ΠΠ΅ΠΊΡΠΈΠΈ ΡΠΈΠ·ΠΈΠΊΠ°
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ, ΡΠΎ Π΅ΡΡΡ ΠΊΠΎΠ³Π΄Π° ΡΠΊΠΎΡΠΎΡΡΡ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ (v = const) ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΡ Π½Π΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ (Π° = 0).
ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ΅Π»ΠΎ Π·Π° Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΠΌΡ ΡΠ°Π·ΠΎΠ±ΡΡΠΌ ΠΊΠ°ΠΊΠΎΠΉ-ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅, ΡΠΎ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΠΎ Π±ΡΠ΄Π΅Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°ΡΡΡΡ Π½Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ Π·Π° ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΡΡΠΈΡ ΠΎΡΡΠ΅Π·ΠΊΠΎΠ² Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΡΠ°ΠΊΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°. Π’ΠΎ Π΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π·Π° Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ:
vcp = v
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΠ°Π²Π½Π°Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π·Π° Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΊ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° t:
= / t
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΠΊΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
= β’ t
ΠΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΏΡΡΡ ΠΏΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ°Π²Π΅Π½ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°:
vx = v, ΡΠΎ Π΅ΡΡΡ v > 0
ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π°:
s = vt = x β x0
Π³Π΄Π΅ x0 β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π°, Ρ β ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° (ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ)
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ Π΅ΡΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ρ = Ρ (t), ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄:
Ρ = x0 + vt
ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Π½Π° ΠΎΡΡ ΠΠ₯ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ (v < 0), ΠΈ ΡΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄:
Ρ = x0 β vt
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΠΏΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° ΡΠΈΡ. 1.11. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½Π° (v = const), ΡΠΎ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ot.
Π ΠΈΡ. 1.11. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΡ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Π° ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΠΠΠ‘ (ΡΠΈΡ. 1.12), ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π²ΡΠ΅ΠΌΡ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΡΠ»ΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅.
Π ΠΈΡ. 1.12. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° ΡΠΈΡ. 1.13. ΠΠ· Π³ΡΠ°ΡΠΈΠΊΠ° Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½Π°
v = s1 / t1 = tg Ξ±
Π³Π΄Π΅ Ξ± β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π§Π΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΡΠ³ΠΎΠ» Ξ±, ΡΠ΅ΠΌ Π±ΡΡΡΡΠ΅Π΅ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΡΠ΅Π»ΠΎ, ΡΠΎ Π΅ΡΡΡ ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π΅Π³ΠΎ ΡΠΊΠΎΡΠΎΡΡΡ (Π±ΠΎΠ»ΡΡΠΈΠΉ ΠΏΡΡΡ ΡΠ΅Π»ΠΎ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ Π·Π° ΠΌΠ΅Π½ΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ). Π’Π°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π΅Π½ ΡΠΊΠΎΡΠΎΡΡΠΈ:
tg Ξ± = v
Π ΠΈΡ. 1.13. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° ΡΠΈΡ. 1.14. ΠΠ· ΡΠΈΡΡΠ½ΠΊΠ° Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ
tg Ξ±1 > tg Ξ±2
ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° 1 Π²ΡΡΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° 2 (v1 > v2).
tg Ξ±3 = v3 < 0
ΠΡΠ»ΠΈ ΡΠ΅Π»ΠΎ ΠΏΠΎΠΊΠΎΠΈΡΡΡ, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎ Π΅ΡΡΡ
Ρ = Ρ 0
Π ΠΈΡ. 1.14. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
Π‘Π²ΡΠ·Ρ ΡΠ³Π»ΠΎΠ²ΡΡ ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½
ΠΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π²ΡΠ°ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ ΡΠ΅Π»Π° ΠΈΠΌΠ΅ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ . Π‘ΠΊΠΎΡΠΎΡΡΡ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠΈ, Π±ΡΠ΄ΡΡΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΠΏΠΎ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅Ρ ΡΠ²ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅. ΠΠ΅Π»ΠΈΡΠΈΠ½Π° ΡΠΊΠΎΡΠΎΡΡΠΈΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΊΠΎΡΠΎΡΡΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°ΠΈ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ΠΌ R ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΎΡ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΡΡΡΡ Π·Π° ΠΌΠ°Π»ΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈΡΠ΅Π»ΠΎ ΠΏΠΎΠ²Π΅ΡΠ½ΡΠ»ΠΎΡΡ Π½Π° ΡΠ³ΠΎΠ»(ΡΠΈΡ 2.4). Π’ΠΎΡΠΊΠ°, Π½Π°Ρ ΠΎΠ΄ΡΡΠ°ΡΡΡ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ R ΠΎΡ ΠΎΡΠΈ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΏΡΡΡ, ΡΠ°Π²Π½ΡΠΉ
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ.
(2.6) |
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΡΠ΅ΠΊ Π²ΡΠ°ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ ΡΠ΅Π»Π°. ΠΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅:
ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈΠ· (2.6), Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ:
(2.7) |
Π’Π°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π²ΡΠΈΡΡ ΡΠ΅ΠΌ ΠΆΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ (2.6) ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ
(2.8) |
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΊΠ°ΠΊ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ΅, ΡΠ°ΠΊ ΠΈ, ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠ°ΡΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ Ρ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ΠΌ ΡΠΎΡΠΊΠΈ ΠΎΡ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ.
ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΈΡΡΠ΅ΠΌΠ° (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ) Π²ΠΎΠ·Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π² ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΡΠ΅ΡΠ΅Π· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΠΎΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠΎΠ·Π²ΡΠ°ΡΠ°ΡΡΠ°Ρ ΡΠΈΠ»Π° β ΡΠΈΠ»Π°, ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ. ΠΡΠ° ΡΠΈΠ»Π° ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΡΠ΅Π»ΠΎ ΠΈΠ»ΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΎΡΠΊΡ, ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½Π½ΡΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠΎΡ, Π²Π΅ΡΠ½ΡΡΡ Π² ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅.
Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ° Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅Π΅ΡΡ ΡΠ΅Π»ΠΎ ΡΠ°Π·Π»ΠΈΡΠ°ΡΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠ΅ (ΠΈΠ»ΠΈ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅) ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΈ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ.
Π‘Π²ΠΎΠ±ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΈΠΌΠ΅ΡΡ ΠΌΠ΅ΡΡΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π½Π° ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅Π΅ΡΡ ΡΠ΅Π»ΠΎ Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΡΠΎΠ»ΡΠΊΠΎ Π²ΠΎΠ·Π²ΡΠ°ΡΠ°ΡΡΠ°Ρ ΡΠΈΠ»Π°. Π ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ Π½Π΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΡΠ°ΡΡΠ΅ΠΈΠ²Π°Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ Π½Π΅Π·Π°ΡΡΡ Π°ΡΡΠΈΠΌΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ, ΡΠ΅Π°Π»ΡΠ½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ ΡΠ²Π»ΡΡΡΡΡ Π·Π°ΡΡΡ Π°ΡΡΠΈΠΌΠΈ, Ρ.ΠΊ. Π½Π° ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅Π΅ΡΡ ΡΠ΅Π»ΠΎ Π΄Π΅ΠΉΡΡΠ²ΡΡΡ ΡΠΈΠ»Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ (Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΡΠΈΠ»Ρ ΡΡΠ΅Π½ΠΈΡ).
ΠΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠ΅ΠΉΡΡ ΡΠΈΠ»Ρ, ΠΊΠΎΡΠΎΡΡΡ Π½Π°Π·ΡΠ²Π°ΡΡ Π²ΡΠ½ΡΠΆΠ΄Π°ΡΡΠ΅ΠΉ. ΠΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ ΡΠ»ΡΡΠ°ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ.
ΠΠ°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΠΌΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°ΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΡΡΡ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°:
(7.1) |
ΠΠ»Ρ ΠΈΠ»Π»ΡΡΡΡΠ°ΡΠΈΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΌΡΡΠ»Π° ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ, ΠΈ Π±ΡΠ΄Π΅ΠΌ Π²ΡΠ°ΡΠ°ΡΡ ΡΠ°Π΄ΠΈΡΡ ΠΠ Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ Ο ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ (7.1) ΡΡΡΠ΅Π»ΠΊΠΈ. ΠΡΠ»ΠΈ Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ Π»Π΅ΠΆΠ°Π» Π² Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΡΠΎ ΡΠ΅ΡΠ΅Π· Π²ΡΠ΅ΠΌΡ t ΠΎΠ½ ΡΠΌΠ΅ΡΡΠΈΡΡΡ Π½Π° ΡΠ³ΠΎΠ». ΠΡΠ»ΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» ΠΎΡΠ»ΠΈΡΠ΅Π½ ΠΎΡ Π½ΡΠ»Ρ ΠΈ ΡΠ°Π²Π΅Π½Ο0, ΡΠΎΠ³Π΄Π° ΡΠ³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½ ΠΡΠΎΠ΅ΠΊΡΠΈΡΠ½Π° ΠΎΡΡ Π₯Π1 ΡΠ°Π²Π½Π° . ΠΠΎ ΠΌΠ΅ΡΠ΅ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ°Π΄ΠΈΡΡΠ° ΠΠ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ, ΠΈ ΡΠΎΡΠΊΠ°Π±ΡΠ΄Π΅Ρ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ- Π²Π²Π΅ΡΡ , Π²Π½ΠΈΠ· ΠΈ Ρ.Π΄. ΠΡΠΈ ΡΡΠΎΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ ΡΠ°Π²Π½ΠΎ Π ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ; Ο β ΠΊΡΡΠ³ΠΎΠ²Π°Ρ ΠΈΠ»ΠΈ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ°;- ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ;β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°. ΠΠ° ΠΎΠ΄ΠΈΠ½ ΠΎΠ±ΠΎΡΠΎΡ ΡΠΎΡΠΊΠΈ Π ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π΅Π΅ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΎΠ²Π΅ΡΡΠΈΡ ΠΎΠ΄Π½ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅ ΠΈ Π²Π΅ΡΠ½Π΅ΡΡΡ Π² ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΡΠΎΡΠΊΡ.
ΠΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ Π’ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. ΠΠΎ ΠΈΡΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π’ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½, Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. ΠΠ° ΠΎΠ΄ΠΈΠ½ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ°ΡΡΡ ΡΠΎΡΠΊΠ° ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΡΡΡ, ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½ΡΠΉ ΡΠ΅ΡΡΡΠ΅ΠΌ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π°ΠΌ.
Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ, ΡΡΠΎ Π·Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ Π’ ΡΠ°Π΄ΠΈΡΡ ΠΠ ΡΠ΄Π΅Π»Π°Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΎΠ±ΠΎΡΠΎΡ, Ρ.Π΅. ΠΏΠΎΠ²Π΅ΡΠ½Π΅ΡΡΡ Π½Π° ΡΠ³ΠΎΠ» 2Ο ΡΠ°Π΄ΠΈΠ°Π½:
ΠΈΠ»ΠΈ
Π§Π°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΠΈΡΠ»ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΎΡΠΊΠΈ Π² ΠΎΠ΄Π½Ρ ΡΠ΅ΠΊΡΠ½Π΄Ρ, Ρ.Π΅. ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ:
ΠΡΡΠΆΡΠ½Π½ΡΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊ ΡΠΏΡΡΠ³ΠΈΠ΅ ΡΠΈΠ»Ρ.
ΠΡΡΠΆΠΈΠ½Π½ΡΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· ΠΏΡΡΠΆΠΈΠ½Ρ ΠΈ ΠΌΠ°ΡΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ°ΡΠ°, Π½Π°ΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π° Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠΆΠ΅Π½Ρ, Π²Π΄ΠΎΠ»Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ ΡΠΊΠΎΠ»ΡΠ·ΠΈΡΡ. ΠΡΡΡΡ Π½Π° ΠΏΡΡΠΆΠΈΠ½Π΅ ΡΠΊΡΠ΅ΠΏΠ»Π΅Π½ ΡΠ°ΡΠΈΠΊ Ρ ΠΎΡΠ²Π΅ΡΡΡΠΈΠ΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΊΠΎΠ»ΡΠ·ΠΈΡ Π²Π΄ΠΎΠ»Ρ Π½Π°ΠΏΡΠ°Π²Π»ΡΡΡΠ΅ΠΉ ΠΎΡΠΈ (ΡΡΠ΅ΡΠΆΠ½Ρ). ΠΠ° ΡΠΈΡ. 7.2,Π° ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΠ° Π² ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΠΏΠΎΠΊΠΎΡ; Π½Π° ΡΠΈΡ. 7.2,Π± β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠΆΠ°ΡΠΈΠ΅ ΠΈ Π½Π° ΡΠΈΡ. 7.2,Π² -ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΠΈΠΊΠ°.
ΠΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²ΠΎΠ·Π²ΡΠ°ΡΠ°ΡΡΠ΅ΠΉ ΡΠΈΠ»Ρ, ΡΠ°Π²Π½ΠΎΠΉ ΡΠΈΠ»Π΅ ΡΠΆΠ°ΡΠΈΡ, ΡΠ°ΡΠΈΠΊ Π±ΡΠ΄Π΅Ρ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. Π‘ΠΈΠ»Π° ΡΠΆΠ°ΡΠΈΡ F = -kx , Π³Π΄Π΅ k β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΆΠ΅ΡΡΠΊΠΎΡΡΠΈ ΠΏΡΡΠΆΠΈΠ½Ρ. ΠΠ½Π°ΠΊ ΠΌΠΈΠ½ΡΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΡΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΈΠ»Ρ F ΠΈ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ. ΠΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠΆΠ°ΡΠΎΠΉ ΠΏΡΡΠΆΠΈΠ½Ρ
ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ .
ΠΠ»Ρ Π²ΡΠ²ΠΎΠ΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΠΈΠΊΠ° Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ²ΡΠ·Π°ΡΡ Ρ ΠΈ t. ΠΡΠ²ΠΎΠ΄ ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°Π΅ΡΡΡ Π½Π° Π·Π°ΠΊΠΎΠ½Π΅ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ. ΠΠΎΠ»Π½Π°Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠΈΡΡΠ΅ΠΌΡ. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ :
. Π ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π±) :.
Π’Π°ΠΊ ΠΊΠ°ΠΊ Π² ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π·Π°ΠΊΠΎΠ½ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ:
. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΠΎΡΡΡΠ΄Π° ΡΠΊΠΎΡΠΎΡΡΡ:
ΠΠΎ Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ,. Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅. ΠΠ½ΡΠ΅Π³ΡΠΈΡΡΡ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΡΡΠΈΠΌ:,
Π³Π΄Π΅ β ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ. ΠΠ· ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π³ΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ
(7.2) |
Π‘ΡΠ°Π²Π½ΠΈΠ²Π°Ρ (7.1) Ρ (7.2), ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ
(7.3) |
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΏΡΡΠ³ΠΎΠΉ ΡΠΈΠ»Ρ ΡΠ΅Π»ΠΎ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. Π‘ΠΈΠ»Ρ ΠΈΠ½ΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ, ΡΠ΅ΠΌ ΡΠΏΡΡΠ³ΠΈΠ΅, Π½ΠΎ Π² ΠΊΠΎΡΠΎΡΡΡ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ F = -kx, Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΠΊΠ²Π°Π·ΠΈΡΠΏΡΡΠ³ΠΈΠΌΠΈ. ΠΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΡΠΈΡ ΡΠΈΠ» ΡΠ΅Π»Π° ΡΠΎΠΆΠ΅ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. ΠΡΠΈ ΡΡΠΎΠΌ:
ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅: | |
ΡΠΊΠΎΡΠΎΡΡΡ: | |
ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅: |
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊ.
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠΎΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ°, ΠΏΠΎΠ΄Π²Π΅ΡΠ΅Π½Π½Π°Ρ Π½Π° Π½Π΅ΡΠ°ΡΡΡΠΆΠΈΠΌΠΎΠΉ Π½Π΅Π²Π΅ΡΠΎΠΌΠΎΠΉ Π½ΠΈΡΠΈ, ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΠ°Ρ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎΠΉ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ»Ρ ΡΡΠΆΠ΅ΡΡΠΈ.
Π’Π°ΠΊΠΈΠΌ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ ΡΡΠΆΠ΅Π»ΡΠΉ ΡΠ°Ρ ΠΌΠ°ΡΡΠΎΠΉ m, ΠΏΠΎΠ΄Π²Π΅ΡΠ΅Π½Π½ΡΠΉ Π½Π° ΡΠΎΠ½ΠΊΠΎΠΉ Π½ΠΈΡΠΈ, Π΄Π»ΠΈΠ½Π° l ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π°ΠΌΠ½ΠΎΠ³ΠΎ Π±ΠΎΠ»ΡΡΠ΅ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΡΠ°ΡΠ°. ΠΡΠ»ΠΈ Π΅Π³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΡΡ Π½Π° ΡΠ³ΠΎΠ» Ξ± (ΡΠΈΡ.7.3.) ΠΎΡ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΡΠΎ ΠΏΠΎΠ΄ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΡΠΈΠ»Ρ F β ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ Π²Π΅ΡΠ° Π ΠΎΠ½ Π±ΡΠ΄Π΅Ρ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. ΠΡΡΠ³Π°Ρ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ°Ρ , Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½Π°Ρ Π²Π΄ΠΎΠ»Ρ Π½ΠΈΡΠΈ, Π½Π΅ ΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ, Ρ.ΠΊ. ΡΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΠ²Π°Π΅ΡΡΡ ΡΠΈΠ»ΠΎΠΉ Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ Π½ΠΈΡΠΈ. ΠΡΠΈ ΠΌΠ°Π»ΡΡ ΡΠ³Π»Π°Ρ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡΠΈ, ΡΠΎΠ³Π΄Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΡΡΠΈΡΡΠ²Π°ΡΡ ΠΏΠΎ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΌΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ. ΠΠ· ΡΠΈΡ.7.3 Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ°Ρ Π²Π΅ΡΠ°, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Π°Ρ Π½ΠΈΡΠΈ, ΡΠ°Π²Π½Π°
ΠΠ½Π°ΠΊ ΠΌΠΈΠ½ΡΡ Π² ΠΏΡΠ°Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ ΡΠΎ, ΡΡΠΎ ΡΠΈΠ»Π° F Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° Π² ΡΡΠΎΡΠΎΠ½Ρ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΡΠ³Π»Π° Ξ±. Π‘ ΡΡΠ΅ΡΠΎΠΌ ΠΌΠ°Π»ΠΎΡΡΠΈ ΡΠ³Π»Π° Ξ±
ΠΠ»Ρ Π²ΡΠ²ΠΎΠ΄Π° Π·Π°ΠΊΠΎΠ½Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ Π: , ΠΈ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ:M = FL . ΠΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ J Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π£Π³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅:
Π‘ ΡΡΠ΅ΡΠΎΠΌ ΡΡΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½ ΠΈΠΌΠ΅Π΅ΠΌ:
ΠΈΠ»ΠΈ
(7.8) |
ΠΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ,
Π³Π΄Π΅ ΠΈ | (7.9) |
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΠΌ, ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΈΠ»Ρ ΡΡΠΆΠ΅ΡΡΠΈ ΠΈ Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ°ΡΡΡ Π°ΡΡΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ.
ΠΡΠ΅ ΡΠ΅Π°Π»ΡΠ½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ²Π»ΡΡΡΡΡ Π΄ΠΈΡΡΠΈΠΏΠ°ΡΠΈΠ²Π½ΡΠΌΠΈ. ΠΠ½Π΅ΡΠ³ΠΈΡ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°ΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠΎΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎ ΡΠ°ΡΡ ΠΎΠ΄ΡΠ΅ΡΡΡ Π½Π° ΡΠ°Π±ΠΎΡΡ ΠΏΡΠΎΡΠΈΠ² ΡΠΈΠ» ΡΡΠ΅Π½ΠΈΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π²ΡΠ΅Π³Π΄Π° Π·Π°ΡΡΡ Π°ΡΡ β ΠΈΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΏΠΎΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ. ΠΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ ΡΠ»ΡΡΠ°ΡΡ , ΠΊΠΎΠ³Π΄Π° ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ ΡΡΡ ΠΎΠ΅ ΡΡΠ΅Π½ΠΈΠ΅, Π² ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ, ΡΡΠΎ ΠΏΡΠΈ Π½Π΅Π±ΠΎΠ»ΡΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΈΠ»Ρ, Π²ΡΠ·ΡΠ²Π°ΡΡΠΈΠ΅ Π·Π°ΡΡΡ Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΡ , ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΡΠΈ ΡΠΈΠ»Ρ, Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΠΈΡ ΠΏΡΠΎΠΈΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ, Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠΈΠ»Π°ΠΌΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ.
(7.17) |
Π³Π΄Π΅ r β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ, v β ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΠΈΡΠ΅ΠΌ Π²ΡΠΎΡΠΎΠΉ Π·Π°ΠΊΠΎΠ½ ΠΡΡΡΠΎΠ½Π° Π΄Π»Ρ Π·Π°ΡΡΡ Π°ΡΡΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ΅Π»Π° Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ ΠΠ₯
ΠΈΠ»ΠΈ
(7.18) |
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅:
ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ:
Π³Π΄Π΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΡ ΡΠ°ΡΡΠΎΡΡ, Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΠ²Π΅ΡΡΠ°Π»ΠΈΡΡ Π±Ρ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΡΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΡΠ΅Π΄Ρ, Ρ.Π΅. ΠΏΡΠΈ r = 0. ΠΡΡ ΡΠ°ΡΡΠΎΡΡ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ; Ξ² β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΡΡΡ Π°Π½ΠΈΡ. Π’ΠΎΠ³Π΄Π°
(7.19) |
ΠΡΠ΄Π΅ΠΌ ΠΈΡΠΊΠ°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ (7.19) Π² Π²ΠΈΠ΄Π΅ Π³Π΄Π΅ U β Π½Π΅ΠΊΠΎΡΠΎΡΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΡ t.
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ Π΄Π²Π° ΡΠ°Π·Π° ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t ΠΈ, ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΈ Π²ΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ (7.19), ΠΏΠΎΠ»ΡΡΠΈΠΌ
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π·Π½Π°ΠΊΠ° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°, ΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΏΡΠΈ U. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ»ΡΡΠ°ΠΉ, ΠΊΠΎΠ³Π΄Π° ΡΡΠΎΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ. ΠΠ²Π΅Π΄Π΅ΠΌ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ³Π΄Π° Π‘ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ Ο ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΊΠ°ΠΊ ΠΌΡ Π·Π½Π°Π΅ΠΌ, ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π² ΡΠ»ΡΡΠ°Π΅ ΠΌΠ°Π»ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΡΠ΅Π΄Ρ , ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ (7.19) Π±ΡΠ΄Π΅Ρ ΡΡΠ½ΠΊΡΠΈΡ
(7.20) |
ΠΡΠ°ΡΠΈΠΊ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° ΡΠΈΡ. 7.8. ΠΡΠ½ΠΊΡΠΈΡΠ½ΡΠΌΠΈ Π»ΠΈΠ½ΠΈΡΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ ΠΏΡΠ΅Π΄Π΅Π»Ρ, Π² ΠΊΠΎΡΠΎΡΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ ΡΠΎΡΠΊΠΈ. ΠΠ΅Π»ΠΈΡΠΈΠ½Ρ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π΄ΠΈΡΡΠΈΠΏΠ°ΡΠΈΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ. ΠΠ°ΡΡΡ Π°ΡΡΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ Π½Π΅ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, Ρ.ΠΊ, Π² Π½ΠΈΡ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ. ΠΠ΅Π»ΠΈΡΠΈΠ½ΡΠΎΠ±ΡΡΠ½ΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ Π·Π°ΡΡΡ Π°ΡΡΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½Π΅Π΅ β ΡΡΠ»ΠΎΠ²Π½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ Π·Π°ΡΡΡ Π°ΡΡΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ,
ΠΠ°ΡΡΡΠ°Π»ΡΠ½ΡΠΉ Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ, ΡΠ»Π΅Π΄ΡΡΡΠΈΡ Π΄ΡΡΠ³ Π·Π° Π΄ΡΡΠ³ΠΎΠΌ ΡΠ΅ΡΠ΅Π· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ Π’, Π½Π°Π·ΡΠ²Π°ΡΡ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π΅ΠΊΡΠ΅ΠΌΠ΅Π½ΡΠΎΠΌ Π·Π°ΡΡΡ Π°Π½ΠΈΡ.
ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ ΡΠ΅ΡΠ΅Π· Ο ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π·Π° ΠΊΠΎΡΠΎΡΡΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ Π² Π΅ ΡΠ°Π·. Π’ΠΎΠ³Π΄Π°
ΠΎΡΠΊΡΠ΄Π°
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΡΡΡ Π°Π½ΠΈΡ Π΅ΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ο, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΡΠ±ΡΠ²Π°Π΅Ρ Π² Π΅ ΡΠ°Π·. ΠΠ΅Π»ΠΈΡΠΈΠ½Π° Ο Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΡΠ΅Π»Π°ΠΊΡΠ°ΡΠΈΠΈ.
ΠΡΡΡΡ N β ΡΠΈΡΠ»ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΠΏΠΎΡΠ»Π΅ ΠΊΠΎΡΠΎΡΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ Π² Π΅ ΡΠ°Π·, Π’ΠΎΠ³Π΄Π°
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π΄Π΅ΠΊΡΠ΅ΠΌΠ΅Π½Ρ Π·Π°ΡΡΡ Π°Π½ΠΈΡ Ξ΄ Π΅ΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΡΠΈΡΠ»Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ N, ΠΏΠΎ ΠΈΡΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΡΠ±ΡΠ²Π°Π΅Ρ Π² Π΅ ΡΠ°Π·
ΠΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ.
Π ΡΠ»ΡΡΠ°Π΅ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½Π΅ΠΉ (Π²ΡΠ½ΡΠΆΠ΄Π°ΡΡΠ΅ΠΉ) ΡΠΈΠ»Ρ, ΠΈ Π·Π° ΡΡΠ΅Ρ ΡΠ°Π±ΠΎΡΡ ΡΡΠΎΠΉ ΡΠΈΠ»Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡΡΡΡΡΡ ΠΏΠΎΡΠ΅ΡΠΈ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠΈΡΡΠ΅ΠΌΡ. Π§Π°ΡΡΠΎΡΠ° Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (Π²ΡΠ½ΡΠΆΠ΄Π°ΡΡΠ°Ρ ΡΠ°ΡΡΠΎΡΠ°) Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠ°ΡΡΠΎΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ΅Π»Π° ΠΌΠ°ΡΡΠΎΠΉ m, ΡΡΠΈΡΠ°Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π½Π΅Π·Π°ΡΡΡ Π°ΡΡΠΈΠΌΠΈ Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΈΠ»Ρ .
ΠΡΡΡΡ ΡΡΠ° ΡΠΈΠ»Π° ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ , Π³Π΄Π΅Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° Π²ΡΠ½ΡΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠΈΠ»Ρ. ΠΠΎΠ·Π²ΡΠ°ΡΠ°ΡΡΠ°Ρ ΡΠΈΠ»Π°ΠΈ ΡΠΈΠ»Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠ’ΠΎΠ³Π΄Π° Π²ΡΠΎΡΠΎΠΉ Π·Π°ΠΊΠΎΠ½ ΠΡΡΡΠΎΠ½Π° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅:
ΠΈΠ»ΠΈ
(7.21) |
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠ΅Π΅ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ»Ρ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΠ²ΡΠΈΠ΅ΡΡ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΡΡΡΡ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ: (7.22) ΠΏΡΠΈΡΠ΅ΠΌ ΠΈΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΡΠ°Π²Π½Π° ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΠ΅ Ο Π²ΡΠ½ΡΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠΈΠ»Ρ.
ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΡ Π΄Π²Π° ΡΠ°Π·Π° (7.22) ΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π² (7.21), ΠΏΠΎΠ»ΡΡΠΈΠΌ
ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ:
Π’ΠΎΠ³Π΄Π° ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅:
ΠΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ ΡΡΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΊΠ°ΠΊ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠ΅Π³ΠΎΡΡ ΠΏΡΠΈ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΡΠ΅Ρ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠΌΠΈ Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΡΠΎΠ³ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°. ΠΠ»Ρ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΡΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²Π΅ΠΊΡΠΎΡΠ½ΡΡ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌ. ΠΡΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΎΠΏΠΎΡΠ½ΡΡ Π»ΠΈΠ½ΠΈΡ ΠΠ₯ (ΡΠΈΡ. 1.9) ΠΈ ΠΎΡΠ»ΠΎΠΆΠΈΠΌ ΠΏΠΎΠ΄ ΡΠ³Π»Π°ΠΌΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΌ ΡΠ°Π·Π°ΠΌ Π²ΡΠ΅Ρ ΡΠ΅ΡΡΡΠ΅Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²Π΅ΠΊΡΠΎΡΡ ,,,ΠΈΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠΎΠ±Ρ
ΠΠ· ΡΠΈΡ. 7.9 Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ (1.22), ΠΏΠΎΠ»ΡΡΠΈΠΌ:
ΠΎΡΡΡΠ΄Π°
(7.23) |
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΡΡΡΠ°Π½ΠΎΠ²ΠΈΠ²ΡΠΈΡ ΡΡ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΡΡΠΌΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Π° Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π΅ Π²ΡΠ½ΡΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠΈΠ»Ρ F0, ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Π° ΠΌΠ°ΡΡΠ΅ m ΡΠΈΡΡΠ΅ΠΌΡ ΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Π·Π°ΡΡΡ Π°Π½ΠΈΡ Ξ². ΠΡΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΡ F0, m ΠΈ Ξ² Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° Π·Π°Π²ΠΈΡΠΈΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ°ΡΡΠΎΡ Π²ΡΠ½ΡΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠΈΠ»Ρ Ξ² ΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΡ Π½Π΅Π·Π°ΡΡΡ Π°ΡΡΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΈΡΡΠ΅ΠΌΡ . ΠΡΠΈ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΠ΅ Π²ΡΠ½ΡΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠΈΠ»Ρ Ο=0 Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π½Π΅ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΡΡ ΠΈ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΡ ΡΠ°Π²Π½ΠΎ ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΈΠ»Ρ F0:
ΠΠΎΡΡΠΎΠΌΡ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ A0 ΠΈΠ½ΠΎΠ³Π΄Π° Π½Π°Π·ΡΠ²Π°ΡΡ ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ΠΎΠΉ.
ΠΡΠ»ΠΈ Π½Π΅Ρ Π΄ΠΈΡΡΠΈΠΏΠ°ΡΠΈΠΈ Ρ.Π΅ Ξ²=0, ΡΠΎ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
ΡΠ°ΡΡΠ΅Ρ Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ Ο Π²ΡΠ½ΡΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠΈΠ»Ρ FΠ²Π½ ΠΈ ΠΏΡΠΈ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ (ΡΠΈΡ. 7.10). ΠΡΠΈ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ ΡΠΎΡΡΠ΅ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ Ο Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° Π Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ, ΠΏΡΠΈΡΠ΅ΠΌ
Π―Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΊΠΎΠ³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΡΠΈ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²ΡΠ½ΡΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠ°ΡΡΠΎΡΡ Ο ΠΊ ΡΠ°ΡΡΠΎΡΠ΅ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠΎΠΌ.
ΠΡΠ»ΠΈ Π·Π°ΡΡΡ Π°Π½ΠΈΠ΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΎ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΠ³Π΄Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ Π΄Π»Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ (7.23) Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°. ΠΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°Ρ Π½ΡΠ»Ρ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΠΎ Ο ΠΎΡ ΠΏΠΎΠ΄ΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ Π΅Π³ΠΎ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ, Π³Π΄Π΅- Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ.ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ ΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ Ο Π²ΡΠ½ΡΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠΈΠ»Ρ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ.
ΠΠ· ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΉ ΡΠΎΡΠΌΡΠ»Ρ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π΄Π»Ρ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°ΡΠΈΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ , Π° Π΄Π»Ρ Π΄ΠΈΡΡΠΈΠΏΠ°ΡΠΈΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡΠ½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΌΠ΅Π½ΡΡΠ΅ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ°ΡΡΠΎΡΡ. Π‘ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Π·Π°ΡΡΡ Π°Π½ΠΈΡ Ο ΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ° ΠΏΡΠΎΡΠ²Π»ΡΠ΅ΡΡΡ Π²ΡΠ΅ ΡΠ»Π°Π±Π΅Π΅, ΠΈ, Π½Π°ΠΊΠΎΠ½Π΅Ρ ΠΏΡΠΈΠΈΡΡΠ΅Π·Π°Π΅Ρ ΡΠΎΠ²ΡΠ΅ΠΌ.
Π―Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ . ΠΠ΄Π½Π°ΠΊΠΎ ΠΏΡΠΈ ΠΊΠΎΠ½ΡΡΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΌΠ°ΡΠΈΠ½ ΠΈ ΡΠΎΠΎΡΡΠΆΠ΅Π½ΠΈΠΉ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠΈΡΡΠ²Π°ΡΡ Π΄Π°ΠΆΠ΅ ΡΠ°ΠΌΡΡ Π½Π΅Π±ΠΎΠ»ΡΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΡΡ ΡΠΈΠ»Ρ Ρ ΡΠ΅ΠΌ, ΡΡΠΎΠ±Ρ ΠΏΡΠ΅Π΄ΠΎΡΠ²ΡΠ°ΡΠΈΡΡ Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΠ²ΠΈΡ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ°.
studfiles.net
3. Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ, ΡΠΎ Π΅ΡΡΡ ΠΊΠΎΠ³Π΄Π° ΡΠΊΠΎΡΠΎΡΡΡ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ (v = const) ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΡ Π½Π΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ (Π° = 0).
ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ΅Π»ΠΎ Π·Π° Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΠΌΡ ΡΠ°Π·ΠΎΠ±ΡΡΠΌ ΠΊΠ°ΠΊΠΎΠΉ-ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅, ΡΠΎ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΠΎ Π±ΡΠ΄Π΅Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°ΡΡΡΡ Π½Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ Π·Π° ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΡΡΠΈΡ ΠΎΡΡΠ΅Π·ΠΊΠΎΠ² Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΡΠ°ΠΊΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°. Π’ΠΎ Π΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π·Π° Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ:
vcp = v
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΠ°Π²Π½Π°Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π·Π° Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΊ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° t:
V(Π²Π΅ΠΊΡΠΎΡ) = s(Π²Π΅ΠΊΡΠΎΡ) / t
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΠΊΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
s(Π²Π΅ΠΊΡΠΎΡ) = V(Π²Π΅ΠΊΡΠΎΡ) β’ t
ΠΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΏΡΡΡ ΠΏΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ°Π²Π΅Π½ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°:
vx = v, ΡΠΎ Π΅ΡΡΡ v > 0
ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π°:
s = vt = x β x0
Π³Π΄Π΅ x0 β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π°, Ρ β ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° (ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ)
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ Π΅ΡΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ρ = Ρ (t), ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄:
Ρ = x0 + vt
ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Π½Π° ΠΎΡΡ ΠΠ₯ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ (v < 0), ΠΈ ΡΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄:
Ρ = x0 β vt
4. Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ ΡΠ°ΡΡΠ½ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΠ΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ΅Π»ΠΎ (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ°) Π·Π° ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ Π½Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π³ΠΎΡΠΎΠ΄ΡΠΊΠΎΠΉ Π°Π²ΡΠΎΠ±ΡΡ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΡΡΠΎΠΈΡ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΠΈΠ· ΡΠ°Π·Π³ΠΎΠ½ΠΎΠ² ΠΈ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠΉ.
Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Π·Π° Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ.
Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΎΡΡΠ°ΡΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΈ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ (a = const).
Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌ ΠΈΠ»ΠΈ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΡΠΌ.
Π Π°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ ΡΠ°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΠΎ ΡΠ°Π·Π³ΠΎΠ½ΡΠ΅ΡΡΡ Ρ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ. Π ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ ΡΠ°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΠΎ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ Π·Π°ΠΌΠ΅Π΄Π»ΡΠ΅ΡΡΡ. ΠΡΠΈ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ, Π° ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ.
Π ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠ΅ Π»ΡΠ±ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌ, ΠΏΠΎΡΡΠΎΠΌΡ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π»ΠΈΡΡ Π·Π½Π°ΠΊΠΎΠΌ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π½Π° Π²ΡΠ±ΡΠ°Π½Π½ΡΡ ΠΎΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π‘ΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΡΡΡΠΌ Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π½Π° Π²ΡΠ΅ΠΌΡ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΡΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π±ΡΠ»ΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΠΎ. ΠΠ΄ΠΈΠ½ΠΈΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ β ΠΌ/Ρ.
vcp = s / t
ΠΠ³Π½ΠΎΠ²Π΅Π½Π½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ β ΡΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠ΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΈ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ξt:
V=lim(^t-0) ^s/^t
ΠΠ΅ΠΊΡΠΎΡ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
V(Π²Π΅ΠΊΡΠΎΡ) = sβ(Π²Π΅ΠΊΡΠΎΡ)
ΠΡΠΎΠ΅ΠΊΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΎΡΡ ΠΠ₯:
vx = xβ
ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π΄ΡΡΠ³ΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΠ΅ ΠΎΡΠΈ).
Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ Π±ΡΡΡΡΠΎΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π°, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠ΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΠΈ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ξt:
Π°(Π²Π΅ΠΊΡΠΎΡ) = lim (t-0) ^v(Π²Π΅ΠΊΡΠΎΡ)/^t
ΠΠ΅ΠΊΡΠΎΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ ΠΊΠ°ΠΊ Π²ΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
a(Π²Π΅ΠΊΡΠΎΡ) = v(Π²Π΅ΠΊΡΠΎΡ)β = s(Π²Π΅ΠΊΡΠΎΡ)Β»
Π£ΡΠΈΡΡΠ²Π°Ρ, ΡΡΠΎ 0 β ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ), β ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ), t β ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ,ΡΠΎΡΠΌΡΠ»Π° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π±ΡΠ΄Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ:
a(Π²Π΅ΠΊΡΠΎΡ) = v(Π²Π΅ΠΊΡΠΎΡ)-v0(Π²Π΅ΠΊΡΠΎΡ)/t
ΠΡΡΡΠ΄Π° ΡΠΎΡΠΌΡΠ»Π° ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
v(Π²Π΅ΠΊΡΠΎΡ) = v0(Π²Π΅ΠΊΡΠΎΡ) + a(Π²Π΅ΠΊΡΠΎΡ)t
ΠΡΠ»ΠΈ ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ ΠΠ₯ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡΠ΅ΠΉ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Ρ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠ΅ΠΉ ΡΠ΅Π»Π°, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΡΡΡ ΠΎΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
vx = v0x Β± axt
ΠΠ½Π°ΠΊ Β«-Β» (ΠΌΠΈΠ½ΡΡ) ΠΏΠ΅ΡΠ΅Π΄ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠ΅ΠΉ Π²Π΅ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΉ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π΄ΡΡΠ³ΠΈΠ΅ ΠΎΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ (a = const), ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ β ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ 0t (ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΈΡ. 1.15).
Π ΠΈΡ. 1.15. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ β ΡΡΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ (ΡΠΈΡ. 1.16).
Π ΠΈΡ. 1.16. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (ΡΠΈΡ. 1.16) ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΡΠΎ
ΠΡΠΈ ΡΡΠΎΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½ΠΎ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΠΈΠ³ΡΡΡ 0abc (ΡΠΈΡ. 1.16).
ΠΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΡΠΌΠΌΡ Π΄Π»ΠΈΠ½ Π΅Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° Π²ΡΡΠΎΡΡ. ΠΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ 0abc ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Ρ:
0a = v0
bc = v
ΠΡΡΠΎΡΠ° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Π° t. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Π° Π·Π½Π°ΡΠΈΡ, ΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π°:
Π ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π° ΠΈ Π² ΡΠΎΡΠΌΡΠ»Π΅ Π΄Π»Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ°Π²ΠΈΡΡΡ Π·Π½Π°ΠΊ Β«βΒ» (ΠΌΠΈΠ½ΡΡ).
ΠΠ±ΡΠ°Ρ ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ:
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° ΡΠΈΡ. 1.17. ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ v0 = 0 ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° ΡΠΈΡ. 1.18.
Π ΠΈΡ. 1.17. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ.
Π ΠΈΡ. 1.18. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t1 ΡΠ°Π²Π½Π° ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΠΈ ΠΎΡΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ v = tg Ξ±, Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΡΠ»ΠΈ Π²ΡΠ΅ΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄ΡΡΠ³ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠ΅ΡΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈΠ· Π΄Π²ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
Π€ΠΎΡΠΌΡΠ»Π° ΡΠΎΠΊΡΠ°ΡΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ Π½Π°ΠΌ Π²ΡΠ²Π΅ΡΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ:
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΡΠΌΠΌΠΎΠΉ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ x(t) ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° (ΠΊΠ°ΠΊ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ), Π½ΠΎ Π²Π΅ΡΡΠΈΠ½Π° ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π² ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΡΠ°Π»ΠΎΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΡΠΈ Π°x < 0 ΠΈ Ρ 0 = 0 Π²Π΅ΡΠ²ΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π½ΠΈΠ· (ΡΠΈΡ. 1.18).
studfiles.net
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β FIZI4KA

1. Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ΅Π»ΠΎ Π·Π° Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. Π‘Π»ΠΎΠ²Π° Β«Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅Β» ΠΎΠ·Π½Π°ΡΠ°ΡΡ, ΡΡΠΎ Π·Π° ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Ρ, Π·Π° ΠΊΠ°ΠΆΠ΄ΡΡ ΠΌΠΈΠ½ΡΡΡ, Π·Π° ΠΊΠ°ΠΆΠ΄ΡΠ΅ 30 ΠΌΠΈΠ½ΡΡ, Π·Π° ΠΊΠ°ΠΆΠ΄ΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ, Π·Π° ΠΊΠ°ΠΆΠ΄ΡΡ Π΄ΠΎΠ»Ρ ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠ΅Π»ΠΎ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΠΈΠ΄Π΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ·Π΄Π°ΡΡ ΡΠ°ΠΊΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ, ΡΡΠΎΠ±Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° Π±ΡΠ»ΠΎ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΡΠΌ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π Π΅Π°Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π»ΠΈΡΡ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ°ΡΡΡΡ ΠΊ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Ρ ΡΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΡΡ ΡΠΎΡΠ½ΠΎΡΡΠΈ.
2. ΠΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡΡ Ρ ΡΠ°Π·Π½ΠΎΠΉ Π±ΡΡΡΡΠΎΡΠΎΠΉ. ΠΡΠΎ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β Π΅Π³ΠΎ Β«Π±ΡΡΡΡΠΎΡΠ°Β» Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ, Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ.
Π‘ΠΊΠΎΡΠΎΡΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π°Π·ΡΠ²Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΠ½ΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΡΠ°Π²Π½ΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΡΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ.
ΠΡΠ»ΠΈ Π·Π° Π²ΡΠ΅ΠΌΡ β\( t \)β ΡΠ΅Π»ΠΎ ΡΠΎΠ²Π΅ΡΡΠΈΠ»ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ β\( \vec{s} \)β, ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β\( \vec{v} \)β ΡΠ°Π²Π½Π° β\( \vec{v}=\frac{\vec{s}}{t} \)β.
ΠΠ΄ΠΈΠ½ΠΈΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ: \( [\,v\,]=\frac{[\,s\,]}{[\,t\,]} \); \( [\,v\,]=\frac{1\,ΠΌ}{1\,Ρ}=1\frac{ΠΌ}{Ρ} \). ΠΠ° Π΅Π΄ΠΈΠ½ΠΈΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΡΡΡ 1 ΠΌ/Ρ β ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ΅Π»ΠΎ Π·Π° 1 Ρ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ 1 ΠΌ.
ΠΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π° Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ: \( \vec{s}=\vec{v}t \). ΠΠ΅ΠΊΡΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ Π²Π΅ΠΊΡΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π² ΠΎΠ΄Π½Ρ ΡΡΠΎΡΠΎΠ½Ρ β Π² ΡΡΠΎΡΠΎΠ½Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°.
3. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°, Ρ.Π΅. Π΅Π³ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
ΠΡΡΡΡ \( \vec{s} \) β ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° (ΡΠΈΡ. 11). ΠΠ°ΠΏΡΠ°Π²ΠΈΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΡ ΠΠ₯ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΡ ΠΠ₯. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ β\( x_0 \)β β ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, β\( x \)β β ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π½Π° ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠ΅ΠΊ: β\( \vec{s}_x=x-x_0 \)β. Π‘ Π΄ΡΡΠ³ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΡΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π° Π²ΡΠ΅ΠΌΡ, Ρ.Π΅. \( \vec{s}_x=\vec{v}_xt \). ΠΡΠΊΡΠ΄Π° β\( x-x_0=\vec{v}_xt \)β ΠΈΠ»ΠΈ \( x=x_0+\vec{v}_xt \). ΠΡΠ»ΠΈ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° β\( x_0 \)β = 0, ΡΠΎ β\( x=\vec{v}_xt \)β.
ΠΠΎΠ»ΡΡΠ΅Π½Π½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ, ΡΠ°ΠΊ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ. ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°, Π΅ΡΠ»ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΎΡΠΈ ΠΠ₯ (ΡΠΈΡ. 12). Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ β\( x>x_0 \)β. ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, Π΅ΡΠ»ΠΈ ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΏΡΠΎΡΠΈΠ² ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠΈ ΠΠ₯ (ΡΠΈΡ. 12). Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ \( x<x_0 \).
4. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ.
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΈΠ· Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π²Π΄ΠΎΠ»Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠΈ ΠΠ₯ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ. ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π° 4 ΠΌ/Ρ. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄: β\( x \)β = 4 ΠΌ/Ρ Β· β\( t \)β. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ β Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ. ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΠ°ΠΊΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ (ΡΠΈΡ. 13).
ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ Π΅Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ: ΠΎΠ΄Π½Π° ΠΈΠ· Π½ΠΈΡ β\( t \)β = 0 ΠΈ β\( x \)β = 0, Π° Π΄ΡΡΠ³Π°Ρ β\( t \)β = 1 Ρ, β\( x \)β = 4 ΠΌ. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΉ Π΄Π°Π½Π½ΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΡΠ»ΠΈ Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° β\( x_0 \)β = 2 ΠΌ, Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π΅Π³ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ β\( v_x \)β = 4 ΠΌ/Ρ, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄: β\( x \)β = 2 ΠΌ + 4 ΠΌ/Ρ Β· β\( t \)β. ΠΡΠΎ ΡΠΎΠΆΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΠΈ Π΅Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ β\( t \)β = 0, β\( x \)β = 2 ΠΌ (ΡΠΈΡ. 14).
Π ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄: \( x \)β = 2 ΠΌ β 4 ΠΌ/Ρ Β· β\( t \)β. ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ°ΠΊΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ 15.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΠΏΠΈΡΠ°Π½ΠΎ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈ, Ρ.Π΅. Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ (ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ), ΠΈ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ, Ρ.Π΅. Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ 16.
5. ΠΠΈΠΆΠ΅ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΠΊΠΈ β ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π² Π½Π΅ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ°Π΄Π°ΡΠ°. ΠΠ²Π° Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Π΄Π²ΠΈΠΆΡΡΡΡ Π½Π°Π²ΡΡΡΠ΅ΡΡ Π΄ΡΡΠ³ Π΄ΡΡΠ³Ρ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ ΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎ: ΠΎΠ΄ΠΈΠ½ ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ 15 ΠΌ/Ρ, Π΄ΡΡΠ³ΠΎΠΉ β ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ 12 ΠΌ/Ρ. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅ Π²ΡΠ΅ΠΌΡ ΠΈ ΠΌΠ΅ΡΡΠΎ Π²ΡΡΡΠ΅ΡΠΈ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ, Π΅ΡΠ»ΠΈ Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ ΡΠ°Π²Π½ΠΎ 270 ΠΌ.
ΠΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°ΡΠΈ ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎ ΠΏΡΠΈΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ:
- ΠΡΠ°ΡΠΊΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ.
- ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΡΠΈΡΡΠ°ΡΠΈΡ, ΠΎΠΏΠΈΡΠ°Π½Π½ΡΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΠΈ Π·Π°Π΄Π°ΡΠΈ:
β Π²ΡΡΡΠ½ΠΈΡΡ, ΠΌΠΎΠΆΠ½ΠΎ Π»ΠΈ ΠΏΡΠΈΠ½ΡΡΡ Π΄Π²ΠΈΠΆΡΡΠΈΠ΅ΡΡ ΡΠ΅Π»Π° Π·Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ;
β ΡΠ΄Π΅Π»Π°ΡΡ ΡΠΈΡΡΠ½ΠΎΠΊ, ΠΈΠ·ΠΎΠ±ΡΠ°Π·ΠΈΠ² Π½Π° Π½ΡΠΌ Π²Π΅ΠΊΡΠΎΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ;
β Π²ΡΠ±ΡΠ°ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΡΡΠ° β ΡΠ΅Π»ΠΎ ΠΎΡΡΡΡΡΠ°, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΠ΅ΠΉ, Π½Π°ΡΠ°Π»ΠΎ ΠΎΡΡΡΡΡΠ° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, Π½Π°ΡΠ°Π»ΠΎ ΠΎΡΡΡΡΡΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ; Π·Π°ΠΏΠΈΡΠ°ΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ (Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ) Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°. - ΠΠ°ΠΏΠΈΡΠ°ΡΡ Π² ΠΎΠ±ΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π² Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ΅ ΠΈ Π΄Π»Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΉ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΠ΅ ΠΎΡΠΈ.
- ΠΠ°ΠΏΠΈΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π° Ρ ΡΡΡΡΠΎΠΌ Π½Π°ΡΠ°Π»ΡΠ½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΈ Π·Π½Π°ΠΊΠΎΠ² ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ.
- Π Π΅ΡΠΈΡΡ Π·Π°Π΄Π°ΡΡ Π² ΠΎΠ±ΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅.
- ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π² ΡΠΎΡΠΌΡΠ»Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½ ΠΈ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ.
- ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΠΎΡΠ²Π΅Ρ.
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΠΊ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΠΎΠΉ Π²ΡΡΠ΅ Π·Π°Π΄Π°ΡΠ΅.
ΠΠ°Π½ΠΎ: β\( v_1 \)β = 15 ΠΌ/Ρ β\( v_2 \) β= 12 ΠΌ/Ρ β\( l \) β= 270 ΠΌ. ΠΠ°ΠΉΡΠΈ: β\( t \)β β ? \( x\)β β ?
ΠΠ²ΡΠΎΠΌΠΎΠ±ΠΈΠ»ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠΎΡΠΊΠ°ΠΌΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎ Π±ΠΎΠ»ΡΡΠ΅ ΠΈΡ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΠΈ ΡΠ°Π·ΠΌΠ΅ΡΠ°ΠΌΠΈ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π½Π΅Π±ΡΠ΅ΡΡ
Π‘ΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΡΡΡΡΠ° ΡΠ²ΡΠ·Π°Π½Π° Ρ ΠΠ΅ΠΌΠ»ΡΠΉ, ΠΎΡΡ β\( Ox \)β Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° Π² ΡΡΠΎΡΠΎΠ½Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΠ΅Π»Π°, Π½Π°ΡΠ°Π»ΠΎ ΠΎΡΡΡΡΡΠ° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ β Ρ. β\( O \)β β ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΠ΅Π»Π° Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ°ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ: β\( t \)β = 0; β\( x_{01} \)β = 0; \( x_{02} \) = 270.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΠΎΠ±ΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅: β\( \vec{s}=\vec{v}t \)β; β\( x=x_0+v_xt \).
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π° Ρ ΡΡΡΡΠΎΠΌ Π½Π°ΡΠ°Π»ΡΠ½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ: β\( x_1=v_1t \)β; β\( x_2=l-v_2t \)β. Π ΠΌΠ΅ΡΡΠ΅ Π²ΡΡΡΠ΅ΡΠΈ ΡΠ΅Π» β\( x_1=x_2 \); ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ: β\( v_1t=l-v_2t \)β. ΠΡΠΊΡΠ΄Π° β\( t=\frac{l}{v_1+v_2}\cdot t \)β. ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ, ΠΏΠΎΠ»ΡΡΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΌΠ΅ΡΡΠ° Π²ΡΡΡΠ΅ΡΠΈ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ: β\( x \)β = 150 ΠΌ.
ΠΠ ΠΠΠΠ Π« ΠΠΠΠΠΠΠ
Π§Π°ΡΡΡ 1
1. Π§Π΅ΠΌΡ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ Π΄Π²ΠΈΠΆΡΡΠ΅Π³ΠΎΡΡ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ, Π΅ΡΠ»ΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π΅Π³ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π° 4 Ρ ΡΠ°Π²Π½Π° 80 ΠΌ?
1) 320 ΠΌ/Ρ
2) 80 ΠΌ/Ρ
3) 20 ΠΌ/Ρ
4) 0,05 ΠΌ/Ρ
2. Π§Π΅ΠΌΡ ΡΠ°Π²Π΅Π½ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΡΡ ΠΈ Π·Π° 0,5 ΠΌΠΈΠ½., Π΅ΡΠ»ΠΈ ΠΎΠ½Π° Π»Π΅ΡΠΈΡ ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ 5 ΠΌ/Ρ?
1) 0,25 ΠΌ
2) 6 ΠΌ
3) 10 ΠΌ
4) 150 ΠΌ
3. ΠΠ²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Β«Π Π΅Π½ΠΎΒ» ΠΏΡΠΎΠ΅Π·ΠΆΠ°Π΅Ρ Π·Π° 1 ΠΌΠΈΠ½. ΠΏΡΡΡ 1,2 ΠΊΠΌ. ΠΠ²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Β«ΠΠ΅ΠΆΠΎΒ» ΠΏΡΠΎΠ΅Π·ΠΆΠ°Π΅Ρ Π·Π° 20 Ρ ΠΏΡΡΡ 0,2 ΠΊΠΌ. Π‘ΡΠ°Π²Π½ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Β«Π Π΅Π½ΠΎΒ» β β\( v_1 \)β ΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ Β«ΠΠ΅ΠΆΠΎΒ» β \( v_2 \).
1) β\( v_1=v_2 \)β
2) β\( v_1=2v_2 \)β
3) \( 2v_1=v_2 \)
4) \( 1,2v_1=10v_2 \)
4. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π° ΡΡΠΎΠ»Π±ΡΠ°ΡΠ°Ρ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΠ°. ΠΠ° Π½Π΅ΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠ»Π΅ΡΠ°ΡΡ Π·Π° ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ ΠΌΡΡ Π° (1) ΠΈ Π²ΠΎΡΠΎΠ±Π΅ΠΉ (2). Π‘ΡΠ°Π²Π½ΠΈΡΠ΅ ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ β\( v_1 \)β ΠΈ \( v_2 \).
1) β\( v_1=v_2 \)β
2) β\( v_1=2v_2 \)β
3) \( 3v_1=v_2 \)
4) \( 2v_1=v_2 \)
5. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠΎΠ΄ΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π·Π° 2 Ρ ΡΠ°Π²Π΅Π½
1) 20 ΠΌ
2) 40 ΠΌ
3) 80 ΠΌ
4) 160 ΠΌ
6. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΡΡΠΈ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ΅Π»ΠΎΠΌ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΡΠ°Π²Π΅Π½
1) 0,1 ΠΌ/Ρ
2) 10 ΠΌ/Ρ
3) 20 ΠΌ/Ρ
4) 40 ΠΌ/Ρ
7. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ Π³ΡΠ°ΡΠΈΠΊΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄Π»Ρ ΡΡΡΡ ΡΠ΅Π». Π‘ΡΠ°Π²Π½ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ β\( v_1 \)β, \( v_2 \) ΠΈ \( v_3 \) Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠΈΡ ΡΠ΅Π».
1) β\( v_1=v_2=v_3 \)β
2) \( v_1>v_2>v_3 \)β
3) \( v_1<v_2<v_3 \)β
4) β\( v_1=v_2 \), \( v_3<v_1 \)
8. ΠΠ°ΠΊΠΎΠΉ ΠΈΠ· ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΡ Π½ΠΈΠΆΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»Π°?
9. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π§Π΅ΠΌΡ ΡΠ°Π²Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ 6 Ρ?
1) 9,8 ΠΌ
2) 6 ΠΌ
3) 4 ΠΌ
4) 2 ΠΌ
10. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΠΎΠΌΡ Π² Π·Π°Π΄Π°ΡΠ΅ 9 Π³ΡΠ°ΡΠΈΠΊΡ, ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄
1) β\( x=1t \)β (ΠΌ)
2) \( x=2+3t \) (ΠΌ)
3) \( x=2-1t \) (ΠΌ)
4) \( x=4+2t \) (ΠΌ)
11. Π£ΡΡΠ°Π½ΠΎΠ²ΠΈΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ Π² Π»Π΅Π²ΠΎΠΌ ΡΡΠΎΠ»Π±ΡΠ΅ ΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ Π²ΡΠ±ΠΎΡΠ° ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΡΡΠ° Π² ΠΏΡΠ°Π²ΠΎΠΌ ΡΡΠΎΠ»Π±ΡΠ΅. Π ΡΠ°Π±Π»ΠΈΡΠ΅ ΠΏΠΎΠ΄ Π½ΠΎΠΌΠ΅ΡΠΎΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° Π·Π½Π°Π½ΠΈΠΉ Π»Π΅Π²ΠΎΠ³ΠΎ ΡΡΠΎΠ»Π±ΡΠ° Π·Π°ΠΏΠΈΡΠΈΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΉ Π½ΠΎΠΌΠ΅Ρ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ Π²Π°ΠΌΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° ΠΏΡΠ°Π²ΠΎΠ³ΠΎ ΡΡΠΎΠ»Π±ΡΠ°.
ΠΠΠΠΠ§ΠΠΠ
A) ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅
Π) Π²ΡΠ΅ΠΌΡ
B) ΡΠΊΠΎΡΠΎΡΡΡ
ΠΠΠΠΠ‘ΠΠΠΠ‘Π’Π¬ ΠΠ’ ΠΠ«ΠΠΠ Π Π‘ΠΠ‘Π’ΠΠΠ« ΠΠ’Π‘Π§ΠΠ’Π
1) Π·Π°Π²ΠΈΡΠΈΡ
2) Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ
12. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠ°ΠΊΠΈΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ ΠΈΠ· Π°Π½Π°Π»ΠΈΠ·Π° Π³ΡΠ°ΡΠΈΠΊΠ°? Π£ΠΊΠ°ΠΆΠΈΡΠ΅ Π΄Π²Π° ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΡ ΠΎΡΠ²Π΅ΡΠ°.
1) ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠ³Π°Π»ΠΎΡΡ Π²ΡΠ΅ Π²ΡΠ΅ΠΌΡ Π² ΠΎΠ΄Π½Ρ ΡΡΠΎΡΠΎΠ½Ρ
2) Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΡΡΡΡ
ΡΠ΅ΠΊΡΠ½Π΄ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΡΠΌΠ΅Π½ΡΡΠ°Π»ΡΡ, Π° Π·Π°ΡΠ΅ΠΌ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π»ΡΡ
3) ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Π²ΡΠ΅ Π²ΡΠ΅ΠΌΡ Π±ΡΠ»Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ
4) ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΡΡΡΡ
ΡΠ΅ΠΊΡΠ½Π΄ Π±ΡΠ»Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ, Π° Π·Π°ΡΠ΅ΠΌ β ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ
5) Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ 4 Ρ ΡΠ΅Π»ΠΎ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΈΠ»ΠΎΡΡ
Π§Π°ΡΡΡ 2
13. ΠΠ²Π° Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Π΄Π²ΠΈΠΆΡΡΡΡ Π΄ΡΡΠ³ Π·Π° Π΄ΡΡΠ³ΠΎΠΌ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ ΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎ: ΠΎΠ΄ΠΈΠ½ ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ 20 ΠΌ/Ρ, Π΄ΡΡΠ³ΠΎΠΉ β ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ 15 ΠΌ/Ρ. Π§Π΅ΡΠ΅Π· ΠΊΠ°ΠΊΠΎΠ΅ Π²ΡΠ΅ΠΌΡ Π²ΡΠΎΡΠΎΠΉ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Π΄ΠΎΠ³ΠΎΠ½ΠΈΡ ΠΏΠ΅ΡΠ²ΡΠΉ, Π΅ΡΠ»ΠΈ Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ ΡΠ°Π²Π½ΠΎ 100 ΠΌ?
ΠΡΠ²Π΅ΡΡ

Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅
5 (100%) 2 votesfizi4ka.ru
ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ | Π€ΠΈΠ·ΠΈΠΊΠ° Π΄Π»Ρ Π²ΡΠ΅Ρ
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ, ΡΠΎ Π΅ΡΡΡ ΠΊΠΎΠ³Π΄Π° ΡΠΊΠΎΡΠΎΡΡΡ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ (v = const) ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΡ Π½Π΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ (Π° = 0).
ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ΅Π»ΠΎ Π·Π° Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΠΌΡ ΡΠ°Π·ΠΎΠ±ΡΡΠΌ ΠΊΠ°ΠΊΠΎΠΉ-ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅, ΡΠΎ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΠΎ Π±ΡΠ΄Π΅Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°ΡΡΡΡ Π½Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ Π·Π° ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΡΡΠΈΡ ΠΎΡΡΠ΅Π·ΠΊΠΎΠ² Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΡΠ°ΠΊΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°. Π’ΠΎ Π΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π·Π° Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ:
vcp = v
ΠΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΏΡΡΡ ΠΏΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ°Π²Π΅Π½ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°:
vx = v, ΡΠΎ Π΅ΡΡΡ v > 0
ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π°:
s = vt = x β x0
Π³Π΄Π΅ x0 β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π°, Ρ β ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° (ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ)
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ Π΅ΡΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ρ = Ρ (t), ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄:
Ρ = x0 + vt
ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Π½Π° ΠΎΡΡ ΠΠ₯ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ (v < 0), ΠΈ ΡΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄:
Ρ = x0 - vt
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΠΏΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° ΡΠΈΡ. 1.11. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½Π° (v = const), ΡΠΎ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ot.
Π ΠΈΡ. 1.11. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΡ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Π° ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΠΠΠ‘ (ΡΠΈΡ. 1.12), ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π²ΡΠ΅ΠΌΡ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΡΠ»ΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅.
Π ΠΈΡ. 1.12. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° ΡΠΈΡ. 1.13. ΠΠ· Π³ΡΠ°ΡΠΈΠΊΠ° Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½Π°
v = s1 / t1 = tg Ξ±
Π³Π΄Π΅ Ξ± β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.Π§Π΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΡΠ³ΠΎΠ» Ξ±, ΡΠ΅ΠΌ Π±ΡΡΡΡΠ΅Π΅ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΡΠ΅Π»ΠΎ, ΡΠΎ Π΅ΡΡΡ ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π΅Π³ΠΎ ΡΠΊΠΎΡΠΎΡΡΡ (Π±ΠΎΠ»ΡΡΠΈΠΉ ΠΏΡΡΡ ΡΠ΅Π»ΠΎ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ Π·Π° ΠΌΠ΅Π½ΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ). Π’Π°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π΅Π½ ΡΠΊΠΎΡΠΎΡΡΠΈ:
tg Ξ± = vΠ ΠΈΡ. 1.13. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° ΡΠΈΡ. 1.14. ΠΠ· ΡΠΈΡΡΠ½ΠΊΠ° Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ
tg Ξ±1 > tg Ξ±2
ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° 1 Π²ΡΡΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° 2 (v1 > v2).
tg Ξ±3 = v3 < 0
ΠΡΠ»ΠΈ ΡΠ΅Π»ΠΎ ΠΏΠΎΠΊΠΎΠΈΡΡΡ, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎ Π΅ΡΡΡ
Ρ = Ρ 0Π ΠΈΡ. 1.14. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
av-mag.ru
ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ | ΠΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ
ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π·Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ΅Π»ΠΎ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π΅Π³ΠΎ ΡΠΊΠΎΡΠΎΡΡΡ ΠΎΡΡΠ°Π΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ (),ΡΠΎ Π΅ΡΡΡ Π²ΡΠ΅ Π²ΡΠ΅ΠΌΡ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ Ρ ΠΎΠ΄Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ, Π° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ().
ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ Ρ Π½Π°Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ β ΠΏΡΡΠΌΠ°Ρ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΡΠ°ΠΊΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°. Π’ΠΎ Π΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠΈ Π²ΡΠ΅ΠΌ ΡΡΠΎΠΌ ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π² Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ:
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΠ°Π²Π½Π°Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π·Π° Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ ΠΊ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° t:
ΠΠ· Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»Ρ. ΠΌΡ Π»Π΅Π³ΠΊΠΎ ΠΌΠΎΠΆΠ΅ΠΌ Π²ΡΡΠ°Π·ΠΈΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠ΅Π»ΠΎ Ρ Π½Π°Ρ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎ ΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ (), ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»Π°Π΄ΠΈΡΡ, ΠΊΠ°ΠΊ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΏΡΡΠΌΠ°Ρ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½ΠΈΡΠ΅Π³ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ Π½Π΅Ρ. ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Π° ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΠΠΠ‘, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π²ΡΠ΅ΠΌΡ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΡΠ»ΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅.
ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΌΡ Π²ΠΈΠ΄ΠΈΠΌ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ· Π³ΡΠ°ΡΠΈΠΊΠ° Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½Π°:
Π Π°ΡΡΠΌΠΎΡΡΠ΅Π² ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ. ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠΊΠ°Π·Π°ΡΡ, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΡΠ³ΠΎΠ», ΡΠ΅ΠΌ Π±ΡΡΡΡΠ΅ΠΉ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ Π½Π°ΡΠ΅ ΡΠ΅Π»ΠΎ ΠΈ ΠΎΠ½ΠΎ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ Π±ΠΎΠ»ΡΡΠΈΠΉ ΠΏΡΡΡ Π·Π° ΠΌΠ΅Π½ΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ
Π Π€ΠΎΡΠΌΡΠ»Π΅ ΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ :
-Π‘ΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
β Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
β ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° (ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΠ΅ΡΠ΅Π΄Π²ΠΈΠ½ΡΠ»ΠΎΡΡ ΡΠ΅Π»ΠΎ)
β ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ (Π²ΡΠ΅ΠΌΡ)
β Π£Π³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ
xn--b1agsdjmeuf9e.xn--p1ai
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ, ΡΠΎ Π΅ΡΡΡ ΠΊΠΎΠ³Π΄Π° ΡΠΊΠΎΡΠΎΡΡΡ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ (v = const) ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΡ Π½Π΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ (Π° = 0).
ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ΅Π»ΠΎ Π·Π° Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΠΌΡ ΡΠ°Π·ΠΎΠ±ΡΡΠΌ ΠΊΠ°ΠΊΠΎΠΉ-ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅, ΡΠΎ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΠΎ Π±ΡΠ΄Π΅Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°ΡΡΡΡ Π½Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ Π·Π° ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΡΡΠΈΡ ΠΎΡΡΠ΅Π·ΠΊΠΎΠ² Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΡΠ°ΠΊΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°. Π’ΠΎ Π΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π·Π° Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ:
vcp = vΠ‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΠ°Π²Π½Π°Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π·Π° Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΊ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° t:
= / t
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΠΊΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
= β’ t
ΠΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΏΡΡΡ ΠΏΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ°Π²Π΅Π½ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°:
vx = v, ΡΠΎ Π΅ΡΡΡ v > 0ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π°:
s = vt = x β x0Π³Π΄Π΅ x0 β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π°, Ρ β ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° (ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ)
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ Π΅ΡΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ρ = Ρ (t), ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄:
Ρ = x0 + vtΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Π½Π° ΠΎΡΡ ΠΠ₯ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ (v
Ρ = x0 - vt
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΠΏΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° ΡΠΈΡ. 1.11. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½Π° (v = const), ΡΠΎ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ot.
Π ΠΈΡ. 1.11. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΡ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Π° ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΠΠΠ‘ (ΡΠΈΡ. 1.12), ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π²ΡΠ΅ΠΌΡ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΡΠ»ΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅.
Π ΠΈΡ. 1.12. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° ΡΠΈΡ. 1.13. ΠΠ· Π³ΡΠ°ΡΠΈΠΊΠ° Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½Π°
v = s1 / t1 = tg Ξ±Π³Π΄Π΅ Ξ± β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π§Π΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΡΠ³ΠΎΠ» Ξ±, ΡΠ΅ΠΌ Π±ΡΡΡΡΠ΅Π΅ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΡΠ΅Π»ΠΎ, ΡΠΎ Π΅ΡΡΡ ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π΅Π³ΠΎ ΡΠΊΠΎΡΠΎΡΡΡ (Π±ΠΎΠ»ΡΡΠΈΠΉ ΠΏΡΡΡ ΡΠ΅Π»ΠΎ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ Π·Π° ΠΌΠ΅Π½ΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ). Π’Π°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π΅Π½ ΡΠΊΠΎΡΠΎΡΡΠΈ:
tg Ξ± = v
Π ΠΈΡ. 1.13. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° ΡΠΈΡ. 1.14. ΠΠ· ΡΠΈΡΡΠ½ΠΊΠ° Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ
tg Ξ±1 > tg Ξ±2ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° 1 Π²ΡΡΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° 2 (v1 > v2).
tg Ξ±3 = v3 < 0ΠΡΠ»ΠΈ ΡΠ΅Π»ΠΎ ΠΏΠΎΠΊΠΎΠΈΡΡΡ, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎ Π΅ΡΡΡ
Ρ = Ρ 0
Π ΠΈΡ. 1.14. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
av-physics.narod.ru
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ, Π° ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΡΡΠΌΡΡ Π»ΠΈΠ½ΠΈΡ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΡΠ°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°. Π’ΠΎ Π΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π·Π° Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ: $\left\langle v\right\rangle =v$
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΠΊΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
$$ \overrightarrow{S} = \overrightarrow{v} \cdot t $$ΠΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΏΡΡΡ ΠΏΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ°Π²Π΅Π½ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°: $v_x = v$, ΡΠΎ Π΅ΡΡΡ $v $>$ 0$
ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π°: $s = v_t = x β x0$
Π³Π΄Π΅ $x_0$ β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π°, $Ρ $ β ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° (ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ)
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ Π΅ΡΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ $Ρ = Ρ (t)$, ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄: $Ρ = x_0 + v_t$
ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Π½Π° ΠΎΡΡ ΠΠ₯ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ ($v $
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° ΡΠΈΡ. 1. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½Π° ($v = const$), ΡΠΎ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ot.
Π ΠΈΡ. 1. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΡ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Π° ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΠΠΠ‘ (ΡΠΈΡ. 2), ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π²ΡΠ΅ΠΌΡ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΡΠ»ΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅.
Π ΠΈΡ. 2. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° ΡΠΈΡ. 3. ΠΠ· Π³ΡΠ°ΡΠΈΠΊΠ° Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΎΡΡ Ot ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Π° ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
\[v=\frac{S_1}{t_1}=tg\alpha \]Π ΠΈΡ. 3. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° ΡΠΈΡ. 4. ΠΠ· ΡΠΈΡΡΠ½ΠΊΠ° Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ
tg $\alpha $1 $>$ tg $\alpha $2, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° 1 Π²ΡΡΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° 2 (v1 $>$ v2).
tg $\alpha $3 = v3 $
Π ΠΈΡ. 4. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
ΠΡΠ»ΠΈ ΡΠ΅Π»ΠΎ ΠΏΠΎΠΊΠΎΠΈΡΡΡ, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎ Π΅ΡΡΡ Ρ = Ρ 0
ΠΠ°Π΄Π°ΡΠ° 2
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΊΠΈ ΠΈ ΡΠΊΠΎΡΠΎΡΡΡ ΠΊΠ°ΡΠ΅ΡΠ° Π² ΡΡΠΎΡΡΠ΅ΠΉ Π²ΠΎΠ΄Π΅, Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΊΠ°ΡΠ΅Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ 300 ΠΊΠΈΠ»ΠΎΠΌΠ΅ΡΡΠΎΠ² ΠΏΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π° 4 ΡΠ°ΡΠ°, Π° ΠΏΡΠΎΡΠΈΠ² ΡΠ΅ΡΠ΅Π½ΠΈΡ β Π·Π° 6 ΡΠ°ΡΠΎΠ².
ΠΠ°Π½ΠΎ: $L$=300000 ΠΌ; $t_1$=14400 Ρ; $t_2$=21600 Ρ
ΠΠ°ΠΉΡΠΈ: $v_p$ β ?; $v_k$ β ?
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
Π‘ΠΊΠΎΡΠΎΡΡΡ ΠΊΠ°ΡΠ΅ΡΠ° ΠΏΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΊΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π±Π΅ΡΠ΅Π³Π° $v_1=v_k+v_p$, Π° ΠΏΡΠΎΡΠΈΠ² ΡΠ΅ΡΠ΅Π½ΠΈΡ $v_2=v_k-v_p$ . ΠΠ°ΠΏΠΈΡΠ΅ΠΌ Π·Π°ΠΊΠΎΠ½ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΎΠ±ΠΎΠΈΡ ΡΠ»ΡΡΠ°Π΅Π²:
\[L=v_1t_1=\left(v_k+v_p\right)t_1; L=v_2t_2=\left(v_k-v_p\right)t_2\]Π Π΅ΡΠΈΠ² ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ vp ΠΈ vk, ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΊΠΈ ΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΊΠ°ΡΠ΅ΡΠ°.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΊΠΈ: $v_p=\frac{L\left(t_2-t_1\right)}{2t_1t_2}=\frac{300000\left(21600-14400\right)}{2\times 14400\times 21600}=3,47\ ΠΌ/Ρ$
Π‘ΠΊΠΎΡΠΎΡΡΡ ΠΊΠ°ΡΠ΅ΡΠ°: $v_ΠΊ=\frac{L\left(t_2+t_1\right)}{2t_1t_2}=\frac{300000\left(21600+14400\right)}{2\times 14400\times 21600}=17,36\ ΠΌ/Ρ$
ΠΡΠ²Π΅Ρ: ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΊΠΈ ΡΠ°Π²Π½Π° 3,47 ΠΌΠ΅ΡΡΠΎΠ² Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ, ΡΠΊΠΎΡΠΎΡΡΡ ΠΊΠ°ΡΠ΅ΡΠ° ΡΠ°Π²Π½Π° 17,36 ΠΌΠ΅ΡΡΠΎΠ² Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ.
spravochnick.ru