Область применения компьютеров первого поколения – Поколения компьютеров: краткое описание

Поколения компьютеров: краткое описание

В соответствии с общепринятой методикой оценки развития вычислительной техники первым поколением считались ламповые компьютеры, вторым —транзисторные, третьим — компьютеры на интегральных схемах, а четвёртым — с использованием микропроцессоров.

Первое поколение ЭВМ (1948–1958) создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы.

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, «Стрела», Минск-1, Урал-1, Урал-2, Урал-3, М-20, «Сетунь», БЭСМ-2, «Раздан» (рис. 2.1).

ЭВМ первого поколения были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2–3 тысячи операций в секунду, емкость оперативной памяти – 2 кб или 2048 машинных слов (1 кб = 1024) длиной 48 двоичных знаков.

Второе поколение ЭВМ (1959–1967) появилось в 60-е гг. ХХ века. Элементы ЭВМ выполнялись на основе полупроводниковых транзисторов (рис. 2.2, 2.3). Эти машины обрабатывали информацию под управлением программ на языке Ассемблер. Ввод данных и программ осуществлялся с перфокарт и перфолент.

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития ПО.

Третье поколение ЭВМ (1968–1973). Элементная база ЭВМ – малые интегральные схемы (МИС), содержавшие на одной пластинке сотни или тысячи транзисторов. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер. Данные и программы вводились как с терминала, так и с перфокарт и перфолент. Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ и резко снизить цены на аппаратное обеспечение. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличенное быстродействие, повышенную надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.

Четвертое поколение ЭВМ (1974–1982). Элементная база ЭВМ – большие интегральные схемы (БИС). Наиболее яркие представители четвертого поколения ЭВМ – персональные компьютеры (ПК). Связь с пользователем осуществлялась посредством цветного графического дисплея с применением языков высокого уровня.

Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что привело к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее ПО. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (ОС) (или монитора) – набора программ, которые организуют непрерывную работу машины без вмешательства человека

Пятое поколение ЭВМ (1990 – настоящее время) создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле.

 

6. Организация компьютерных систем

Процессоры

На рис. 2.1 показана структура обычного компьютера с шинной организацией. Центральный процессор — это мозг компьютера. Его задача — выполнять программы, находящиеся в основной памяти. Он вызывает команды из памяти, определяет их тип, а затем выполняет одну за другой. Компоненты соединены шиной, представляющей собой набор параллельно связанных проводов, по которым передаются адреса, данные и сигналы управления. Шины могут быть внешними (связывающими процессор с памятью и устройствами ввода-вывода) и внутренними.

Рис. 2.1. Схема компьютера с одним центральным процессором и двумя устройствами ввода-вывода

Процессор состоит из нескольких частей. Блок управления отвечает за вызов команд из памяти и определение их типа. Арифметико-логическое устройство выполняет арифметические операции (например, сложение) и логические операции (например, логическое И).

Внутри центрального процессора находится память для хранения промежуточных результатов и некоторых команд управления. Эта память состоит из нескольких регистров, каждый из которых выполняет определенную функцию. Обычно размер всех регистров одинаков. Каждый регистр содержит одно число, которое ограничивается размером регистра. Регистры считываются и записываются очень быстро, поскольку они находятся внутри центрального процессора.

Самый важный регистр — счетчик команд, который указывает, какую команду нужно выполнять следующей. Название «счетчик команд» не соответствует действительности, поскольку он ничего не считает, но этот термин употребляется повсеместно1. Еще есть регистр команд, в котором находится выполняемая в данный момент команда. У большинства компьютеров имеются и другие регистры, одни из них многофункциональны, другие выполняют лишь какие-либо специфические функции.

7. Программное обеспечение. Основная память.

Вся совокупность программ, хранящихся на всех устройствах долговременной памяти компьютера, составляет его программное обеспечение (ПО).

Взаимодействие между пользователем, прикладным программным обеспечением, операционной системой и аппаратным обеспечением (оборудованием).  
Программное обеспечение компьютера делится на:

— системное ПО;
— прикладное ПО;
— инструментальное ПО.




infopedia.su

Поколения компьютеров

I поколение компьютеров

Появились в 1946 году. К особенностям этих компьютеров относится применение вакуумно-ламповой технологии. Для ввода-вывода данных использовались перфоленты и перфокарты , магнитные ленты и печатающие устройства. В компьютерах первого поколения была реализована концепция хранимой программы. Компьютеры данного поколения сумели зарекомендовать себя в прогнозировании погоды , энергетических задач , Задач военного характера и других сложнейших операциях.

II поколение компьютеров

Появились в 1955 году. В них вместо ламп использовались транзисторы. Они стали более надежными, быстродействие их повысилось, потребление энергии уменьшилось. С появлением памяти на магнитных сердечниках цикл ее работы уменьшился до десятков микросекунд. Главный принцип структуры — централизация. Для компьютеров этого поколения характерно использование первых языков программирования высокого уровня, которые получили свое развитие в компьютерах следующего поколения.

 

III поколение компьютеров

Появились в 1964 году. Они проектировались на основе интегральных схем малой степени интеграции. Появились операционные системы , которые стали брать на себя задачи управления памятью , устройствами ввода-вывода и другими ресурсами ; стало возможным мультипрограммирование. В начале 60-х гг. группой разработчиков фирмы IBM был введен термин «архитектура компьютера». К концу 60-х гг. появились мини-компьютеры. Экономичность мини-компьютеров быстро расширила сферу их применения : управление, передача данных , автоматизация научных экспериментов и т. д. В рамках рассматриваемого поколения в 1971 году появился первый микропроцессор, как неожиданный результат работы фирмы Intel над схемами калькуляторов.

 

IV поколение компьютеров

Появились в 1975 г. с изобретением больших и сверхбольших интегральных схем. В компьютерах этого поколения стали использоваться быстродействующие системы памяти на интегральных схемах емкостью несколько мегабайт. Появление в середине 70-х первых персональных компьютеров предоставило индивидуальному пользователю такие же вычислительные ресурсы, какими в 60-е годы обладали большие компьютеры. К концу 80-х четко определилось существование двух классов компьютеров, определяющих развитие компьютерного мира:

суперкомпьютеров , имеющих многопроцессорную архитектуру и использующих принципы параллелизма, и персональных компьютеров .

 

V поколение компьютеров

Появились в 1990 г. Главный упор при создании компьютеров сделан на их «интеллектуальность». Внимание акцентируется на архитектуре, ориентированной на обработку знаний. Обработка знаний — это одна из областей практического применения искусственного интеллекта, предполагающая использование и обработку компьютером знаний, которыми владеет человек для решения проблем и принятия решений.

www.examen.ru

Поколения компьютеров

В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов; для отдельной же машины вопрос о ее принадлежности к тому или иному поколению решается достаточно просто.

Появление ЭВМ или компьютеров – одна из существенных примет современной научно-технической революции. Широкое распространение компьютеров привело к тому, что все большее число людей стало знакомиться с основами вычислительной техники, а программирование постепенно превратилось в элемент культуры. Первые электронные компьютеры появились в первой половине XX века. Они могли делать значительно больше механических калькуляторов, которые лишь складывали, вычитали и умножали. Это были электронные машины, способные решать сложные задачи.

Кроме того, они имели две отличительные особенности, которыми предыдущие машины не обладали:

Одна из них состояла в том, что они могли выполнять определенную последовательность операций по заранее заданной программе или последовательно решать задачи разных типов.

Способность хранить информацию в специальной памяти.

Поколение первое.

Компьютеры на электронных лампах.

Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа — вакуумный диод — была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году.

Вскоре Ли де Форрест изобретает вакуумный триод — лампу с тремя электродами, затем появляется газонаполненная электронная лампа — тиратрон, пятиэлектродная лампа — пентод и т. д. До 30-х годов электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни-Вильямс построил (для нужд экспериментальной физики) тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп. Электронный счетчик состоит из ряда триггеров. Триггер , изобретенный М. А. Бонч-Бруевичем (1918) и — независимо — американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры. Подробнее об электронной лампе здесь.

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы — 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 — 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации «современного» компьютера того времени требовались специальные системы охлаждения.

Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штеккера с нужным гнездом.

Примерами машин I-го поколения могут служить Mark 1, ENIAC, EDSAC (Electronic Delay Storage Automatic Calculator), — первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

Поколение второе.

Транзисторные компьютеры.

1 июля 1948 года на одной из страниц «Нью-Йорк Таймс», посвященной радио и телевидению, было помещено скромное сообщение о том, что фирма «Белл телефон лабораториз» разработала электронный прибор, способный заменить электронную лампу. Физик-теоретик Джон Бардин и ведущий экспериментатор фирмы Уолтер Брайттен создали первый действующий транзистор. Это был точечно-контактный прибор, в котором три металлических «усика» контактировали с бруском из поликристаллического германия.

Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник (!!) и стоимостью всего 20 тыс. долларов (!!) .

Созданию транзистора предшествовала упорная, почти 10-летняя работа, которую еще в 1938 году начал физик теоретик Уильям Шокли. Применение транзисторов в качестве основного элемента в ЭВМ привело к уменьшению размеров компьютеров в сотни раз и к повышению их надежности.

И все-таки самой удивительной способностью транзистора является то, что он один способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а магнитную ленту, впервые примененную в ЭВМ Юнивак, начали использовать как для ввода, так и для вывода информации. А в середине 60-х годов получило распространение хранение информации на дисках. Большие достижения в архитектуре компьютеров позволило достичь быстродействия в миллион операций в секунду! Примерами транзисторных компьютеров могут послужить «Стретч» (Англия), «Атлас» (США). В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня (например «БЭСМ-6»).

Поколение третье.

Интегральные схемы.

Подобно тому, как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники — рождение машин третьего поколения. Интегральная схема, которую также называют кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм2 . Подробнее об интегральных схемах здесь.

Первые интегральные схемы (ИС) появились в 1964 году. Сначала они использовались только в космической и военной технике. Сейчас же их можно обнаружить где угодно, включая автомобили и бытовые приборы. Что же качается компьютеров, то без интегральных схем они просто немыслимы!

Появление ИС означало подлинную революцию в вычислительной технике. Ведь она одна способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Другими словами, один крошечный кристалл обладает такими же вычислительными возможностями, как и 30-тонный Эниак! Быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились.

Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения самых различных задач. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

Поколение четвертое.

Большие интегральные схемы.

Вы уже знаете, что электромеханические детали счетных машин уступили место электронным лампам, которые в свою очередь уступили место транзисторам, а последние — интегральным схемам. Могло создастся впечатление, что технические возможности ЭВМ исчерпаны. В самом деле, что же можно еще придумать?

Чтобы получить ответ на этот вопрос, давайте вернемся к началу 70-х годов. Именно в это время была предпринята попытка выяснить, можно ли на одном кристалле разместить больше одной интегральной схемы. Оказалось, можно! Развитие микроэлектроники привело к созданию возможности размещать на одном-единственном кристалле тысячи интегральных схем. Так, уже в 1980 году, центральный процессор небольшого компьютера оказался возможным разместить на кристалле, площадью всего в четверть квадратного дюйма (1,61 см2 ). Началась эпоха микрокомпьютеров.

Каково же быстродействие современной микроЭВМ? Оно в 10 раз превышает быстродействие ЭВМ третьего поколения на интегральных схемах, в 1000 раз — быстродействие ЭВМ второго поколения на транзисторах и в 100000 раз — быстродействие ЭВМ первого поколения на электронных лампах.

Далее, почти 40 лет назад компьютеры типа Юнивак стоили около 2,5 млн. долларов. Сегодня же ЭВМ со значительно большим быстродействием, более широкими возможностями, более высокой надежностью, существенно меньшими габаритами и более простая в эксплуатации стоит примерно 2000 долларов. Каждые 2 года стоимость ЭВМ снижается примерно в 2 раза.

Очень большую роль в развитии компьютеров сыграли две ныне гигантские фирмы: Microsoft® и Intel®. Первая из них очень сильно повлияла на развитие программного обеспечения для компьютеров, вторая же стала известна благодаря выпускаемым ей лучшим микропроцессорам.

mirznanii.com

Поколения компьютеров

До середины 80-х годов процесс эволюции вычислительной техники принято делить на поколения.

1-е поколение (1945-1954 гг.) – время становления машин с фон-неймановской архитектурой. Машины этого поколения работали на ламповой элементарной базе, из-за чего поглощали огромное количество энергии и были очень ненадежны. С их помощью решались научные задачи. Программы для этих машин можно было составлять не на машинном языке, а на языке ассемблера.

2-е поколение (1955-1964 гг.). Смену поколений определило изобретение в 1948 г. транзисторов, которые смогли заменить в компьютерах электронные лампы. Компьютеры, основанные на транзисторах, были в сотни раз меньше ламповых компьютеров такой же производительности. Единственная часть компьютера, где транзисторы не смогли заменить электронные лампы – это блоки памяти, но там вместо ламп стали использовать изобретенные к тому времени схемы памяти на магнитных сердечниках. Появились языки высокого уровня Fortran, Algol, Cobol. Для эффективного управления ресурсами машины стали использоваться операционные системы.

3-е поколение (1965-1970 гг.). Смена поколений обусловлена использованием вместо транзисторов в различных узлах ЭВМ интегральные микросхемы различной степени интеграции. В 1958 г. Джек Килби придумал, как на одной пластине полупроводника получить несколько транзисторов. В 1959 г. Роберт Нойс (будущий основатель фирмы Intel) изобрел более совершенный метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные электронные схемы стали называться интегральными схемами, или чипами. В дальнейшем количество транзисторов, которые удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год. В том же году был сделан еще один важный шаг на пути к персональному компьютеру – Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большой ЭВМ. Так появился первый микропроцессор. Микросхемы позволяли разместить десятки элементов на одной пластине размером в несколько сантиметров. Это не только повысило производительность ЭВМ, но и снизило их габариты и стоимость. Появились сравнительно недорогие и малогабаритные мини-ЭВМ. Увеличение мощности сделало возможным одновременное выполнение нескольких программ на одной ЭВМ. Создаются пакеты прикладных программ. Создаются семейства ЭВМ, то есть машины становятся совместимыми снизу вверх на программно-аппаратном уровне. Примерами таких семейств была серия IBM System 360 и наш отечественный аналог – ЕС ЭВМ.

4-е поколение (1970-1984 гг.). В 70-е годы активно ведутся работы по созданию больших и сверхбольших интегральных схем (БИС и СБИС), которые позволили разместить на одном кристалле десятки тысяч элементов. Это повлекло дальнейшее снижение размеров и стоимости ЭВМ. В начале 70-х годов фирмой Intel был выпущен микропроцессор i4004, который представлял собой 4-разрядное параллельное вычислительной устройство, мог производить четыре основные арифметические операции и применялся поначалу только в карманных калькуляторах. Если до этого в мире вычислительной техники были только три направления (суперЭВМ, большие ЭВМ и мини-ЭВМ), то теперь к ним прибавилось еще одно – микропроцессорное. В общем случае под процессором понимают функциональный блок ЭВМ, предназначенный для логической и арифметической обработки информации на основе принципа микропрограммного управления. По аппаратной реализации процессоры можно разделить на микропроцессоры (полностью интегрирующие все функции процессора) и процессоры с малой и средней интеграцией. Конструктивно это выражается в том, что микропроцессоры реализуют все функции процессора на одном кристалле, а процессоры других типов реализуют их путем соединения большого количества микросхем. В 1972 г. был разработан 8-разрядный микропроцессор i8008. Этот микропроцессор имел довольно развитую систему команд и умел делить числа. Именно он был использован при создании персонального компьютера Альтаир, для которого Билл Гейтс написал один из своих первых интерпретаторов языка Basic. Именно с этого момента следует вести отсчет 5-го поколения.

5-е поколение можно назвать микропроцессорным. В 1976 г. фирма Intel закончила разработку 16-разрядного микропроцессора i8086. В 1982 г. был создан i80286, который представлял собой улучшенный вариант i8086. Первые компьютеры на базе этого микропроцессора появились в 1984 г. В 1985 году фирма Intel представила первый 32-разрядный микропроцессор i80386. Вскоре появился и i80486. C 1993 г. стали выпускаться микропроцессоры Intel Pentium. Вскоре появились и микропроцессоры Pentium Pro, Pentium II, Pentium III, Pentium IV.

studfiles.net

Тема 2 истоия

ТЕМА 2.

История и направления развития вычислительной

техники

2.1. Эволюция средств вычислительной техники

2.2. Поколения современных компьютеров

2. 2.1. Первое поколение компьютеров

2. 2.2. Второе поколение компьютеров

2. 2.3. Третье поколение компьютеров

2. 2.4. Четвертое поколение компьютеров (с 1971 года и по настоящее время)

Контрольные вопросы

Литература

XX век характеризуется необходимостью обрабатывать огромное количество информации. Для сбора, хранения, использования и распространения большого объема информации необходимо специальное устройство. Таким устройством является компьютер. В настоящее время компьютеры представлены практически во всех областях жизни человека. Для того чтобы полно оценить влияние компьютеров на жизнь человека и его будущее, необходимо понять, как проходила их эволюция.

Период

в

Элементная

база

Быстро-

действие

Объём ОП

Устройства ввода

/вывода

Программное обеспечение

Примеры

1946 — 1955

Электронные лампы

2 – 2 тыс.

2 Кб

Перфоленты,

перфокарты, маг. ленты

Машинные

коды

БЭСМ-1,

М-1,

Урал-1

1955 – 1965

Транзисторы

100 – 150 тыс.

2 – 32 Кб

Магнитные

барабаны, маг. диски

Языки высокого уровня

БЭСМ-6,

М-222,

IBM-701

1966 — 1979

Интегральные схемы (ИС)

1 млн.

64 Кб

Многотерми-

нальные системы

Операционные системы

ЕС-1030,

IBM-360

1980 – 1989

Большие интегральные схемы (БИС)

10 – 100 млн.

2 – 3

Мб

Сети персональных ЭВМ

Базы, банки данных

ЕС-1030,

IBM-360

Эльбрус,

ILLIAC 4

1990 –

CБИС

Более 100 млн.

Оптические

и лазерные устройства

Экспертные системы

2.1. Эволюция средств вычислительной техники

Современным компьютерам предшествовали механические и электромеханические устройства.

В 1642 году французский математик и философ Блез Паскаль в возрасте 18 лет сконструировал суммирующую машину.

Машина Паскалясостояла из восьми движущихся дисков с прорезями и могла суммировать числа до восьми знаков.Для своей машины Паскаль использовал десятичную систему исчисления.

Известны и более ранние попытки создания механических суммирующих машин. Описание суммирующей машины, напоминающей по характеристикам машину Паскаля, в 1967 году было обнаружено в записках, принадлежащихЛеонардо да Винчи. Подобное устройство также было описано в 1623 годуВильгельмом Шикардом. До наших дней дошли только чертежи Шикарда, обнаруженные в 1956 году.

В 1694 году немецкий математик и философ Готфрид Вильгельм Лейбниц, используя чертежи и рисунки Паскаля, улучшил машину Паскаля, добавив возможность перемножать числа. Вместо обычных шестеренок Лейбниц использовал пошаговый барабан.

Однако широкое распространение вычислительные аппараты получили только в 1820 году, когда француз Чарльз Калмар изобрел машину, которая могла производить четыре основных арифметических действия.Машину Калмара назвали арифмометр.Начало эры компьютеровв том виде, в котором они существуют сейчас,связано с именем английского математика Чарльза Бэббиджа, который в 30-х годах XIX века предложил идею вычислительной машины, осуществленную лишь в середине XX века.

Бэббидж обратил внимание на то, что машина может без ошибок выполнять вычисление больших математических таблиц посредством простого повторения шагов.Работая над этой проблемой, в 1822 году Бэббидж предложил проект машиныдля решения дифференциальных уравнений.

Для повторения операций в машине Бэббиджа должна была использоваться энергия пара. Таким образом, процесс вычислений действительно былавтоматизирован, то есть проходил без участия человека.

В дальнейшем Бэббиджрешил создать модельуниверсальной вычислительной машины, способной выполнять широкий круг задач. Он назвал ееаналитической машиной.

У аналитической машины Бэббиджа были все основные черты современного компьютера. Состоящая более чем из 50000 компонентованалитическая машина включала устройство ввода информации, блок управления, запоминающее устройство и устройство вывода результатов.

Аналитическая машинамогла выполнять определенный набор инструкций, которые записывались на перфокартах.

Перфокартыпредставляли собой прямоугольные карточки из картона.Каждой инструкции аналитической машины соответствовала определенная последовательность дырочек, которые пробивались на перфокартах, а затем с помощью устройства ввода поступали в блок управления. Хотя аналитическая машина в том виде, в котором ее задумывал Бэббидж, так ине была создана, идеи, заложенные Бэббиджем,оказали огромное влияние на развитие вычислительной техники.

Автоматизация вычислений, универсальность вычислительной машины, набор внутренних инструкций, общая конструктивная схема, организация ввода и вывода информации — все эти элементы впоследствии были использованы при создании компьютера.

В 1889 году американский изобретатель Герман Холлерит сконструировал перфокарточное устройство для решения статистических задач.

В отличие от идеи Бэббиджа, хранить на перфокартах инструкции, Холлерит использовал перфокарты для хранения данных.

Кроме того, для работы перфокарточного устройства использовалось электричество.

Цифрына перфокарте изображалисьодинарнымиотверстиями, абуквыалфавита —двойными.

Специальный электрический прибор опознавал отверстия на перфокартах и посылал сигналы в обрабатывающее устройство. Вычислительная машина Холлерита оказалась по тем временам очень быстрым устройством обработки данных, а перфокарты — удобным способом хранения данных.

Машина Холлерита была использована для обработки результатов переписи населения США. Обработка результатов предыдущей переписи 1880 года заняла около10 лет. За это время успело вырасти новое поколение американцев. С помощью машины Холлерита те же данные были обработаны всегоза шесть недель.

В 1896 году Холлерит основал компанию по производству перфорирующих устройств — Tabulating Machine Company, которая

в 1924 году после-5серий слияний и поглощений превратилась в знаменитую компанию по производству компьютеров — IBM (International Business Machines).

Механические и электромеханические вычислительные машины, предназначенные для решения сложных задач, требуют наличия огромного количества элементов для представления чисел и связей между ними, что существенно усложняет их работу.

Решая эту проблему, американцы Джон Атанасов и Клиффорд Берри в 1940 году разработали модель полностью электронного компьютера, использующего единую истому представления чисел и связей между ними — булеву алгебру.Их подход базировался на работах английскогоматематика XIX века Джорджа Буля, посвященных аппарату символической логики.

В основе булевой алгебры лежит интерпретация элементов булевой алгебры как высказываний, принимающих значение «истина» или «ложь«. Атанасов и Берри применили эту концепцию для электронных устройств.Истинесоответствовалопрохождение электрического тока, алжи— его отсутствие.

Для представления чисел Атанасов и Берри предложили использовать двоичную систему исчисления.

В 1936 году английский математик Алан Тьюрингопубликовал работу «О вычислимых числах», заложив теоретические основытеории алгоритмов.

В своей работе Тьюринг описал абстрактную вычислительную машину, которая получила название машины Тьюринга.

Машина Тьюрингапредставляет собой автоматическое устройство, способное находиться в конечном числе внутренних состояний и снабженное бесконечной внешней памятью — лентой.

Работа машины будет заключаться в последовательном преобразовании исходной конфигурации в соответствии с программой машины до тех пор, пока не будет достигнуто конечное состояние.

Тьюринг не преследовал цели изобрести компьютер. Тем не менее, описанная им абстрактная машина определила некоторые характеристики современных компьютеров. Так, например, бесконечная лента является аналогом оперативной памяти современного компьютера. Впервые подобная модель памяти была использована в компьютере Атанасова и Берри.

2.2. Поколения современных компьютеров

Развитие вычислительной техники в современном периоде принято

рассматривать с точки зрения смены поколений компьютеров. Каждое поколение компьютеров в начальный момент развития характеризуется качественным скачком в росте основных характеристик компьютера..

Используются следующие показатели развития компьютероводного поколения: элементная база;

временной интервал;

быстродействие, архитектура, программное обеспечение, уровень развития внешних устройств.

Другим важным качественным показателемявляетсяширота области применения компьютеров.

2.2.1. Первое поколение компьютеров (1945-1956 годы)

С началом второй мировой войныправительства разных стран начали разрабатывать вычислительные машины,осознавая их стратегическую роль в ведении войны.Увеличение финансирования в значительной степени стимулировало развитие вычислительной техники.

В 1941 году немецкий инженер Конрад Цузеразработалвычислительную машину Z2, выполнявшую расчеты, необходимые при проектировании самолетов и баллистических снарядов.

В 1943 году английские инженерызавершили созданиевычислительной машины для дешифровки сообщений немецкой армии, названной «Колосс».

Однако эти устройства не были универсальными вычислительными машинами, они предназначались для решения конкретных задач.

В 1944 году американский инженер Говард Эйкенпри поддержке фирмы IBM сконструировалкомпьютер для выполнения баллистических расчетов. Этот компьютер,названный «Марк I», по площади занимал примерно половину футбольного поля и включал более 600 километров кабеля. В компьютере «Марк I» использовался принцип электромеханического реле, заключающийся в том, что электромагнитные сигналы перемещали механические части. «Марк I» был довольно медленной машиной: для того чтобы произвести одно вычисление требовалось 3-5 с. Однако, несмотря на огромные размеры и медлительность, «Марк I» стал более универсальным вычислительным устройством, чем машина Цузе или «Колосс». «Марк I» управлялся с помощью программы, которая вводилась с перфоленты. Это дало возможность, меняя вводимую программу, решать довольно широкий класс математических задач.

В 1946 году американские ученые Джон Мокли и Дж. Преспер Эккерт сконструировалиэлектронный вычислительный интегратор и калькулятор (ЭНИАК) — компьютер,в которомэлектромеханические релебыли замененына электронные вакуумные лампы.Применение вакуумных ламп позволило увеличить скорость работы ЭНИАК в 1000 раз по сравнению с «Марк I». ЭНИАК стал работающим прообразом, современного компьютера.

Во-первых, ЭНИАК был основан на полностью цифровом принципе обработки информации.

Во-вторых, ЭНИАК сталдействительно универсальнойвычислительной машиной, он использовался для расчета баллистических таблиц, предсказания погоды, расчетов в области атомной энергетики, аэродинамики, изучения космоса.

Следующий важный шаг в совершенствовании вычислительной техники сделал американский математик Джон фон Нейман.

Ранние вычислительные машины могли выполнять только команды, поступающие извне, причем команды выполнялись поочередно.Хотя использование перфокарт позволяло упростить процесс ввода команд, тем не менее,часто процесс настройки вычислительной машины и ввода команд занимал больше времени, чем собственно решение поставленной задачи.

Фон Нейманпредложил включить в состав компьютера для хранения последовательности команд и данных специальное устройство —память.

реализовать в компьютере возможность передачи управления от одной программы к другой

возможностьхранить в памяти компьютера разные наборы команд (программы),

приостанавливать выполнение одной программы и передавать управление другой,

а затем возвращаться к исходной

значительно расширяла возможности программирования для вычислительных машин.

Другой ключевой идеей, предложенной фон Нейманом,стал процессор (центральное обрабатывающее устройство), который должен был управлять всеми функциями компьютера.

В 1945 году Джон фон Нейманподготовил отчет, в котором определил следующие основные принципы работыи элементы архитектуры компьютера:

1. Компьютер состоит из процессора (центрального обрабатывающего

устройства), памяти и внешних устройств.

2. Единственным источником активности (не считая стартового или аварийного вмешательства человека) в компьютере является процессор, который, в свою очередь, управляется программой, находящейся в памяти.

3. Память компьютера состоит из ячеек, каждая из которых имеет свой

уникальный адрес. Каждая ячейка хранит команду программы или единицу обрабатываемой информации. Причем и команда, и информация имеют одинаковое представление.

4. В любой момент процессор выполняет одну команду программы, адрес которой находится в специальном регистре процессора — счетчике команд.

5. Обработка информации происходит только в регистрах процессора. Информация в процессор поступает из памяти или от внешнего устройства.

6. В каждой команде программы зашифрованы следующие предписания: из каких ячеек взять обрабатываемую информацию; какие операции совершить с этой информацией; в какие ячейки памяти направить результат; как изменить содержимое счетчика команд, чтобы знать, откуда взять следующую команду для выполнения.

7. Процессор исполняет программу команда за командой в соответствии с изменением содержимого счетчика команд до тех пор, пока не получит команду остановиться.

В дальнейшем архитектура фон Неймана незначительно изменялась и

дополнялась, но исходные принципы управления работой компьютера с помощью хранящихся в памяти программ остались нетронутыми. Подавляющее большинство современных компьютеров построено именно по архитектуре фон Неймана.

В 1951 годубыл созданпервый компьютер, предназначенный для коммерческого использования, — УНИВАК (универсальныйавтоматический компьютер),в котором были реализованы все принципы архитектуры фон Неймана.

В 1952 году с помощью УНИВАК был предсказан результат выборов

президента США.

Работы по созданию вычислительных машин велись и в СССР.Так, в 1950 году в Институте электроники Академии наук Украины под руководством академика Сергея Алексеевича Лебедева была разработана и введена в эксплуатацию МЭСМ (малая электронная счетная машина). МЭСМ стала первой отечественной универсальной ламповой вычислительной машиной в СССР.

В 1952-1953 годах МЭСМ оставалась самой быстродействующей(50 операций в секунду) вычислительной машинойв Европе.

Принципы построения МЭСМ были разработаны С. А. Лебедевым независимо от аналогичных работ на Западе.

В компьютерах первого поколения использовался машинный язык — способ записи программ, допускающий их непосредственное исполнение на компьютере.

Программа на машинном языкепредставляет собойпоследовательность

машинных команд, допустимых для данного компьютера.

Процессор непосредственно воспринимает и выполняет команды, выраженные в виде двоичных кодов.

Для каждого компьютерасуществовалсвойсобственный машинный язык. Это также ограничивало область применения компьютеров первого поколения.

Появление первого поколения компьютеровстало возможно благодарятрем техническим новшествам:

электронным вакуумным лампам,

цифровому кодированию информации

и созданию устройств искусственной памяти на электростатических трубках.

Компьютеры первогопоколения имелиневысокую производительность: до нескольких тысяч операций в секунду.

В компьютерах первого поколенияиспользоваласьархитектура фон Неймана.

Средства программирования и программного обеспечение еще не были развиты, использовался низкоуровневый машинный язык.

Область применения компьютеров была ограничена.

2.2.2. Второе поколение компьютеров (1956-1963 годы)

Недостатки компьютеров первого поколения:

Электронные вакуумные лампы

выделяли большое количество тепла,

поглощали много электрической энергии,

были громоздкими,

дорогими и ненадежными.

обладали низким быстродействием

и невысокой надежностью.

В 1947 году сотрудники американской компании «Белл» Уильям Шокли, Джон Бардин и Уолтер Бреттейн изобрели транзистор.Транзисторывыполняли те жефункции, что и электронные лампы, но использовали электрические свойства полупроводников.

По сравнению с вакуумными трубками транзисторы

занимали в 200 раз меньше места

и потребляли в 100 раз меньше электроэнергии.

В то же время появляются новые устройства для организации памяти компьютеров — ферритовые сердечники, изобретениемтранзистора и использованием новых технологий хранения данных в памяти появилась возможность значительноуменьшить размеры компьютеров, сделать ихболее быстрыми и надежными, а также значительноувеличить емкость памяти компьютеров.

В 1954 году компания Texas Instruments объявила о начале серийного производства транзисторов, а в 1956 году ученые Массачусетского технологического института создали первый, полностью построенный на транзисторах компьютер ТХ-О.

Машинный язык, применявшийся в первом поколении компьютеров, был крайненеудобен для восприятия человеком. Числовая кодировка операций, адресов ячеек и обрабатываемой информации, зависимость вида программы от ее места в памяти не давали возможности следить за смыслом программы.

Для преодоления этих неудобствбыл придуман языкассемблер. Для записи кодов операций и обрабатываемой информации в ассемблере

используются стандартные обозначения,

позволяющие записывать числа и текст в общепринятой форме,

а для кодов команд — принятые мнемонические обозначения.

Для обозначения величин, размещаемых в памяти, можно применять любые имена, отвечающие смыслу программы.

После ввода программы ассемблер сам заменяет символические имена на адреса памяти, а символические коды команд на числовые.

Использование ассемблера сделало процесс написания программ болеенаглядным.

В конце 50-х — начале 60-х годов компьютеры второго поколениясталиинтенсивно использоваться государственными организациями и крупными компаниямидля решения различных задач.

К 1965 году большая часть крупных компаний обрабатывала финансовую информацию с помощью компьютеров.

Постепенно они приобретали черты современного нам компьютера. Так, в этот период были сконструированы

такие устройства, как графопостроитель и принтер,

носители информации на магнитной ленте и магнитных дисках и др.

Расширение области применения компьютеров потребовало создания новых технологий программирования.

Программное обеспечение, написанное на языке ассемблер для одного компьютера, было непригодно для работы на другом компьютере. По этой причине, в частности, не удавалось создать стандартную операционную систему — основную управляющую программу компьютера, так как каждый производитель компьютеров разрабатывал свою операционную систему на своем ассемблере.

Специалисты,использующие в своей деятельности компьютеры, вскореощутили потребность в более естественных языках, которые быупрощали процесс программирования,а также позволяли переносить программы с одного компьютера на другой.

Подобные языки программирования получили название

языков высокого уровня.

Для их использования необходимо иметь компилятор (или интерпретатор), то естьпрограмму, которая преобразует операторы языка в машинный язык данного компьютера.

Одним из первых языков программирования высокого уровня стал Фортран(FORTRAN — FORmula TRANslation), который предназначался для естественного сражения математических алгоритмов и стал необычайно популярен среди ученых.

Нa Фортране можнописать большие программы, разбивая задачу на несколько частей (подпрограммы), которые программируются отдельно, а затем объединяются в единое целое.

Так как Фортран предназначен в основном для вычислений, в нем отсутствовали развитые средства работы со структурамиданных.

Этот недостатокбыл исправлен в языкеКобол(COBOL — Common

BusinessOrientedLanguage).

Коболспециальнопредназначался для обработки

финансово-экономических данных.

Кроме того, разработчики постарались сделать Коболмаксимальнопохожим на естественный английский язык,что позволило писать программы на этом языкедаже неспециалистам в программировании.

Со вторым поколением компьютеровначалосьразвитие индустрии программного обеспечения.

В целом, данный период развития вычислительной техники характеризуется

применением для создания компьютеров транзисторов и памяти на ферритовых сердечниках,

увеличением быстродействия компьютеров до нескольких сотен тысяч операций в секунду,

возникновением новых технологий программирования,

языков программирования высокого уровня,

операционных систем.

Компьютеры второго поколения получили широкое распространение, они использовались для научных, инженерных и финансовых расчетов, для обработки больших объемов данных на предприятиях, в банках, государственных организациях.

2.2.3. Третье поколение компьютеров (1964-1971 годы)

В 1958 инженер компании Texas Instruments Джек Килбипредложил идеюинтегральной микросхемы — кремниевого кристалла, на который монтируются миниатюрные транзисторы и другие элементы.

В том же году Килби представил первый образец интегральной микросхемы, содержащий пять транзисторных элементов на кристалле германия.

Микросхема Килби занимала чуть больше сантиметра площади и была несколько миллиметров толщиной.

Год спустя, независимо от Килби, Нойсразработал интегральную микросхемуна основе кристалла кремния.

Последствии Роберт Нойсосновал компанию «Интел» попроизводству интегральных микросхем.

Микросхемы работали

значительно быстреетранзисторов

и потребляли значительно меньше энергии.

Первые интегральные микросхемы состояли всего из нескольких элементов.

Однако, используя полупроводниковую технологию, ученые довольно быстро научились размещатьна одной интегральной микросхеме сначала десятки, а затем сотни и больше транзисторных элементов.

В 1964 году компания IBM выпустила компьютер 1MB System 360, построенный на основе интегральных микросхем.

Семейство компьютеров IBM System 360 — самое многочисленное семейство компьютеров третьего поколения и одно из самых удачных в истории вычислительной техники.

Выпуск этих компьютеров можно считать началом массового производства вычислительной техники.

Всего было выпущено более 20 000 экземпляров System 360.

1MB System 360 относится к классу так называемых мэйнфреймов. Компания DEC (Digital Equipment Corporation) представила модель миникомпьютера PDP-8.

Мини-компьютеры, или компьютеры средней производительности,

характеризуются высокой надежностью и сравнительно низкой стоимостью.

Низкая по сравнению со стоимостью суперкомпьютеров стоимость миникомпьютеров позволила начать применять их в небольших организациях — исследовательских лабораториях, офисах, на небольших промышленных предприятиях.

В то же время проходило совершенствование программного обеспечения.

Операционные системы строились таким образом, чтобы поддерживать большее количество внешних устройств, появились первые коммерческие операционные системы и новые прикладные программы.

В 1968 годуна одной из конференцийДуглас Энгельбартиз Станфордского института продемонстрировалсозданную им систему взаимодействия компьютера с пользователем, состоящую из клавиатуры, указателя «мышь» и графического интерфейса, а также некоторые программы, в частности текстовый процессор и систему гипертекста.

В 1964 годупоявился язык программированияБейсик(BASIC — Beginner’s All-Purpose Symbolic Instruction Code),предназначенный для обучения начинающих программистов.

Бейсик обеспечивалбыстрый ввод и проверку программ.

Бейсикне очень подходил для написания серьезных программ, однако ондавал общее представление о программированиии позволял многим далеким от компьютеров людямбыстро овладеть основными навыками программирования.

В 1970 году щвейцарец Никлас Вирт разработал язык программирования Паскаль,также предназначенный для обучения принципам программирования.

Создававшийся как язык для обучения, Паскаль оказался очень удобен для решения многих прикладных задач.

Он прекрасно обеспечивал применение методов структурного программирования, что стало необходимо при создании больших программных систем.

studfiles.net

Поколения компьютеров

В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов; для отдельной же машины вопрос о ее принадлежности к тому или иному поколению решается достаточно просто.

Появление ЭВМ или компьютеров – одна из существенных примет современной научно-технической революции. Широкое распространение компьютеров привело к тому, что все большее число людей стало знакомиться с основами вычислительной техники, а программирование постепенно превратилось в элемент культуры. Первые электронные компьютеры появились в первой половине XX века. Они могли делать значительно больше механических калькуляторов, которые лишь складывали, вычитали и умножали. Это были электронные машины, способные решать сложные задачи.

Кроме того, они имели две отличительные особенности, которыми предыдущие машины не обладали:

Одна из них состояла в том, что они могли выполнять определенную последовательность операций по заранее заданной программе или последовательно решать задачи разных типов.

Способность хранить информацию в специальной памяти.

Поколение первое.

Компьютеры на электронных лампах.

Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа — вакуумный диод — была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году.

Вскоре Ли де Форрест изобретает вакуумный триод — лампу с тремя электродами, затем появляется газонаполненная электронная лампа — тиратрон, пятиэлектродная лампа — пентод и т. д. До 30-х годов электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни-Вильямс построил (для нужд экспериментальной физики) тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп. Электронный счетчик состоит из ряда триггеров. Триггер , изобретенный М. А. Бонч-Бруевичем (1918) и — независимо — американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры. Подробнее об электронной лампе здесь.

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы — 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 — 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации «современного» компьютера того времени требовались специальные системы охлаждения.

Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штеккера с нужным гнездом.

Примерами машин I-го поколения могут служить Mark 1, ENIAC, EDSAC (Electronic Delay Storage Automatic Calculator), — первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

Поколение второе.

Транзисторные компьютеры.

1 июля 1948 года на одной из страниц «Нью-Йорк Таймс», посвященной радио и телевидению, было помещено скромное сообщение о том, что фирма «Белл телефон лабораториз» разработала электронный прибор, способный заменить электронную лампу. Физик-теоретик Джон Бардин и ведущий экспериментатор фирмы Уолтер Брайттен создали первый действующий транзистор. Это был точечно-контактный прибор, в котором три металлических «усика» контактировали с бруском из поликристаллического германия.

Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник (!!) и стоимостью всего 20 тыс. долларов (!!) .

Созданию транзистора предшествовала упорная, почти 10-летняя работа, которую еще в 1938 году начал физик теоретик Уильям Шокли. Применение транзисторов в качестве основного элемента в ЭВМ привело к уменьшению размеров компьютеров в сотни раз и к повышению их надежности.

И все-таки самой удивительной способностью транзистора является то, что он один способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а магнитную ленту, впервые примененную в ЭВМ Юнивак, начали использовать как для ввода, так и для вывода информации. А в середине 60-х годов получило распространение хранение информации на дисках. Большие достижения в архитектуре компьютеров позволило достичь быстродействия в миллион операций в секунду! Примерами транзисторных компьютеров могут послужить «Стретч» (Англия), «Атлас» (США). В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня (например «БЭСМ-6»).

Поколение третье.

Интегральные схемы.

Подобно тому, как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники — рождение машин третьего поколения. Интегральная схема, которую также называют кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм2. Подробнее об интегральных схемах здесь.

Первые интегральные схемы (ИС) появились в 1964 году. Сначала они использовались только в космической и военной технике. Сейчас же их можно обнаружить где угодно, включая автомобили и бытовые приборы. Что же качается компьютеров, то без интегральных схем они просто немыслимы!

Появление ИС означало подлинную революцию в вычислительной технике. Ведь она одна способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Другими словами, один крошечный кристалл обладает такими же вычислительными возможностями, как и 30-тонный Эниак! Быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились.

Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения самых различных задач. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

Поколение четвертое.

Большие интегральные схемы.

Вы уже знаете, что электромеханические детали счетных машин уступили место электронным лампам, которые в свою очередь уступили место транзисторам, а последние — интегральным схемам. Могло создастся впечатление, что технические возможности ЭВМ исчерпаны. В самом деле, что же можно еще придумать?

Чтобы получить ответ на этот вопрос, давайте вернемся к началу 70-х годов. Именно в это время была предпринята попытка выяснить, можно ли на одном кристалле разместить больше одной интегральной схемы. Оказалось, можно! Развитие микроэлектроники привело к созданию возможности размещать на одном-единственном кристалле тысячи интегральных схем. Так, уже в 1980 году, центральный процессор небольшого компьютера оказался возможным разместить на кристалле, площадью всего в четверть квадратного дюйма (1,61 см2). Началась эпоха микрокомпьютеров.

Каково же быстродействие современной микроЭВМ? Оно в 10 раз превышает быстродействие ЭВМ третьего поколения на интегральных схемах, в 1000 раз — быстродействие ЭВМ второго поколения на транзисторах и в 100000 раз — быстродействие ЭВМ первого поколения на электронных лампах.

Далее, почти 40 лет назад компьютеры типа Юнивак стоили около 2,5 млн. долларов. Сегодня же ЭВМ со значительно большим быстродействием, более широкими возможностями, более высокой надежностью, существенно меньшими габаритами и более простая в эксплуатации стоит примерно 2000 долларов. Каждые 2 года стоимость ЭВМ снижается примерно в 2 раза.

Очень большую роль в развитии компьютеров сыграли две ныне гигантские фирмы: Microsoft® и Intel®. Первая из них очень сильно повлияла на развитие программного обеспечения для компьютеров, вторая же стала известна благодаря выпускаемым ей лучшим микропроцессорам.

Сравнение разных поколений компьютеров.

Во время развития компьютеров четко обозначилась тенденция к уменьшению размеров и увеличению производительности. Чем более совершенствовалась элементная база компьютеров, тем меньше и быстрее они становились. Это можно показать на примере следуюшего сравнения и таблицы:

ENIAC был размером с целый дом и весил 30 т.

На его создание потратили 0,5 млн. долларов.

Он потреблял 200 кВт энергии.

Лампа выходила из строя каждые 7-8 минут.

Он мог сложить два числа за 3 мск.

Кристалл ИС меньше и тоньше контактной линзы.

Он стоит меньше 5 долларов.

Он потребляет ничтожное количество энергии.

Он почти не ломается.

Он может сложить 2 числа за 0,1 мск.

ХарактеристикаПоколения
ПервоеВтороеТретьеЧетвертое
Годы примения1946-19601950-19641964-19701970-1990-e
Основной элементЭлектронная лампаТранзисторИнтегральная схемаБольшая интегральная схема
Количество ЭВМ в мире, штСотниТысячиСотни тысячДесятки миллионов
Размеры

Очень большие

(ENIAC, UNIVAC, EDSAC)

Значительно меньшиеМиникомпьютерыМикрокомпьютеры
Быстротдействие1 (условно)101 000100 000
Носитель информацииПерфорированная лентаМагнитный диск, м. лентаДискГибкий диск

coolreferat.com

Второе поколение компьютеров (1955-1964)

Следующим крупным шагом в истории компьютерной техники, стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х. Благодаря транзисторам и печатным платам, было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности. Например, IBM 1620 на транзисторах, ставшая заменой IBM 650 на лампах, была размером с офисный стол. Однако компьютеры второго поколения по-прежнему были довольно дороги и поэтому использовались только университетами, правительствами, крупными корпорациями.

Быстродействие до миллиона операций в секунду! (сравните несколько тысяч у ламповых компьютеров).

С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д.

Стали применяться внешние накопители на жестких магнитных дисках и на флоппи-дисках — промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.

В 1964 году появился первый монитор для компьютеров — IBM 2250. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселов. Он имел частоту кадровой развертки 40 Гц. Создаваемые на базе компьютеров системы управления потребовали от ЭВМ более высокой производительности, а главное — надежности. В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля.  В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации.

Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина SEAC (Standarts Eastern Automatic Computer), созданная в 1951 году.

Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня — Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров; программирование, оставаясь наукой, приобретает черты ремесла.

Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет. Элементной базой второго поколения стали полупроводники. Без сомнения, транзисторы можно считать одним из наиболее впечатляющих чудес XX века. Патент на открытие транзистора был выдан в 1948 году американцам Д.Бардину и У.Браттейну, а через восемь лет они вместе с теоретиком В. Шокли стали лауреатами Нобелевской премии. Скорости переключения уже первых транзисторных элементов оказались в сотни раз выше, чем ламповых, надежность и экономичность – тоже. Впервые стала широко применяться память на ферритовых сердечниках и тонких магнитных пленках, были опробованы индуктивные элементы – параметроны. Первая бортовая ЭВМ для установки на межконтинентальной ракете – «Атлас» – была введена в эксплуатацию в США в 1955 году. В машине использовалось 20 тысяч транзисторов и диодов, она потребляла 4 киловатта. В 1961 году наземные компьютеры «стретч» фирмы «Бэрроуз» управляли космическими полетами ракет «Атлас», а машины фирмы IBM контролировали полет астронавта Гордона Купера. Под контролем ЭВМ проходили полеты беспилотных кораблей типа «Рейнджер» к Луне в 1964 году, а также корабля «Маринер» к Марсу. Аналогичные функции выполняли и советские компьютеры. В 1956 г. фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти – дисковые запоминающие устройства, значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые запоминающие устройства на дисках появились в машинах IBM-305 и RAMAC(Приложение 4). Последняя имела пакет, состоявший из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 12000 об/мин. На поверхности диска размещалось 100 дорожек для записи данных, по 10000 знаков каждая. Первые серийные универсальные ЭВМ на транзисторах были выпущены в 1958 году одновременно в США, ФРГ и Японии. Появляются первые мини-ЭВМ (например, PDP-8 (Приложение 5)). В Советском Союзе первые безламповые машины «Сетунь», «Раздан» и «Раздан-2» были созданы в 1959-1961 годах. В 60-х годах советские конструкторы разработали около 30 моделей транзисторных компьютеров, большинство которых стали выпускаться серийно. Наиболее мощный из них – «Минск-32» выполнял 65 тысяч операций в секунду. Появились целые семейства машин: «Урал», «Минск», БЭСМ. Рекордсменом среди ЭВМ второго поколения стала БЭСМ-6 (Приложение 6), имевшая быстродействие около миллиона операций в секунду – одна из самых производительных в мире. Архитектура и многие технические решения в этом компьютере были настолько прогрессивными и опережающими свое время, что он успешно использовался почти до нашего времени. Специально для автоматизации инженерных расчетов в Институте кибернетики Академии наук УССР под руководством академика В.М. Глушкова были разработаны компьютеры МИР (1966) и МИР-2 (1969). Важной особенностью машины МИР-2 явилось использование телевизионного экрана для визуального контроля информации и светового пера, с помощью которого можно было корректировать данные прямо на экране. Построение таких систем, имевших в своем составе около 100 тысяч переключательных элементов, было бы просто невозможным на основе ламповой техники. Таким образом, второе поколение рождалось в недрах первого, перенимая многие его черты. Однако к середине 60-х годов бум в области транзисторного производства достиг максимума – произошло насыщение рынка. Дело в том, что сборка электронного оборудования представляла собой весьма трудоемкий и медленный процесс, который плохо поддавался механизации и автоматизации. Таким образом, созрели условия для перехода к новой технологии, которая позволила бы приспособиться к растущей сложности схем путем исключения традиционных соединений между их элементами.

studfiles.net

Author: alexxlab

Отправить ответ

avatar
  Подписаться  
Уведомление о