Силу действующую на движущиеся заряды в магнитном поле называют – Действие магнитного поля на движущийся заряд. Сила лоренца электрический ток это упорядоченно движущиеся наряженные частицы

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

«Физика — 11 класс»

Магнитное поле действует с силой на движущиеся заряженные частицы, в то числе и на проводники с током.
Какова же сила, действующая на одну частицу?

1.
Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца в честь великого голландского физика X. Лоренца, создавшего электронную теорию строения вещества.
Силу Лоренца можно найти с помощью закона Ампера.

Модуль силы Лоренца равен отношению модуля силы F, действующей на участок проводника длиной Δl, к числу N заряженных частиц, упорядоченно движущихся в этом участке проводника:

Так как сила (сила Ампера), действующая на участок проводника со стороны магнитного поля
равна F = | I | BΔl sin α,
а сила тока в проводнике равна

I = qnvS
где
q — заряд частиц
n — концентрация частиц (т.е. число зарядов в единице объема)
v — скорость движения частиц
S — поперечное сечение проводника.

тогда получаем:
На каждый движущийся заряд со стороны магнитного поля действует сила Лоренца, равная:

где α — угол между вектором скорости и вектором магнитной индукции.

Сила Лоренца перпендикулярна векторам и .

2.
Направление силы Лоренца

Направление силы Лоренца определяется с помощью того же правила левой руки, что и направление силы Ампера:

Если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90° большой палец укажет направление действующей на заряд силы Лоренца F

л.

3.
Если в пространстве, где движется заряженная частица, существует одновременно и электрическое поле, и магнитное поле, то суммарная сила, действующая на заряд, равна: = эл + л где сила, с которой электрическое поле действует на заряд q, равна Fэл = q.

4.
Cила Лоренца не совершает работы, т.к. она перпендикулярна вектору скорости частицы.
Значит сила Лоренца не меняет кинетическую энергию частицы и, следовательно, модуль ее скорости.
Под действием силы Лоренца меняется лишь направление скорости частицы.

5.
Движение заряженной частицы в однородном магнитном поле

Есть однородное магнитное поле , направленное перпендикулярно к начальной скорости частицы .

Сила Лоренца зависит от модулей векторов скорости частицы и индукции магнитного поля.

Магнитное поле не меняет модуль скорости движущейся частицы, значит остается неизменным и модуль силы Лоренца.
Сила Лоренца перпендикулярна скорости и, следовательно, определяет центростремительное ускорение частицы.
Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, что

В однородном магнитном поле заряженная частица равномерно движется по окружности радиусом r.

Согласно второму закону Ньютона

Тогда радиус окружности, по которой движется частица, равен:

Время, за которое частица делает полный оборот (период обращения), равно:

6.
Использование действия магнитного поля на движущийся заряд.

Действие магнитного поля на движущийся заряд используют в телевизионных трубках-кинескопах, в которых летящие к экрану электроны отклоняются с помощью магнитного поля, создаваемого особыми катушками.

Сила Лоренца используется в циклотроне — ускорителе заряженных частиц для получения частиц с большими энергиями.

На действии магнитного поля основано также и устройство масс-спектрографов, позволяющих точно определять массы частиц..

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин



Магнитное поле. Физика, учебник для 11 класса — Класс!ная физика

Магнитное поле и взаимодействие токов — Магнитная индукция. Линии магнитной индукции — Модуль вектора магнитной индукции. Сила Ампера — Электроизмерительные приборы. Громкоговоритель — Действие магнитного поля на движущийся заряд. Сила Лоренца — Магнитные свойства вещества — Примеры решения задач — Краткие итоги главы

class-fizika.ru

44. Действие магнитного поля на движущийся заряд. Сила Лоренца.

Сила, дей­ствующая на электрический заряд Q, дви­жущийся в магнитном поле со скоростью v, называется силой Лоренца и выражает­ся формулой F=Q[vB], где В — индукция магнитного поля, в котором заряд движется.

Направление силы Лоренца определя­ется с помощью правила левой руки: если ладонь левой руки расположить так, что­бы в нее входил вектор В, а четыре вы­тянутых пальца направить вдоль вектора v (для Q> 0 направления I и v совпада­ют, для Q<0—противоположны), то отогнутый большой палец покажет на­правление силы, действующей на положи­тельный заряд. На рис. 169 показана вза­имная ориентация векторов v, В (поле направлено к нам, на рисунке показано точками) и F для положительного заряда. На отрицательный заряд сила действует в противоположном направлении.

Модуль силы Лоренца равенF=QvBsin, где  — угол между v и В. Магнитное поле действует только на движущиеся в нем заряды. Так как по действию силы Лоренца можно определить модуль и направление вектора В, то выражение для силы Лорен­ца может быть использовано для определения вектора магнитной индукции В.

Сила Лоренца всегда перпендикуляр­на скорости движения заряженной части­цы, поэтому она изменяет только направ­ление этой скорости, не изменяя ее модуля. Следовательно, сила Лоренца работы не совершает. Иными словами, постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей и кинетическая энергия этой частицы при движении в магнитном поле не изме­няется.

Если на движущийся электрический заряд помимо магнитного поля с индук­цией В действует и электрическое поле с напряженностью Е, то результирующая сила F, приложенная к заряду, равна век­торной сумме сил — силы, действующей со стороны электрического поля, и силы Ло­ренца:

F=QE + Q[vB]. Это выражение называется формулой Ло­ренца. Скорость v в этой формуле есть скорость заряда относительно магнитного поля.

45. Движение заряженных частиц в магнитном поле. Ускорители элементарных частиц.

Направление силы Лоренца и на­правление вызываемого ею отклонения за­ряженной частицы в магнитном поле за­висят от знака зарядаQ частицы. На этом основано определение знака заряда частиц, движущихся в магнитных полях.

Для вывода общих закономерностей будем считать, что магнитное поле одно­родно и на частицы электрические поля не действуют. Если заряженная частица дви­жется в магнитном поле со скоростью v вдоль линий магнитной индукции, то угол а между векторами v и В ра­вен 0 или . Тогда сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она дви­жется равномерно и прямолинейно.

Если заряженная частица движется в магнитном поле со скоростью v, перпен­дикулярной вектору В, то сила Лоренца F=Q[vB] постоянна по модулю и нор­мальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица будет двигаться по окружности, радиус r которой определяет­ся из условия QvB = mv2/r, откуда Период вращения частицы, т. е. вре­мя Т, затрачиваемое ею на один полный оборот, т. е. период вращения частицы в однород­ном магнитном поле определяется только величиной, обратной удельному заряду(Q/m) частицы, и магнитной индукцией поля, но не зависит от ее скорости (при v << с)).

Если скорость v заряженной частицы направлена под углом а к вектору В (рис. 170), то ее движение можно пред­ставить в виде суперпозиции: 1) равно­мерного прямолинейного движения вдоль поля со скоростью v

||=vcos; 2) равно­мерного движения со скоростью v= vsin по окружности в плоскости, пер­пендикулярной полю. В результате сложения обоих движений возникает движение по спирали, ось кото­рой параллельна магнитному полю. Шаг винтовой линии h=v||T=vTcos. Радиус окружности определяется формулой (в данном случае надо заменитьv на v=vsin).

Ускорителями заряженных частиц назы­ваются устройства, в которых под дей­ствием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц (элек­тронов, протонов, мезонов и т.д.).

Любой ускоритель характеризуется типом ускоряемых частиц, энергией, со­общаемой частицам, разбросом частиц по энергиям и интенсивностью пучка.

Ускорители делятся на непрерывные (из них выходит равномерный по времени пу­чок) и импульсные (из них частицы вы­летают порциями — импульсами). По­следние характеризуются длительностью импульса. По форме траектории и меха­низму ускорения частиц ускорители делят­ся на линейные, циклические и индукци­онные. В линейных ускорителях траекто­рии движения частиц близки к прямым линиям, в циклических и индукционных — траекториями частиц являются окружно­сти или спирали.

Рассмотрим некоторые типы ускорите­лей заряженных частиц.

1. Линейный ускоритель. Ускорение частиц осуществляется электростатиче­ским полем, создаваемым, например, вы­соковольтным генератором Ван-де-Граафа. Заряженная частица проходит поле однократно: заряд Q, проходя раз­ность потенциалов 1-2, приобретает энергию W=Q(1

-2). Таким способом частицы ускоряются до 10 МэВ. Их дальнейшее ускорение с помощью источ­ников постоянного напряжения невозмож­но из-за утечки зарядов, пробоев и т. д.

2. Линейный резонансный ускоритель. Ускорение заряженных частиц осуще­ствляется переменным электрическим по­лем сверхвысокой частоты, синхронно из­меняющимся с движением частиц. Таким способом протоны ускоряются до энергий порядка десятков мегаэлектрон-вольт, электроны — до десятков гигаэлектрон-вольт.

3. Циклотрон — циклический резонан­сный ускоритель тяжелых частиц (прото­нов, ионов). Между полюсами сильного электромагнита помещается ва­куумная камера, в которой находятся два электрода (1 и 2) в виде полых металличе­ских полуцилиндров, или дуантов. К дуантам приложено переменное электриче­ское поле. Магнитное поле, создаваемое электромагнитом, однородно и перпенди­кулярно плоскости дуантов.

Если заряженную частицу ввести в центр зазора между дуантами, то она, ускоряемая электрическим и отклоняемая магнитным полями, войдя в дуант 1, опишет полуокружность, радиус кото­рой пропорционален скорости частицы. К моменту ее выхода из дуанта 1 полярность напряжения изменя­ется (при соответствующем подборе изме­нения напряжения между дуантами), по­этому частица вновь ускоряется и, перехо­дя в дуант 2, описывает там уже полу­окружность большего радиуса и т. д.

Для непрерывного ускорения частицы в циклотроне необходимо выполнить усло­вие синхронизма (условие «резонан­са») — периоды вращения частицы в маг­нитном поле и колебаний электрического поля должны быть равны. При выполне­нии этого условия частица будет двигать­ся по раскручивающейся спирали, полу­чая при каждом прохождении через зазор дополнительную энергию. На последнем витке, когда энергия частиц и радиус ор­биты доведены до максимально допусти­мых значений, пучок частиц посредством отклоняющего электрического поля выво­дится из циклотрона.

Циклотроны позволяют ускорять про­тоны до энергий примерно 20 МэВ. Даль­нейшее их ускорение в циклотроне ограни­чивается релятивистским возрастанием массы со скоростью, что при­водит к увеличению периода обращения, и синхронизм нарушается. Поэтому цик­лотрон совершенно неприменим для ус­корения электронов (при E=0,5 МэВ m = 2m0, при E=10 МэВ m=28m0!).

4. Фазотрон (синхроциклотрон) — циклический резонансный ускоритель тя­желых заряженных частиц (например, протонов, ионов, -частиц), в котором уп­равляющее магнитное поле постоянно, а частота ускоряющего электрического по­ля медленно изменяется с периодом. Дви­жение частиц в фазотроне, как и в цикло­троне, происходит по раскручивающейся спирали. Частицы в фазотроне ускоряются до энергий, примерно равных 1 ГэВ (огра­ничения здесь определяются размерами фазотрона, так как с ростом скорости частиц растет радиус их орбиты).

5. Синхротрон — циклический резо­нансный ускоритель ультрарелятивистских электронов, в котором управляющее маг­нитное поле изменяется во времени, а частота ускоряющего электрического по­ля постоянна. Электроны в синхротроне ускоряются до энергий 5—10 ГэВ.

6. Синхрофазотрон — циклический ре­зонансный ускоритель тяжелых заряжен­ных частиц (протонов, ионов), в котором объединяются свойства фазотрона и син­хротрона, т. е. управляющее магнитное поле и частота ускоряющего электрическо­го поля одновременно изменяются во вре­мени так, чтобы радиус равновесной орби­ты частиц оставался постоянным. Протоны ускоряются в синхрофазотроне до энергий 500 ГэВ.

7. Бетатрон — циклический индукци­онный ускоритель электронов, в котором ускорение осуществляется вихревым элек­трическим полем (см. §137), индуцируе­мым переменным магнитным полем, удер­живающим электроны на круговой орбите. В бетатроне в отличие от рассмотренных выше ускорителей не существует пробле­мы синхронизации. Электроны в бетатроне ускоряются до энергий 100 МэВ. При W> 100 МэВ режим ускорения в бетатро­не нарушается электромагнитным излуче­нием электронов. Особенно распростране­ны бетатроны на энергии 20—50 МэВ.

studfiles.net

Сила Лоренца и ее воздействие на электрический заряд

Электрические заряды, движущиеся в определенном направлении, создают вокруг себя магнитное поле, скорость распространения которого в вакууме равно скорости света, а в других средах чуть меньше. Если движение заряда происходит во внешнем магнитном поле, то между внешним магнитным полем и магнитным полем заряда возникает взаимодействие. Так как электрический ток – это направленное движение заряженных частиц, то сила, которая будет действовать в магнитном поле на проводник с током, будет являться результатом отдельных (элементарных) сил, каждая из которых прикладывается к элементарному носителю заряда.

Процессы взаимодействия внешнего магнитного поля и движущихся зарядов исследовались Г. Лоренцом, который в результате многих своих опытов вывел формулу для расчета силы, действующей на движущуюся заряженную частицу со стороны магнитного поля. Именно поэтому силу, которая действует на движущийся в магнитном поле заряд, называют силой Лоренца.

Сила, действующая на проводник стоком (из закона Ампера), будет равна:

По определению сила тока равна I = qn (q – заряд, n – количество зарядов, проходящее через поперечное сечение проводника за 1 с). Отсюда следует:

Где: n0 – содержащееся в единице объема количество зарядов, V – их скорость движения, S – площадь поперечного сечения проводника. Тогда:

Подставив данное выражение в формулу Ампера, мы получим:

Данная сила будет действовать на все заряды, находящиеся в объеме проводника: V = Sl. Количество зарядов, присутствующих в данном объеме будет равно:

Тогда выражение для силы Лоренца будет иметь вид:

Отсюда можно сделать вывод, что сила Лоренца, действующая на заряд q, который двигается в магнитном поле, пропорциональна заряду, магнитной индукции внешнего поля, скорости его движения и синусу угла между V и В, то есть:

За направление движения заряженных частиц принимают направление движения положительных зарядов. Поэтому направление данной силы может быть определено с помощью правила левой руки.

Сила, действующая на отрицательные заряды, будет направлена в противоположную сторону.

Сила Лоренца всегда направлена перпендикулярно скорости V движения заряда и поэтому работу она не совершает. Она изменяет только направление V, а кинетическая энергия и величина скорости заряда при его движении в магнитном поле остаются неизменными.

Когда заряженная частица движется одновременно в магнитном и электрическом полях, на него будет действовать сила:

Где Е – напряженность электрического поля.

Рассмотрим небольшой пример:

Электрон, прошедший ускоряющую разность потенциалов 3,52∙103 В, попадает в однородное магнитное поле перпендикулярно линиям индукции. Радиус траектории r = 2 см, индукция поля 0,01 Т. Определить удельный заряд электрона.

Решение:

Удельный заряд – это величина, равная отношению заряда к массе, то есть e/m.

В магнитном поле с индукцией В на заряд, движущийся со скоростью V перпендикулярно линиям индукции, действует сила Лоренца FЛ = BeV. Под ее действием заряженная частица будет перемещаться по дуге окружности. Так как при этом сила Лоренца вызовет центростремительное ускорение, то согласно 2-му закону Ньютона можно записать:

Кинетическую энергию, которая будет равна mV2/2, электрон приобретает за счет работы А сил электрического поля (А = eU), подставив в уравнение получим:

Преобразовав эти соотношения и исключив из них скорость, получим формулу для определения удельного заряда электрона:

Подставив исходные данные, выраженные в СИ, получим:

Проверяем размерность:

И кому интересно — видео о движении заряженных частиц:

elenergi.ru

3.1. Силы, действующие на движущиеся заряды в магнитном поле » СтудИзба

Глава 3. Магнитное поле в вакууме.

§ 3.1. Силы, действующие на движущиеся заряды в магнитном поле.

В 18 столетии было известно много случаев перемагничивания молнией стрелок компасов на морских (океанских) кораблях. Их собрал в коллекцию французский физик Луи Араго. Но он не видел, как соединить молнию и магнетизм, электрические и магнитные явления.

В 1820 г. Эрстед, профессор Копенгагенского университета обнаружил, что поле, создаваемое током, оказывает ориентирующее действие на магнитную стрелку: она устанавливалась перпендикулярно проволоке, по которой шел ток. Поле, создаваемое током, Эрстед назвал магнитным.

Эрстед сделал свое открытие на лекции, где демонстрировал тепловое действие тока. Рядом с проводом, через который протекал ток, случайно лежал компас. Результат был опубликован 21 июля 1820 г. 11 сентября 1820 г. Луи Араго на заседании Парижской Академии, докладывая работу Эрстеда, повторил его опыт. На заседании присутствовал Ампер. Повторив опыт в лаборатории, он впервые произнес слова “сила тока”. Через неделю, сообщая результаты своих опытов, Ампер высказал идею, что “спирали и завитки с током должны производить те же эффекты, что и магниты”. Было сделано заключение, что:

движущиеся заряды (ток) создают магнитное поле, покоящиеся – электрическое.

25 сентября 1820 г. были показаны опыты с двумя токами. Заменив магнитную стрелку другим прямолинейным током, Ампер опытным путем       установил закон взаимодействия двух токов:

,                                       (3.1)

где  — расстояние между токовыми элементами,  — длина провода. Коэффициент пропорциональности зависит от выбранной системы единиц. В СИ сила, приходящаяся на единицу длины провода с током, запишется:

,                                (3.2)

где ; ; .

         При изучении электростатики мы начали с закона Кулона для силы взаимодействия двух точечных зарядов. По силе, действующей на пробный заряд, помещенный в данную точку пространства, мы определили напряженность электрического поля.

         При взаимодействии параллельных токов один из них может служить пробным устройством для измерения силы, действующей со стороны другого тока или со стороны поля, создаваемого в пространстве этим током.

По аналогии с напряженностью электрического поля  магнитное поле характеризуется величиной , названной магнитной индукцией. Напряженность магнитного поля  будет измеряться как сила, действующая на метр длины единичного пробного тока, находящегося в определенной точке. Единицей  служит , или Тесла (Тл).

         Экспериментально в 1877 г. Роуландом, в 1901 г. Эйхенвальдом было установлено, что в магнитном поле на движущийся заряд  действует сила:

,                                        (3.3)

где  — скорость заряда.  измеряется в Кулонах (Кл). В случае, когда  отличны от нуля, на заряд действует сила Лоренца:

.                                (3.4)

         Поскольку опыты по действию магнитного поля проводились не с отдельными зарядами, а с токами, то используем формулу (3.3) для вывода формулы силы, действующей на проводник с током в поле .

         Ток создается движущимися зарядами с концентрацией : плотность тока . В элементе  число зарядов . Сила, действующая на элемент  со стороны магнитного поля :

.                    (3.5)

Так как , то сила, действующая на линейный элемент тока :

.                                     (3.6)

Эта формула носит название закона Ампера. Здесь — токовый элемент, имеющий то же направление, что и  (I –скаляр).

         На провод конечной длины в магнитном поле действует сила:

.                                    (3.7)

Из закона Ампера (3.6) видна формулировка для напряженности магнитного поля , приведенная выше.

Рассмотрим силы, действующие на рамку с током, находящуюся в магнитном поле .

1.  лежит в плоскости рамки (рис.3.1).

Используем формулу (3.6). На участках АГ и СД вектор  параллелен и антипараллелен , т.е. . На участке ДГ вектор  направлен вниз перпендикулярно плоскости витка; для АС – противоположно вверх:

.              (3.8)

Вращающий момент, действующий на рамку:

.                    (3.9)

где  — магнитный момент рамки.

2. Вектор  перпендикулярен плоскости рамки (рис.3.2).

Ясно, что в этом случае  лежит в плоскости витка, . Тогда в общем случае:

,                     (3.10)

.                        (3.11)

Рамка с током (виток с током) имеет магнитный момент, направленный перпендикулярно плоскости витка и зависящий от величины тока. Положительное направление  определяется

направлением нормали , т.е. правилом буравчика. Аналогом рамки с током является движение электрона по орбите в атоме.

studizba.com

Движение зарядов в магнитном поле | Учеба-Легко.РФ

Действие магнитного поля на движущиеся заряженные частицы. Действие магнитного поля на проводник с током означает, что магнитное поле действует на движущиеся электрические заряды. Найдем силу, действующую на электрический заряд q при его движении в однородном магнитном поле с индукцией .
   Сила тока I в проводнике связана с концентрацией n свободных заряженных частиц, скоростью их упорядоченного движения и площадью S поперечного сечения проводника следующим выражением:

,(1)

где q — заряд отдельной частицы.

.

Так как произведение nSl равно числу свободных заряженных частиц в проводнике длиной l

N = nSl,

то сила, действующая со стороны магнитного поля на одну заряженную частицу, движущуюся со скоростью под углом к вектору индукции, равна

.(2)

Эту силу называют силой Лоренца.
   Направление вектора силы Лоренца определяется правилом левой руки, в нем за направление тока нужно брать направление вектора скорости положительного заряда (рис. 186). Для случая движения отрицательно заряженных частиц четыре пальца следует располагать противоположно направлению вектора скорости.

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует сила , постоянная по модулю и направленная перпендикулярно вектору скорости (рис. 187).

В вакууме под действием силы Лоренца частица приобретает центростремительное ускорение

(3)

и движется по окружности. Радиус r окружности, по которой движется частица, определяется из условия

 ,  .(4)

Период обращения частицы в однородном магнитном поле равен

.(5)

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле при постоянной массе не зависит от скорости и радиуса r траектории ее движения. Этот факт используется, например, в ускорителе заряженных частиц — циклотроне.

Циклотрон. В этом ускорителе заряженные частицы — протоны, ядра атомов гелия — разгоняются переменным электрическим полем постоянной частоты в вакууме в зазоре между двумя металлическими электродами — дуантами. Дуанты находятся между полюсами постоянного электромагнита (рис. 188, а).

Под действием магнитного поля внутри дуантов заряженные частицы движутся по окружности. К моменту времени, когда они совершают половину оборота и подходят к зазору между дуантами, направление вектора напряженности электрического поля между дуантами изменяется на противоположное и частицы вновь испытывают ускорение. Каждую следующую половину оборота частицы пролетают по окружности все большего радиуса (рис. 188, б), но период их обращения остается неизменным. Поэтому для ускорения частиц на дуанты подается переменное напряжение с постоянным периодом.
   Ускорение частиц в циклотроне с постоянным периодом возможно лишь до значений скоростей, значительно меньших скорости света. С приближением скорости частицы к скорости света в вакууме, равной c = 300000 км/с, масса частицы возрастает, вследствие чего увеличивается период ее обращения в магнитном поле. Равенство периода обращения частицы и периода изменения электрического поля нарушается, ускорение прекращается.

 топлива по сравнению с обычной тепловой электростанцией.

В заключение, по традиции, предлагаем Вашему вниманию шпаргалку по этой теме:

uclg.ru

Магнитное поле (средняя школа)

Магнитное поле

Проводники с током действуют друг на друга посредством магнитных сил. Магнитная сила проявляется также в опытах с магнитной стрелкой. Опыт показывает, что движущиеся электрические заряды (токи) создают магнитное поле.

Рис. 1. Магнитное взаимодействие проводников с током

Магнитное поле действует на находящийся в нем проводник с током. Характеристика магнитного поля, определяющая силу действия магнитного поля, называется магнитной индукцией  Единицей магнитной индукции в СИ является тесла (Тл).

Магнитная индукция – это векторная величина. Направление магнитной индукции поля, создаваемого током, можно определить по правилу буравчика: направление вращения рукоятки буравчика при его движении вдоль тока указывает направление вектора Графически направление магнитной индукции часто указывается магнитными линиями: направление магнитной линии в каждой точке совпадает с направлением вектора магнитной индукции в этой точке. В отличие от силовых линий электрического поля линии магнитной индукции замкнуты или уходят в бесконечность; это связано с тем, что магнитных зарядов не существует, а само магнитное поле – вихревое по природе. Магнитное поле не обладает свойством консервативности.

Рис. 2. Силовые линии полосового магнита

Сила, действующая со стороны магнитного поля на элемент проводника длиной l с током I, определяется законом Ампера:

где α – угол между направлениями тока и магнитной индукции.

Рис. 3. Правило левой руки

Ее направление можно определить по правилу левой руки: если левую руку расположить так, чтобы вектор магнитной индукции входил в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление действия силы.

Магнитное поле действует не только на проводники с током, но и на отдельные движущиеся электрические заряды. Силу, действующую на движущиеся заряды в магнитном поле, называют силой Лоренца:

Здесь υ – скорость заряда q, α – угол между направлением движения заряда и магнитной индукцией. Направление силы Лоренца, как и направление силы Ампера, может быть найдено по правилу левой руки. При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает, так как она всегда направлена перпендикулярно скорости заряженной частицы.

Рис. 4. Сила Лоренца

В однородном магнитном поле частица будет двигаться по спирали, ось которой совпадает с направлением магнитной индукции. Радиус спирали будет равен:

где m и q – масса частицы и ее заряд, – составляющая скорости, перпендикулярная магнитной индукции Период обращения равен Шаг спирали равен где – составляющая, параллельная магнитной индукции.

Рис. 5. Движение частицы в однородном магнитном поле

 

Магнитная индукция в веществе отличается по модулю от магнитной индукции в вакууме

Коэффициент пропорциональности называется магнитной проницаемостью. Магнитные свойства вещества определяются, в основном, электронами, входящими в состав атомов. По величине μ все веществе делятся на диамагнетики (μ < 1), парамагнетики (μ > 1) и ферромагнетики (μ >> 1). Последние при температуре выше TК (точка Кюри) переходят в парамагнетики.

files.school-collection.edu.ru

Сила магнитная. Сила, действующая на проводник в магнитном поле. Как определить силу магнитного поля

Один из самых важных разделов современной физики — это электромагнитные взаимодействия и все связанные с ними определения. Именно этим взаимодействием объясняются все электрические явления. Теория электричества охватывает многие другие разделы, включая и оптику, поскольку свет представляет собой электромагнитное излучение. В этой статье мы попытаемся объяснить суть электрического тока и силы магнитной на доступном, понятном языке.

Магнитизм — основа основ

В детстве взрослые показывали нам различные фокусы с использованием магнитов. Эти удивительные фигурки, которые притягиваются к друг другу и могут притягивать к себе мелкие игрушки, всегда радовали детский глаз. Что же такое магниты и каким образом магнитная сила действует на железные детали?

Объясняя научным языком, придется обратиться к одному из основных законов физики. Согласно закону Кулона и специальной теории относительности, на заряд действует определенная сила, которая прямо пропорционально зависит от скорости самого заряда (v). Именно это взаимодействие и называется силой магнитной.

Физические особенности

Вообще следует понимать, что любые магнитные явления возникают только при движении зарядов внутри проводника или при наличии в них токов. При изучении магнитов и самого определения магнитизма следует понимать, что они тесно взаимосвязаны с явлением электрического тока. Поэтому давайте разберемся в сути электрического тока.

Электрическая сила — это та сила, которая действует между электроном и протоном. Она численно намного больше значения гравитационной силы. Она порождается электрическим зарядом, а точнее, ее движением внутри проводника. Заряды же, в свою очередь, бывают двух видов: положительные и отрицательные. Как известно, положительно заряженные частицы притягиваются к отрицательно заряженным. Однако одинаковые по знаку заряды имеют свойство отталкиваться.

Так вот, когда в проводнике начинают двигаться эти самые заряды, в нем возникает электрический ток, который объясняется как отношение количества заряда, протекающего через проводник в 1 секунду. Сила, действующая на проводник с током в магнитном поле, называется силой Ампера и находится по правилу «левой руки».

Эмпирические данные

Столкнуться с магнитным взаимодействием можно в повседневной жизни, когда имеешь дело с постоянными магнитами, катушками индуктивности, реле или электрическими моторами. У каждого из них присутствует магнитное поле, которое невидимо для глаз. Проследить за ним можно только по его действию, которое оно оказывает на движущиеся частицы и на намагниченные тела.

Сила, действующая на проводник с током в магнитном поле, была изучена и описана французским физиком Ампером. В честь него названа не только эта сила, но еще и величина силы тока. В школе законы Ампера определяются как правила «левой» и «правой» руки.

Характеристики магнитного поля

Следует понимать, что магнитное поле всегда возникает не только вокруг источников электрического тока, но и вокруг магнитов. Его обычно изображают с помощью магнитных силовых линий. Графически это выглядит, как если бы на магнит положили лист бумаги, а сверху насыпали опилок железа. Они примут точно такой же вид, как на картинке снизу.

Во многих популярных книгах по физике сила магнитная вводится как результат экспериментальных наблюдений. Она считается отдельной фундаментальной силой природы. Такое представление ошибочно, на самом деле существование магнитной силы следует из принципа относительности. Ее отсутствие привело бы к нарушению этого принципа.

В магнитной силе нет ничего фундаментального — она представляет собой просто релятивисткое следствие закона Кулона.

Применение магнитов

Если верить легенде, в первом веке нашей эры на острове Магнесия древними греками были обнаружены необычные камни, которые обладали удивительными свойствами. Они притягивали к себе любые вещи, сделанные из железа или стали. Греки стали вывозить их с острова и изучать их свойства. А когда камни попали в руки уличных фокусников, то они стали незаменимыми помощниками во всех их выступлениях. Используя силы магнитных камешков, им удавалось создавать целое фантастическое шоу, которое привлекало множество зрителей.

По мере того как камни распространялись по всем частям света, о них стали ходить легенды и различные мифы. Однажды камни оказались в Китае, где их назвали в честь острова, на котором они были найдены. Магниты стали предметом изучения всех великих ученых того времени. Было замечено, что если положить магнитный железняк на деревянный поплавок, зафиксировать, а затем повернуть его, то он попытается вернуться в исходное положение. Проще говоря, магнитная сила, действующая на него, будет поворачивать железняк определенным образом.

Используя это свойство магнитов, ученые придумали компас. На круглую форму, изготовленную из дерева или пробки, были начерчены два основных полюса и установлена маленькая магнитная стрелка. Эту конструкцию опускали в небольшую посуду, наполненную водой. С течением времени модели компаса усовершенствовались и становились более точными. Ими пользуются не только мореплаватели, но и обычные туристы, которые любят изучать пустынные и горные местности.

Интересные опыты

Ученый Ханс Эрстед практически всю свою жизнь посвятил электричеству и магнитам. Однажды во время лекции в университете он показал своим студентам следущий опыт. Через обычный медный проводник он пропустил ток, через некоторое время проводник нагрелся и начал гнуться. Это было явлением теплового свойства электрического тока. Студенты продолжили эти опыты, и один из них заметил, что электрический ток обладает еще одним интересным свойством. Когда в проводнике протекал ток, стрелка находящегося рядом компаса начинала понемногу отклоняться. Изучая это явление более подробно, ученый обнаружил так называемую силу, действующую на проводник в магнитном поле.

Токи Ампера в магнитах

Учеными были предприняты попытки найти магнитный заряд, однако изолированный магнитный полюс не удалось обнаружить. Объясняется это тем, что, в отличие от электрических, магнитных зарядов не существует. Ведь иначе можно было бы отделить единичный заряд, просто отломав один из концов магнита. Однако при этом на другом конце образуется новый противоположный полюс.

В действительности любой магнит представляет собой соленоид, по поверхности которого циркулируют внутриатомные токи, они называются токами Ампера. Получается, что магнит можно рассматривать как металлический стержень, по которому циркулирует постоянный ток. Именно по этой причине введение в соленоид железного сердечника значительно увеличивает магнитное поле.

Энергия магнита или ЭДС

Как и любое физическое явление, магнитное поле обладает энергией, которую затрачивает на перемещение заряда. Существует понятие ЭДС (электродвижущая сила), она определяется как работа по перемещению единичного заряда из точки А0 в точку А1.

Описывается ЭДС законами Фарадея, которые применяются в трех различных физических ситуациях:

  1. Проводимый контур движется в создаваемом однородном магнитном поле. В этом случае говорят о магнитной ЭДС.
  2. Контур покоится, но движется сам источник магнитного поля. Это уже явление электрического ЭДС.
  3. И, наконец, контур и источник магнитного поля неподвижны, но меняется ток, который создает магнитное поле.

Численно ЭДС по формуле Фарадея равно: ЭДС = W/q.

Следовательно, электродвижущая сила не является силой в буквальном смысле, так как она измеряется в Джоулях на Кулон или в Вольтах. Получается, что она представляет собой энергию, которая сообщается электрону проводимости при обходе цепи. Каждый раз, совершая очередной обход вращающейся рамки генератора, электрон приобретает энергию, численно равную ЭДС. Эта дополнительная энергия может не только передаваться при столкновениях атомов внешней цепи, но и выделяться в виде Джоулева тепла.

Сила Лоренца и магниты

Сила, действующая на ток в магнитном поле, определяется по следующей формуле: q*|v|*|B|*sin a (произведение заряда магнитного поля, модули скорости этой же частицы, вектора индукции поля и синуса угла между их направлениями). Силу, которая действует на движущийся единичный заряд в магнитном поле, принято называть силой Лоренца. Интересен тот факт, что для этой силы недействителен 3-й закон Ньютона. Она подчиняется лишь закону сохранения импульса, именно поэтому все задачи по нахождению силы Лоренца следует решать, исходя из него. Давайте разберемся, как можно определить силу магнитного поля.

Задачи и примеры решений

Для нахождения силы, которая возникает вокруг проводника с током, необходимо знать несколько величин: заряд, его скорость и значение индукции возникающего магнитного поля. Следующая задача поможет понять, как вычислять силу Лоренца.

Определить силу, действующую на протон, который движется со скоростью 10 мм/с в магнитном поле индукцией 0,2 Кл (угол между ними 90о, так как заряженная частица движется перпендикулярно линиям индукции). Решение сводится к нахождению заряда. Заглянув в таблицу заядов, мы обнаружим, что протон обладает зарядом в 1,6*10-19 Кл. Далее вычисляем силу по формуле: 1,6*10-19 * 10 * 0,2 * 1 (синус прямого угла равен 1) = 3,2*10-19 Ньютонов.

fb.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *