Ткани корня – Ткани корня (первичное и вторичное строение).

Содержание

Ткани корня (первичное и вторичное строение).

1.    Ризодерма – первичная покровная ткань корня.

2.    Апикальная меристема корня как первичная образовательная ткань.

3. Проводящие ткани.

4. Основная запасающая паренхима

 Ризодерма

Первичная однослойная покровная ткань на поверхности всасывающей зоны корня.

Эпиблема состоит из двух типов клеток: трихобласты и атрихобласты. Трихобласты содержат выросты – корневые волоски, увеличивающие всасывающую поверхность корня.

Атрихобласты – не имеют корневых волосков, но также участвуют в поглощении воды и минеральных солей.

Эпиблема возникает из наружных клеток апикальной меристемы корня вблизи корневого чехлика и покрывает молодые корневые окончания. Ризодерма – одна из важнейших тканей растения, ибо через неё происходит поглощение воды и минеральных солей из почвы.

  В зоне всасывания корня ризодерма пассивно или активно поглощает элементы минерального питания, затрачивая в последнем случае энергию. В связи с этим ризодерма богата митохондриями. Она недолговечна (15– 20 дней) и, отмирая, передаёт свои функции новым участкам ризодермы растущего корня.

 Клетки ризодермы тонкостенны, лишены кутикулы и имеют вязкую цитоплазму. В ней отсутствуют устьица.

Апикальные (верхушечные) меристемы располагаются на верхушках побегов и корней, обеспечивая нарастание их в длину. Такой рост получил название первичного, а сами меристемы – первичных. Часть растения, образованная первичными тканями, возникшими из первичных меристем, – это его первичное тело. К первичным меристемам, кроме апикальных, относят и их непосредственные производные, несколько отстоящие от верхушек органов. У этих производных способность к делению в определённой мере сохранена (протодерма, прокамбий, основная меристема

). В первичном теле растения они дают ещё в ходе эмбриогенеза три первичные системы тканей: покровную, проводящую и систему основных тканей.

Клетки апикальных меристем более или менее одинаковы по размерам и многогранны по форме. Межклетников между ними нет, оболочки тонкие, т.к. содержат мало целлюлозы. Полость клетки заполнена густой цитоплазмой с относительно крупным ядром, занимающим центральное положение. Вакуоли многочисленные, мелкие, но под световым микроскопом обычно заметны. Пластид и митохондрий мало, и они мелкие. Эргастические вещества отсутствуют.

Проводящие ткани

Это сложные многофункциональные ткани, связанные с проведением веществ. По происхождению они могут быть как первичными (из прокамбия), так и вторичными (из камбия). Проводящие ткани подразделяются на две группы: ксилема, по которой перемещаются вода и минеральные вещества (как правило, восходящий ток) и флоэма, по которой перемещаются органические вещества (нисходящий ток). Полифункциональность проводящих тканей связана с тем, что они ещё выполняют и запасающую функцию, а ксилема дополнительно и опорную функцию.

Ксилема

Ксилема как сложная ткань состоит из 3х элементов: водопроводящие клетки, клетки основной паренхимы, механические клетки.

Основными клетками, входящими в состав ксилемы являются водопроводящие клетки, они функционируют только в мёртвом состоянии. У высших растений водопроводящие клетки представлены сосудами и трахеидами.

Трахеиды – эволюционно более древние проводящие элементы (у споровых растений и голосеменных, впрочем, у некоторых голосеменных есть и сосуды). Они представлены узкими длинными клетками со скошенными концами. Трахеиды обязательно имеет вторичную клеточную стенку, которая подвергается лигнификации, а это приводит к отмиранию протопласта. В трахеидах перемещение воды из клетки в клетку происходит через поры во вторичной клеточной стенке, и наличие поперечных перегородок несколько замедляет движение воды в вертикальном направлении.

Длина трахеид в среднем составляет 1-4мм, диаметр не превышает десятых и даже сотых долей миллиметра. Стенки трахеид одревесневают и несут простые или окаймлённые поры, через которые происходит фильтрация растворов, с помощью которой осуществляется дальний транспорт. Впрочем, боковые стенки трахеид в определённой степени водопроницаемы, что способствует осуществлению ближнего транспорта. Большая часть окаймлённых пор находится около окончаний клеток, т.е. там, где растворы просачиваются из одной трахеиды в другую.

Трахеи (сосуды) появились в ходе эволюции несколько позднее, они характерны для цветковых растений. Сосуды развиваются из вертикального ряда живых клеток. По мере отложения вторичной клеточной стенки и её лигнификации протопласт отмирает, и разрушаются поперечные перегородки между соседними клетками.

Поэтому зрелый функционирующий сосуд представляет собой полую трубку, в котором вода с растворёнными минеральными веществами не встречает никаких препятствий.

Сосуды – полые трубки, состоящие из отдельных члеников, располагающихся друг над другом. Между члениками одного и того же сосуда имеются разного типа сквозные отверстия – перфорации. Благодаря им, вдоль всего сосуда свободно осуществляется ток жидкости. Сосуды могут состоять из огромного числа члеников, так что общая длина сосуда может достигать нескольких метров. Диаметр же варьирует от 0,2 мм до 1мм.

 Эволюционно сосуды видимо произошли из трахеид путём разрушения замыкающих плёнок пор и последующего их слияния в одну перфорацию. Концы трахеид первоначально сильно скошенные заняли горизонтальное положение, а сами трахеиды стали короче и превратились в членики сосудов.

Отложение вторичной клеточной стенки в трахеидах и сосудах происходит неравномерно, и в результате этого могут формироваться кольчатые, спиральные, сетчатые и точечные трахеиды и сосуды.

 Наряду с водопроводящими элементами в состав ксилемы входят клетки основной паренхимы. Это живые клетки, в которых накапливается запас питательных веществ, и эти клетки способствуют продвижению воды по водопроводящим элементам за счёт создания градиентов водных потенциалов. Это в свою очередь обеспечивает продвижение воды против сил гравитации. Клетки основной паренхимы в составе ксилемы располагаются группами, которые получили название древесинная паренхима. У древесных растений встречаются также сердцевидные лучи. Это радиальные ряды клеток основной паренхимы, располагающиеся в ксилеме.

По лучам осуществляется ближний транспорт веществ в горизонтальном направлении. В ксилеме покрытосемянных растений еще имеются тонкостенные неодревесневшие живые паренхимные клетки (древесинная паренхима). По ним осуществляется ближний транспорт веществ в горизонтальном направлении, и в них хранятся запасные вещества.

В состав ксилемы входят также механические клетки, получившие название древесинные волокна. Эти клетки функционируют только в мёртвом состоянии. Они имеют толстые вторичные стенки и вытянутую веретёновидную форму. Выполняют опорную функцию (наряду с водопроводящими элементами).

Первичная и вторичная ксилема содержат клетки одних и тех же типов. Однако первичная ксилема не формирует сердцевинных лучей, отличаясь этим от вторичной.

students-library.com

Корень

Историческое развитие корня

Филогенетически корень возник позже стебля и листа — в связи с переходом растений к жизни на суше и вероятно, произошёл от корнеподобных подземных веточек. У корня нет ни листьев, ни в определённом порядке расположенных почек. Для него характерен верхушечный рост в длину, боковые разветвления его возникают из внутренних тканей, точка роста покрыта корневым чехликом. Корневая система формируется на протяжении всей жизни растительного организма. Иногда корень может служить местом отложения в запас питательных веществ. В таком случае он видоизменяется.

Виды корней

Главный корень образуется из зародышевого корешка при прорастании семени. От него отходят боковые корни.

Придаточные корни развиваются на стеблях и листьях.

Боковые корни представляют собой ответвления любых корней.

Каждый корень (главный, боковые, придаточные) обладает способностью к ветвлению, что значительно увеличивает поверхность корневой системы, а это способствует лучшему укреплению растения в почве и улучшению его питания.

Типы корневых систем

Различают два основных типа корневых систем: стержневая, имеющая хорошо развитый главный корень, и мочковатая. Мочковатая корневая система состоит из большого числа придаточных корней, одинаковых по величине. Вся масса корней состоит из боковых или придаточных корешков и имеет вид мочки.

Сильно разветвлённая корневая система образует огромную поглощающую поверхность. Например,

  • общая длина корней озимой ржи достигает 600 км;
  • длина корневых волосков — 10 000 км;
  • общая поверхность корней — 200 м2.

Это во много раз превышает площадь надземной массы.

Если у растения хорошо выражен главный корень и развиваются придаточные корни, то формируется корневая система смешанного типа (капуста, помидор).

Внешнее строение корня. Внутреннее строение корня

Зоны корня

Корневой чехлик

Корень растёт в длину своей верхушкой, где находятся молодые клетки образовательной ткани. Растущая часть покрыта корневым чехликом, защищающим кончик корня от повреждений, и облегчает продвижение корня в почве во время роста. Последняя функция осуществляется благодаря свойству внешних стенок корневого чехлика покрываться слизью, что уменьшает трение между корнем и частичками почвы. Могут даже раздвигать частички почвы. Клетки корневого чехлика живые, часто содержат зёрна крахмала. Клетки чехлика постоянно обновляются за счёт деления. Участвует в положительных геотропических реакциях (направление роста корня к центру Земли).

Клетки зоны деления активно делятся, протяженность этой зоны у разных видов и у разных корней одного и того же растения неодинакова.

За зоной деления расположена зона растяжения (зона роста). Протяжённость этой зоны не превышает нескольких миллиметров.

По мере завершения линейного роста наступает третий этап формирования корня — его дифференциация, образуется зона дифференциации и специализации клеток (или зона корневых волосков и всасывания). В этой зоне уже различают наружный слой эпиблемы (ризодермы) с корневыми волосками, слой первичной коры и центральный цилиндр.

Строение корневого волоска

Корневые волоски — это сильно удлинённые выросты наружных клеток, покрывающих корень. Количество корневых волосков очень велико (на 1 мм2 от 200 до 300 волосков). Их длина достигает 10 мм. Формируются волоски очень быстро (у молодых сеянцев яблони за 30-40 часов). Корневые волоски недолговечны. Они отмирают через 10-20 дней, а на молодой части корня отрастают новые. Это обеспечивает освоение корнем новых почвенных горизонтов. Корень непрерывно растёт, образуя всё новые и новые участки корневых волосков. Волоски могут не только поглощать готовые растворы веществ, но и способствовать растворению некоторых веществ почвы, а затем всасывать их. Участок корня, где корневые волоски отмерли, некоторое время способен всасывать воду, но затем покрывается пробкой и теряет эту способность.

Оболочка волоска очень тонкая, что облегчает поглощение питательных веществ. Почти всю клетку волоска занимает вакуоль, окружённая тонким слоем цитоплазмы. Ядро находится в верхней части клетки. Вокруг клетки образуется слизистый чехол, который содействует склеиванию корневых волосков с частицами почвы, что улучшает их контакт и повышает гидрофильность системы. Поглощению способствует выделение корневыми волосками кислот (угольной, яблочной, лимонной), которые растворяют минеральные соли.

Корневые волоски играют и механическую роль — они служат опорой верхушке корня, которая проходит между частичками почвы.

Под микроскопом на поперечном срезе корня в зоне всасывания видно его строение на клеточном и тканевом уровнях. На поверхности корня — ризодерма, под ней — кора. Наружный слой коры — экзодерма, вовнутрь от неё — основная паренхима. Её тонкостенные живые клетки выполняют запасающую функцию, проводят растворы питательных веществ в радиальном направлении — от всасывающей ткани к сосудам древесины. В них же происходит синтез ряда жизненно важных для растения органических веществ. Внутренний слой коры — эндодерма. Растворы питательных веществ, поступающие из коры в центральный цилиндр через клетки эндодермы, проходят только через протопласт клеток.

Кора окружает центральный цилиндр корня. Она граничит со слоем клеток, долго сохраняющих способность к делению. Это перицикл. Клетки перицикла дают начало боковым корням, придаточным почкам и вторичным образовательным тканям. Вовнутрь от перицикла, в центре корня, находятся проводящие ткани: луб и древесина. Вместе они образуют радиальный проводящий пучок.

Проводящая система корня проводит воду и минеральные вещества из корня в стебель (восходящий ток) и органические вещества из стебля в корень (нисходящий ток). Состоит она из сосудисто-волокнистых пучков. Основными слагаемыми частями пучка являются участки флоэмы (по ним вещества передвигаются к корню) и ксилемы (по которым вещества передвигаются от корня). Основные проводящие элементы флоэмы — ситовидные трубки, ксилемы — трахеи (сосуды) и трахеиды.

Процессы жизнедеятельности корня

Транспорт воды в корне

Всасывание воды корневыми волосками из почвенного питательного раствора и проведение её в радиальном направлении по клеткам первичной коры через пропускные клетки в эндодерме к ксилеме радиального проводящего пучка. Интенсивность поглощения воды корневыми волосками называется сосущей силой (S), она равна разнице между осмотическим (P) и тургорным (T) давлением: S=P-T.

Когда осмотическое давление равно тургорному (P=T), то S=0, вода перестаёт поступать в клетку корневого волоска. Если концентрация веществ почвенного питательного раствора будет выше, чем внутри клетки, то вода будет выходить из клеток и наступит плазмолиз — растения завянут. Такое явление наблюдается в условиях сухости почвы, а также при неумеренном внесении минеральных удобрений. Внутри клеток корня сосущая сила корня возрастает от ризодермы по направлению к центральному цилиндру, поэтому вода движется по градиенту концентрации (т. е. из места с большей её концентрацией в место с меньшей концентрацией) и создаёт корневое давление, которое поднимает столбик воды по сосудам ксилемы, образуя восходящий ток. Это можно обнаружить на весенних безлистных стволах, когда собирают «сок», или на срезанных пнях. Истекание воды из древесины, свежих пней, листьев, называется «плачем» растений. Когда распускаются листья, то они тоже создают сосущую силу и притягивают воду к себе — образуется непрерывный столбик воды в каждом сосуде — капиллярное натяжение. Корневое давление является нижним двигателем водного тока, а сосущая сила листьев — верхним. Подтвердить это можно с помощью несложных опытов.

Всасывание воды корнями

Цель: выяснить основную функцию корня.

Что делаем: растение, выращенное на влажных опилках, отряхнём его корневую систему и опустим в стакан с водой его корни. Поверх воды для защиты её от испарения нальём тонкий слой растительного масла и отметим уровень.

Что наблюдаем: через день-два вода в ёмкости опустилась ниже отметки.

Результат: следовательно, корни всосали воду и подали её наверх к листьям.

Можно ещё проделать один опыт, доказывающий всасывание питательных веществ корнем.

Что делаем: срежем у растения стебель оставив пенёк высотой 2-3 см. На пенёк наденем резиновую трубку длиной 3 см, а на верхний конец наденем изогнутую стеклянную трубку высотой 20-25 см.

Что наблюдаем: вода в стеклянной трубке поднимается, и вытекает наружу.

Результат: это доказывает, что воду из почвы корень всасывает в стебель.

А влияет ли температура воды на интенсивность всасывания корнем воды?

Цель: выяснить, как температура влияет на работу корня.

Что делаем: один стакан должен быть с тёплой водой (+17-18ºС), а другой с холодной (+1-2ºС).

Что наблюдаем: в первом случае вода выделяется обильно, во втором — мало, или совсем приостанавливается.

Результат: это является доказательством того, что температура сильно влияет на работу корня.

Тёплая вода активно поглощается корнями. Корневое давление повышается.

Холодная вода плохо поглощается корнями. В этом случае корневое давление падает.

Минеральное питание

Физиологическая роль минеральных веществ очень велика. Они являются основой для синтеза органических соединений, а также факторами, которые изменяют физическое состояние коллоидов, т.е. непосредственно влияют на обмен веществ и строение протопласта; выполняют функцию катализаторов биохимических реакций; воздействуют на тургор клетки и проницаемость протоплазмы; являются центрами электрических и радиоактивных явлений в растительных организмах.

Установлено, что нормальное развитие растений возможно только при наличии в питательном растворе трёх неметаллов — азота, фосфора и серы и — и четырёх металлов — калия, магния, кальция и железа. Каждый из этих элементов имеет индивидуальное значение и не может быть заменён другим. Это макроэлементы, их концентрация в растении составляет 10-2–10%. Для нормального развития растений нужны микроэлементы, концентрация которых в клетке составляет 10-5–10-3%. Это бор, кобальт, медь, цинк, марганец, молибден др. Все эти элементы есть в почве, но иногда в недостаточном количестве. Поэтому в почву вносят минеральные и органические удобрения.

Растение нормально растёт и развивается в том случае, если в окружающей корни среде будут содержаться все необходимые питательные вещества. Такой средой для большинства растений является почва.

Дыхание корней

Для нормального роста и развития растения необходимо чтобы к корню поступал свежий воздух. Проверим, так ли это?

Цель: нужен ли воздух корню?

Что делаем: возьмём два одинаковых сосуда с водой. В каждый сосуд поместим развивающие проростки. Воду в одном из сосудов каждый день насыщаем воздухом с помощью пульверизатора. На поверхность воды во втором сосуде нальём тонкий слой растительного масла, так как оно задерживает поступление воздуха в воду.

Что наблюдаем: через некоторое время растение во втором сосуде перестанет расти, зачахнет, и в конце концов погибнет.

Результат: гибель растения наступает из-за недостатка воздуха, необходимого для дыхания корня.

Видоизменения корней

У некоторых растений в корнях откладываются запасные питательные вещества. В них накапливаются углеводы, минеральные соли, витамины и другие вещества. Такие корни сильно разрастаются в толщину и приобретают необычный внешний вид. В формировании корнеплодов участвуют и корень, и стебель.

Корнеплоды

Если запасные вещества накапливаются в главном корне и в основании стебля главного побега, образуются корнеплоды (морковь). Растения, образующие корнеплоды, в основном двулетники. В первый год жизни они не цветут и накапливают в корнеплодах много питательных веществ. На второй — они быстро зацветают, используя накопленные питательные вещества и образуют плоды и семена.

Корневые клубни

У георгина запасные вещества накапливаются в придаточных корнях, образуя корневые клубни.

Бактериальные клубеньки

Своеобразно изменены боковые корни у клевера, люпина, люцерны. В молодых боковых корешках поселяются бактерии, что способствует усвоению газообразного азота почвенного воздуха. Такие корни приобретают вид клубеньков. Благодаря этим бактериям эти растения способны жить на бедных азотом почвах и делать их более плодородными.

Ходульные

У пандуса, произрастающего в приливно-отливной зоне, развиваются ходульные корни. Они высоко над водой удерживают на зыбком илистом грунте крупные облиственные побеги.

Воздушные

У тропических растений, живущих на ветвях деревьев, развиваются воздушные корни. Они часто встречаются у орхидей, бромелиевых, у некоторых папоротников. Воздушные корни свободно висят в воздухе, не достигая земли и поглощая попадающую на них влагу от дождя или росы.

Втягивающие

У луковичных и клубнелуковичных растений, например у крокусов, среди многочисленных нитевидных корней имеется несколько более толстых, так называемых втягивающих, корней. Сокращаясь, такие корни втягивают клубнелуковицу глубже в почву.

Столбовидные

У фикуса развиваются столбовидные надземные корни, или корни-подпорки.

Почва как среда обитания корней

Почва для растений является средой, из которой оно получает воду и элементы питания. Количество минеральных веществ в почве зависит от специфических особенностей материнской горной породы, деятельности организмов, от жизнедеятельности самих растений, от типа почвы.

Почвенные частицы конкурируют с корнями за влагу, удерживая её своей поверхностью. Это так называемая связанная вода, которая подразделяется на гигроскопическую и плёночную. Удерживается она силами молекулярного притяжения. Доступная растению влага представлена капиллярной водой, которая сосредоточена в мелких порах почвы.

Между влагой и воздушной фазой почвы складываются антагонистические отношения. Чем больше в почве крупных пор, тем лучше газовый режим этих почв, тем меньше влаги удерживает почва. Наиболее благоприятный водно-воздушный режим поддерживается в структурных почвах, где вода и воздух находятся одновременно и не мешают друг другу — вода заполняет капилляры внутри структурных агрегатов, а воздух — крупные поры между ними.

Характер взаимодействия растения и почвы в значительной степени связан с поглотительной способностью почвы — способностью удерживать или связывать химические соединения.

Микрофлора почвы разлагает органические вещества до более простых соединений, участвует в формировании структуры почвы. Характер этих процессов зависит от типа почвы, химического состава растительных остатков, физиологических свойств микроорганизмов и других факторов. В формировании структуры почвы принимают участие почвенные животные: кольчатые черви, личинки насекомых и др.

В результате совокупности биологических и химических процессов в почве образуется сложный комплекс органических веществ, который объединяют термином «гумус».

Метод водных культур

В каких солях нуждается растение, и какое влияние оказывают они на рост и развитие его, было установлено на опыте с водными культурами. Метод водных культур — это выращивание растений не в почве, а в водном растворе минеральных солей. В зависимости от поставленной цели в опыте можно исключить отдельную соль из раствора, уменьшить или увеличить ее содержание. Было выяснено, что удобрения, содержащие азот, способствуют росту растений, содержащие фосфор — скорейшему созреванию плодов, а содержащие калий — быстрейшему оттоку органических веществ от листьев к корням. В связи с этим содержащие азот удобрения рекомендуется вносить перед посевом или в первой половине лета, содержащие фосфор и калий — во второй половине лета.

С помощью метода водных культур удалось установить не только потребность растения в макроэлементах, но и выяснить роль различных микроэлементов.

В настоящее время известны случаи, когда выращивают растения методами гидропоники и аэропоники.

Гидропоника — выращивание растений в сосудах, заполненных гравием. Питательный раствор, содержащий необходимые элементы, подаётся в сосуды снизу.

Аэропоника — это воздушная культура растений. При этом способе корневая система находится в воздухе и автоматически (несколько раз в течение часа) опрыскивается слабым раствором питательных солей.

* * *

biouroki.ru

Строение корня растения. Особенности строения корня

Живые организмы изучает наука биология. Строение корня растения рассматривается в одном из разделов ботаники.

Корень является осевым вегетативным органом растения. Для него характерен неограниченный верхушечный рост и радиальная симметрия. Особенности строения корня зависят от многих факторов. Это эволюционное происхождение растения, его принадлежность к тому или иному классу, среда обитания. В качестве основных функций корня можно назвать укрепление растения в почве, участие в вегетативном размножении, запас и синтез органических питательных веществ. Но самая важная функция, обеспечивающая жизнедеятельность растительного организма, — почвенное питание, которое осуществляется в процессе активного всасывания из субстрата воды, содержащей растворенные минеральные соли.

Типы корней

Внешнее строение корня во многом обусловлено тем, к какому типу он относится.

  • Главный корень. Его образование происходит из зародышевого корешка, когда семя растения начинает прорастать.
  • Придаточные корни. Они могут появляться на различных частях растения (стебель, листья).
  • Боковые корни. Именно они образуют разветвления, начинаясь от ранее появившихся корней (главного или придаточных).

Виды корневых систем

Корневая система — общность всех корней, которые имеются у растения. При этом внешний вид этой совокупности у различных растений может сильно варьироваться. Причиной тому служит наличие или отсутствие, а также разная степень развития и выраженности различных типов корней.

В зависимости от этого фактора различают несколько типов корневых систем.

  • Стержневая корневая система. Название говорит само за себя. Главный корень выступает в роли стержня. Он хорошо выражен по размеру и длине. Строение корня по данному типу характерно для двудольных растений. Это щавель, морковь, фасоль и пр.
  • Мочковатая корневая система. Для данного типа характерны свои особенности. Внешнее строение корня, являющегося главным, ничем не отличается от такового у боковых. Он не выделяется в общей массе. Образовавшись из зародышевого корешка, он растет совсем недолго. Мочковая корневая система характерна для однодольных растений. Это хлебные злаки, чеснок, тюльпан и пр.
  • Корневая система смешанного типа. Ее строение соединяет в себе особенности двух, описанных выше, типов. Главный корень хорошо развит и выделяется на общем фоне. Но при этом сильно развиты и придаточные корни. Характерна для помидора, капусты.

Историческое развитие корня

Если рассуждать с точки зрения филогенетического развития корня, то его появление произошло гораздо позже, чем образование стебля и листа. Скорее всего, толчком для этого послужил выход растений на сушу. Для того чтобы закрепиться в твердом субстрате, представителям древней флоры требовалось что-то, что может послужить опорой. В процессе эволюции сначала образовались корнеподобные подземные веточки. Позже они дали начало развитию корневой системы.

Корневой чехлик

Формирование и развитие корневой системы осуществляется в течение всей жизни растения. Строение корня растения не предусматривает наличия листьев и почек. Его рост осуществляется за счет увеличения в длину. В точке роста он покрыт корневым чехликом.

Процесс роста связан с делением клеток образовательной ткани. Именно она находится под корневым чехликом, выполняющим функцию защиты нежных делящихся клеток от повреждений. Сам чехлик – это совокупность тонкостенных живых клеток, в которых постоянно происходит процесс обновления. То есть, при продвижении корня в почве застарелые клетки постепенно слущиваются, а на их месте нарастают новые. Также расположенные снаружи клетки чехлика выделяют особую слизь. Она облегчает продвижение корня в твердом почвенном субстрате.

Общеизвестно, что в зависимости от среды обитания строение растений сильно различается. Например, водные растения не имеют корневого чехлика. В процессе эволюции у них образовалось другое приспособление – водяной кармашек.

Строение корня растения: зона деления, зона роста

Клетки, появившись из образовательной ткани, со временем начинают дифференцироваться. Таким образом формируются зоны корня.

Зона деления. Она представлена клетками образовательной ткани, которые впоследствии и дают начало всем остальным типам клеток. Размер зоны – 1 мм.

Зона роста. Представлена гладким участком, длина которого составляет от 6 до 9 мм. Следует сразу за зоной деления. Для клеток характерен интенсивный рост, в ходе которого они сильно вытягиваются в длину, и постепенная дифференциация. Следует заметить, что процесс деления в данной зоне почти не осуществляется.

Зона всасывания

Этот участок корня протяженностью несколько сантиметров также часто называют зоной корневых волосков. Это название отражает особенности строения корня на данном участке. Там имеются выросты клеток кожицы, размер которых может варьироваться от 1 мм до 20 мм. Это и есть корневые волоски.

Зона всасывания – это место, где осуществляется активное поглощение воды, в которой содержатся растворенные минеральные вещества. Деятельность клеток корневых волосков, в данном случае, можно сравнить с работой насосов. Этот процесс очень энергозатратный. Поэтому в клетках зоны всасывания содержится большое количество митохондрий.

Очень важно обратить внимание еще на одну особенность корневых волосков. Они способны выделять особую слизь, содержащую угольную, яблочную и лимонную кислоты. Слизь способствует растворению минеральных солей в воде. Частицы почвы благодаря слизи словно приклеиваются к корневым волоскам, облегчая процесс всасывания питательных веществ.

Строение корневого волоска

Увеличение площади зоны всасывания происходит именно за счет корневых волосков. Например, их количество у ржи достигает 14 миллиардов, образуя суммарную длину до 10 000 километров.

Внешний вид корневых волосков делает их похожими на белый пушок. Живут они недолго – от 10 до 20 дней. На формирование новых у растительного организма уходит совсем немного времени. Например, образование корневых волосков у молодых сеянцев яблони осуществляется за 30-40 часов. Тот участок, где произошло отмирание этих необычных выростов, еще в течение некоторого времени может всасывать воду, а потом его покрывает пробка, и эта способность теряется.

Если говорить о строении оболочки волоска, то, прежде всего, следует выделить ее тонкость. Эта особенность помогает волоску поглощать питательные вещества. Клетка его почти полностью занята вакуолью, окруженной тонким слоем цитоплазмы. Ядро располагается в верхней части. Пространство вблизи клетки представляет собой особый слизистый чехол, способствующий склеиванию корневых волосков с мелкими частичками почвенного субстрата. Благодаря этому гидрофильность почвы повышается.

Поперечное строение корня в зоне всасывания

Зону корневых волосков также часто называют зоной дифференциации (специализации). Это не случайно. Именно здесь на поперечном разрезе можно увидеть определенную слоистость. Она обусловлена разграничением слоев внутри корня.

Таблица «Строение корня на поперечном срезе» представлена ниже.

СлойСтроение, функции
РизодермаОдин слой клеток покровной ткани, которые способны образовывать корневые волоски.
Первичная кораНесколько слоев клеток основной ткани, которые участвуют в транспортировке питательных веществ от корневых волосков к центральному осевому цилиндру.
ПерициклКлетки образовательной ткани, которые участвуют в первичном образовании боковых и придаточных корней.
Центральный осевой цилиндрПроводящие ткани (луб, древесина), образующие в своей совокупности радиальный проводящий пучок.

Следует отметить, что внутри коры тоже имеется разграничение. Ее наружный слой называется экзодерма, внутренний – эндодерма, а между ними находится основная паренхима. Именно в этом промежуточном слое происходит процесс направления растворов питательных веществ в сосуды древесины. Также, в паренхиме синтезируются некоторые жизненно важные для растения органические вещества. Таким образом, внутреннее строение корня позволяет в полном объеме оценить значимость и важность функций, которые выполняет каждый из слоев.

Зона проведения

Располагается над зоной всасывания. Самый большой по длине и наиболее прочный участок корня. Именно здесь происходит передвижение важных для жизнедеятельности растительного организма веществ. Это возможно благодаря хорошему развитию проводящих тканей в этой зоне. Внутреннее строение корня в зоне проведения обуславливает его способность транспортировать вещества в обоих направлениях. По восходящему току (вверх) идет передвижение воды с растворенными в ней минеральными соединениями. А вниз доставляются органические соединения, которые участвуют в жизнедеятельности клеток корня. Зона проведения – это место образования боковых корней.

Строение корня проростка фасоли четко иллюстрирует основные этапы процесса формирования корня растений.

Особенности строения корня растения: соотношение наземной и подземной частей

Для многих растений характерно такое развитие корневой системы, которое приводит к ее преобладанию над наземной частью. Примером может служить кочанная капуста, корень которой в глубину может вырасти на 1,5 метра. Ширина его может составлять до 1, 2 метра.

Корневая система яблони настолько разрастается, что занимает пространство, диаметр которого может достигать 12 метров.

А у растения люцерна высота наземной части не превышает 60 см. Тогда как длина корня может составлять более 2 метров.

Все растения, обитающие в местностях с песчаными и скалистыми почвами, имеют очень длинные корни. Это обусловлено тем, что в таких почвах вода и органические вещества находятся очень глубоко. В процессе эволюции растения долго приспосабливались к таким условиям, постепенно менялось строение корня. В результате чего они стали достигать той глубины, где растительный организм может запастись необходимыми для роста и развития веществами. Так, например, корень верблюжьей колючки может в глубину составлять 20 метров.

Корневые волоски у пшеницы ветвятся настолько сильно, что их суммарная длина может достигать 20 км. Однако, это не предельная величина. Неограниченный верхушечный рост корней в отсутствие сильной конкуренции с другими растениями может увеличить это значение еще в несколько раз.

Видоизменения корней

Строение корня некоторых растений может меняться, образуя так называемые видоизменения. Это своего рода приспособления растительных организмов в конкретных условиях обитания. Ниже представлено описание некоторых видоизменений.

Корневые клубни характерны для георгина, чистяка и некоторых других растений. Образуются за счет утолщения придаточных и боковых корней.

Плющ и кампсис тоже отличаются особенностями строения этих вегетативных органов. У них имеются так называемые корни-прицепки, которые позволяют им цепляться за рядом стоящие растения и другие опоры, находящиеся в их досягаемости.

Воздушные корни, отличающиеся большой длиной и всасывающие воду, имеются у монстеры и орхидеи.

Растущие вертикально вверх дыхательные корни участвуют в выполнении функции дыхания. Имеются у кипариса болотного, ивы ломкой.

У некоторых представителей флоры, образующих обособленную группу растений-паразитов, имеются приспособления, помогающие проникать в стебель хозяина. Это так называемые корни-присоски. Характерны для омелы белой, повилики.

У таких овощных культур, как морковь, свекла, редис, имеются корнеплоды, которые образовались за счет разрастания главного корня, внутри которого запасаются питательные вещества.

Таким образом, особенности строения корня растения, приводящие к образованию видоизменений, зависят от многих факторов. Основными являются среда обитания и эволюционное развитие.

fb.ru

Строение корня — анатомия, структура, из чего состоит, части, внешнее, внутреннее, вики — Wiki-Med

Основная статья: Корень

Содержание (план)

Корни постоянно растут за счет деления кле­ток верхушечной образовательной ткани. Корневой чех- лик облегчает продвижение корня в почве и защищает образовательную ткань. Эпидермис защищает корень и обеспечивает всасывание воды и минеральных веществ из почвы с помощью корневых волосков. Древесина прово­дит поглощенные из почвы вещества в стебель. Луб обе­спечивает транспорт органических веществ из листьев к клеткам корня. Прочность корню придают механические ткани.

Внешнее строение корня

Все корни (главные, боковые, придаточные) устроены одинаково. Они могут ветвить­ся, на них никогда не образуются листья.

Корни одних растений тянутся в глубь почвы, к запасам подземных вод. Корни других растений растут вширь, распола­гаясь в толще самого плодородного верх­него слоя почвы (рассчитывая на дожде­вую влагу).

Форма корней

Чаще все­го корни имеют цилиндрическую (как у хрена, рис. 101) или коническую (как у одуванчика, см. рис. 96) форму. У многих растений (ржи, лука, подорожника) корни имеют вид тонких ни­тей, и их называют нитевидными.

Внутреннее строение корня

Корневой чехлик

Верхушка корня защище­на корневым чехликом — маленьким колпачком, с помощью которого корень раздвигает частички почвы (рис. 102). Стен­ки наружных клеток чехлика покрыты слизью для облегче­ния перемещения корня в почве. При этом наружные клетки постоянно слущиваются.

Чехлик прикрывает верхушечную образовательную ткань, клетки которой непрерывно делятся. Одна часть об­разовавшихся клеток превращается в клетки корневого чех­лика, благодаря чему он постоянно обновляется. Другая часть образующихся клеток растет, вытягивается в длину, и таким образом корень продвигается в глубь почвы. Вы­росшие клетки постепенно перестраиваются и превращают­ся в клетки других тканей: покровной, проводящей, механи­ческой и др.

Покровная ткань корня

Клетки, располагающиеся снаружи, формируют покров­ную ткань — эпидермис. Для клеток покровной ткани корня ха­рактерны корневые волоски — длинные выросты, через ко­торые осуществляется всасывание воды и растворенных в ней минеральных веществ из почвы (рис. 103). Живут корневые волоски недолго — обычно 10-20 дней. На смену отмершим волоскам в более молодой части корня развиваются новые волоски, и всасывающая зона корней все время перемещается в глубь почвы.

Кора корня

К покровной ткани примы­кает кора, образованная круп­ными живыми тонкостенными клетками.

Древесина корня (проводящая ткань)

Вода, поглощенная корневыми волосками, далее продвигается по клеткам коры и проникает в проводящую ткань (древесину), расположенную в центральной части корня (рис. 104). В состав древесины входят сосуды — вытянутые узкие трубки. Они образованы толстостенными мертвыми клетками, между которыми нет поперечных перегородок. По сосудам вода поднимается в стебель и расходится по всему растению. Материал с сайта http://wiki-med.com

Луб корня

Рядом с древесиной располагаются клетки луба, по которым в корень поступают органические вещества, об­разовавшиеся в листьях и стеблях.

Механическая ткань корня

Прочность и упругость корня обеспечивает механическая ткань.

Камбий корня (образовательная ткань)

С возрастом между древесиной и лубом возникает боковая обра­зовательная ткань — камбий. Благодаря делению клеток камбия обра­зуются новые элементы древесины и луба, механической ткани. Это обеспечивает рост корня в толщину. Корень при этом приобретает до­полнительные функции — опоры и запасания питательных веществ.

На этой странице материал по темам:
  • внутреннее строение корня

  • строение корневого чехлика

  • wiki-med.com

  • ткани корня

  • внешнее строение корня

Вопросы к этой статье:
  • Как происходит продвижение корня в почве?

  • Благодаря чему осу­ществляется рост корня?

  • Для чего необходимо поступление органических веществ из листьев по клет­кам луба в корень?

  • У каких растений — болотных, луговых или пустын­ных — корневая система должна уходить в землю на большую глубину?

wiki-med.com

Корень — урок. Биология, Бактерии. Грибы. Растения (5–6 класс).

Функции корня

1. Корни закрепляют растение в почве и прочно удерживают его в течение всей жизни.

2. Через корни растение получает из почвы воду и растворённые в ней минеральные вещества.

 

3. В корне некоторых растений могут накапливаться запасные вещества.

Виды корней

Различают три вида корней: главные, придаточные и боковые.

 

 

 

При прорастании семени первым развивается зародышевый корешок. Он превращается в главный корень.

 

 

Корни, образующиеся на стеблях, а у некоторых растений и на листьях, называют придаточными.

 

От главного и придаточных корней отходят боковые корни.

Типы корневых систем

Корни одного растения в почве образуют корневую систему.

 

Существует \(2\) типа корневых систем:

  

  

1. стержневая корневая система состоит из одного главного и множества боковых корней.

Пример:

такая корневая система имеется у одуванчика, щавеля, моркови, свёклы и др. 

2. Мочковатая корневая система состоит из придаточных и боковых корней приблизительно одного и того же размера. Главный корень у растений с мочковатой системой недостаточно развит или рано отмирает.

Пример:

такая корневая система имеется у пшеницы, ячменя, лука, чеснока и др.

Зоны корня

 

Кончик корня состоит из мелких живых клеток образовательной ткани

. Клетки здесь постоянно делятся, поэтому этот участок корня называется зоной деления.

 

Кончик корня, как напёрстком, прикрыт корневым чехликом. Корневой чехлик образован клетками покровной ткани, которые защищают нежные клетки зоны деления корня от повреждения твёрдыми частицами почвы. Эти клетки недолговечны, они постепенно отмирают и слущиваются, а взамен отмерших постоянно образуются новые.

  

 

Под чехликом расположен конус роста, состоящий из образовательной ткани. Там происходит непрерывное деление клеток. Это зона деления.

  

За зоной деления находится зона роста (растяжения). Здесь клетки вытягиваются, в результате чего растут в длину.

  

За зоной роста находится зона всасывания, в которой происходит поглощение воды и минеральных веществ корневыми волосками.

Поглощённая вода и минеральные вещества двигаются вверх по корню по зоне проведения.

Корневые волоски

Корневой волосок — это вырост клетки корня.

 

Большое количество корневых волосков увеличивает поверхность всасывания. Поэтому при пересадке растений корни надо беречь и перемещать с наиболее возможным количеством окружающей их почвы.

Корневые волоски под электронным микроскопом. Корневые волоски непосредственно соприкасаются с почвой и поглощают воду и растворённые в ней минеральные вещества.

 

Источники:

Пасечник В. В. Биология. 6 класс // ДРОФА.

http://all-nature.org/korni-rasteniy/

http://fullbiology.ucoz.ru/index/botanika_organy_cv_rastenij/0-293

www.yaklass.ru

Анатомическое строение корня | Student Guru

В зоне деления корня в апикальной меристеме в определенной последовательности и строго закономерно возникают внутренние ткани. Причем, здесь есть четкое разделение на два отдела. От среднего слоя инициальных клеток происходит наружный отдел, который называется периблемой. От верхнего слоя инициальных клеток происходит внутренний отдел, его называют плеромой.

Из плеромы в последствии формируется стела (центральный цилиндр), одни из ее клеток превращаются в сосуды и трахеиды, из других происходят ситовидные трубки, из третьих — клетки сердцевины и т.д.

Из клеток периблемы образуется первичная кора корня, которая состоит из паренхимных клеток основной ткани.

Из дерматогены (наружного слоя клеток), расположенной на поверхности корня, обособляется первичная покровная ткань, которую называют эпиблемой или ризодермой. Ризодерма — однослойная ткань, которая достигает своего полного развития в зоне поглощения.

Первичное строение корня.

Первичное строение корня является результатом дифференциации меристемы апекса. В первичной структуре корня в области его кончика, можно выделить 3 слоя: наружный — эпиблему, средний — первичную кору и центральный осевой цилиндр — стелу. См. рисунок ниже.

Первичное строение корня

В сформированной ризодерме образуется множество тончайших выростов — корневых волосков (см. рисунки ниже).

Строение первичной коры

Эндодерма, мезодерма и экзодерма

Корневые волоски недолговечны. Воду и и растворённые в воде вещества они могут активно поглощать лишь только в растущем состоянии. Благодаря образованию волосков увеличивается более чем в 10 раз общая поверхность зоны всасывания. Как правило, длина волосков составляет не более 1 мм. Они покрыты очень тонкой оболочкой, состоящей из целлюлозы и пектиновых веществ.

В клетки корневых волосков вода проникает пассивно, а именно, благодаря разности в осмотическом давлении почвенного раствора и клеточного сока. А вот минеральные вещества поступают в корневые волоски в результате активного всасывания. Это процесс протекает с затратами энергии, чтобы преодолеть градиент концентрации. После попадания в цитоплазму, минеральные вещества передаются от корневого волоска до ксилемы от клетки к клетке. Благодаря корневому давлению, которое создается силой всасывания всех корневых волосков, а также испарению воды с поверхности листьев растения (транспирацией) обеспечивается движение почвенного раствора вверх по сосудам корня и стебля.

Все эти энергоемкие процессы растение может обеспечивать за счет дыхания!

В результате диффузии кислорода из почвы в ткани происходит дыхание. Для дыхания растениям необходимы органические вещества. Эти органические вещества поступают в корень из листьев. Энергия, образуемая в процессе дыхания, запасается в молекулах АТФ. Эта энергия будет расходоваться на деление клеток, рост, процессы синтеза, транспорт веществ и т.п. Именно по этой причине необходимо, чтобы в почву проникал воздух, а для этого почву надо рыхлить. Кроме того, благодаря рыхлению почвы в ней сохраняется влага, поэтому рыхление часто называют еще «сухим поливом».

Первичная кора, которая, как было сказано выше, образуется из периблемы, состоит из живых тонкостенных паренхимных клеток. В первичной коре можно выделить 3 четко различающихся друг от друга слоя: эндодерму, мезодерму и экзодерму.

Эндодерма — это внутренний слой первичной коры, который прилегает непосредственно к центральному цилиндру или стеле. Эндодерма состоит из одного ряда клеток, у которых есть утолщения на радиальных стенках (также они называются пояски Каспари), чередуемых с тонкостенными  пропускными клетками. Эндодерма контролирует прохождение веществ из коры в центральный цилиндр и обратно, так называемые горизонтальные токи.

Следующим слоем, идущим после эндодермы является мезодерма или средний слой первичной коры. В состав мезодермы входят клетки с системой межклетников, расположенные рыхло. По этим клеткам идет интенсивный газообмен. В мезодерме происходит синтез пластических веществ и дальнейшее их передвижение в другие ткани, накапление запасных веществ, а также располагается микориза.

Последний, наружный слой первичной коры называют экзодермой. Экзодерма располагается непосредственно под ризодермой, а по мере того, как отмирают корневые волоски, оказывается на поверхности корня. В данном случае экзодерма может выполнять функции покровной ткани: у нее происходит утолщение и опробковение клеточных оболочек, отмирание содержимого клеток. Среди этих опробковевших клеток остаются неопробковевшие пропускные клетки. Через эти пропускные клетки происходит прохождение веществ.

Наружный слой стелы, который примыкает к эндодерме, называют перициклом. Его клетки в течение длительного времени сохраняют способность к делению. В этом слое происходит зарожение боковых корешков, поэтому перицикл еще называют корнеродным слоем. Характерной чертой корней является чередование в стеле участков ксилемы и флоэмы. Ксилема образует звезду. У различных групп растений число лучей этой звезды может быть разным. Между лучами этой зведы располагается флоэма. В самом центре корня могут располагаться элементы первичной  ксилемы, склеренхима или тонкостенная паренхима. Характерной особенностью корня, которая отличает его по анатомической структуре от стебля, является чередование первичной ксилемы и первичной флоэмы по периферии стелы.

Такое первичное строение корня характерно для молодых корней у всех групп высших растений. У папоротников, хвощей, плаунов и представителей класса однодольных цветковых растений первичная структура корня сохранятся в течение всей его жизни.

Вторичное строение корня.

У голосеменных и двудольных покрытосеменных растений первичная структура корня сохраняется только до начала процесса его утолщения Этот процесс — результат деятельности вторичных боковых меристем — камбия и феллогена (или пробкового камбия).

Началом процесса вторичных изменений является появление прослоек камбия под участками первичной флоэмы, направленных вовнутрь от неё. Возникает камбий из слабо дифференцированной паренхимы центрального цилиндра. Наружу он откладывает элементы вторичной флоэмы (или луба), а вовнутрь — элементы вторичной ксилемы (или древесины). В начале этого процесса прослойки камбия разобщены, в дальнейшем происходит их смыкание и образуется сплошной слой. Это происходит благодаря тому, что клетки перицикла интенсивно делятся напротив лучей ксилемы. Из камбиальных участков, которые возникли из перицикла, образуются только паренхимные клетки, так называемых сердцевинных лучей. А вот остальные клетки камбия образуют проводящие элементы: ксилему и флоэму.

Первичное и вторичное строение корня

За счет того, что данный процесс идет долго, корни могут достигать значительной толщины. Если рассмотреть многолетний корень, в его центральной части, как правило, остается отчетливо выраженная лучевая первичная ксилема.

В перицикле возникает также и пробковый камбий (или феллоген). Он откладывает наружу слои клеток вторичной покровной ткани или пробки. Т.к. первичная кора (эндодерма, мезодерма и экзодерма), оказывается изолирована пробковым слоем от внутренних живых тканей, она со временем отмирает.

Информация о статье:

Анатомическое строение корня

Рассматривается анатомическое строение корня. Первичное и вторичное строение корня.

Written by: Stepan Gurov

Date Published: 01/27/2017

В статье описано первичное строение корня, какие три слоя есть в его составе. Вторичное строение корня. Как оно образуется и чем отличается от первичного.

10 / 10 stars

Перейти к оглавлению.


from your own site.

www.studentguru.ru

Корень

 

Типы корней и корневых систем

 

Корень — один из основных вегетативных органов листостебельных растений, служащих для прикрепления к субстрату и поглощения из него питательных веществ и воды. Филогенетически корень возник позднее, чем сте­бель, и, вероятно, произошел от корнеподобных подзем­ных веточек. У всех высших растений корень имеет сложное строение. Клетки разных участков корня отлича­ются друг от друга формой и размерами. Корень растет в длину своей верхушкой, где находятся молодые клетки образовательной ткани. Растущая часть покрыта корневым чехликом, защищающим кончик корня от повреждений. Кончик корня, или точка роста, состоит из мелких тонко­стенных одинаковых клеток, заполненных цитоплазмой. Благодаря их делению происходит увеличение числа кле­ток. Несколько выше клетки удлиняются (зона роста или растяжения), и корень быстро проникает в новые участки почвы. Еще выше на поверхности корня расположены корневые волоски, которые всасывают воду с растворен­ными в ней веществами. Участок с корневыми волосками называют всасывающей зоной корня. Корневые волоски — это сильно удлиненные выросты наружных клеток, покры­вающих корень. Их длина достигает 10 мм. Корневые волоски недолговечны. У некоторых растений они живут не больше суток, у яблони могут жить до 15 суток, у хлопчатника до 18 суток. Корень непрерывно растет, обра­зуя все новые и новые участки корневых волосков. Корне­вые волоски могут не только поглощать готовые растворы веществ, но и способствовать растворению некоторых ве­ществ почвы, а затем всасывать их.

Между всасывающей зоной и стеблем находится про­водящая зона корня, по сосудам которой вода и растворен­ные в ней вещества из корня поступают в стебель и листья (восходящий ток), а вещества, образовавшиеся в листьях и в стебле, по ситовидным трубкам — в корень (нисходящий ток).

Группы клеток одинакового строения, выполняющие одинаковые функции и имеющие общее происхождение, называют тканями.

Корень, как и другие органы, состоит из разных тка­ней: зона деления — из образовательной ткани, зона вса­сывания покрыта всасывающей тканью.

В состав проводящих тканей корня входят сосуды. Под слоем клеток, образующих корневые волоски, расположена кора корня. Она состоит из сомкнутых округлых клеток. Оболочки клеток пропитаны пробковым веществом. Клет­ки коры образуют покровную ткань корня. Прочность и упругость корня обеспечивает механическая ткань. Ее со­ставляют вытянутые вдоль корня клетки с толстыми обо­лочками. Они рано теряют содержимое и заполнены воз­духом.

В корнях синтезируются алкалоиды, гормоны роста и другие физиологически активные соединения. Корни мно­гих растений (корнеотпрысковые) образуют придаточные почки, дающие надземные побеги, у ряда растений служат местом отложения запасных питательных веществ.

У некоторых тропических деревьев от основания ство­лов или ветвей отходят придаточные корни, служащие для опоры и питания, — дисковидные, ходульные, столбовидные. У лиан развиваются корни — прицепки, у эпифитов — воздушные корни

У мангровых деревьев, растущих в приливных зонах суши, от нижних ветвей отходят столбовидные опорные воздушные корни, в отлив обнажаются растущие от осно­вания стволов дугообразные ходульные корни. Перекрещи­ваясь, они создают своего рода завесу. Мангровая чаща практически непроходима для животных и человека. Бла­годаря такому приспособлению растения не вымываются приливом.

За что ценится женьшень? Вот уже пять тысячелетий он известен в тибетской медицине. Первые сведения о его исключительных лекарственных свойствах встречаются в древних руководствах китайской медицины, написанных две-три тысячи лет назад. В Европе о нем узнали в 1713 году. После однократного приема нескольких граммов экстракта корня физическая и умственная работоспособ­ность повышается на тридцать процентов. По словам та­ежников, достаточно пожевать кусочек корня — и человек может целый день без устали идти по сопкам. Основная ценность в том, что он пробуждает в ослабленном организ­ме скрытые жизненные резервы, улучшает обмен веществ.

Истощение запасов дикорастущего женьшеня застави­ло людей культивировать его. Корни женьшеня в культуре развиваются очень быстро и достигают крупных размеров, но ценятся меньше, так как действующие вещества накап­ливаются очень медленно в естественной среде.

www.bioaa.info

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *