Таблица органических веществ – Конспект Классификация углеводородов Таблица «Функциональные группы и название соответствующих классов органических веществ» Классификация органических соединений: I. Ациклические (алифатические)

Лекция № 1 Классификация и номенклатура органических соединений


Лекция № 1

КЛАССИФИКАЦИЯ И НОМЕНКЛАТУРА ОРГАНИЧЕСКИХ
СОЕДИНЕНИЙ

План

  1. Классификация органических соединений.
  2. Номенклатура органических соединений.
  3. Структурная изомерия.

Лекция № 1

КЛАССИФИКАЦИЯ И НОМЕНКЛАТУРА ОРГАНИЧЕСКИХ
СОЕДИНЕНИЙ

План

  1. Классификация органических соединений.
  2. Номенклатура органических соединений.
  3. Структурная изомерия.

1. Классификация органических соединений.

Органические соединения классифицируют по двум основным признакам: строению
углеродного скелета и функциональным группам.

По строению углеродного скелета различают ациклические, карбоциклические и
гетероциклические соединения.

Ациклические соединения – содержат открытую цепь атомов углерода.

Карбоциклические соединения – содержат замкнутую цепь углеродных
атомов и подразделяются на алициклические и ароматические. К

алициклическим относятся все карбоциклические соединения, кроме
ароматических. Ароматические соединения содержат циклогексатриеновый
фрагмент (бензольное ядро).

Гетероциклические соединения — содержат циклы, включающие наряду с атомами углерода один
или несколько гетероатомов.

По природе функциональных групп органические
соединения делят на классы.

Таблица 1. Основные классы органических
соединений.

 

Функциональная
группа

Класс соединений

Общая формула

Отсутствует

Углеводороды

R-H

Галоген

-F, -Cl, -Br, -I (–Hal)


Галогенпроизводные

R-Hal

Гидроксильная

-ОН


Спирты и фенолы

R-OH

Ar-OH


Алкоксильная

-OR


Простые эфиры

R-OR

Амино

-NH2, >NH, >N-


Амины

RNH2, R2NH, R3N

Нитро

-NO2


Нитросоединения

RNO2

Карбонильная

Альдегиды и кетоны

Карбоксильная



Карбоновые кислоты



Алкоксикарбонильная



Сложные эфиры



Карбоксамидная



Амиды

карбоновых кислот




Тиольная

-SH


Тиолы

R-SH

Сульфо

-SO3H


Сульфокислоты

R-SO3H

2. Номенклатура органических
соединений.

В настоящее время в органической химии общепринятой является систематическая номенклатура, разработанная Международным союзом чистой и прикладной химии

(IUPAC). Наряду с ней сохранились и
используются тривиальная и рациональная номенклатуры.

Тривиальная номенклатура состоит
из исторически сложившихся названий, которые не отражают состава и строения
вещества. Они являются случайными и отражают природный источник вещества
(молочная кислота, мочевина, кофеин), характерные свойства (глицерин, гремучая
кислота), способ получения (пировиноградная кислота, серный эфир), имя
первооткрывателя (кетон Михлера, углеводород Чичибабина), область применения
(аскорбиновая кислота). Преимуществом тривиальных названий является их
лаконичность, поэтому употребление некоторых из них разрешено правилами
IUPAC.

Систематическая номенклатура является научной и отражает состав, химическое и пространственное строение
соединения. Название соединения выражается при помощи сложного слова, составные
части которого отражают определенные элементы строения молекулы вещества. В

основе правил номенклатуры IUPAC лежат принципы заместительной
номенклатуры
, согласно которой молекулы соединений рассматриваются как
производные углеводородов, в которых атомы водорода замещены на другие атомы или
группы атомов. При построении названия в молекуле соединения выделяют следующие
структурные элементы.

Родоначальная структура – главная цепь
углеродная цепь или циклическая структура в карбо- и гетероциклах.

Углеводородный радикал – остаток
формульного обозначения углеводорода со свободными валентностями (см. таблицу
2).

Характеристическая группа
функциональная группа, связанная с родоначальной структурой или входящая в ее
состав (см. таблицу 3).

При составлении названия последовательно
выполняют следующие правила.

    1. Определяют старшую характеристическую
      группу и указывают ее обозначение в суффиксе (см. таблицу 3).
    2. Определяют родоначальную структуру по
      следующим критериям в порядке падения старшинства: а) содержит старшую
      характеристическую группу; б) содержит максимальное число характеристических
      групп; в) содержит максимальное число кратных связей; г) имеет максимальную
      длину. Родоначальную структуру обозначают в корне названия в соответствии с
      длиной цепи или размером цикла: С1 – “мет”, С2 – “эт”, С3 – “проп”, С4 – “бут”, С5 и далее – корни греческих числительных.
    3. Определяют степень насыщенности и отражают
      ее в суффиксе: “ан” – нет кратных связей, “ен” – двойная связь, “ин” –
      тройная связь.
    4. Устанавливают остальные заместители
      (углеводородные радикалы и младшие характеристические группы) и перечисляют
      их названия в префиксе в алфавитном порядке.
    5. Устанавливают умножающие префиксы – “ди”,
      “три”, “тетра”, указывающие число одинаковых структурных элементов (при
      перечислении заместителей в алфавитном порядке не учитываются).
    6. Проводят нумерацию родоначальной структуры
      так, чтобы старшая характеристическая группа имела наименьший порядковый
      номер. Локанты (цифры) ставят перед названием родоначальной структуры, перед
      префиксами и перед суффиксами.


Таблица 2. Названия алканов и алкильных
радикалов, принятые систематической номенклатурой IUPAC.

 

 

Таблица 3. Названия характеристических
групп (перечислены в порядке убывания старшинства).

 


Группа

Название

в префиксе

в суффиксе

-(C)OOH*



овая кислота

-COOH

карбокси

карбоновая
кислота

-SO3

сульфо

сульфоновая
кислота

-(C)HO

оксо

аль

-CHO

формил

карбальдегид

>(C)=O

оксо-

он

-ОН

гидрокси

ол

-SH

меркапто

тиол

-NH
2


амино

амин

-OR**

алкокси, арокси



-F, -Cl, -Br, -I

фтор, хлор, бром,
иод



-NO2

нитро


*Атом углерода,
заключенный в скобки, входит в состав родоначальной структуры.

**Алкокси-группы и все
следующие за ними перечисляются в префиксе по алфавиту и не имеют порядка
старшинства.

Рациональная (радикально-функциональная)
номенклатура
используется для названий простых моно- и
бифункциональных соединений и некоторых классов природных соединений. Основу
названия составляет название данного класса соединений или одного из членов

гомологического ряда с указанием заместителей. В качестве локантов, как правило,
используются греческие буквы.


 
 

3. Структурная изомерия.

Изомеры – это вещества, имеющие одинаковый состав и молекулярную
массу, но разные физические и химические свойства. Различия в свойствах изомеров
обусловлены различиями в их химическом или пространственном строении.

Под химическим строением понимают природу и последовательность связей
между атомами в молекуле. Изомеры, молекулы которых отличаются по химическому
строению, называют структурными изомерами.

Структурные изомеры могут отличаться:

    • по строению углеродного скелета
    • по положению кратных связей и
      функциональных групп

 
 
    • по типу функциональных групп


 
 

studentik.net

Номенклатура органических соединений

С развитием химической науки и появлением большого числа новых химических соединений все более возрастала необходимость в разработке и принятии понятной ученым всего мира системы их наименования, т.е. номенклатуры. Далее приведем обзор oсновных номенклатур органических соединений.

Тривиальная номенклатура

В истоках развития oрганической химии новым сoединениям приписывали тривиальные названия, т.е. названия сложившиеся исторически и нередко связанные со способом их получения, внешним видом и даже вкусом и т.п. Такая номенклатура органических соединений называется тривиальной. В таблице ниже приведены некоторые из соединений, сохранивших свои названия и в нынешние дни.


Рациональная номенклатура

С расширением списка органических соединений, возникла необходимость связывать их название со строением. Базой рациональной номенклатуры органических соединений является наименование простейшего органического соединения. Например:

 

Однако, более сложным органическим соединениям невозможно приписать названия подобным способом. В этом случае следует называть соединения согласно правилам систематической номенклатуры ИЮПАК.

Систематическая номенклатура ИЮПАК

ИЮПАК (IUPAC) — Международный союз теоретической и прикладной химии (International Union of Pure and Applied Chemistry).

В данном случае, называя соединения,  следует учитывать местоположение атомов углерода в молекуле и структурных элементов. Наиболее часто применяемой является заместительная номенклатура органических соединений, т.е. выделяется базовая основа молекулы, в которой атомы водорода замещены на какие-либо структурные звенья или атомы.

Прежде чем приступить к построению названий соединений, советуем выучить наименования числовых приставок, корней и суффиксов используемых в номенклатуре ИЮПАК.

 

А также названия функциональных групп:

 

Для обозначения числа кратных связей и функциональных групп пользуются числительными:

 

Далее приведены наименования радикалов:

Предельные углеводородные радикалы:

 

Непредельные углеводородные радикалы:

Ароматические углеводородные радикалы:

 

Кислородсодержащие радикалы:

 

Правила построения названия органического соединения по номенклатуре ИЮПАК:

  1. Выбрать главную цепь молекулы

Определить все присутствующие функциональные группы и их старшинство

Определить наличие кратных связей

  1. Пронумеровать главную цепь, причем нумерацию следует начинать с наиболее близкому к старшей группе конца цепи. При существовании нескольких таких возможностей, нумеруют цепь так, чтобы минимальный номер получили или кратная связь, или другой заместитель, присутствующий в молекуле.

Карбоциклические соединения нумеруют начиная со связанного со старшей характеристической группой атома углерода. При наличии двух и более заместителей цепь стараются пронумеровать так, чтобы заместителям принадлежали минимальные номера.

  1. Составить название соединения:

— Определить основу названия соединения, составляющего корень слова, который обозначает предельный углеводород с тем же количеством атомов, что и главная цепь.

— После основы названия следует суффикс, показывающий степень насыщенности и количество кратных связей. Например, — тетраен, — диен. При отсутствии кратных связей используют суффикс – ск.

— Далее арабскими цифрами показывают местоположение кратных связей. Например, гексин – 2.

— Затем, также в суффикс добавляется наименование самой старшей функциональной группы.

— После следует перечисление заместителей в алфавитном порядке с указанием их местоположения арабской цифрой. Например, — 5-изобутил, — 3-фтор. При наличии нескольких одинаковых заместителей указывают их количество и положение, например, 2,5 – дибром-, 1,4,8-тримети-.

Следует учесть, что цифры отделяются от слов дефисом, а между собой – запятыми.

 

В качестве примера дадим название следующему соединению:

1. Выбираем главную цепь, в состав которой обязательно входит старшая группа – СООН.

Определяем другие функциональные группы: — ОН, — Сl, — SH, — NH2.

Кратных связей нет.

2. Нумеруем главную цепь, начиная со старшей группы.

3. Число атомов в главной цепи – 12. Основа названия – метиловый эфир додекановой кислоты.

Далее обозначаем и называем все функциональные группы в алфавитном порядке:

10-амино-6-гидрокси -7-хлоро-9-сульфанил-метиловыйэфир додекановой кислоты.

Или

10-амино-6-гидрокси-7-хлоро-9-сульфанил-метилдодеканоат

Номенклатура оптических изомеров

  1. В некоторых классах соединений, таких как альдегиды, окси- и аминокислоты для обозначения взаимного расположения заместителей используют D,L – номенклатуру. Буквой D обозначают конфигурацию правовращающего изомера, L – левовращающего.

В основе D,L-номенклатуры органических соединений лежат проекции Фишера:

  • чтобы определить конфигурации изомеров α-аминокислот и α- оксикислот вычленяют «оксикислотный ключ», т.е. верхние части их проекционных формул. Если гидроксильная (амино-) группа расположена справа, то это D-изомер, слева L-изомер.

Например, представленная ниже винная кислота имеет D — конфигурацию по оксикислотному ключу: 

  • чтобы определить конфигурации изомеров сахаров вычленяют «глицериновый ключ», т.е. сравнивают нижние части (нижний асимметрический атом углерода) проекционной формулы сахара с нижней частью проекционной формулы глицеринового альдегида.

Обозначение конфигурации сахара и направление вращения аналогично конфигурации глицеринового альдегида, т.е.  D – конфигурации соответствует расположение гидроксильной группы расположена справа, L – конфигурации – слева.

Так, например, ниже представлена D-глюкоза.

2) R -, S-номенклатура (номенклатура Кана, Ингольда и Прелога)

В данном случае заместители при асимметрическом атоме углерода располагаются по старшинству. Оптических изомеры имеют обозначения R и S, а рацемат — RS.

Для описания конфигурации соединения в соответствии с R,S-номенклатурой поступают следующим образом:

  1. Определяют все заместители у асимметричного атома углерода.
  2. Определяют старшинство заместителей, т.е. сравнивают их атомные массы. Правила определения ряда старшинства те же, что и при использовании E/Z-номенклатуры геометрических изомеров.
  3. Ориентируют в пространстве заместители так, чтобы младший заместитель (обычно водород) находился в наиболее отдаленном от наблюдателя углу.
  4. Определяют конфигурацию по расположению остальных заместителей. Если движение от старшего к среднему и далее к младшему заместителю (т.е. в порядке уменьшения старшинства) осуществляется по часовой стрелке, то это R конфигурация, против часовой стрелки — S-конфигурация.

В таблице ниже приведен перечень заместителей, расположенных в порядке возрастания их старшинства:

 

 

zadachi-po-khimii.ru

3.3 Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная)

Видеоурок: Классификация органических веществ

Лекция: Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная)

Классификация органических веществ

В основе классификации органических веществ лежит теория А.М. Бутлерова. В таблице показана классификация органических веществ в зависимости от типа строения углеродной цепи, т.е. по типу углеродного скелета:

Ациклические соединения — это органические вещества, в молекулах которых атомы углерода соединены друг с другом в прямые, а так же разветвленные открытые цепи. 

К ациклическим, например, относится этан:

или ацетилен:


Иначе подобные соединения называются алифатическими или соединениями жирного ряда, потому что первые соединения данного ряда органических веществ были получены из растительных или животных жиров. Из ациклических соединений выделяются: 


  • Предельные (или насыщенные) — данные соединения содержат в углеродном скелете одинарные ковалентные неполярные углерод-углеродные С-С и слабополярные С-Н связи, это алканы.  

Общая молекулярная формула алканов — CnH2n+2, где n — количество атомов углерода в молекуле углеводорода. К ним относятся открытые цепи, а также замкнутые (циклические) углеводороды. Все атомы углерода в алканах имеют sp3 — гибридизацию. Запомните следующие алканы:

Метан — СH4

Этан — C2H6: CH3—CH3

Пропан — C3H8: CH3—CH2—CH3

Бутан — C4H10: CH3—(CH2)2—CH3

Пентан — C5H12: CH3—(CH2)3—CH3

Гексан — C6H14: CH3—(CH2)4—CH3

Гептан — C7H16: CH3—(CH2)5—CH3

Октан — C8H18: CH3—(CH2)6—CH3

Нонан — C9H20: CH3—(CH2)7—CH3

Декан — C10H22: CH3—(CH2)8—CH3


  • Непредельные (или ненасыщенные) — содержат кратные — двойные (С=С) или тройные (С≡С) связи, это алкены, алкины и алкадиены:

1) Алкены — содержат одну углерод-углеродную связь, которая является двойной C=C. Общая формула — CnH2nАтомы углерода в данных соединениях имеют sp2 — гибридизацию. Связь C=C имеет π-связь и σ-связь, поэтому алкены более химически активны, чем алканы. Запомните следующие алкены:

Этен (этилен) — C2H4: CH2=CH2

Пропен (пропилен) — C3H6: СН2=СН—СН3

Бутен — С4Н8: бутен-1 СН3—СН2—СН=СН, бутен-2 СН3—СН=СН—СН3, изобутен [СН3]2С=СН2

Пентен —  C5H10: 1-пентен CH3—CH2—CH2—CH=CH2, 2-пентен C2H5CH=CHCH3 

Гексен — C6H12: 1-гексен CH2=CH—CH2—CH2—CH2—CH3, цисгексен-2 CH3—CH=CH—CH2—CH2—CH3 и другие изомеры.

Гептен — C7H14: 1-гептен СН2=СН—СН2—СН—СН2—СН2—СН3, 2-гептен СН3—СН=СН—СН2—СН2—СН2—СН3 и др.

Октен — C8H16: 1-октен СН2=СН—СН2—СН2—СН2—СН2—СН2—СН3, 2-октен СН3—СН=СН—СН2—СН2—СН2—СН2—СН3 и др.

Нонен — C9H18: 3-нонен CH3—CH2—CH=CH—CH2—CH2—CH2—CH2—CH3, 5-нонен CH3—CH2—CH2—CH2—CH=CH—CH2—CH2—CH3 и др.

Децен — C10H20: 2-децен СН3—СН2—СН2—СН2—СН2—СН2—СН2—СН=СН—СН3 и др.

Как вы заметили, названия алкенов схожи с названиями алканов, с разницей суффикса. Названия алканов имеют суффикс -ан, а алкенов суффикс -ен. Кроме того среди перечисленных алкенов отсутствует метен. Запомните, метена не существует, потому что метан имеет только один углерод. А для образования алкенов, обязательно образование двойных связей. 

Местоположение двойной связи обозначается цифрой, например, 1-бутен: СН2=СН–СН2–СН3 или 1-гексен: СН3–СН2–СН2–СН2–СН=СН2. Обратите внимание на данное правило: нумерация углеводородных цепей должна производиться так, чтобы двойные связи находились под наименьшим номером, например, 2-гексен:

2) Алкины – в молекулах присутствует одна тройная С≡С связь. Общая формула — CnH2n-2В названиях алкинов суффикс -ан заменен на-ин. Например, 3-гептин: СН3–СН2–СН2–С≡С–СН2–СН3. Для этина НС≡СН возможно и тривиальное название ацетилен. Указание положения тройной связи производится также как в предыдущем случае с алкенами. Если в соединении тройных связей больше одной, то к названию прибавляется суффикс -диин или -триин. Если же в соединении присутствуют и двойные, и тройные связи, то их нумерацию определяет двойная связь, следовательно, называют сначала двойную, затем тройную связи. Например, гексадиен-1,3-ин-5: СН2=СН–СН2=СН2–С≡СН.

3) Алкадиены – в молекулах присутствуют две двойные С=С связи. Общая формула — CnH2n-2, такая же, как и у алкинов. Алкины и алкадиены относятся к межклассовым изомерам. К примеру, 1,3-бутадиен или дивинил C4H6: СН2=СН—СН=СН2.

 

Циклические соединения — это органические вещества, в молекулах которых содержится три или более связанных в замкнутое кольцо атомов, образующих циклы. 

Предельные циклические углеводороды называются циклоалканами. Их общая формула — CnH2n. В молекулах имеется замкнутая цепь или кольца. К примеру, циклопропан (C3H6):

 

и циклобутан (C4H8):

В зависимости от того, какими атомами были образованы циклы, данный вид соединений подразделяется на карбоциклические и гетероциклические. 

Карбоциклические, которые иначе называются гомоциклическими, содержат в циклах только атомы углерода. В свою очередь, они делятся на алифатические и ароматические. 

  • Алициклические (алифатические) соединения отличаются тем, что атомы углерода могут соединяться между собой в прямые, разветвлённые цепочки или кольца одинарными, двойными или тройными связями. 

Типичным алифатическим соединением является циклогексен:

  • Ароматические соединения получили свое название благодаря ароматному запаху вещества. Иначе называются аренами. Они отличаются наличием в соединении бензольного кольца:

Таких колец в составе может быть несколько. Например, нафталин:

Также данная группа соединений имеет в составе ароматическую систему, что характеризует высокую устойчивость и стабильность соединения. Ароматичная система, содержит в кольце 4n+2 электронов (где n = 0, 1, 2, …). Данной группе органических веществ свойственно вступать в реакции замещения, а не присоединения.

Ароматические соединения могут иметь функциональную группу, прикрепленную непосредственно к кольцу. Например, толуол:

Гетероциклические соединения всегда содержат в составе углеводородного цикла один или несколько гетероатомов, которыми являются атомы кислорода, азота или серы. Если гетероатомов пять, то соединения называются пятичленными, если шесть, соответственно шестичленными. Примером гетероциклического соединения является пиридин:


Классификация производных углеводорода

Другие органические вещества рассматривают исключительно как производные углеводородов, которые образуются при введении в молекулы углеводородов функциональных групп, включающих в себя другие химические элементы. Формулу соединений, имеющих одну функциональную группу, можно записать как R — X. Где R – углеводородный радикал (фрагмент молекулы углеводорода без одного или нескольких атомов водорода; Х – функциональная группа.  По наличию функциональных групп углеводороды подразделяются на:  

  • Галогенпроизводные — судя из названия ясно, что в данных соединениях атомы водорода замещены на атомы какого-либо галогена. 


  • Спирты и фенолы. В спиртах атомы водорода замещены на гидроксильную группу -OH. По количеству таких групп, спирты подразделяются на одноатомные и многоатомные, среди которых двухатомные, трехатомные и т.д. 

Формула одноатомных спиртов: CnH2n+1OH или CnH2n+2O

Формула многоатомных спиртов: CnH2n+2Ox; x – атомность спирта. 

Спирты могут быть и ароматическими. Формула одноатомных ароматических спиртов: CnH2n-6O

Следует помнить, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один/несколько атомов водорода не относятся к спиртам. Данный тип относят к классу фенолов. Причина, по которой фенолы не относят к спиртам, содержится в их специфических химических свойствах. Одноатомные фенолы изомерны одноатомным ароматическим спиртам. То есть они так же имеют общую молекулярную формулу CnH2n-6O

  • Амины — производные аммиака, в которых один, два или три атома водорода заменены на углеводородный радикал. Амины, в которых только один атом водорода замещен на углеводородный радикал, то есть имеющие общую формулу R-NH2, именуют первичными аминами. Амины, в которых, два атома водорода заменены на углеводородные радикалы, именуют вторичными. Их формула — R-NH-R’. Следует помнить, что радикалы R и R’ могут быть как одинаковые, так и разные. Если все три атома водорода молекулы аммиака замещены на углеводородный радикал, то амины являются третичными. При этом R, R’, R’’ могут быть как полностью одинаковыми, так и разными. Общая формула первичных, вторичных и третичных предельных аминов — CnH2n+3N. Ароматические амины с одним непредельным заместителем имеют формулу CnH2n-5N. 

  • Альдегиды и кетоны. У альдегидов при первичном атоме углерода два атома водорода замещены на один атом кислорода. То есть в их структуре имеется альдегидная группа – СН=О. Общая формула — R-CH=O. У кетонов при вторичном атоме углерода два атома водорода замещены на атом кислорода. То есть это соединения, в структуре которых есть карбонильная группа –C(O)-. Общая формула кетонов: R-C(O)-R’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными. Альдегиды и кетоны достаточно схожи по строению, но их все-таки различают как классы, так как они имеют существенные различия в химических свойствах. Общая формула предельных кетонов и альдегидов имеет вид: CnH2nO

  • Карбоновые кислоты содержат карбоксильную группу –COOH. В случае, когда кислота содержит две карбоксильные группы, такую кислоту именуют дикарбоновой кислотой. Предельные монокарбоновые кислоты (с одной группой -COOH) имеют общую формулу — CnH2nO2. Ароматические монокарбоновые кислоты имеют общую формулу CnH2n-8O2

  • Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода. То есть, имеют формулу вида: R-O-R’. При этом радикалы R и R’ способны быть как одинаковыми, так и разными. Формула предельных простых эфиров — CnH2n+1OH или CnH2n+2О

  • Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе заменен на углеводородный радикал R. 

  • Нитросоединения – производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу –NO2. Предельные нитросоединения с одной нитрогруппой имеют формулу CnH2n+1NO2

  • Аминокислоты имеют в структуре одновременно две функциональные группы – амино NH2 и карбоксильную – COOH. Например: NH2-CH2-COOH. Предельные аминокислоты, имеющие одну карбоксильную и одну аминогруппу изомерны соответствующим предельными нитросоединениям то есть, имеют общую формулу CnH2n+1NO2

Номенклатура органических соединений

Номенклатура соединения делится на 2 типа: 

Тривиальная — это исторически первая номенклатура, возникшая в самом начале развития органической химии. Названия веществ носили ассоциативный характер, например, щавелевая кислота, мочевина, индиго. 

Создание систематической, т.е. международной номенклатуры началось с 1892 года. Тогда была начата Женевская номенклатура, которую с 1947 и по сегодняшний день продолжает ИЮПАК (IUPAC — международная единая химическая номенклатура). Согласно систематической номенклатуре названия органических соединений составляются из корня, обозначающего длину основной цепи, т.е. соединенных в неразветвленную цепь атомов углеродов, а также приставок и суффиксов, обозначающих наличие и расположение заместителей, функциональных групп и кратных связей. 

Систематическая номенклатура алканов
Систематическая номенклатура алкенов
Систематическая номенклатура алкинов
Систематическая номенклатура спиртов и фенолов
Систематическая номенклатура аренов
Систематическая номенклатура галогенопроизводных
Систематическая номенклатура альдегидов и кетонов
Систематическая номенклатура карбоновых кислот и их производных
Номенклатура гетероциклических соединений

cknow.ru

Номенклатура

Лекции по органической химии

Лекция 1

Классификация органических соединений. Номенклатура органических соединений.

Цель лекции: знакомство с классификацией и номенклатурой органических соединений

План:

  1. Предмет и задачи органической химии. Значение её для фармации.

  2. Классификация органических соединений.

  3. Принципы тривиальной и рациональной номенклатуры.

  4. Принципы номенклатуры ИЮПАК.

  1. Предмет и задачи органической химии.

Органическая химия – это раздел химии, посвященный изучению строения, способов синтеза и химических превращений углеводородов и их функциональных производных.

Термин «органическая химия » впервые ввел шведский химик Йенс Якоб Берцеллиус в 1807 г.

Благодаря особенностям своего строения органические вещества очень многочисленны. Сегодня их число достигает 10 млн.

В настоящее время состояние органической химии таково, что позволяет научно спланировать и осуществить синтез любых сложных молекул (белков, витаминов, ферментов, лекарственных препаратов и т. д.).

Органическая химия тесно связана с фармацией. Она позволяет осуществлять выделение индивидуальных лекарственных веществ из растительного и животного сырья, синтезирует и проводит очистку лекарственного сырья, определяет структуру вещества и механизм химического действия, позволяет определять подлинность того или иного лекарственного препарата. Достаточно сказать, что 95 % лекарственных средств имеют органическую природу.

  1. Классификация органических соединений

В классификации принимаются за основу два важнейших признака: строение углеродного скелета и наличие в молекуле функциональных групп.

По строению углеродного скелета органические. соединения делятся на три большие группы.

I Ациклические (алифатические) соединения, имеющие открытую углеродную цепь как неразветвлённую, так и разветвлённую.

К ним относятся:

Алканы СН3 – СН2 – СН2 – СН3

Алкены СН = СН – СН2 – СН3

Алкины СН = С – СН2 – СН3

Алкадиены СН2 = СН – СН = СН2

II Циклические соединения, которые в свою очередь делятся на карбоциклические и гетероциклические.

Карбоциклические соединения- это соединения в которых углеродная цепь замкнута в цикл (кольцо). Они в свою очередь подразделяются на алициклические и ароматические. Примером алициклических углеводородов является циклогексан, а ароматических – бензол.

Циклогексан Бензол

Гетероциклические соединения (от греческого heteros – другой), содержащие в цикле не только атомы углерода, но и атомы других элементов, чаще всего азота, кислорода, серы. Например:

Родоначальными соединениями в органической химии признаны углеводороды, состоящие только из атомов углерода и водорода. Разнообразные органические соединения можно рассматривать как производные углеводородов, полученные введением в них функциональных групп.

Функциональной группой называют структурный фрагмент молекулы, характерный для данного класса органических соединений и определяющий его химические свойства.

Например, свойства спиртов определяются наличием гидроксогруппы (— ОН), свойства аминов – аминогруппы (NH2), карбоновых кислот наличием в молекуле карбоксильной группы (- СООН) и так далее.

Таблица 1. Основные классы органических соединений

Название класса

органического соединения

Общая формула

Название функциональной

группы

Галогенопроизвоные

СН3— Сl

галоген

Спирты

СН3— ОН

гидроксильная

Фенолы

С6Н5ОН

гидроксильная

Простые эфиры

СН3– О – СН3

алкоксильная

Амины

СН3–NH2

аминогруппа

Нитросоединения

СН3–NО2

нитрогруппа

Альдегиды

СН3– С=О

Н

альдегидная

Кетоны

СН3– С — О

карбонильная

Карбоновые кислоты

СН3 — СООН

карбоксильная

Такая классификация важна потому, что функциональные группы во многом определяют химические свойства данного класса соединений.

Если соединения содержат несколько функциональных групп и они одинаковые, то такие соединения называют полифункциональными (СН2ОН – СНОН – СН2ОН — глицерин), если молекула содержит разные функциональные группы, то это гетерофункциональное соединение (СН3 – СН(ОН) СООН — молочная кислота). Гетерофункциональные соединения можно сразу отнести к нескольким классам соединений.

3. Принципы тривиальной и рациональной номенклатуры.

Номенклатура органических соединений является первым этапом освоения научной терминологии. Номенклатура – это система правил, позволяющих назвать данное соединение.

Исторически первой была тривиальная номенклатура. В названии веществ по этой номенклатуре отражались способы получения вещества или его природные источники. Например, лактоза (молочный сахар) выделена из молока, пальмитиновая кислота выделена из пальмового масла и т. д. Многие соединения до сих пор называются по тривиальной номенклатуре, т.к. они более просты и удобны. Но они требуют запоминания и не отражают строения соединения. Например – муравьиная кислота, глюкоза, лимонная кислота.

С развитием химии появились попытки научного подхода к названию соединений. Появилась рациональная (радикальная) номенклатура. Ее называют радикало-функциональной, т.к. название по этой номенклатуре строится по названию радикала и функциональной группы. Атомы углерода нумеровались буквами греческого алфавита (α, β, γ и т.д.). Первым атомом углерода считался атом углерода, стоящий за атомом углерода функциональной группы.

  1. Принципы номенклатуры ИЮПАК

Научные принципы номенклатуры были утверждены в 1965 г. международным союзом теоретической и прикладной химии (IUPAC). Отсюда и название (IUPAC- Международный союз теоретической и прикладной химии).

Для пользования этой номенклатурой необходимо знать ряд номенклатурных терминов –

  • Органический радикал – это остаток молекулы из которой удален один или несколько атомов водорода, при этом остаются свободными одна или несколько валентностей. Если из молекулы алкана удален один атом водорода, то суффикс –ан замещается на суффикс –ил. Например, СН4 – метан, а СН3 – метил.

  • Родоначальная структура – составляет основу называемого соединения. Ею, является самая длинная углеродная цепь, содержащая наибольшое количество заместителей и кратных связей или цикл в циклических соединениях. Если соединение содержит цепь и цикл, то за основу выбирают цепь.

  • Характеристическая группа – функциональная группа, связанная с родоначальной структурой или частично входящая в её состав

  • Заместитель – любой атом или группа атомов, замещающие атом водорода в исходном соединении. Таким образом, заместителем может быть любая функциональная группа или УВ радикал.

Составление названия органического соединения по международной номенклатуре проводят в следующей последовательности:

  1. Определяют старшую функциональную группу, если она присутствует и родоначальную структуру соединения.

Старшую функциональную группу определяют с учетом старшинства всех функциональных групп. (См. таблицу 2)

  1. Нумерация родоначальной структуры проводят так, чтобы старшая функциональная группа имела наименьший номер или так, чтобы заместители получили наименьшие номера. В гетероцикллах начало нумерации определяет гетероатом.

  2. Название строят как сложное слово, состоящее из приставки, корня, суффикса и окончания.

  3. В состав приставки входят младшие функциональные группы и УВ радикалы в алфавитном порядке с указанием места положения.

  4. В состав корня входит название главной цепи или цикла.

  5. Суффикс определяет степень насыщенности: если все связи одинарные –ан, двойная – ен, тройная – ин.

  6. Окончание определяет старшая функциональная группа

Таблица 2 Порядок старшинства функциональных групп, обозначаемых префиксами и суффиксами

Функциональная группа

Префикс

Окончание

-(С)ООН1

овая кислота

-СООН

карбокси

Карбоновая кислота

-SO3H

сульфо

Сульфоновая кислота

-(C)=N

нитрилы

-C=O

оксо

аль

-(С)=О

оксо

он

-ОН

гидрокси

ол

-SH

меркапто

тиол

NH2

амино

амин

Рекомендуемая литература

Основная

1. Лузин А. П., Зурабян С. Э., Н. А. Тюкавкина, Органическая химия (учебник для учащихся средних фармацевтическх и медицинских заведений), 2002 г. С.23-34.

Дополнительная

  1. Егоров А. С., Шацкая К. П. Химия. Пособие – репититор для поступающих в вузы

  2. Кузьменко Н. Е., Еремин В. В., Попков В. А. Начала химии М., 1998. С. 57-61.

  3. Райл С. А., Смит К., Уорд Р. Основы органической химии для студентов биологических и медицинских специальностей М.: Мир, 1983.

4. Лекции преподавателей.

5

studfiles.net

Лекция №

Лекция № 2

КЛАССИФИКАЦИЯ И НОМЕНКЛАТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

План

  1. Классификация органических соединений.
  2. Номенклатура органических соединений.

1. Классификация органических соединений.

Органические соединения классифицируют по двум основным признакам: строению углеродного скелета и функциональным группам.

По строению углеродного скелета различают ациклические, карбоциклические и гетероциклические соединения.

Ациклические соединения – содержат открытую цепь атомов углерода.

Карбоциклические соединения – содержат замкнутую цепь углеродных атомов и подразделяются на алициклические и ароматические. К алициклическим относятся все карбоциклические соединения, кроме ароматических. Ароматические соединения содержат циклогексатриеновый фрагмент (бензольное ядро).

Гетероциклические соединения — содержат циклы, включающие наряду с атомами углерода один или несколько гетероатомов.

По природе функциональных групп органические соединения делят на классы.

Таблица 2.1. Основные классы органических соединений.
 

Функциональная группа

Класс соединений

Общая формула

Отсутствует

Углеводороды

R-H

Галоген

-F, -Cl, -Br, -I (–Hal)

Галогенпроизводные

R-Hal

Гидроксильная

-ОН

Спирты и фенолы

R-OH

Ar-OH

Алкоксильная

-OR

Простые эфиры

R-OR

Амино

-NH2, >NH, >N-

Амины

RNH2, R2NH, R3N

Нитро

-NO2

Нитросоединения

RNO2

Карбонильная

>C=O

Альдегиды и кетоны

Карбоксильная

Карбоновые кислоты

Алкоксикарбонильная

Сложные эфиры

Карбоксамидная

Амиды

карбоновых кислот

Тиольная

-SH

Тиолы

R-SH

Сульфо

-SO3H

Сульфокислоты

R-SO3H


 

2. Номенклатура органических соединений.

В настоящее время в органической химии общепринятой является систематическая номенклатура, разработанная Международным союзом чистой и прикладной химии (IUPAC). Наряду с ней сохранились и используются тривиальная и рациональная номенклатуры.

Тривиальная номенклатура состоит из исторически сложившихся названий, которые не отражают состава и строения вещества. Они являются случайными и отражают природный источник вещества (молочная кислота, мочевина, кофеин), характерные свойства (глицерин, гремучая кислота), способ получения (пировиноградная кислота, серный эфир), имя первооткрывателя (кетон Михлера, углеводород Чичибабина), область применения (аскорбиновая кислота). Преимуществом тривиальных названий являетсяих лаконичность, поэтому употребление некоторых из них разрешено правилами IUPAC.

Систематическая номенклатура является научной и отражает состав, химическое и пространственное строение соединения. Название соединения выражается при помощи сложного слова, составные части которого отражают определенные элементы строения молекулы вещества. В основе правил номенклатуры IUPAC лежат принципы заместительной номенклатуры, согласно которой молекулы соединений рассматриваются как производные углеводородов, в которых атомы водорода замещены на другие атомы или группы атомов. При построении названия в молекуле соединения выделяют следующие структурные элементы.

Родоначальная структура – главная цепь углеродная цепь или циклическая структура в карбо- и гетероциклах.

Углеводородный радикал – остаток формульного обозначения углеводорода со свободными валентностями (см. таблицу 2.2).

Характеристическая группа – функциональная группа, связанная с родоначальной структурой или входящая в ее состав (см. таблицу 2.3).

При составлении названия последовательно выполняют следующие правила.

    1. Определяют старшую характеристическую группу и указывают ее обозначение в суффиксе (см. таблицу 2.3).
    2. Определяют родоначальную структуру по следующим критериям в порядке падения старшинства: а) содержит старшую характеристическую группу; б) содержит максимальное число характеристических групп; в) содержит максимальное число кратных связей; г) имеет максимальную длину. Родоначальную структуру обозначают в корне названия в соответствии с длиной цепи или размером цикла: С1 – “мет”, С2 – “эт”, С3 – “проп”, С4 – “бут”, С5 и далее – корни греческих числительных.
    3. Определяют степень насыщенности и отражают ее в суффиксе: “ан” – нет кратных связей, “ен” – двойная связь, “ин” – тройная связь.
    4. Устанавливают остальные заместители (углеводородные радикалы и младшие характеристические группы) и перечисляют их названия в префиксе в алфавитном порядке.
    5. Устанавливают умножающие префиксы – “ди”, “три”, “тетра”, указывающие число одинаковых структурных элементов (при перечислении заместителей в алфавитном порядке не учитываются).
    6. Проводят нумерацию родоначальной структуры так, чтобы старшая характеристическая группа имела наименьший порядковый номер. Локанты (цифры) ставят перед названием родоначальной структуры, перед префиксами и перед суффиксами.

Таблица 2.2. Названия алканов и алкильных радикалов, принятые систематической номенклатурой IUPAC.
 

Алкан

Название

Алкильный радикал

Название

CH4

Метан

СН3

Метил

CH3CH3

Этан

CH3CH2

Этил

CH3CH2CH3

Пропан

CH3CH2CH2

Пропил

Изопропил

CH3CH2СН2CH3

н-Бутан

CH3CH2СН2CH2

н-Бутил

втор-Бутил

Изобутан

Изобутил

 трет-Бутил

CH3CH2СН2CH2СН3

н-Пентан

CH3CH2СН2CH2СН2

н-Пентил

 

Изопентан

Изопентил

Неопентан

Неопентил


 

Таблица 2.3. Названия характеристических групп (перечислены в порядке убывания старшинства).
 

Группа

Название

в префиксе

в суффиксе

-(C)OOH*

овая кислота

-COOH

карбокси

карбоновая кислота

-SO3

сульфо

сульфоновая кислота

-(C)HO

оксо

аль

-CHO

формил

карбальдегид

>(C)=O

оксо-

он

-ОН

гидрокси

ол

-SH

меркапто

тиол

-NH2

амино

амин

-OR**

алкокси, арокси

-F, -Cl, -Br, -I

фтор, хлор, бром, иод

-NO2

нитро

*Атом углерода, заключенный в скобки, входит в состав родоначальной структуры.

**Алкокси-группы и все следующие за ними перечисляются в префиксе по алфавиту и не имеют порядка старшинства.

Рациональная (радикально-функциональная) номенклатура используется для названий простых моно- и бифункциональных соединений и некоторых классов природных соединений. Основу названия составляет название данного класса соединений или одного из членов гомологического ряда с указанием заместителей. В качестве локантов, как правило, используются греческие буквы.

trotted.narod.ru

Классы органических соединений

104

ОРГАНИЧЕСКАЯ ХИМИЯ

Учебное пособие для студентов специальностей 271200 «Технология продовольственных продуктов специального назначения и общественного питания», 351100 «Товароведение и экспертиза товаров»

Введение

Использование человеком органических веществ и выделение их из природных источников диктовалось практическими потребностями с древних времен.

Как особая отрасль науки органическая химия возникла в начале XIXвека и к настоящему времени достигла достаточно высокого уровня развития. Из огромного количества химических соединений большая часть (свыше 5 миллионов) в своем составе содержит углерод, и почти все они относятся к органическим веществам. Большинство органических соединений – вещества, полученные с применением новых научных методов. Природные соединения на сегодня являются достаточно изученными веществами и находят новые сферы применения в жизнеобеспечении человека.

В настоящее время практически нет ни одной отрасли народного хозяйства, не связанной с органической химией: медицина, фармакология, электронная техника, авиация и космос, легкая и пищевая промышленность, сельское хозяйство и др.

Глубокое изучение природных органических веществ, таких как жиры, углеводы, белки, витамины, ферменты и другие, открыло возможность вмешиваться в обменные процессы, предлагать рациональное питание, регулировать физиологические процессы. Современная органическая химия благодаря проникновению в суть механизмов реакций, протекающих при хранении и переработке продовольственных товаров, дала возможность управлять ими.

Органические вещества нашли применение в производстве большинства товаров народного потребления, в технике, в производстве красителей, культтоваров, парфюмерии, текстильной промышленности и т.д.

Органическая химия является важной теоретической базой при изучении биохимии, физиологии, технологии производства продуктов питания, товароведения и т.д.

Классификация органических соединений

Все органические соединения по структуре углеродного скелета делятся:

1. Ациклические (алифатические) соединения, имеющие открытую углеродную цепь, как неразветвленную, так и разветвленную.

2-метилбутан

стеариновая кислота

2. Карбоциклические соединения – это соединения, содержащие циклы из углеродных атомов. Они делятся на алициклические и ароматические.

К алициклическим относятся соединения циклического строения, не обладающие ароматическими свойствами.

циклопентан

К ароматическим относятся вещества, содержащие в молекуле бензольное ядро, например: толуол

3. Гетероциклические соединения – вещества, содержащие циклы, состоящие из атомов углерода и гетероатомов, например:

фуран пиридин

Соединения каждого раздела в свою очередь делятся на классы, которые являются производными углеводородов, в их молекулах замещены атомы водорода на различные функциональные группы:

галогенопроизводные СН3–Сl; спирты СН3–ОН; нитропроизводные СН3–СН2–NO2; амины СН3–СН2–NH2; сульфокислоты СН3–СН2–SO3H; альдегиды СН3–НС=О; карбоновыекислоты и другие.

Функциональные группы определяют химические свойства органических соединений.

В зависимости от количества углеводородных радикалов, связанных с конкретным атомом углерода, последний называется первичным, вторичным, третичным и четвертичным.

№ п/п

Гомологический ряд

Функциональная группа

Пример соединения

Название

1

2

3

4

1

Углеводороды предельные (алканы)

Пропан

2

Углеводороды этиленовые (алкены)

Пропен

3

Углеводороды ацетиленовые (алкины)

Пропин

4

Диеновые углеводороды (алкадиены)

Бутадиен-1,3

5

Ароматические углеводороды

Метилбензол (толуол)

6

Спирты

Этанол

7

Фенолы

Фенол

8

Альдегиды

Пропаналь

9

Кетоны

Пропанон

Окончание таблицы

1

2

3

4

10

Карбоновые кислоты

Пропановая кислота

11

Сложные эфиры

Этил ацетат (уксусно-этиловый эфир)

12

Амины

Этиламин

13

Аминокислоты

Аминоэтановая кислота (глицин)

14

Сульфокислоты

Бензолсульфо­кислота

Изомерия

Изомерия – это явление, когда вещества, имея одинаковый количественный и качественный состав, различаются строением, физическими и химическими свойствами.

Виды изомерии:

1. Структурная изомерия:

а) Изомерия углеродного скелета.

бутан

2-метилпропан (изобутан)

б) Изомерия положения двойной (тройной) связи.

1-бутен 2-бутен

в) Изомерия положения функциональной группы.

1-пропанол 2-пропанол

2. Стереоизомерия (пространственная):

а) Геометрическая: цис-, трансизомерия. Обусловливается различным пространственным расположением заместителей относи­тельно плоскости двойной связи; возникает из-за отсутствия вращения вокруг двойной связи.

цисбутен-2 трансбутен-2

б) Оптическая или зеркальная изомерия – это вид пространственной изомерии (стереоизомерия), зависящей от асимметрии молекулы, т.е. от пространственного расположения четырех различных атомов или групп атомов вокруг асимметрического атома углерода. Опические изомеры (стереоизомеры) относятся друг к другу, как предмет к его зеркальному изображению. Такие оптические изомеры называются антиподами, а их смеси в равных количествах того и другого называются рацемическими смесями. В этом случае они являются оптически неактивными веществами, так как каждый из изомеров вращает плоскость поляризации света в противоположную сторону. Молочная кислота имеет 2 анитипода, число которых определяется по формуле 2n = числу изомеров, где n – число асимметричных атомов углерода.

Многие органические вещества (оксикислоты) являются оптически активными веществами. Для каждого оптически активного вещества существует своя величина удельного вращения поляризованного света.

Факт оптической активности веществ относится ко всем органическим веществам, имеющим в своем составе асимметрические атомы углерода (оксикислоты, углеводы, аминокислоты и др.).

studfiles.net

Обобщающая таблица по органической химии «Углеводороды»

 

Алканы

Алкены

Алкины

Алкадиены

Циклоалканы

Арены

Общая формула

Cnh3n+2 

(n≥1)

Cnh3n

 (n≥2)

Cnh3n-2  

(n≥2)

Cnh3n-2 

(n≥3)

Cnh3n

 (n≥3)

Cnh3n-6

 (n≥6)

Особен-ности строения

Все связи одинарные

С-С

 σ-связи

Есть двойная связь

С=С

(связи: σ,1-π)

Есть тройная связь

С≡С

(σ,2-π связи)

Есть две двойных связи между атомами углерода

(σ,2-π связи)

Есть цикл

 σ-связи

/бензольное кольцо/

Тип гибриди-зации ключевых атомов углерода

sp3

тетраэдрическое строение

угол связи 109, 28ₒ

sp2

плоское строение

угол связи 120ₒ

sp

линейное строение

угол связи 180ₒ

sp2 или sp

sp3

sp2

единая система сопряжённых связей, плоское строение

угол связи 120ₒ

Суффикс в названии

-ан

-ен

(-илен)

-ин

-диен

Цикло-…..ан

Тривиальные названия

……бензол или

фенил-

Пример

C3H8   

Ch4-Ch3-Ch4    пропан

C3H6   

Ch3=CH-Ch4     пропен

(пропилен)

C3h5   

CH≡C-Ch4         пропин

C3h5    Ch3=C=Ch3       пропадиен

С6Н12 — циклогексан

С6Н6 — бензол

С6Н5 СН3  — толуол

/метилбензол/

Виды изомерии

-Углеродного скелета (с С4)

-Углеродного скелета (с С4)

-Положения = связи (с С4)

— Межклассовая с циклоалканами (с С3)

-Геометрическая изомерия (цис, транс)

-Углеродного скелета (с С4)

-Положения ≡ связи (с С4)

-Межклассовая с алкадиенами (с С3)

-Углеродного скелета (с С5)

-Взаимного положения = связей (с С4)

-Межклассовая с алкинами (с С3)

-Геометрическая изомерия (цис, транс)

-Углеродного скелета (размер цикла и положение заместителей)

-Межклассовая с алкенами (с С3)

Геометрическая-

У бензола и толуола – нет.

У гомологов (с С8) –изомерия углеродного скелета (заместителей и их взаимного  положения в кольце)

Физичес-кие свойства

С1-С4-газы,

С5-С15 –жидкости с запахом,

с С16 –твёрдые вещества.

С2-С4-газы,

С5-С16 –жидкости,

с С17 –твёрдые вещества.

малорастворимы в воде

С2-С4-газы,

С5-С16 –жидкости,

с С17 –твёрдые вещества.

малорастворимы в воде

Бутадиен -1,3 – газ

Изопрен – легкокипящая жидкость

С3-С4-газы,

С5-С13 –жидкости,

с С14 –твёрдые вещества.

 Первые члены ряда — бесцветные легкокипящие жидкости

 

Алканы

Алкены

Алкины

Алкадиены

Циклоалканы

Арены

Типичные химичес-кие реакции

1.Радикальное замещение

(с галогенами, азотной и серной кислотами)

2.Дегидрирование

3. Крекинг

4. Горение

5. Изомеризация

1. Присоединение по двойной связи

(водорода, галогенов, воды, галогеноводородов)

2. Полимеризация

3. Окисление (полное – горение, неполное окисление KMnO4)

1. Присоединение

(водорода, галогенов, воды, галогеноводородов)

2. Ди-, тримеризация

3. Окисление (полное – горение, неполное окисление KMnO4)

4. Замещение Н, стоящего у тройной связи на атомы металлов (слабые кислотные свойства)

1. Присоединение

(водорода, галогенов, воды, галогеноводородов)

2. Полимеризация (образуются синтетические каучуки)

3. Окисление (полное – горение, неполное)

1. Для малых циклов (С3-С4) характерны реакции присоединения (сходство с алкенами), для больших – реакции замещения (сходство с алканами).

2. Дегидрирование (образуются ароматические УВ)

3. Горение

1. Электрофильное замещение (с галогенами, азотной и серной кислотами, галогеналканами)

Возможно присоединение водорода

2. Возможно присоединение водорода

3. Окисление (полное – горение, неполное окисление KMnO4 (кроме бензола))

Отноше-ние к раствору KMnO4

Не реагируют

Обесцвечивание

Обесцвечивание

Обесцвечивание

Не реагируют

Окисление заместителей в цикле (бензол не реагирует)

Отноше-ние к бромной воде

Не реагируют

Обесцвечивание

Обесцвечивание

Обесцвечивание

Устойчивы

Не реагируют

Взаимодействие с галогенами

Радикальное замещение

Присоединение

Присоединение

Присоединение

У малых – присоединение, у больших – замещение.

Электрофильное (по кольцу) или радикальное (по боковой цепи) замещение

Каталити-ческое присоеди-нение водорода

Нет

Да

Да

Да

Да, для малых циклов

Да

Возможность получения полимеров

Нет

Да

Да

Да

Нет

Нет

xn--j1ahfl.xn--p1ai

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *