МЕТАЛЛЫ | |||
Активные | Средней активности | Малоактивные | |
Li — Al | Al — H2 | H2 — Au | |
H2O (окислитель H+) | |||
реагируют | реагируют, пассивируются: Al, Ti, Cr, Fe, Co, Ni, Zn, Sn, Cd, Pb | не реагируют | |
H2SO4(разб) (окислитель H+) | |||
реагируют | реагируют, реагируют и пассивируется Pb | не реагируют | |
H2SO4(конц) | |||
реагируют | реагируют, реагируют и пассивируются: Al, Fe | реагируют: Cu, Hg | не реагируют: Ag, Au, Ru, Os, Rh, Ir, Pt |
Кислота восстанавливается, в основном, до следующих продуктов: | |||
H2S | S | SO2 | — |
HNO3(разб) (окислитель N+5) | |||
реагируют | реагируют, реагируют и пассивируется Ti | реагируют: Cu, Hg, Ag | не реагируют: Ru, Os, Rh, Ir, Pt |
Кислота восстанавливается, в основном, до следующих продуктов: | |||
NH4NO3 | N2, N2O | NO | — |
HNO3(конц) (окислитель N+5) | |||
реагируют | реагируют, реагируют и пассивируются: Al, Ti, Cr, Fe | реагируют: Cu, Hg, Ag | не реагируют: Au, Ru, Os, Rh, Ir, Pt |
Кислота восстанавливается, в основном, до N2O | |||
H2O (окислитель H+) + щелочь (например, NaOH) | |||
реагирует только Be | реагируют: Al, Zn, Sn, Pb | не реагируют |
infotables.ru
Ряд активности металлов в химии
Ряд активности металлов
Все металлы, в зависимости от их окислительно-восстановительной активности объединяют в ряд, который называется электрохимическим рядом напряжения металлов (так как металлы в нем расположены в порядке увеличения стандартных электрохимических потенциалов) или рядом активности металлов:
Li, K, Ва, Ca, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb, H2, Cu, Hg, Ag, Рt, Au
Наиболее химически активные металлы стоят в ряду активности до водорода, причем, чем левее расположен металл, тем он активнее. Металлы, занимающие в ряду активности, место после водорода считаются неактивными.
Алюминий
Алюминий представляет собой серебристо-белого цвета. Основные физические свойства алюминия – легкость, высокая тепло- и электропроводность. В свободном состоянии при пребывании на воздухе алюминий покрывается прочной пленкой оксида Al2O3, которая делает его устойчивым к действию концентрированных кислот.
Алюминий относится к металлам p-семейства. Электронная конфигурация внешнего энергетического уровня – 3s 23p1. В своих соединениях алюминий проявляет степень окисления равную «+3».
Алюминий получают электролизом расплава оксида этого элемента:
2Al2O3 = 4Al + 3O2↑
Однако из-за небольшого выхода продукта, чаще используют способ получения алюминия электролизом смеси Na3[AlF6] и Al2O3. Реакция протекает при нагревании до 960С и в присутствии катализаторов – фторидов (AlF3, CaF2 и др.), при этом на выделение алюминия происходит на катоде, а на аноде выделяется кислород.
Алюминий способен взаимодействовать с водой после удаления с его поверхности оксидной пленки (1), взаимодействовать с простыми веществами (кислородом, галогенами, азотом, серой, углеродом) (2-6), кислотами (7) и основаниями (8):
2Al + 6H2O = 2Al(OH)3 +3H2↑ (1)
2Al +3/2O2 = Al2O3 (2)
2Al + 3Cl2 = 2AlCl3 (3)
2Al + N2 = 2AlN (4)
2Al +3S = Al2S3 (5)
4Al + 3C = Al4C3 (6)
2Al + 3H2SO4 = Al2(SO4)3 + 3H2↑ (7)
2Al +2NaOH +3H2O = 2Na[Al(OH)4] + 3H2↑ (8)
Кальций
В свободном виде Ca – серебристо-белый металл. При нахождении на воздухе мгновенно покрывается желтоватой пленкой, которая представляет собой продукты его взаимодействия с составными частями воздуха. Кальций – достаточно твердый металл, имеет кубическую гранецентрированную кристаллическую решетку.
Электронная конфигурация внешнего энергетического уровня – 4s2. В своих соединениях кальций проявляет степень окисления равную «+2».
Кальций получают электролизом расплавов солей, чаще всего – хлоридов:
CaCl2 = Ca + Cl2↑
Кальций способен растворяются в воде с образованием гидроксидов, проявляющих сильные основные свойства (1), реагировать с кислородом (2), образуя оксиды, взаимодействовать с неметаллами (3 -8), растворяться в кислотах (9):
Ca + H2O = Ca(OH)2 + H2↑ (1)
2Ca + O2 = 2CaO (2)
Ca + Br2 =CaBr2 (3)
3Ca + N2 = Ca
2Ca + 2C = Ca2C2 (5)
Ca +S = CaS (6)
2Ca + 2P = Ca3P2 (7)
Ca + H2 = CaH2 (8)
Ca + 2HCl = CaCl2 + H2↑ (9)
Железо и его соединения
Железо – металл серого цвета. В чистом виде оно довольно мягкое, ковкое и тягучее. Электронная конфигурация внешнего энергетического уровня – [Ar]3d 64s2. В своих соединениях железо проявляет степени окисления «+2» и «+3».
Металлическое железо реагирует с водяным паром, образуя смешанный оксид (II, III) Fe3O4:
3Fe + 4H2O(v) ↔ Fe3O4 + 4H2↑
На воздухе железо легко окисляется, особенно в присутствии влаги (ржавеет):
3Fe + 3O2 + 6H2O = 4Fe(OH)3
Как и другие металлы железо вступает в реакции с простыми веществами, например, галогенами (1), растворяется в кислотах (2):
2Fe + Br2 = 2FeBr3 (при нагревании) (1)
Fe + 2HCl = FeCl2 + H2↑ (2)
Железо образует целый спектр соединений, поскольку проявляет несколько степеней окисления: гидроксид железа (II), гидроксид железа (III), соли, оксиды и т.д. Так, гидроксид железа (II) можно получить при действии растворов щелочей на соли железа (II) без доступа воздуха:
FeSO4 + 2NaOH = Fe(OH)2↓ + Na2SO4
Гидроксид железа (II) растворим в кислотах и окисляется до гидроксида железа (III) в присутствии кислорода.
Соли железа (II) проявляют свойства восстановителей и превращаются в соединения железа (III).
Оксид железа (III) нельзя получить по реакции горения железа в кислороде, для его получения необходимо сжигать сульфиды железа или прокаливать другие соли железа:
4FeS2 + 11O2 = 2Fe2O3 +8SO2↑
2FeSO4 = Fe2O3 + SO2↑ + 3H2O
Соединения железа (III) проявляют слабые окислительные свойства и способны вступать в ОВР с сильными восстановителями:
2FeCl3 + H2S = Fe(OH)3↓ + 3NaCl
Производство чугуна и стали
Стали и чугуны – сплавы железа с углеродом, причем содержание углерода в стали до 2%, а в чугуне 2-4%. Стали и чугуны содержат легирующие добавки: стали– Cr, V, Ni, а чугун – Si.
Выделяют различные типы сталей, так, по назначению выделяют конструкционные, нержавеющие, инструментальные, жаропрочные и криогенные стали. По химическому составу выделяют углеродистые (низко-, средне- и высокоуглеродистые) и легированные (низко-, средне- и высоколегированные). В зависимости от структуры выделяют аустенитные, ферритные, мартенситные, перлитные и бейнитные стали.
Стали нашли применение во многих отраслях народного хозяйства, таких как строительная, химическая, нефтехимическая, охрана окружающей среды, транспортная энергетическая и другие отрасли промышленности.
В зависимости от формы содержания углерода в чугуне — цементит или графит, а также их количества различают несколько типов чугуна: белый (светлый цвет излома из-за присутствия углерода в форме цементита), серый (серый цвет излома из-за присутствия углерода в форме графита), ковкий и жаропрочный. Чугуны очень хрупкие сплавы.
Области применения чугунов обширны – из чугуна изготавливают художественные украшения (ограды, ворота), корпусные детали, сантехническое оборудование, предметы быта (сковороды), его используют в автомобильной промышленности.
Примеры решения задач
ru.solverbook.com
Ряд активности металлов, когда им пользоваться » HimEge.ru
Ряд напряжений (ряд активности или электрохимический ряд напряжения ЭХРН) металлов используется на практике для относительной оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе.
ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ МЕТАЛЛОВ
Восстановительная активность металлов (свойство отдавать электроны) уменьшается, а окислительная способность их катионов (свойство присоединять электроны) увеличивается в указанном ряду слева направо.
- Металлы, стоящие левее, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu2+ → Zn2+ + Cu возможно только в прямом направлении. Цинк вытесняет медь из водного раствора её соли. При этом цинковая пластинка растворяется, а металлическая медь выделяется из раствора.
- Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) — и при взаимодействии с водой.
- Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.
- При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.
Катодный процесс
himege.ru
Химические свойства металлов | Химическая энциклопедия
По своей химической активности металлы очень сильно различаются. О химической активности металла можно примерно судить по его положению в ЭХРНМ.
Самые активные металлы расположены в начале этого ряда (слева), самые малоактивные — в конце (справа).
Реакции с простыми веществами. Металлы вступают в реакции с неметаллами с образованием бинарных соединений. Условия протекания реакций, а иногда и их продукты сильно различаются для разных металлов.
Так, например, щелочные металлы активно реагируют с кислородом (в том числе в составе воздуха) при комнатной температуре с образованием оксидов и пероксидов
4Li + O2 = 2Li2O;
2Na + O2 = Na2O2
Металлы средней активности реагируют с кислородом при нагревании. При этом образуются оксиды:
2Mg + O2 =t 2MgO.
Малоактивные металлы (например, золото, платина) с кислородом не реагируют и поэтому на воздухе практически не изменяют своего блеска.
Большинство металлов при нагревании с порошком серы образуют соответствующие сульфиды:
Ca + I2 = CaI2;
2Fe + 3Br2 = 2FeBr3;
2Au + 3Cl2 =t 2AuCl3.
Реакции со сложными веществами. С металлами реагируют соединения всех классов — оксиды (в том числе вода), кислоты, основания и соли.
Активные металлы бурно взаимодействуют с водой при комнатной температуре:
2Li + 2H2O = 2LiOH + H2↑;
Ba + 2H2O = Ba(OH)2 + H2↑.
Поверхность таких металлов, как, например, магний и алюминий, защищена плотной пленкой соответствующего оксида. Это препятствует протеканию реакции с водой. Однако если эту пленку удалить или нарушить ее целостность, то эти металлы также активно вступают в реакцию. Например, порошкообразный магний реагирует с горячей водой:
Mg + 2H2O =100 °C Mg(OH)2 + H2↑.
При повышенной температуре с водой вступают в реакцию и менее активные металлы: Zn, Fe, Mil и др. При этом образуются соответствующие оксиды. Например, при пропускании водяного пара над раскаленными железными стружками протекает реакция:
3Fe + 4H2O =t Fe3O4 + 4H2↑.
Металлы, стоящие в ряду активности до водорода, реагируют с кислотами (кроме HNO3) с образованием солей и водорода. Активные металлы (К, Na, Са, Mg) реагируют с растворами кислот очень бурно (с большой скоростью):
Ca + 2HCl = CaCl2 + H2↑;
2Al + 3H2SO4 = Al2(SO4)3 + 3H2↑.
Малоактивные металлы часто практически не растворяются в кислотах. Это обусловлено образованием на их поверхности пленки нерастворимой соли. Например, свинец, стоящий в ряду активности до водорода, практически не растворяется в разбавленной серной и соляной кислотах вследствие образования на его поверхности пленки нерастворимых солей (PbSO4 и PbCl2). Вам необходимо включить JavaScript, чтобы проголосовать
abouthist.net
Электрохимический ряд активности металлов — это… Что такое Электрохимический ряд активности металлов?
Электрохимический ряд активности (ряд напряжений, ряд стандартных электродных потенциалов) металлов — последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ0, отвечающих полуреакции восстановления катиона металла Men+: Men+ + nē → Me
Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительные реакциях в водных растворах.
История
Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам[1]. Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.
Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов. Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах. Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений[2].
В 1793 году Алессандро Вольта, конструируя гальванический элемент («Вольтов столб»), установил относительную активность известных тогда металлов: Zn, Pb, Sn, Fe, Cu, Ag, Au. «Сила» гальванического элемента оказывалась тем больше, чем дальше стояли друг от друга металлы в этом ряду («ряд напряжений»). Однако Вольта не связал этот ряд с химическими свойствами металлов.
В 1798 году Иоганн Вильгельм Риттер указал, что ряд Вольта эквивалентен ряду окисления металлов (т. е. последовательности уменьшения их сродства с кислородом). Таким образом, Риттер высказал гипотезу о возникновении электрического тока вследствие протекания химической реакции[3].
В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.
Последовательность металлов по их способности вытеснять друг друга, давно известная химикам, была в 1860-е и последующие годы особенно основательно и всесторонне изучена и дополнена Н. Н. Бекетовым. Уже в 1859 году он сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими». В эту работу Бекетов включил целый ряд обобщений о зависимости между взаимным вытеснением элементов и их атомным весом, связывая эти процессы с «первоначальными химическими свойствами элементов – тем, что называется химическим сродством»[4]. Открытие Бекетовом вытеснения металлов из растворов их солей водородом под давлением и изучение восстановительной активности алюминия, магния и цинка при высоких температурах (металлотермия) позволило ему выдвинуть гипотезу о связи способности одних элементов вытеснять из соединений с их плотностью: более лёгкие простые вещества способны вытеснять более тяжёлые («вытеснительный ряд Бекетова»).
Не отрицая значительных заслуг Бекетова в становлении современных представлений об ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда.[5][6].
Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности». Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl2 и свинец — из кислого раствора PbCl2; она же способна к растворению в концентрированной соляной кислоте с выделением водорода. Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl2.
Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» – расположению металлов по значению стандартных электродных потенциалов. Таким образом, вместо качественной характеристики — «склонности» металла и его иона к тем или иным реакциям — Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов.
Теоретические основы
Значения электрохимических потенциалов являются функцией многих переменных и поэтому обнаруживают сложную зависимость от положения металлов в периодической системе. Так, окислительный потенциал катионов растёт с увеличением энергии атомизации металла, с увеличением суммарного потенциала ионизации его атомов и с уменьшением энергии гидратации его катионов.
В самом общем виде ясно, что металлы, находящиеся в начале периодов характеризуются низкими значениями электрохимических потенциалов и занимают места в левой части ряда напряжений. При этом чередование (щелочных и щёлочноземельных металлов отражает явление диагонального сходства. Металлы, расположенные ближе к серединам периодов, характеризуются большими значениями потенциалов и занимают места в правой половине ряда. Последовательное увеличение электрохимического потенциала (от −3,395 В у пары Eu2+/Eu[источник не указан 228 дней] до +1,691 В у пары Au+/Au) отражает уменьшение восстановительной активности металлов (свойство отдавать электроны) и усиление окислительной способности их катионов (свойство присоединять электроны). Таким образом, самым сильным восстановителем является металлический европий, а самым сильным окислителем — катионы золота Au+.
В ряд напряжений традиционно включается водород, поскольку практическое измерение электрохимических потенциалов металлов производится с использованием стандартного водородного электрода.
Практическое использование ряда напряжений
Ряд напряжений используется на практике для сравнительной оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе:
- Металлы, стоящие левее, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu2+ → Zn2+ + Cu возможно только в прямом направлении.
- Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) — и при взаимодействии с водой.
- Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.
- При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.
Таблица электрохимических потенциалов металлов
Металл | Катион | φ0, В | Реакционная способность | Электролиз (на катоде): |
---|---|---|---|---|
Li | Li+ | -3,0401 | реагирует с водой | выделяется водород |
Cs | Cs+ | -3,026 | ||
Rb | Rb+ | -2,98 | ||
K | K+ | -2,931 | ||
Ra | Ra2+ | -2,912 | ||
Ba | Ba2+ | -2,905 | ||
Fr | Fr+ | -2,92 | ||
Sr | Sr2+ | -2,899 | ||
Ca | Ca2+ | -2,868 | ||
Eu | Eu2+ | -2,812 | ||
Na | Na+ | -2,71 | ||
Sm | Sm2+ | -2,68 | ||
Md | Md2+ | -2,40 | реагирует с кислотами | |
La | La3+ | -2,379 | ||
Y | Y3+ | -2,372 | ||
Mg | Mg2+ | -2,372 | ||
Ce | Ce3+ | -2,336 | ||
Pr | Pr3+ | -2,353 | ||
Er | Er3+ | -2,331 | ||
Ho | Ho3+ | -2,33 | ||
Nd | Nd3+ | -2,323 | ||
Tm | Tm3+ | -2,319 | ||
Sm | Sm3+ | -2,304 | ||
Pm | Pm3+ | -2,30 | ||
Fm | Fm2+ | -2,30 | ||
Dy | Dy3+ | -2,295 | ||
Tb | Tb3+ | -2,28 | ||
Lu | Lu3+ | -2,28 | ||
Gd | Gd3+ | -2,279 | ||
Es | Es2+ | -2,23 | ||
Ac | Ac3+ | -2,20 | ||
Dy | Dy2+ | -2,2 | ||
Pm | Pm2+ | -2,2 | ||
Cf | Cf2+ | -2,12 | ||
Sc | Sc3+ | -2,077 | ||
Am | Am3+ | -2,048 | ||
Cm | Cm3+ | -2,04 | ||
Pu | Pu3+ | -2,031 | ||
Er | Er2+ | -2,0 | ||
Pr | Pr2+ | -2,0 | ||
Eu | Eu3+ | -1,991 | ||
Lr | Lr3+ | -1,96 | ||
Cf | Cf3+ | -1,94 | ||
Es | Es3+ | -1,91 | ||
Th | Th4+ | -1,899 | ||
Fm | Fm3+ | -1,89 | ||
Np | Np3+ | -1,856 | ||
Be | Be2+ | -1,847 | ||
U | U3+ | -1,798 | ||
Al | Al3+ | -1,700 | ||
Md | Md3+ | -1,65 | ||
Ti | Ti2+ | -1,63 | конкурирующие реакции: и выделение водорода, и выделение металла в чистом виде | |
Hf | Hf4+ | -1,55 | ||
Zr | Zr4+ | -1,53 | ||
Pa | Pa3+ | -1,34 | ||
Ti | Ti3+ | -1,208 | ||
Yb | Yb3+ | -1,205 | ||
No | No3+ | -1,20 | ||
Ti | Ti4+ | -1,19 | ||
Mn | Mn2+ | -1,185 | ||
V | V2+ | -1,175 | ||
Nb | Nb3+ | -1,1 | ||
Nb | Nb5+ | -0,96 | ||
V | V3+ | -0,87 | ||
Cr | Cr2+ | -0,852 | ||
Zn | Zn2+ | -0,763 | ||
Cr | Cr3+ | -0,74 | ||
Ga | Ga3+ | -0,560 | ||
Ga | Ga2+ | -0,45 | ||
Fe | Fe2+ | -0,441 | ||
Cd | Cd2+ | -0,404 | ||
In | In3+ | -0,3382 | ||
Tl | Tl+ | -0,338 | ||
Co | Co2+ | -0,28 | ||
In | In+ | -0,25 | ||
Ni | Ni2+ | -0,234 | ||
Mo | Mo3+ | -0,2 | ||
Sn | Sn2+ | -0,141 | ||
Pb | Pb2+ | -0,126 | ||
H2 | H+ | 0 | ||
W | W3+ | +0,11 | низкая реакционная способность | выделение металла в чистом виде |
Ge | Ge4+ | +0,124 | ||
Sb | Sb3+ | +0,240 | ||
Ge | Ge2+ | +0,24 | ||
Re | Re3+ | +0,300 | ||
Bi | Bi3+ | +0,317 | ||
Cu | Cu2+ | +0,338 | ||
Po | Po2+ | +0,37 | ||
Тс | Тс2+ | +0,400 | ||
Ru | Ru2+ | +0,455 | ||
Cu | Cu+ | +0,522 | ||
Te | Te4+ | +0,568 | ||
Rh | Rh+ | +0,600 | ||
W | W6+ | +0,68 | ||
Tl | Tl3+ | +0,718 | ||
Rh | Rh3+ | +0,758 | ||
Po | Po4+ | +0,76 | ||
Hg | Hg22+ | +0,7973 | ||
Ag | Ag+ | +0,799 | ||
Pb | Pb4+ | +0,80 | ||
Os | Os2+ | +0,850 | ||
Hg | Hg2+ | +0,851 | ||
Pt | Pt2+ | +0,963 | ||
Pd | Pd2+ | +0,98 | ||
Ir | Ir3+ | +1,156 | ||
Au | Au3+ | +1,498 | ||
Au | Au+ | +1,691 |
Ссылки
Литература
- Корольков Д.В. Основы неорганической химии. — М.:Просвещение, 1982. — 271 с.
Примечания
- ↑ Рабинович В. Л. Алхимия как феномен средневековой культуры. — М.: Наука, 1979
- ↑ Пути познания / Головнер В.Н. Взгляд на мир глазами химика
- ↑ Штрубе В. Пути развития химии: в 2-х томах. Том 2. От начала промышленной революции до первой четверти XX века
- ↑ Беляев А.И. Николай Николаевич Бекетов – выдающийся русский физико-химик и металлург. М., 1953
- ↑ Леенсон И. А. Ряд активности металлов Бекетова: миф или реальность? // Химия в школе. — 2002. — № 9. — С. 90-96.
- ↑ Мчедлов-Петросян Н. О.Труды Н. Н. Бекетова и ряд активности металлов // Вестник Харьковского национального университета. — 2003. — № 596. — Химия. Вып. 10 (33). — С. 221-225.
Электрохимический ряд активности металлов | |
---|---|
Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2, W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au |
dic.academic.ru
Электрохимический ряд активности металлов — WiKi
Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам[1]. Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.
Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов. Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах. Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений[2].
В 1793 году Алессандро Вольта, конструируя гальванический элемент (Вольтов столб), установил относительную активность известных тогда металлов: Zn, Pb, Sn, Fe, Cu, Ag, Au. «Сила» гальванического элемента оказывалась тем больше, чем дальше стояли друг от друга металлы в этом ряду (ряд напряжений). Однако Вольта не связал этот ряд с химическими свойствами металлов.
В 1798 году Иоганн Вильгельм Риттер указал, что ряд Вольта эквивалентен ряду окисления металлов (то есть последовательности уменьшения их сродства с кислородом). Таким образом, Риттер высказал гипотезу о возникновении электрического тока вследствие протекания химической реакции[3].
В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.
Последовательность металлов по их способности вытеснять друг друга, давно известная химикам, была в 1860-е и последующие годы особенно основательно и всесторонне изучена и дополнена Н. Н. Бекетовым. Уже в 1859 году он сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими». В эту работу Бекетов включил целый ряд обобщений о зависимости между взаимным вытеснением элементов и их атомным весом, связывая эти процессы с «первоначальными химическими свойствами элементов — тем, что называется химическим сродством»[4]. Открытие Бекетовым вытеснения металлов из растворов их солей водородом под давлением и изучение восстановительной активности алюминия, магния и цинка при высоких температурах (металлотермия) позволило ему выдвинуть гипотезу о связи способности одних элементов вытеснять другие из соединений с их плотностью: более лёгкие простые вещества способны вытеснять более тяжёлые (поэтому данный ряд часто также называют вытеснительный ряд Бекетова, или просто ряд Бекетова).
Не отрицая значительных заслуг Бекетова в становлении современных представлений о ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда.[5][6] Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности». Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl2 и свинец — из кислого раствора PbCl2; она же способна к растворению в концентрированной соляной кислоте с выделением водорода. Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl2.
Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» — расположению металлов по значению стандартных электродных потенциалов. Таким образом, вместо качественной характеристики — «склонности» металла и его иона к тем или иным реакциям — Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов.
Значения электрохимических потенциалов являются функцией многих переменных и поэтому обнаруживают сложную зависимость от положения металлов в периодической системе. Так, окислительный потенциал катионов растёт с увеличением энергии атомизации металла, с увеличением суммарного потенциала ионизации его атомов и с уменьшением энергии гидратации его катионов.
В самом общем виде ясно, что металлы, находящиеся в начале периодов характеризуются низкими значениями электрохимических потенциалов и занимают места в левой части ряда напряжений. При этом чередование щелочных и щёлочноземельных металлов отражает явление диагонального сходства. Металлы, расположенные ближе к серединам периодов, характеризуются большими значениями потенциалов и занимают места в правой половине ряда. Последовательное увеличение электрохимического потенциала (от −3,395 В у пары Eu2+/Eu[источник не указан 2390 дней] до +1,691 В у пары Au+/Au) отражает уменьшение восстановительной активности металлов (свойство отдавать электроны) и усиление окислительной способности их катионов (свойство присоединять электроны). Таким образом, самым сильным восстановителем является металлический европий, а самым сильным окислителем — катионы золота Au+.
В ряд напряжений традиционно включается водород, поскольку практическое измерение электрохимических потенциалов металлов производится с использованием стандартного водородного электрода.
ru-wiki.org
МЕТАЛЛЫ | |||
Активные | Средней активности | Малоактивные | |
Li — Al | Al — H2 | H2 — Au | |
H2O (окислитель H+) | |||
реагируют | реагируют, пассивируются: Al, Ti, Cr, Fe, Co, Ni, Zn, Sn, Cd, Pb | не реагируют | |
H2SO4(разб) (окислитель H+) | |||
реагируют | реагируют, реагируют и пассивируется Pb | не реагируют | |
H2SO4(конц) (окислитель S+6) | |||
реагируют | реагируют, реагируют и пассивируются: Al, Fe | реагируют: Cu, Hg | не реагируют: Ag, Au, Ru, Os, Rh, Ir, Pt |
Кислота восстанавливается, в основном, до следующих продуктов: | |||
H2S | S | SO2 | — |
HNO3(разб) (окислитель N+5) | |||
реагируют | реагируют, реагируют и пассивируется Ti | реагируют: Cu, Hg, Ag | не реагируют: Ru, Os, Rh, Ir, Pt |
Кислота восстанавливается, в основном, до следующих продуктов: | |||
NH4NO3 | N2, N2O | NO | — |
HNO3(конц) (окислитель N+5) | |||
реагируют | реагируют, реагируют и пассивируются: Al, Ti, Cr, Fe | реагируют: Cu, Hg, Ag | не реагируют: Au, Ru, Os, Rh, Ir, Pt |
Кислота восстанавливается, в основном, до N2O | |||
H2O (окислитель H+) + щелочь (например, NaOH) | |||
реагирует только Be | реагируют: Al, Zn, Sn, Pb | не реагируют |
traprat.ru