гуанин, цитозин, тимин • Пятиуглеродный сахар дезоксирибоза • Остаток фосфорной кислоты • Функция хранение наследственной информации

Строение нуклеотида ДНК

Строение ДНК

РНК Одна цепь нуклеотидов Сахар рибоза Остаток фосфорной кислоты Состав нуклеотидов: аденин, гуанин, цитозин, урацил • Функции: информационная, транспортная • •

Строение АТФ

Функции АТФ • Универсальный биологический аккумулятор энергии • Световая энергия Солнца и энергия, заключённая в потребляемой пище, запасается в молекулах АТФ

Витамины • Конечный продукт биосинтеза • Организм не способен синтезировать сам, а получает готовым из вне • Большинство витаминов в клетке становятся частями ферментов и участвуют в биохимических реакциях • Недостаток витаминов приводит к нарушению работы ферментов и тяжёлым заболеваниям - авитаминозам

present5.com

химический состав и функции. — 22 ответа

В разделе Школы на вопрос Органические и неорганические вещества клетки: химический состав и функции. заданный автором Наталья Рейх лучший ответ это Клеткой называют элементарную единицу строения живых организмов. Все живые существа - будь то люди, животные, растения, грибы или бактерии - в своей основе имеют клетку. В чьем-то организме этих клеток много - сотни тысяч клеток составляют тело млекопитающих и рептилий, а в чьем-то мало - многие бактерии состоят из всего одной клетки. Но не так важно количество клеток, как их наличие. Давно известно, что клетки обладают всеми свойствами живого: они дышат, питаются, размножаются, приспосабливаются к новым условиям, даже умирают. И, как и у всего живого, в составе клеток есть органические и неорганические вещества. Неорганических веществ намного больше, ведь неорганические вещества - это и вода, и минеральные вещества. Разумеется, наибольшая часть отдела под названием "неорганические вещества клетки" отводится воде - она составляет 40-98% от всего объема клетки. Вода в клетке выполняет множество важнейших функций: она обеспечивает упругость клетки, быстроту проходящих в ней химических реакций, перемещение поступивших веществ по клетке и их вывод. Кроме того, в воде растворяются многие вещества, она может участвовать в химических реакциях и именно на воде лежит ответственность за терморегуляцию всего организма, так как вода обладает неплохой теплопроводностью. Помимо воды, в неорганические вещества клетки входят и многие минеральные вещества, делящиеся на макроэлементы и микроэлементы. К макроэлементам относятся такие вещества, как железо, азот, калий, магний, натрий, сера, углерод, фосфор, кальций и многие другие. Микроэлементы - это, в большинстве своем, тяжелые металлы, такие, как бор, марганец, бром, медь, молибден, йод цинк. Также в организме есть и ультрамикроэлементы, среди которых золото, уран, ртуть, радий, селен и другие. Все неорганические вещества клетки играют собственную, важную роль. Так, азот участвует в великом множестве соединений - как белковых, так и небелковых, способствует образованию витаминов, аминокислот, пигментов. Кальций представляет собой антагонист калия, служит клеем для растительных клеток. Молибден улучшает устойчивость растений против грибков-паразитов, способствует ускорению синтеза белка. Железо участвует в процессе дыхания, входит в состав молекул гемоглобина. Медь отвечает за образование клеток крови, здоровье сердца и хороший аппетит. Бор отвечает за процесс роста, в особенности у растений. Калий обеспечивает коллоидные свойства цитоплазмы, образование белков и нормальную работу сердца. Натрий также обеспечивает правильный ритм сердечной деятельности. Сера участвует в образовании некоторых аминокислот. Фосфор участвует в образовании огромного количества незаменимых соединений, таких, как нуклеотиды, некоторые ферменты, АМФ, АТФ, АДФ. И только роль ультрамикроэлементов пока абсолютно неизвестна. Но одни только неорганические вещества клетки не смогли бы сделать ее полноценной и живой. Органические вещества важны не менее, чем они. К органическим веществам относятся углеводы, липиды, ферменты, пигменты, витамины и гормоны. Углеводы делятся на моносахариды, дисахариды, полисахариды и олигосахариды. Моно- ди- и полисахариды являются основным источником энергии для клетки и организма, а вот нерастворяющиеся в воде олигосахариды склеивают соединительную ткань и защищают клетки от неблагоприятного внешнего воздействия. Липиды делятся на собственно жиры и липоиды - жироподобные вещества, образующие ориентированные молекулярные слои. Ферменты являются катализаторами, ускоряющими биохимические процессы в организме. Кроме того, ферменты уменьшают количество потребляемой на придание реакционной способности молекуле энергии. Витамины необходимы для регуляции окисляемости аминокислот и углеводов, а также для полноценного роста и развития. Гормоны необходимы для регулирования жизнедеятельности организма.

Химическая организация клетки на Википедии
Посмотрите статью на википедии про Химическая организация клетки

22oa.ru

Химический состав клетки. Неорганические соединения » mozok.click

Основные понятия и ключевые термины: ХИМИЧЕСКИЙ СОСТАВ КЛЕТКИ.

Вспомните! Что такое уровни организации жизни?

Подумайте!

«Птицы и звери, камни и звёзды - все мы одно... - шипел Змей, раскачиваясь между детьми. - Дети и змеи, звезды и камни - все мы одно...» - писала английская писательница Памела Линдон Трэверс (1899 - 1996) в своей детской книге «Мэри Поппинс» (Глава 10. Полнолуние), которая вышла ещё в 1934 г. Как вы думаете, о чём говорится в этом отрывке?

СОДЕРЖАНИЕ

Каков химический состав клетки?

ХИМИЧЕСКИЙ СОСТАВ КЛЕТКИ - совокупность химических элементов и химических веществ, содержащихся в клетке и обеспечивающих её жизнедеятельность или организма в целом. Условно химический состав клетки можно изучать на элементном и молекулярном уровнях. Наука, изучающая химический состав живого, значение и превращение его компонентов, называется биохимией.

Элементный состав определяется химическими элементами, участвующими в жизнедеятельности клетки. Их называют биоэлементами. Эти элементы есть и в неживой природе, но в клетках их соотношение весьма устойчиво. Биоэлементы в зависимости от количественного состава делят на органогены, макро- и микроэлементы.

Химический состав живого

Элементный состав

Молекулярный

состав

Биоэлементы:

органогены,

макроэле

менты,

микроэле

менты

I. Неорганические молекулы (оксиды, кислоты, основания, минеральные соли)

II. Органические молекулы (белки, жиры, углеводы, нуклеиновые кислоты)



Наибольшее содержание приходится на углерод, кислород, водород и азот, которые являются органогенами. Они отличаются от других малыми размерами и незначительной относительной атомной массой. Именно эти особенности и обусловливают их участие в образовании

многих соединений живого, то есть структурную функцию. Так, углерод входит в состав всех органических соединений, азот является частью аминокислот, белков, нуклеиновых кислот, витаминов. К макроэлементам относят калий, кальций, натрий, магний, железо, являющихся металлами, и фосфор, хлор, серу, являющихся неметаллами. Эти элементы кроме структурной функции осуществляют ещё и регуляторную. Например, кальций обеспечивает свёртываемость крови, а натрий и калий регулируют транспортирование веществ в клетку и из клетки. Микроэлементами являются цинк, йод, фтор, медь, марганец, кобальт и др. Эти элементы входят в состав биологически активных веществ (гормонов, ферментов) и выполняют регуляторную функцию. Так, йод входит в состав гормонов щитовидной железы, цинк - в состав инсулина.

Молекулярный состав живого зависит от наличия в клетках неорганических и органических соединений. Из неорганических веществ в клетке наибольшее содержание приходится на воду и минеральные соли. Органическими веществами клеток являются белки, углеводы, липиды и нуклеиновые кислоты. Подробнее о строении, свойствах и функциях веществ клетки мы узнаем позже.

Итак, основные компоненты химического состава клеток - это биоэлементы, неорганические и органические вещества, выполняющие определённые функции и обеспечивающие жизнедеятельность клеток.

Следствием каких процессов является изменение химического состава клетки?


Каждая клетка - это открытая биологическая система, способная к саморегуляции, самообновлению и самовосстановлению. И все эти её фундаментальные процессы осуществляются при помощи химических элементов и молекул, участвующих в превращениях веществ, энергии и информации.

Среди этих процессов значительное место занимают физические процессы (растворение, кристаллизация, диффузия, излучение и т. д.) и химические реакции (реакции соединения, разложения, обмена, замещения). Клеточные процессы происходят при участии энергии, поэтому выделяют экзотермические (энергия выделяется в ходе преобразований) и эндотермические (энергия поглощается в ходе преобразований) реакции. Подавляющее большинство реакций в клетках происходит при участии ферментов, являющихся биокатализаторами. Ферменты обеспечивают очень быстрый ход реакций, сами при этом не расходуются и, что очень важно для клетки, регулируют процессы в зависимости от потребностей клетки в веществах и энергии. Основными типами ферментативных реакций являются реакции синтеза и разложения, реакции окисления и восстановления. Большинство ферментативных реакций являются специфическими для живой природы и не могут происходить в неживой, что свидетельствует о единстве всего живого на Земле.

Итак, функциональными компонентами химического состава клетки являются физические и химические процессы, обеспечивающие преобразование веществ, энергии и информации.

Каково биологическое значение неорганических веществ?

Как вы знаете из курса химии, среди неорганических веществ есть простые (состоят из атомов одного элемента) и сложные (состоят из атомов различных элементов). Среди сложных соединений выделяют четыре класса - оксиды, кислоты, основания и соли.

Оксиды - это сложные соединения элементов с кислородом. Оксиды неметаллов и металлов выполняют в организме определённые жизненно важные функции. Например, оксид водорода Н2О является универсальным растворителем, оксид углерода(1У) СО2 - регулятором дыхания, пероксид водорода Н2О2 и угарный газ СО - токсичными веществами.

Кислотами называются соединения, содержащие в молекулах атомы водорода и кислотные остатки. Особенностями, определяющими биологическое значение кислот, является их способность образовывать при диссоциации анионы NOg", Cl-, SO4-, COg- (участвуют в регуляции процессов) и катионы Н+, от концентрации которых зависит кислотность жидкостей организмов. Кислоты входят в состав желудочного сока (HCl), нуклеиновых кислот, фосфолипидов клеточных мембран (Н3РО4), растворяют нерастворимые продукты выделения (H2SO4) и др.

Основаниями называют соединения, в состав которых входят, как правило, атом металла и гидроксильные группы. Щёлочи обладают способностью связывать ионы Н+ и участвовать в регуляции кислотно-щелочного баланса жидкостей внутренней среды. Свойства оснований имеет и водный раствор аммиака, образующегося как конечный продукт обмена белков и оказывающего отравляющее действие на организм.

Соли являются продуктами замещения атомов водорода в кислотах на атомы металлов. Нерастворимые в воде соли участвуют в построении защитных и опорных образований (например, кальций карбонат и кальций фосфат образуют ракушки, скелеты кораллов, зубы позвоночных). Из растворимых солей для организмов наибольшее значение имеют соли, которые образуют катионы натрия, калия, кальция, магния, железа и остатки соляной, серной, азотной кислот. Эти ионы, обеспечивают транспортирование веществ через мембраны клеток, регуляцию работы сердца, проведение возбуждения, активацию ферментов и др.

Итак, в состав организмов входят простые и сложные соединения, выполняющие строительную, регуляторную и другие функции.


ДЕЯТЕЛЬНОСТЬ

Задание на применение знаний

Для конкурса предлагаются задания, в которых фигурируют 12 химических элементов: N, Zn, Cu, Ca, F, Ra, Cl, Fe, Se, I, Mg, Si. Укажите название элемента как ответ на задание, выберите из этого названия указанную букву и получите название науки, изучающей лекарственные вещества и их действие на организм.

Мини-конкурс «ХИМИЯ ЖИВОГО»

I. Какой химический элемент в составе эмали придаёт ей прочности? 1 ...

II. Какой элемент является частью костей, раковин моллюсков?  2  ...

III. Какой элемент обусловливает красный цвет крови у позвоночных? 3 ...

IV. От какого элемента зависит зелёный цвет растений?  1  ...

V. Элемент, который накапливается в болотной ряске и применяется

для лечения опухолей. 2  ...

VI. Элемент, обусловливающий голубую окраску крови кальмаров.  1  ...

VII. Этот элемент является компонентом желудочного сока.  3  ...

VIII. Элемент назван в честь богини Луны и его много в сетчатке орлов. 3 ... XIX. Элемент бурых водорослей в составе гормонов щитовидной железы. 2 ...

X. Элемент в составе аминокислот, белков, нуклеиновых кислот, NH3.  6  ...

XI. Какого химического элемента содержится много в клетках хвощей? 4 ...

XII. Плоды рябины, положительно влияющие на кроветворение.  1  ...

Биология + Химия

Укажите названия и химические формулы неорганических соединений, указанных в таблице. Объясните связь биологии с неорганической химией.

НЕКОТОРЫЕ НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА ЖИВЫХ СУЩЕСТВ, ИХ ЗНАЧЕНИЕ

Название

Значение

 

В составе желудочного сока активирует пищеварительные ферменты

 

Растворяет продукты обмена для удаления из клеток вместе с водой

 

Конечный продукт обмена белков, участвует в образовании нитратов

 

Конечный продукт окисления, источник углерода в фотосинтезе

 

Является условием клеточного дыхания, конечным продуктом фотосинтеза

 

Образует защитный экран от пагубного для живого действия «жёсткого» ультрафиолетового излучения

 

Строение ракушек радиолярий, клеток хвощей, панцирей диатомей

ОТНОШЕНИЕ

Парацельс (настоящее имя - Филипп Ауреол Теофраст Бомбаст фон Гогенгейм) - известный немецкий алхимик, врач эпохи Возрождения. Он считал, что живые организмы состоят из тех же элементов, что и все другие тела природы. Выскажите и обоснуйте суждения о подобии состава и различии в содержании химических элементов в живой и неживой природе.

Оценка

Задания для самоконтроля

1 - 6

1. Что такое химический состав клетки? 2. Что является компонентами элементного состава клеток? 3. Что является компонентами молекулярного состава клеток? 4. Назовите неорганические соединения в составе живого. 5. Приведите примеры функций неорганических соединений живого. 6. Назовите органические вещества, входящие в состав живого.

7 - 9

7. Каков химический состав клетки? 8. Следствием каких процессов является изменение химического состава клетки? 9. Каков состав и биологическое значение неорганических соединений живого?

10 - 12

10. О чём свидетельствуют сходство состава и различное содержание химических элементов в живой и неживой природе?

 

Это материал учебника Биология 9 класс Соболь

 

mozok.click

органические вещества, макро- и микроэлементы

В конце 19 столетия сформировалась отрасль биологии, названная биохимией. Она изучает химический состав живой клетки. Главная задача науки – познание особенностей обмена веществ и энергии, регулирующих жизнедеятельность растительных и животных клеток.

Понятие о химическом составе клетки

В результате тщательных исследований учёными была изучена химическая организация клеток и установлено, что живые существа имеют в своем составе более 85 химических элементов. Причём некоторые из них обязательны практически для всех организмов, а другие специфичны и встречаются у конкретных биологических видов. А третья группа химических элементов присутствует в клетках микроорганизмов, растений и животных в достаточно малых количествах. Химические элементы в состав клеток входят чаще всего в виде катионов и анионов, из которых образуются минеральные соли и вода, а также синтезируются углеродсодержащие органические соединения: углеводы, белки, липиды.

Органогенные элементы

В биохимии к ним относятся карбон, гидроген, оксиген и нитроген. Их совокупность составляет в клетке от 88 до 97% от других химических элементов, находящихся в ней. Особенно важен карбон. Все органические вещества в составе клетки состоят из молекул, содержащих в своём составе атомы углерода. Они способны соединяться между собой, образуя цепи (разветвлённые и неразветвленные), а также циклы. Эта способность углеродных атомов лежит в основе поразительного разнообразия органических веществ, входящих в состав цитоплазмы и клеточных органоидов.

Например, внутреннее содержимое клетки состоит из растворимых олигосахаридов, гидрофильных белков, липидов, различных видов рибонуклеиновой кислоты: транспортной РНК, рибосомальной РНК и информационной РНК, а также свободных мономеров – нуклеотидов. Подобный химический состав имеет и клеточное ядро. Оно также содержит молекулы дезоксирибонуклеиновой кислоты, входящие в состав хромосом. Все вышеперечисленные соединения имеют в своём составе атомы нитрогена, карбона, оксигена, гидрогена. Это является доказательством их особенно важного значения, так как химическая организация клеток зависит от содержания органогенных элементов, входящих в состав клеточных структур: гиалоплазмы и органелл.

Макроэлементы и их значения

Химические элементы, которые также очень часто встречаются в клетках различных видов организмов, в биохимии называются макроэлементами. Их содержание в клетке составляет 1,2% – 1,9%. К макроэлементам клетки относятся: фосфор, калий, хлор, сера, магний, кальций, железо и натрий. Все они выполняют важные функции и входят в состав различных клеточных органелл. Так, ион двухвалентного железа присутствует в белке крови – гемоглобине, который транспортирует кислород (в этом случае он называется оксигемоглобин), углекислый газ (карбогемоглобин) или угарный газ (карбоксигемоглобин).

Ионы натрия обеспечивают важнейший вид межклеточного транспорта: так называемый натрий-калиевый насос. Они также входят в состав межтканевой жидкости и плазмы крови. Ионы магния присутствуют в молекулах хлорофилла (фотопигмент высших растений) и участвуют в процессе фотосинтеза, так как образуют реакционные центры, улавливающие фотоны световой энергии.

Ионы кальция обеспечивают проведение нервных импульсов по волокнам, а также являются главным компонентом остеоцитов – костных клеток. Соединения кальция широко распространены в мире беспозвоночных животных, у которых раковины состоят из карбоната кальция.

Ионы хлора принимают участие в перезарядке клеточных мембран и обеспечивают возникновение электрических импульсов, лежащих в основе нервного возбуждения.

Атомы серы входят в состав нативных белков и обуславливают их третичную структуру, «сшивая» полипептидную цепь, вследствие чего формируется глобулярная белковая молекула.

Ионы калия участвуют в транспорте веществ через клеточные мембраны. Атомы фосфора входят в состав такого важного энергоёмкого вещества, как аденозинтрифосфорная кислота, а также являются важным компонентом молекул дезоксирибонуклеиновой и рибонуклеиновых кислот, являющихся главными веществами клеточной наследственности.

Функции микроэлементов в клеточном метаболизме

Около 50 химических элементов, составляющих менее 0,1% в клетках, называются микроэлементами. К ним относят цинк, молибден, йод, медь, кобальт, фтор. При незначительном содержании они выполняют очень важные функции, так как входят в состав многих биологически активных веществ.

Например, атомы цинка находятся в молекулах инсулина (гормона поджелудочной железы, регулирующего уровень глюкозы в крови), йод является составной частью гормонов щитовидной железы – тироксина и трийодтиронина, контролирующих уровень обмена веществ в организме. Медь, наряду с ионами железа, участвует в кроветворении (образовании эритроцитов, тромбоцитов и лейкоцитов в красном костном мозге позвоночных животных). Ионы меди входят в состав пигмента гемоцианина, присутствующего в крови беспозвоночных животных, например моллюсков. Поэтому цвет гемолимфы у них голубой.

Ещё меньше содержание в клетке таких химических элементов, как свинец, золото, бром, серебро. Они называются ультромикроэлементами и входят в состав растительных и животных клеток. Например, в зерновках кукурузы химическим анализом были выявлены ионы золота. Атомы брома в большом количестве входят в состав клеток слоевища бурых и красных водорослей, например саргассума, ламинарии, фукуса.

Все ранее приведённые примеры и факты объясняют, как взаимосвязаны химический состав, функции и строение клетки. Таблица, приведённая ниже, показывает содержание различных химических элементов в клетках живых организмов.

Общая характеристика органических веществ

Химические свойства клеток различных групп организмов определённым образом зависят от атомов карбона, доля которых составляет более 50% клеточной массы. Практически все сухое вещество клетки представлено углеводами, белками, нуклеиновыми кислотами и липидами, которые имеют сложное строение и большую молекулярную массу. Такие молекулы называются макромолекулами (полимерами) и состоят из более простых элементов – мономеров. Белковые вещества играют чрезвычайно важную роль и выполняют множество функций, которые и будут рассмотрены ниже.

Роль белков в клетке

Биохимический анализ соединений, входящих в живую клетку, подтверждает высокое содержание в ней таких органических веществ, как белки. Этому факту есть логическое объяснение: белки выполняют разнообразные функции и участвуют во всех проявлениях клеточной жизнедеятельности.

Например, защитная функция белков заключается в образовании антител – иммуноглобулинов, вырабатываемых лимфоцитами. Такие защитные белки, как тромбин, фибрин и тромбобластин, обеспечивают свёртываемость крови и предотвращают её потерю при травмах и ранениях. В состав клетки входят сложные белки клеточных мембран, имеющие способность распознавать чужеродные соединения – антигены. Они изменяют свою конфигурацию и сообщают клетке о потенциальной опасности (сигнальная функция).

Некоторые белки выполняют регуляторную функцию и являются гормонами, например окситоцин, вырабатываемый гипоталамусом, резервируется гипофизом. Поступая из него в кровь, окситоцин воздействует на мышечные стенки матки, вызывая её сокращение. Белок вазопрессин также выполняет регуляторную функцию, контролируя кровяное давление.

В мышечных клетках находятся актин и миозин, способные сокращаться, что обуславливает двигательную функцию мышечной ткани. Для белков характерна и трофическая функция, например, альбумин используется зародышем в качестве питательного вещества для своего развития. Белки крови различных организмов, например гемоглобин и гемоцианин, переносят молекулы кислорода – выполняют транспортную функцию. Если более энергоёмкие вещества, такие как углеводы и липиды, полностью использованы, клетка приступает к расщеплению белков. Один грамм этого вещества даёт 17, 2 кДж энергии. Одной из важнейших функций белков является каталитическая (белки-ферменты ускоряют химические реакции, протекающие в компартментах цитоплазмы). На основании вышесказанного мы убедились в том, что белки выполняют множество очень важных функций и обязательно входят в состав животной клетки.

Биосинтез белка

Рассмотрим процесс синтеза белка в клетке, который происходит в цитоплазме с помощью таких органелл, как рибосомы. Благодаря деятельности специальных ферментов, при участии ионов кальция рибосомы объединяются в полисомы. Основные функции рибосом в клетке – синтез белковых молекул, начинающийся процессом транскрипции. В результате него синтезируются молекулы иРНК, к которым и присоединяются полисомы. Затем начинается второй процесс – трансляция. Транспортные РНК соединяются с двадцатью различными видами аминокислот и приносят их к полисомам, а так как функции рибосом в клетке — это синтез полипептидов, то эти органеллы образуют комплексы с тРНК, а молекулы аминокислот связываются между собой пептидными связями, образуя макромолекулу белка.

Роль воды в процессах метаболизма

Цитологические исследования подтвердили тот факт, что клетка, строение и состав которой мы изучаем, в среднем на 70% состоит из воды, а у многих животных, ведущих водный способ жизни (например, кишечнополостных) её содержание достигает 97—98%. С учётом этого химическая организация клеток включает в себя гидрофильные (способные к растворению) и гидрофобные (водоотталкивающие) вещества. Являясь универсальным полярным растворителем, вода играет исключительную роль и напрямую влияет не только на функции, но и на само строение клетки. Таблица, представленная ниже, показывает содержание воды в клетках различных типов живых организмов.

Функция углеводов в клетке

Как мы выяснили ранее, к важным органическим веществам – полимерам - относятся также углеводы. К ним относятся полисахариды, олигосахариды и моносахариды. Углеводы входят в состав более сложных комплексов – гликолипидов и гликопротеидов, из которых построены клеточные мембраны и надмембранные структуры, например гликокаликс.

Кроме углерода, в состав углеводов входят атомы оксигена и гидрогена, а некоторые полисахариды содержат ещё азот, серу и фосфор. В клетках растений углеводов много: клубни картофеля содержат до 90% крахмала, в семенах и плодах содержание углеводов до 70%, а в животных клетках они встречаются в виде таких соединений, как гликоген, хитин и трегалоза.

Простые сахара (моносахариды) имеют общую формулу Cnh3nOn и делятся на тетрозы, триозы, пентозы и гексозы. Две последние наиболее распространены в клетках живых организмов, например, рибоза и дезоксирибоза входят в состав нуклеиновых кислот, а глюкоза и фруктоза принимают участие в реакциях ассимиляции и диссимиляции. Олигосахариды часто встречаются в растительных клетках: сахароза запасается в клетках сахарной свёклы и сахарного тростника, мальтоза содержится в проросших зерновках ржи и ячменя.

Дисахариды имеют сладковатый вкус и хорошо растворяются в воде. Полисахариды, являясь биополимерами, представлены в основном крахмалом, целлюлозой, гликогеном и ламинарином. К структурным формам полисахаридов относится хитин. Основная функция углеводов в клетке — энергетическая. В результате гидролиза и реакций энергетического обмена полисахариды расщепляются до глюкозы, а она затем окисляется до углекислого газа и воды. В результате один грамм глюкозы освобождает 17,6 кДж энергии, а запасы крахмала и гликогена, по сути, являются резервуаром клеточной энергии.

Гликоген откладывается в основном в мышечной ткани и клетках печени, растительный крахмал – в клубнях, луковицах, корнеплодах, семенах, а у членистоногих, например пауков, насекомых и ракообразных, главную роль в энергообеспечении играет олигосахарид трегалоза.

Углеводы отличаются от липидов и белков способностью к бескислородному расщеплению. Это чрезвычайно важно для организмов, живущих в условиях дефицита или отсутствия кислорода, например для анаэробных бактерий и гельминтов – паразитов человека и животных.

Есть ещё одна функция углеводов в клетке – строительная (структурная). Она заключается в том, что эти вещества являются опорными структурами клеток. Например, целлюлоза входит в состав клеточных стенок растений, хитин образует внешний скелет многих беспозвоночных и встречается в клетках грибов, олисахариды вместе с молекулами липидов и белков образуют гликокаликс – надмембранный комплекс. Он обеспечивает адгезию – слипание животных клеток между собой, приводящее к образованию тканей.

Липиды: строение и функции

Эти органические вещества, являющиеся гидрофобными (нерастворимыми в воде) можно извлечь, то есть экстрагировать из клеток с помощью неполярных растворителей, таких как ацетон или хлороформ. Функции липидов в клетке зависят от того, к какой из трёх групп они относятся: к жирам, воскам или стероидам. Жиры наиболее широко распространены во всех типах клеток.

Животные накапливают их в подкожной жировой клетчатке, нервная ткань содержит жир в виде миелиновых оболочек нервов. Он также накапливается в почках, печени, у насекомых – в жировом теле. Жидкие жиры – масла - встречаются в семенах многих растений: кедра, арахиса, подсолнечника, маслины. Содержание липидов в клетках колеблется от 5 до 90% (в жировой ткани).

Стероиды и воски отличаются от жиров тем, что они не имеют в составе молекул остатков жирных кислот. Так, стероиды – это гормоны коркового слоя надпочечников, влияющие на половое созревание организма и являющиеся компонентами тестостерона. Они также входят в состав витаминов (например, витамина Д).

Основные функции липидов в клетке – это энергетическая, строительная и защитная. Первая обусловлена тем, что 1 грамм жира при расщеплении даёт 38,9 кДж энергии – намного больше чем другие органические вещества – белки и углеводы. Кроме того, при окислении 1г жира выделяется почти 1,1 гр. воды. Именно поэтому некоторые животные имея запас жира в своем теле, могут долгое время находиться без воды. Например, суслики могут быть в спячке более двух месяцев, не нуждаясь в воде, а верблюд не пьёт воду при переходах через пустыню в течение 10–12 суток.

Строительная функция липидов заключается в том, что они являются неотъемлемой частью клеточных мембран, а также входят в состав нервов. Защитная функция липидов состоит в том, что слой жира под кожей вокруг почек и других внутренних органов защищает их от механических травм. Специфическая теплоизоляционная функция присуща животным, длительное время находящимся в воде: китам, тюленям, морским котикам. Толстый подкожный жировой слой, например, у синего кита составляет 0,5 м, он защищает животное от переохлаждения.

Значение кислорода в клеточном метаболизме

Аэробные организмы, к которым относится подавляющее большинство животных, растения и человек, используют атмосферный кислород для реакций энергетического обмена, приводящих к расщеплению органических веществ и выделению определённого количества энергии, аккумулируемого в виде молекул аденозинтрифосфорной кислоты.

Так, при полном окислении одного моля глюкозы, происходящего на кристах митохондрий, выделяется 2800 кДж энергии, из которых 1596 кДж (55%) запасается в виде молекул АТФ, содержащих макроэргические связи. Таким образом, основная функция кислорода в клетке – осуществление аэробного дыхания, в основе которого лежит группа ферментативных реакций так называемой дыхательной цепи, происходящих в клеточных органеллах – митохондриях. У прокариотических организмов - фототрофных бактерий и цианобактерий - окисление питательных веществ происходит под действием кислорода, диффундирующего в клетки на внутренние выросты плазматических мембран.

Нами была изучена химическая организация клеток, а также рассмотрены процессы биосинтеза белка и функция кислорода в клеточном энергетическом обмене.

fb.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *