Кровь соединительная ткань рисунок – СОЕДИНИТЕЛЬНЫЕ ТКАНИ — Стр 4

МИКРОСКОПИЧЕСКИЕ ФОТОГРАФИИ - СОЕДИНИТЕЛЬНАЯ ТКАНЬ

 
Поместите стрелку мыши на фотографию
и Вы сможете увидеть ее без обозначений
(при медленной загрузке - не убирайте стрелку мыши с картинки
до тех пор пока не появится картинка без обозначений)
ГИАЛИНОВЫЙ ХРЯЩ
Окраска гематоксилин-эозином

1 - клетки хряща (хондроциты, хондробласты)
2 - межклеточное вещество хряща
3 - надхрящница

ГИАЛИНОВЫЙ ХРЯЩ
Окраска гематоксилин-эозином

1 - клетки хряща (хондроциты, хондробласты)
2 - межклеточное вещество хряща
3 - надхрящница

ГИАЛИНОВЫЙ ХРЯЩ
Окраска гематоксилин-эозином

1 - клетки хряща (хондроциты, хондробласты)
2 - межклеточное вещество хряща
3 - надхрящница

ЭЛАСТИЧЕСКИЙ ХРЯЩ
Окраска железным гематоксилином

1 - клетки хряща (хондроциты, хондробласты)
2 - межклеточное вещество хряща
3 - надхрящница

ЭЛАСТИЧЕСКИЙ ХРЯЩ
Окраска железным гематоксилином

1 - клетки хряща (хондроциты, хондробласты)
2 - межклеточное вещество хряща

ЭЛАСТИЧЕСКИЙ ХРЯЩ
Окраска орсеином

1 - клетки хряща (хондроциты, хондробласты)
2 - межклеточное вещество хряща

ВОЛОКНИСТЫЙ ХРЯЩ МЕЖПОЗВОНОЧНОГО ДИСКА
Окраска гематоксилин-эозином

1 - клетки хряща (хондроциты, хондробласты)
2 - межклеточное вещество хряща
3 - студенистое ядро (nucleus pulposus)
4 - фиброзное кольцо (anulus fibrosus)

ВОЛОКНИСТЫЙ ХРЯЩ МЕЖПОЗВОНОЧНОГО ДИСКА
Окраска гематоксилин-эозином

1 - клетки хряща (хондроциты, хондробласты)
2 - межклеточное вещество хряща
3 - студенистое ядро (nucleus pulposus)
4 - фиброзное кольцо (anulus fibrosus)

СУХОЖИЛИЕ (продольный срез)
Окраска гематоксилин-эозином

1 - эндотеноний (формирует пучки 1-го порядка)

2 - перитеноний (формирует пучки 2-го порядка)

СУХОЖИЛИЕ (продольный срез)
Окраска гематоксилин-эозином

1 - эндотеноний (формирует пучки 1-го порядка)

СУХОЖИЛИЕ (поперечный срез)
Окраска гематоксилин-эозином

1 - эндотеноний (формирует пучки 1-го порядка)
2 - перитеноний (формирует пучки 2-го порядка)

histol.ru

МИКРОСКОПИЧЕСКИЕ ФОТОГРАФИИ - СОЕДИНИТЕЛЬНАЯ ТКАНЬ



МИКРОСКОПИЧЕСКИЕ ФОТОГРАФИИ - СОЕДИНИТЕЛЬНАЯ ТКАНЬ - КОСТЬ

ХРЯЩ, ПЛОТНАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ    РЫХЛАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ     КРОВЬ

 
Поместите стрелку мыши на фотографию
и Вы сможете увидеть ее без обозначений
(при медленной загрузке - не убирайте стрелку мыши с картинки
до тех пор пока не появится картинка без обозначений)
ПЛАСТИНЧАТАЯ (ЗРЕЛАЯ) КОСТЬ
окраска тионином и пикриновой кислотой

1 - остеон
2 - канал остеона (Гаверсов канал)
3 - вставочные костные пластинки

ПЛАСТИНЧАТАЯ (ЗРЕЛАЯ) КОСТЬ
окраска тионином и пикриновой кислотой

1 - остеон (для демонстрации два остеона
      обозначены пунктирной линией)
2 - канал остеона (Гаверсов канал)
3 - вставочные костные пластинки

ПЛАСТИНЧАТАЯ (ЗРЕЛАЯ) КОСТЬ
окраска тионином и пикриновой кислотой

1 - остеон
2 - канал остеона (Гаверсов канал)
3 - вставочные костные пластинки
4 - наружные общие пластинки
5 - надкостница

ПЛАСТИНЧАТАЯ (ЗРЕЛАЯ) КОСТЬ
окраска тионином и пикриновой кислотой

1 - остеон
2 - канал остеона (Гаверсов канал)
3 - вставочные костные пластинки
6 - остеоциты

ГРУБОВОЛОКИНСТАЯ (НЕЗРЕЛАЯ) КОСТЬ
окраска гематоксилин-эозином

1 - межклеточное вещество кости
2 - остеоциты
3 - надкостница

ГРУБОВОЛОКИНСТАЯ (НЕЗРЕЛАЯ) КОСТЬ
окраска гематоксилин-эозином

1 - межклеточное вещество кости
2 - остеоциты
3 - надкостница
4 - остеокласт

ОСТЕОЦИТЫ
окраска гематоксилином

ХРЯЩ, ПЛОТНАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ    РЫХЛАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ     КРОВЬ

histol.ru

Картинки кровь соединительная ткань картинка, Стоковые Фотографии и Роялти-Фри Изображения кровь соединительная ткань картинка

Картинки кровь соединительная ткань картинка, Стоковые Фотографии и Роялти-Фри Изображения кровь соединительная ткань картинка | Depositphotos®

Leonid_Andronov

5600 x 3565

Luisecheverriurrea

5593 x 3729

Luisecheverriurrea

5760 x 3840

benschonewille

2667 x 4000

benschonewille

3000 x 4500

[email protected]

3840 x 3072

ru.depositphotos.com

Соединительная ткань — Энциклопедия по биологии

Соединительная ткань (рис. 51) участвует в образовании связок и прослоек между органами, а также скелета многих животных. Некоторые виды этой ткани (кровь, лимфа) осуществляют перенос веществ по всему телу.

Строение соединительной ткани разнообразно. Но все ее виды сходны в том, что имеют большое количество межклеточного вещества. Различают следующие основные виды соедини­тельной ткани:

  1. Рыхлая волокнистая соединительная ткань слагается из редко расположенных звездчатых клеток, переплетающихся волокон и тканевой жидкости, заполняющей промежутки между клетками и волокнами; обнаруживается обычно в прослойках между органами.
  2. Плотная волокнистая соединительная ткань в основном состоит из пучков волокон, обычно образованных особым бел­ком — коллагеном. Аморфного межклеточного вещества мало, немногочисленные   клетки    расположены    между    пучка волокон. Такая ткань образует связки, сухожилия, глубокие слои кожи позвоночных животных.
  3. Хрящевая ткань состоит из округлых или овальных клеток, лежащих в капсулах среди мощно развитого плотного и твердого межклеточного вещества, которое обычно слагается из переплетения тонких волокон и основной бесструктурной субстанции. Хрящи входят в состав скелета многих животных.
  4. Костная ткань отличается тем, что ее промежуточное вещество содержит большое количество солей кальция, придающих ей твердость и прочность. Клетки костной ткани лежат в небольших капсулах, соединенных тончайшими канальцами. Эта ткань образует кости позвоночных животных.
  5. Кровь — своеобразный  вид  соединительной ткани, у которой промежуточное вещество (плазма крови) имеет жидкую консистенцию.    В    плазме взвешены     клеточные элементы. У беспозвоночных они чаще представлены бесцветными клетками    неправильной формы, а у позвоночных — красными   и белыми кровяными тельцами.
Реклама:
- Рекомендуем прочитать следующую информацию: Казань дам Деньги в долг dengi-zaprosto.ru.

biologiya.net

кровь и лимфа

Соедини́тельная ткань

Соедини́тельная ткань —Выполняет опорную, защитную и трофическую функции. Соединительная ткань образует опорный каркас (строму) и наружные покровы (дерму) всех органов. Общими свойствами всех соединительных тканей является происхождение из мезенхимы, а также выполнение опорных функций и структурное сходство. Межклеточное вещество соединительных тканей (внеклеточный матрикс) содержит множество разных органических и неорганических соединений, от количества и состава которых зависит консистенция ткани. Кровь и лимфа, относимые к

жидким соединительным тканям, содержат жидкое межклеточное вещество — плазму. Матрикс хрящевой ткани - гелеобразный, а матрикс кости, как и волокна сухожилий - нерастворимые твердые вещества.

Рыхлая соединительная ткань состоит из клеток, разбросанных в межклеточном веществе, и переплетённых неупорядоченных волокон.

Плотная соединительная ткань состоит из волокон, а не из клеток

Жировая ткань содержит, в основном, жировые клетки.тот тип ткани предохраняет лежащие под ней органы от ударов и переохлаждения.

Скелетные ткани представлены хрящем и костью. Хрящ – прочная ткань, состоящая из клеток (хондробластов), погружённых в упругое вещество – хондрин.

Кровь

Кровь жидкая соединительная ткань, наполняющая сердечно-сосудистую систему.иркулирует по системе сосудов под действием силы ритмически сокращающегося сердца Ее межклеточное вещество жидкое — это плазма крови. В плазме крови находятся («плавают») ее клеточные элементы: эритроциты, лейкоциты, а также тромбоциты (кровяные пластинки).

1. Транспортную — в ней выделяют ряд подфункций:

Дыхательная — перенос кислорода от лёгких к тканям и углекислого газа от тканей к лёгким;

Питательная - доставляет питательные вещества к клеткам тканей;

Экскреторная (выделительная) — транспорт ненужных продуктов обмена веществ к легким и почкам для их экскреции (выведения) из организма;

Терморегуляторная — регулирует температуру тела, перенося тепло;

Регуляторная — связывает между собой различные органы и системы, перенося сигнальные вещества (Гормоны), которые в них образуются;

2. Защитную — обеспечение клеточной и гуморальной защиты от чужеродных агентов.

3. Гомеостатическую — поддержание постоянства внутренней среды организма (кислотно-основного равновесия, водно-электролитного баланса и др.

Плазма крови представляет собой жидкость, остающуюся после удаления из нее форменных элементов — клеток(жидкая часть крови. В плазме крови находятся во взвешенном состоянии форменные элементы). Она содержит 90—93 % воды, 7—8 % различных белковых веществ (альбумины, глобулины, липопротеиды, фибриноген), 0,9 % солей, 0,1 % глюкозы. В плазме крови имеются также ферменты, гормоны, витамины и другие необходимые организму вещества. Белки плазмы участвуют в процессе свертывания крови, давления в сосудах, вязкость крови, препятствуют оседанию эритроцитов. В плазме крови содержатся иммуноглобулины (антитела), участвующие в защитных реакциях организма.

Эритроциты (красные кровяные тельца) являются безъядерными клетками, не способными к делению.Эритроциты — высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO2) в обратном направлении.Эритроциты — высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO2) в обратном направлении.Продолжительность жизни эритроцита человека в среднем 125 суток (ежесекундно образуется около 2,5 млн эритроцитов и такое же их количество разрушается) Количество эритроцитов в 1 мкл крови у взрослого мужчины составляет 3,9—5,5 млн Каждый эритроцит имеет форму двояковогнутого диска диаметром 7—8 мкм

Снаружи эритроциты покрыты полупроницаемой мембраной (оболочкой) — цитолеммой, через которую избирательно проникают вода, газы и другие элементы. В цитоплазме отсутствуют органеллы: 34 % от ее объема составляет пигмент гемоглобин, функцией которого является перенос кислорода (02) и углекислого газа

Гемоглобин состоит из белка глобина и небелковой группы — гема, содержащего железо. В одном эритроците до 400 млн молекул гемоглобина. Гемоглобин переносит кислород из легких к органам и тканям, а углекислоту — из органов и тканей к легким. Молекулы кислорода благодаря высокому парциальному давлению его в легких присоединяются к гемоглобину. Гемоглобин с присоединившимся к нему кислородом имеет ярко-красный цвет и называется оксигемоглобином.

Тромбоциты крови (кровяные пластинки) мелкие плоские бесцветные тельца неправильной формы, в большом количестве циркулирующие в крови; это постклеточные структуры, представляющие собой окружённые мембраной и лишённые ядра фрагменты цитоплазмы гигантских клеток костного мозга — мегакариоцитов. Образуются в красном костном мозге. Средняя продолжительность жизни кровяных пластинок составляет 2-10 суток, затем они утилизируются ретикулоэндотелиальными клетками печени и селезёнки. Функция тромбоцита заключается в предотвращении большой кровопотери при ранении сосудов, а также заживляет и регенерирует поврежденные ткани. У каждого тромбоцита выделяют гиаломер и расположенный в нем грануломер в виде зернышек размером около 0,2 мкм.

Главная функция, предотвращающая большую кровопотерю при ранении сосудов.Оно характеризуется следующими процессами: адгезия, агрегация, секреция, ретракция, спазм мелких сосудов и вязкий метаморфоз, образование белого тромбоцитарного тромба в сосудах микроциркуляции с диаметром до 100 нм.Относительно недавно установлено также, что тромбоциты играют важнейшую роль в заживлении и регенерации поврежденных тканей, освобождая из себя в поврежденные ткани факторы роста, которые стимулируют деление и рост поврежденных клеток.Строение:

Ядра нет; представляют собой кусочки цитоплазмы, где имеются элементы комплекса Гольджи и гладкого эндоплазматического ретикулума, митохондрии, рибосомы, включения гликогена, микротрубочки, микрофиламенты, есть ферменты гликолиза, а также несколько типов гранул;

все структуры, имеющие строение гранул называются грануломером, а все негранулярные компоненты цитоплазмы - гиаломером; на цитомембране имеются рецепторы для факторов свертывания крови

В гиаломере находятся тонкие филаменты, а среди скопления зернышек грануломера располагаются митохондрии и гранулы гликогена.

Нормальные («зрелые») тромбоциты (87,0±0,19%) — клетки круглой или овальной формы диаметром 3—4 мкм. В них видны бледно-голубая наружная (гиаломер) и центральная (грануломер) с азурофильной зернистостью зоны.

Юные «незрелые» тромбоциты (3,20±0,13%) несколько больших размеров, с базофильной «цитоплазмой». Азурофильная грануляция (мелкая и средняя) располагается чаще в центре

«Старые» тромбоциты (4,1 ±0,21%) могут быть круглой, овальной, зубчатой формы, с узким ободком темной «цитоплазмы», с обильной грубой грануляцией, иногда наблюдаются вакуоли.

Ретикулоци́ты — клетки предшественники эритроцитов в процессе кроветворения, составляющие около 1 % от всех циркулирующих в крови эритроцитов Так же, как и последние, не имеют ядра, но содержат остатки рибонуклеиновых кислот, митохондрий и других органелл, лишаясь которых трансформируются в зрелый эритроцит.

Функция ретикулоцитов в целом аналогична функции эритроцитов, они также являются переносчиками кислорода, но их эффективность несколько ниже, чем у зрелых эритроцитов.

studfiles.net

Строение различных видов соединительной ткани



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Волокнистые соединительные ткани объединяют коллагеновую и эластическую соединительные ткани. Коллагеновая соединительная ткань подразделяется на рыхлую и плотную соединительные ткани.

Последняя может быть оформленной и неоформленной. Рыхлая соединительная ткань отличается от плотной тем, что в ней преобладают клетки и аморфное вещество консистенции геля (смотри рисунок 8). Данная ткань обнаруживается во всех органах, т.к. она сопровождает кровеносные, лимфатические сосуды и нервы.

Плотная соединительная ткань состоит преимущественно из волокон, образующих пучки и подразделяется на оформленную и неоформленную.

В неоформленной соединительной ткани пучки коллагеновых волокон идут в разных направлениях (смотри рисунок 8). Эта ткань образует сетчатый слой дермы, «скелет» сердца, входит в состав адвентициальных и серозных оболочек.

В плотной оформленной соединительной ткани волокна располагаются в одном направлении, параллельно друг другу. К этой группе тканей относят сухожилия, связки, фиброзные мембраны. В сухожилии каждый пучок коллагеновых волокон, отделенный от соседнего слоем фиброцитов, называется пучком первого порядка. Несколько пучков первого порядка, круженные тонким слоем соединительной ткани составляют пучки второго порядка. Прослойки рыхлой соединительной ткани, окружающие пучки второго порядка называются эндотенонием. Из пучков второго порядка слагаются пучки третьего порядка, разделенные более толстыми прослойками рыхлой соединительной ткани (перитенонией). В перитенонии и эндотенонии проходят нервы и кровеносные сосуды, питающие сухожилия.

Эластическая соединительная тканьобразует связки и состоит из эластических волокон, идущих в одном направлении. В связке имеется небольшое количество коллагеновых волокон, фибробластов и фиброцитов. Пучкового расположения волокон в связке нет.

К соединительным тканям специального назначения относятся жировая, ретикулярная и пигментные ткани. Для этих тканей характерно преобладание определенного типа клеток.

Ретикулярная ткань образует паренхиму кроветворных органов, создает микроокружение для кроветворных элементов. Она состоит из сети ретикулярных волокон и лежащих на них ретикулярных клеток, связанных друг с другом щелевыми соединениями. В петлях ретикулярной ткани располагаются кроветворные элементы, а свободные макрофаги, антигенпредставляющие дендритные клетки. Аморфное вещество состоит из протеогликанов и гликопротеинов.

Жировая ткань располагается под кожей, в сальнике, брыжейке. Это ткань, основной функцией которой является регулирование обмена жиров и углеводов. Различают белую и бурую жировые ткани. Жир белой жировой ткани легко мобилизуется при голодании и используется для покрытия энергетических затрат организма. Исключение составляет жировая ткань глазниц, ладоней и подошв, которая сохраняется и при голодании, поскольку выполняет опорную функцию. Белая жировая ткань состоит из однокапельных адипоцитов. Белая жировая ткань образует дольки, разделенные прослойками соединительной ткани. Каждая жировая клетка в дольке окружена сетью ретикулярных волокон, а также кровеносными и лимфатическими капиллярами. Между жировыми клетками встречаются фибробласты и тучные клетки. Бурая жировая ткань имеется у новорожденных и у животных, впадающих в зимнюю спячку (между лопатками, за грудиной, вдоль позвоночника и в воротах почек). Функция бурой жировой ткани - участие в терморегуляции - повышение температуры тела до нормального уровня в моменты пробуждения у животных, впадающих в зимнюю спячку. Клетки бурой жировой ткани отличаются обилием митохондрий, содержащих большое количество цитохромов (что придает клеткам окраску). Адипоциты бурой жировой ткани многокапельные, меньше белых адипоцитов, ядра у них округлые, лежат в центре клетки.


Пигментная ткань представляет собой рыхлую волокнистую соединительную ткань, содержащую большое количество пигментоцитов. Примером является ткань увеальной (сосудисто-пигментной) оболочки глаз.

Хрящевые и костные ткани образуют группу скелетных тканей, выполняющих опорную и механическую функцию, а также принимающих участие в минеральном обмене. Хрящевые ткани состоят из клеток и межклеточного вещества. Межклеточное вещество хрящей состоит из коллагеновых (I и II типа) и эластических волокон и аморфного компонента. Основное вещества представлено гликозааминогликанами (хондроитин 4-сульфат, хондроитин 6-сульфаты, гиалуроновая кислота) протеогликанами, липидами. Тканевая жидкость хряща составляет 75% и играет большую роль в поддержании жизнеспособности хондроцитов. Хрящевая ткань не содержит кровеносных сосудов, и питание ее осуществляется диффузно из надхрящницы (перихондра). В надхрящнице различают 2 слоя: наружный фиброзный, состоящий из плотной неоформленной соединительной ткани, и внутренний, образованный рыхлой волокнистой соединительной тканью, содержащей сосудистую сеть и прехондробласты.

Клетки хрящевой ткани - хондроциты, расположены в особых полостях - лакунах в межклеточном веществе поодиночке или группами. Слой межклеточного вещества, прилежащий к клеточной полости и образующий ее стенку, называют капсулой хрящевой клетки. Группы хондроцитов произошедшие из одного хондроцита называются изогенными. Первоначально хондроциты лежат в одной лакуне, затем между ними формируется межклеточное вещество, и у каждой клетки появляется своя капсула. Рост хряща за счет деления хондробластов и накопления между ними матрикса называется интерстициальным ростом. Хондробласты - молодые клетки хряща. В растущем хряще они имеют базофильную цитоплазму, развитую гранулярную ЭПС и комплекс Гольджи. Эти клетки вырабатывают межклеточное вещество хряща и превращаются в хондроциты. С их помощью осуществляется периферический - аппозиционный рост.

Существует три типа хрящевой ткани, отличающихся друг от друга строением межклеточного вещества: гиалиновый хрящ, эластический и волокнистый.

Гиалиновый хрящ образует соединение ребер с грудиной, покрывает суставные поверхности костей, входит в состав волокнисто-хрящевой оболочки воздухоносных путей, образует эмбриональный скелет.

Гиалиновый хрящ покрыт надхрящницей. Под надхрящницей располагаются молодые хондроциты веретенообразной формы. В более глубоких слоях клетки приобретают округлую или овальную форму. Изогенные группы состоят из 2 - 4 клеток (образовавшихся при делении одной клетки). Базофильное межклеточное вещество, непосредственно прилегающее к изогенным группам, называется территориальным матриксом хряща. Участки, удаленные от изогенных групп отличаются слабо базофильной окраской или даже слабо оксифильны* (* – отмечены данные по особенностям методов окраски препаратов, которые приведены в конце пособия). Эти участки называются интертерриториальным матриксом.

Эластический хрящ образует ушную раковину, надгортанник рожковидные и клиновидные хрящи гортани. По общему плану строения эластический хрящ сходен с гиалиновым, но обладает большой эластичностью, так как его межклеточное вещество более чем на 90% состоит из эластичных волокон. Остальные менее 10% сухой массы межклеточного вещества приходится на коллагеновые волокна и аморфное вещество.

Волокнистый хрящ по своему строению занимает промежуточное положение между плотной оформленной соединительной тканью и гиалиновым хрящом, он расположен в местах перехода сухожилия в гиалиновый хрящ, кроме того, из волокнистого хряща образованы межпозвоночные диски. В межклеточном веществе волокнистого хряща гораздо больше коллагеновых волокон, чем в гиалиновом. Волокна образованы коллагеном I типа, лежат толстыми пучками, поэтому на препарате, окрашенном гематоксилин-эозином хорошо видны* (* – отмечены данные по особенностям методов окраски препаратов, которые приведены в конце пособия). Между волокнами расположены хондроциты в лакунах.

Костные ткани являются разновидностью соединительной ткани и состоят из клеток и межклеточного вещества. В состав межклеточного вещества входит около 70% неорганических соединений - соли кальция, фосфора и др. Органические вещества представлены протеогликанами, глико – и фосфопротеинами, коллагенами, а также неколлагеновыми белками. Органические и неорганические вещества в сочетании друг с другом придают костной ткани большую прочность и необходимую эластичность. Различают три вида костной ткани: грубоволокнистую, пластинчатую и цемент.

Грубоволокнистая костная ткань характеризуется относительно большим количеством клеточных элементов и беспорядочным расположением волокон. Грубоволокнистая ткань - это эмбриональная костная ткань. У взрослого человека эта ткань образует швы костей черепа, места прикрепления сухожилий к костям.

Пластинчатая костная ткань отличается тем, что ее основные структурные компоненты - костные пластинки строго упорядочены. Пластинчатая кость состоит из клеток и межклеточного вещества, в котором мало матрикса, а составляющие ее тонкие коллагеновые волокна лежат параллельно друг другу, формируя основную массу пластинчатой кости, образуют остеоны. Остеонпредставляет собой систему цилиндров различного диаметра.

 

 

Рис. 12 Строение костной ткани 1 – надкостница, 2 – наружные генеральные пластинки, 3 – остеон, 4 – гаверсов канал, 5 –внутренние генеральные пластинки, 6 – вставочные пластинки. Рис. 13 Строение остеона 1 - цилиндр остеона; 2 - остеоциты; 3 - канал остеона

 

В соседних цилиндрах костные пластинки располагаются под углом 90%. Под надкостницей пластинчатой кости параллельно ее поверхности лежат наружные генеральные пластинки. Глубже располагаются системы - остеонов. В центре каждого остеона проходит центральный «гаверсов» канал, с находящимися в нем сосудами. Остеон ограничен и его диаметр не превышает 0,4 мм. Остеоциты лежат в лакунах и их отростки проходят в костных канальцах. Между остеонами лежат вставочные (интерстициальные пластинки).

С внутренней стороны кости, окружая костномозговую полость, располагаются внутренние генеральные пластинки, покрытые эндостом. Эндост представляет собой один слой плоских клеток. Регенерация кости осуществляется за счет надкостницы и эндоста. Межклеточное вещество как грубоволокнистой, так и пластинчатой кости минерализовано. Для дентиноидных тканей характерно то, что клетки располагаются вне ткани, а через ткань проходят только их отростки.

Клетки костной ткани представлены тремя видами: остеоцитами, остеобластами, остеокластами.

Остеоциты- основные клетки костной ткани, имеют отростчатую форму, компактное темноокрашенное ядро и слабобазофильную цитоплазму. Остеоциты лежат в костных полостях или лакунах, повторяющих форму клетки. От полостей отходят анастомозирующие друг с другом костные канальцы, содержащие отростки остеоцитов. Костные канальцы анастомозируют с периваскулярным пространством, осуществляя обмен веществ между остеоцитами и кровью через тканевую жидкость. В цитоплазме молодого остеоцита хорошо развиты гранулярная ЭПС, комплекс Гольджи и лизосомы.

В старых остеоцитах содержание этих органоидов уменьшается. Функция остеоцита - поддержание нормального состояния матрикса, поддержание целостности костной структуры (кость, не содержащая живых остеоцитов воспринимается остеокластами как чужеродное тело и подвергается резорбции). Остеоциты участвуют в освобождении из костной ткани ионов кальция тогда, когда его уровень в крови снижается.

 
 

Остеобласты - клетки, образующие костную ткань. Они имеют различную форму: кубическую, пирамидальную, угловатую. Остеобласты не делятся, их единичные ядра расположены эксцентрично и как можно дальше от костного вещества, цитоплазма резко базофильна* (* – отмечены данные по особенностям методов окраски препаратов, которые приведены в конце пособия), за исключением слабо окрашенной области комплекса Гольджи. Остеобласты имеют тонкие отростки, которыми они соприкасаются с другими остеобластами и более глубоколежащими остеоцитами. Ультраструктура остеобласта типична для секреторной клетки. Основным продуктом его секреции являются преколлаген и другие компоненты костного матрикса. В остеобластах мощно развита гранулярная ЭПС, комплекс Гольджи. Преколлаген высвобождается всей поверхностью клетки, поэтому клетка аполярна. При аппозиционном росте кости остеобласты оказываются «замурованными» в образованный ими матрикс, постепенно дифференцируясь в остеоциты.

Остеокласты - крупные клетки, содержащие от трех до нескольких десятков ядер. Функция остеокластов - разрушение объизвествленного хряща и кости. Остеокласт представляет особой специализированный макрофаг, который образуется путем слияния многих клеток. На стороне, обращенной к кости, остеокласт имеет многочисленные выросты (гофрированный край). В цитоплазме остеокласта хорошо развит комплекс Гольджи и многочисленные лизосомы. В цитоплазме остеокласта, удаленной от кости сосредоточены митохондрии. Остеокласт, синтезируя ферменты, разрушает кость и образуется углубление - лакуна.

Питание костной ткани осуществляется за счет сосудов, идущих от надкостницы. В надкостнице кроме волокнистой соединительной ткани и сосудов присутствует три вида клеток: камбиальные клетки веретенообразной формы, преостеобласты - клетки с высокой пролиферативной активностью и остеобласты.

КРОВЬ И ЛИМФА

Кровь и лимфа являются особыми разновидностями тканей мезенхимного происхождения, образующими внутреннюю среду организма (вместе с рыхлой соединительной тканью).

Кровь – это жидкая ткань, циркулирующая по сосудам, осуществляющая транспорт различных веществ в пределах организма и обеспечивающая питание и обмен веществ всех клеток тела. Красный цвет крови придает гемоглобин, содержащийся в эритроцитах.

Основные функции крови.

1. Дыхательная – перенос кислорода от легких к тканям и углекислого газа от тканей к легким.

2. Трофическая – доставка питательных веществ, витаминов, минеральных солей и воды от органов пищеварения к тканям.

3. Экскреторная – удаление из тканей конечных продуктов метаболизма, лишней воды и минеральных солей.

4. Терморегуляторная – регуляция температуры тела путем охлаждения энергоемких органов и согревания органов, теряющих тепло.

5. Гомеостатическая – поддержание стабильности показателей гомеостаза: рН, осмотического давления и т.д.

6. Регуляция водно-солевого обмена между кровью и тканями.

7. Защитная – участие в клеточном и гуморальном иммунитете, в свертывании крови для остановки кровотечения.

8. Гуморальная регуляция – перенос гормонов, медиаторов и других биологически активных веществ.

Общее количество крови в организме взрослого человека в норме составляет 6-8% массы тела и равно примерно 4,5-6 л. В кровеносной системе находится 60-70% крови. Это так называемая циркулирующая кровь. Другая часть крови (30-40%) содержится в специальных кровяных депо. Это депонированная, или резервная, кровь.

Кровь состоит из жидкой части – плазмы и взвешенных в ней клеток – форменных элементов. На долю форменных элементов в циркулирующей крови приходится 40-45%, на долю плазмы – 55-60%. В депонированной крови наоборот: форменных элементов – 55-60%, плазмы – 40-45%. Объемное соотношение форменных элементов и плазмы называется гематокритом. Относительная плотность (удельный вес) цельной крови равен 1,050-1,060 г/мл, а плазмы – 1,025-1,034 г/мл. Вязкость цельной крови по отношению к воде составляет около 5. Вязкость крови обусловлена наличием белков и эритроцитов.

Плазмасодержит 90-92% воды и 8-10% сухого остатка, главным образом, белков (7-8%) и минеральных солей (1%). Белки плазмы (их более 30) включают 3 основные группы: альбумины (около 4,5%) связывают лекарственные вещества, витамины, гормоны, пигменты; глобулины (2-3%) обеспечивают транспорт жиров, глюкозы, меди, железа, выработку антител, а также агглютининов крови; фибриноген (0,2-0,4%) участвует в свертывании крови.

Небелковые азотсодержащие соединения плазмы включают аминокислоты, полипептиды, мочевину, продукты распада нуклеиновых кислот и т.д. В плазме находятся также безазотистые органические вещества: глюкоза (0,11%), нейтральные жиры, липиды. Минеральные вещества плазмы составляют около 1% (катионы Na+, K+, Са++, анионы С1-, НСОз-, НР04-). В плазме содержится также более 50 различных гормонов и ферментов.

К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты (кровяные пластинки).

Эритроциты – безъядерные клетки, неспособные к делению. Количество эритроцитов в 1 л крови колеблется у взрослых мужчин: от 3,9 до 5,5 х 1012, у женщин: от 3,7 до 4,9х1012 Большинство эритроцитов имеет форму двояковогнутого диска (дискоциты). Форма диска обеспечивает наибольшую поверхность контакта с плазмой. Общая площадь поверхности всех эритроцитов взрослого человека составляет 3000-3800 м2, что в 1500-1900 раз превышает поверхность тела. Дисковидная форма также обеспечивает и обратимую деформацию (сгибание) эритроцита при прохождении через узкие капилляры.

Значительная вариабельность форм эритроцитов называется пойкилоцитозом, что характерно для тяжелых формах анемий. Диаметр большинства эритроцитов составляет 7,2 мкм. Колебания размеров эритроцитов от 7,16 до 7,98 мкм считаются нормой – это нормоциты.

Встречаются микроциты, размеры которых 6 мкм и меньше и макроциты размерами свыше 8,5 мкм. Повышенная вариабельность размеров эритроцитов называется анизоцитозом и развивается при отравлениях органическими веществами (например, тринитротолуолом). Плазмолемма эритроцитов имеет толщину около 20 нм и обеспечивает активный перенос О2, СО2, ионов натрия, калия и других веществ. Основной объем эритроцита - 96% сухого остатка - приходится на долю гемоглобина. Гемоглобин обеспечивает дыхательную функцию крови за счет переноса О2 от легких к тканям и СО2 от клеток к легким. По химической структуре гемоглобин является сложным белком, состоящим из четырех белковых молекул глобина и четырех молекул небелковой группы - гема. Гем имеет в своем составе атом железа, способный присоединять и отдавать молекулу кислорода. При этом валентность железа не изменяется, т.е. Fе остается двухвалентным.

У мужчин в норме содержится гемоглобина 130-160 г/л, у женщин – (120-140 г/л. Общее количество гемоглобина в пяти литрах крови у человека составляет 700-800 г. Один грамм гемоглобина связывает 1,34 мл кислорода. Разница в содержании эритроцитов и гемоглобина у мужчин и женщин объясняется стимулирующим действием на кроветворение мужских половых гормонов и тормозящим влиянием женских половых гормонов. Гемоглобин синтезируется эритробластами костного мозга. При разрушении эритроцитов гемоглобин после отщепления гема превращается в желчный пигмент – билирубин.

В норме гемоглобин содержится в крови в виде трех физиологических соединений:

1) оксигемоглобин (НЬО2) – гемоглобин, присоединивший О2; находится в артериальной крови, придает ей ярко-алый цвет;

2) восстановленный, или редуцированный, гемоглобин (Hb), отдавший О2, находится в венозной крови, которая имеет более темный цвет, чем артериальная;

3) карбгемоглобин (НЬСО2) – соединение гемоглобина с углекислым газом; содержится в венозной крови.

Средняя продолжительность жизни эритроцитов – 120 дней. Их образование идет в красном костном мозге. Увеличение количества эритроцитов в единице объема крови называется эритроцитозом (полиглобулией, полицитемией), уменьшение - эритропенией.

Таким образом, эритроцит выполняет следующие функции:

1) дыхательную – за счет гемоглобина, присоединяющего к себе 02 и СО2;

2) питательную – адсорбирование на своей поверхности аминокислот и доставка их к клеткам организма;

3) защитную – связывание токсинов находящимися на их поверхности антитоксинами и участие в свертывании крови;

4) ферментативную – перенос различных ферментов: угольной ангидразы (карбоангидразы), истинной холинэстеразы и др.;

5) буферную – поддержание с помощью гемоглобина рН крови в пределах 7,36-7,42;

Лейкоциты. У взрослого человека в 1 литре крови насчитывается 3,8-9х109 лейкоцитов. Увеличение числа лейкоцитов в крови называется лейкоцитозом, а снижение – лейкопенией. Все лейкоциты являются ядерными клетками, способными к активному перемещению. По наличию специфической зернистости в цитоплазме лейкоциты подразделяются на зернистые – гранулоциты и незернистые – агранулоциты. Гранулоциты характеризуются наличием сегментированного ядра, псевдоподий и зернистости в цитоплазме. Гранулоциты по окрашиванию зерен подразделяют на эозинофильные (ацидофильные), базофильные и нейтрофильные* (* – отмечены данные по особенностям методов окраски препаратов, которые приведены в конце пособия). Все зернистые лейкоциты, особенно нейтрофилы, способны к фагоцитозу. Незернистые лейкоциты отличаются несегментированным ядром, отсутствием видимой при световой микроскопии зернистости в цитоплазме. Незернистые лейкоциты менее подвижны, способны к делению. К агранулоцитам относят лимфоциты и моноциты.

Нейтрофилы составляют 65-75% от общего числа лейкоцитов. Различают сегментоядерные, палочкоядерные нейтрофилы и метамиелоциты (юные нейтрофилы). Подавляющую часть лейкоцитов составляют сегментоядерные нейтрофилы – 60-65%. Их диаметр в мазке крови равен 9-12 мкм. Ядра имеют 2-5 сегментов, связанных перемычкой. От одного из сегментов ядра нейтрофила может отходить небольшой вырост, имеющий форму барабанной палочки – это тельце полового хроматина (неактивная Х хромосома). В цитоплазме имеется зернистость двух типов: крупные гранулы,

видимые в световой микроскоп – это лизосомы с гидролитическими ферментами; и мелкие гранулы, видимые только в электронный микроскоп, заполненные бактерицидными веществами.

Палочкоядерные нейтрофилы составляют 3-5%. Ядра этих клеток имеют вид изогнутой палочки или буквы S. Метамиелоциты содержат бобовидное ядро. В крови встречаются редко (0-0,5%).

В лейкоцитарной формуле слева записывают число метамиелоцитов, правее – палочкоядерных нейтрофилов и еще правее – сегментоядерных нейтрофилов. Поэтому увеличение числа молодых форм нейтрофильных гранулоцитов называют «сдвигом формулы влево» Он свидетельствует об усилении кроветворения, что наблюдается при наличии в организме воспалительного процесса, когда из красного костного мозга выходят молодые формы нейтрофильных гранулоцитов. Основная функция нейтрофилов – уничтожение патогенных микроорганизмов путем фагоцитоза. Они разрушают и переваривают также поврежденные клетки и ткани.

Эозинофильные гранулоцитыэозинофилы составляют 1-5% от общего числа лейкоцитов (120-350 эозинофилов в 1 мм3). Диаметр эозинофилов – 12-14 мкм. Ядра, как правило, имеют два сегмента, иногда больше. В цитоплазме содержатся крупные гранулы округлой формы (овальной или полигональной). Оксифильность гранул обусловлена наличием в них основного белка, богатого аминокислотой аргинином. В гранулах эозинофилов имеются электроноплотные структуры, характер которых имеет видовую специфичность (у человека в одной грануле может быть один или несколько кристаллов различной формы, у кошки эозинофильная гранула содержит один кристалл цилиндрической формы). В крови эозинофилы находятся 3-8 часов, в соединительной ткани – несколько дней.

Основными функциями эозинофилов являются:

1) уничтожение патогенных микробов путем фагоцитоза, а простейших и многоклеточных паразитов – неклеточным воздействием;

2) эозинофилы являются иммунорегуляторами – они ограничивают область аллергической реакции и синтезируют регуляторы воспаления. Таким образом, увеличение количества эозинофилов в крови – эозинофилия, наблюдается при аллергических состояниях и глистных инвазиях.

Базофильные гранулоциты - базофилы составляют в крови человека 0-1% от общего числа лейкоцитов. Диаметр базофила – 11-12 мкм. Ядра слабодольчатые, окрашиваются слабее, чем ядра эозинофилов и нейтрофилов.

Цитоплазма заполнена большим количеством крупных гранул, имеющих метахроматическую окраску (метахромазией называется способность структур изменять цвет красителя* (* – отмечены данные по особенностям методов окраски препаратов, которые приведены в конце пособия)). Метахромазия гранул связана с наличием в них гепарина. Базофилы участвуют в обеспечении гомеостаза, постоянно синтезируют и выделяют биологически активные вещества (гепарин, гистамин и др.). Базофилы участвуют в защитных реакциях организма, стимулируют функции нейтрофилов и макрофагов, выделяют медиаторы воспаления.

Лимфоциты – одни из основных видов лейкоцитов. Лимфоциты находятся не только в крови, особенно много их в лимфе. В крови взрослых людей лимфоциты составляют 20-35% от общего числа лейкоцитов, у новорожденных до 60%. В зависимости от размеров лимфоцитов, различают малые (4,5-6 мкм), средние (7-10 мкм) и большие (10 мкм и более). Лимфоциты имеют круглое (иногда бобовидное) ядро. Цитоплазма окружает ядро узким ободком, имеет мелкие гранулы – лизосомы.

Функционально и по происхождению различают Т-лимфоциты и В-лимфоциты. Образование Т- и В-лимфоцитов идет в два этапа. Первый протекает без контакта с антигенами и завершается появлением специфического рецептора к чужеродному антигену. У Т-лимфоцитов этот этап происходит в тимусе, у В-лимфоцитов – в красном костном мозге.

Второй этап у Т и В клеток происходит в периферических лимфоидных образованиях (селезенке, лимфатических узлах, и лимфатических узелках в различных органах) и заканчивается формированием эффекторных (рабочих) клеток иммунной системы. Это Т-хелперы, стимулирующие выработку антител,

Т-киллеры, уничтожающие чужеродные и измененные собственные клетки и Т-супрессоры, тормозящие синтез антител.

Рис. 20. Лимфоциты. На электронной микрофотографии показаны разные стадии созревания В-лимфоцита.
В-лимфоциты образуются в лимфоидной ткани желудочно-кишечного тракта. Под контролем Т-лимфоцитов они синтезируют антитела, обезвреживающие чужеродные агенты. В-лимфоциты сами синтезируют антитела или трансформируются в плазматические клетки, синтезирующие большое разнообразие антител.
  Рис. 21. Схема иммунного ответа. 1 - антигены микробов, 2 - фагоцитоз микробов и активизация фагоцита, 3 - взаимодействие фагоцита с Т-лимфоцитом, 4 - размножение и созревание Т-лимфоцитов, 5 - взаимодействие Т- и В-лимфоцитов, 6 - превращение В-лимфоцитов в плазматические клетки, 7 - специфические по отношению к антигену антитела, 8 - Т-лимфоциты-памяти

 

 

Моноцитыв крови человека составляют 6-8% от общего числа лейкоцитов. Это самые крупные в мазках крови лейкоциты, их размер составляет 18-20 мкм. Ядра разнообразные по форме: бобовидные, подковообразные, иногда дольчатые. В ядре имеется одно или несколько ядрышек. Цитоплазма занимает большую часть клетки и окрашена в голубовато-серый цвет. В цитоплазме видны мелкие лизосомы. Моноциты – предшественники макрофагов (оседлых и подвижных).

Рис. 22. Моноцит. 1 – ядро, 2– цитоплазма, 3 -- мелкие гранулы.    
Тромбоциты,кровяные пластинки – составляют в 1 л крови 200-300х109. Это безъядерные фрагменты цитоплазмы гигантских клеток красного костного мозга – мегакариоцитов.

Размеры кровяной пластинки – 2-3 мкм. Кровяные пластинки принимают участие в процессе свертывания крови. Каждая пластинка состоит из наружной гомогенной части – гиаломера, окрашивайся в бледно-голубой цвет, в центральной части – грануломера, содержащей гранулы.

Увеличение количества тромбоцитов в периферической крови называ­ется тромбоцитозом, уменьшение – тромбоцитопенией. Продолжительность жизни тромбоцитов составляет 2-10 дней.

Все эти свойства тромбоцитов обусловливают их участие в остановке кровотечения. Тромбоциты активно участвуют в процессе свертывания крови и растворения кровяного сгустка (фибринолиза), участвуют в остановке кровотечения (гемостазе) за счет присутствующих в них биологически активных соединений, выполняют защитную функцию за счет склеивания (агглютинации) микробов и фагоцитоза.

 


megapredmet.ru

Кровь, лимфа Соединительная ткань — Мегаобучалка

 

 

Собственно Хрящевая ткань Костная ткань

соединительная ткань

 

Соединительная ткань с Волокнистая

особыми свойствами

Рыхлая Плотная

 

Оформленная Неоформленная

 

Все разновидности опорно-трофических тканей состоят из клеток и межклеточного вещества, по количеству преобладающего над клетками.

Функциональные особенности различных видов этих тканей обусловлены в значительной мере физико-химическими свойствами промежуточного вещества. Так, у тканей с жидким промежуточным веществом (кровь, лимфа) основные функции — трофическая и защитная. В тканях с полужидким межклеточным веществом (собственно соединительная ткань) наряду с этими функциями появляется еще механическая и опорная функция. Ткани с более плотным (хрящ) и твердым межклеточным веществом (кость) выполняют, прежде всего, опорную и защитную функции. В соответствии со степенью уплотнения межклеточного вещества ограничивается подвижность клеток, вплоть до их полной неподвижности. Все разновидности тканей внутренней среды способны быстро восстанавливать утраченные структуры и приспосабливаться к меняющимся условиям существования. Будучи окружены со всех сторон довольно однородной средой самого организма, клетки опорно-трофических тканей не обнаруживают полярной дифференцировки, которая характерна для клеток покровных тканей, кроме эндотелия.

Эндотелий представляет собой непрерывный слой клеток, образующий внутреннюю выстилку кровеносных и лимфатических сосудов. Эндотелиальные клетки (эндотелиоциты) плоские, вытянутые по длине сосуда с 1—2 ядрами и многочисленными пиноцитозными пузырьками, свидетельствующими о переносе продуктов из крови в межклеточное вещество соединительной ткани и обратно. Соединяются клетки между собой с помощью черепицеобразных наложений одна на другую, десмосом и «по типу замка», а в лимфатических капиллярах эндотелий, кроме того, прикрепляется так называемыми стропными нитями к коллагеновым волокнам окружающей соединительной ткани. Этим создается прочное соединение эндотелия лимфатических капилляров, препятствующее его отслаиванию.



Электронно-микроскопические исследования показали, что клетки (кроме эндотелия лимфатических капилляров) лежат на базальной мембране и им присуща полярность в расположении органелл. Пластинчатый комплекс находится над ядром в той части клетки, которая обращена к просвету сосуда. Над апикальной поверхностью клетки обнаруживают микроворсинки, особенно многочисленные в эндотелии вен; эндотелий артерий почти
совсем гладкий. Все это сближает эндотелий по морфологическим признакам с эпителием. Однако при культивировании эндотелия вне организма он растет не пластом, как эпителий, а как типичная мезенхима. Поэтому эндотелий считают особым видом соединительнотканных клеток, адаптированных к особым условиям функционирования (в сосуде).

4. КРОВЬ

Функция крови очень разносторонняя. Основные из них трофическая, дыхательная, защитная, регуляторная, экскреторная. Трофическая функция крови заключается в доставке к органам необходимых питательных веществ, всасывающихся в кишечнике или выделяемых в кровь различными органами. Дыхательная функция состоит в переносе кислорода от легких к тканям и углекислого газа СО2 от тканей к легким с помощью дыхательного пигмента гемоглобина, содержащегося в эритроцитах. В осуществлении защитных реакций организма определенную роль играют лейкоциты крови, благодаря своей способности к фагоцитозу. Наличие в крови антител предохраняет организм от ряда инфекций. Через кровь совершается гуморальная регуляция процессов жизнедеятельности. С кровью к различным тканям и органам доставляются гормоны, биологически активные вещества, регулирующие обмен веществ и важнейшие функции организма. Экскреторная функция заключается в транспортировке к органам выделения конечных продуктов обмена веществ, образующихся в клетках и тканях.

Источником образования крови у эмбриона является мезенхима. В ранний период онтогенеза кроветворение происходит в любом участке мезенхимы. Позже оно сосредоточивается в мезенхиме лишь определенных органов, например печени, селезенки. Во взрослом организме у млекопитающих функция кроветворения сохраняется за красным костным мозгом и лимфатическими узлами. В патологических случаях (при большой потере крови) кроветворение отмечают также и в других местах, где имеется ретикулярная ткань. У рыб, амфибий и птиц кроветворение совершается в стенке кишечника, почках, печени.

Как и все ткани, развившиеся из мезенхимы, кровь состоит из клеток — форменных элементов и неклеточного промежуточного вещества. Межклеточное вещество крови в отличие от других тканей является жидким и называется плазмой. Жидкая консистенция обеспечивает свободную циркуляцию крови по сосудистой системе, проникновение ее во все органы и ткани.
Форменные элементы крови делят на эритроциты (красные кровяные тельца), лейкоциты и кровяные пластинки.

Эритроциты (erythros — красный, cytos (kytos) — клетка) — высокоспециализированные клетки, важнейшая функция которых — перенос кислорода. Кроме того, они играют важную роль в промежуточном обмене белков и обладают способностью расщеплять АТФ.

Развиваются эритроциты в красном костном мозге на протяжении всей жизни животного. Родоначальная клетка — гемоцитобласт имеет ядро. Пройдя сложный цикл превращений, она утрачивает ядро и выходит в кровяное русло. При больших кровопотерях в кровеносном русле могут появляться незрелые, содержащие ядро эритроциты. По мере созревания эритроцит обогащается гемоглобином. Электронно-микроскопическими исследованиями молодых эритроцитов, или ретикулоцитов, установлено, что зернистая субстанция в цитоплазме представляет собой остатки органелл (цитоплазматической сети с рибосомами и митохондриями). Появление большого количества ретикулоцитов в периферической крови может рассматриваться как признак усиления физиологической регенерации эритроцитов.

Попав в сосуды, эритроцит продолжает изменяться. В нем уменьшается количество цитоплазмы, он стареет и, наконец, погибает. Каждый эритроцит в кровяном русле живет от одного до трех месяцев. У взрослых и старых животных они живут дольше, чему молодых и новорожденных. У крупных животных дольше, чем у мелких. Так, эритроцит кур живет 28 дней,
у быка — 110—120 дней, но у кролика—30 дней. Закончив жизненный цикл, эритроциты подвергаются фагоцитозу в селезенке. Каждую секунду в организме гибнут миллионы клеток, и столько же образуется вновь.

У птиц, рептилий, амфибий и рыб эритроциты всю жизнь содержат ядро. Безъядерные эритроциты млекопитающих, несомненно, менее жизнедеятельны, обмен веществ (в частности, окислительные процессы) понижен, они меньше тратят кислорода для поддержания собственной жизни и поэтому более экономные переносчики кислорода. Таким образом, безъядерность эритроцитов с точки зрения интересов целого организма должна рассматриваться как явление прогрессивное.

По форме эритроциты большинства млекопитающих напоминают диски, несколько сдавленные в центре. При равном диаметре тело такой формы имеет большую поверхность, чем шар, и каждая частица его содержимого находится ближе к наружной среде, что облегчает газообмен. Эритроциты очень пластичны. Продвигаясь по узеньким капиллярам, они могут вытягиваться, изгибаться и приобретать форму сильно вытянутых овалов и различных неправильных фигур. Попадая в крупные сосуды, эритроциты принимают обычную форму.

Внутреннее строение эритроцитов. Снаружи эритроцит имеет эластичную оболочку липопротеинового характера. Цитоплазма в зависимости от возраста эритроцита либо представлена тонкой сеточкой (ретикулоцит), либо отдельными участками нитчатой или округлой формы. В таких эритроцитах уже нет органелл, и они бедны РНК. Вещество негемолизированных эритроцитов на ультратонких срезах выглядит гомогенными плотным. При достаточно больших увеличениях (в 14 000—16 000 раз) в нем выявляют зерна и волокна диаметром 150—300 А.

Гемоглобин придает эритроциту желтовато-зеленую окраску, а крови в целом, где находится масса эритроцитов, — красный цвет. Гемоглобин — это белковое вещество, содержащее железо. Он обладает способностью давать с кислородом непрочное соединение — оксигемоглобин. Соединение гемоглобина с кислородом совершается у млекопитающих и птиц в легких, у рыб — в жабрах. В капиллярах органов и тканей благодаря низкому парциальному давлению кислорода оксигемоглобин превращается снова в гемоглобин, а освободившийся кислород поглощается тканями. Гемоглобин легко кристаллизуется, причем форма кристаллов характерна для каждого вида животного. Гемоглобин составляет свыше 90% всего сухого вещества эритроцита. У лошади массой 500 кг общий гемоглобин равен примерно 6,76 кг. Остальная часть сухого вещества эритроцитов содержит 2/3 белков и ⅓ липидов. Воды в эритроците около 60%.

Размер эритроцитов варьирует даже у одного и того же животного. Эритроциты, которых в крови данного животного больше всего, называют нормоцитами, эритроциты меньшего размера — микроцитами, а большего — мегалоцитами. Впрочем, микро- и мегалоциты, по-видимому, патологические формы.

Размеры эритроцитов животных разных видов также различны. Особенно велики они у земноводных, мельче у птиц и особенно мелки у млекопитающих.

Количество эритроцитов в крови всех без исключения животных больше, чем других форменных элементов, вместе взятых. Абсолютное число их в 1 мм3 крови варьирует не только у животных разных видов, но даже у одного и того же вида в зависимости от пола, возраста и функционального состояния организма.

Лейкоциты (leukos — белый, cytos — клетка) — бесцветные, весьма активные клетки, содержащие ядро и все органеллы.

Важнейшая функция лейкоцитов — биологическая защита животного от микроорганизмов. Эту задачу лейкоциты выполняют прежде всего благодаря своей способности к амебовидному движению и фагоцитозу, а также в силу способности некоторых форм вырабатывать антитела, направленные против вредного действия микроорганизмов.

Сосудистое русло для лейкоцитов — это только транспортное средство, где они проводят сравнительно немного времени. Свою функцию они осуществляют вне сосудов. Проходя по сосудам, расположенным вблизи участка, где внедрились бактерии, лейкоциты как бы прилипают к стенке сосудов, затем проникают через их стенку в окружающую ткань и, активно передвигаясь при помощи ложноножек, добираются до очага инфекции. Лейкоциты ликвидируют вредное действие микроорганизмов либо пожирая их, либо выделяя вещества, обезвреживающие бактериальные яды, либо путем выхода вместе с захваченным патогенным началом за пределы организма (рис.2).

 

Рис. 2. Кровяная клетка заглатывает бациллу сибирской язвы (по И. И. Мечникову):

А — клетка; Б — бацилла.


Часть лейкоцитов в результате взаимодействия с микробами гибнут, образуя главную массу гноя. Явление уничтожения микробов лейкоцитами было открыто И. И. Мечниковым. Он установил, что этот процесс близок к процессу внутриклеточного пищеварения, которое широко распространено у одноклеточных организмов и у некоторых низших многоклеточных (морская звезда, гидра и др.), а у высших животных, имеющих более совершенное кишечное пищеварение, сохранилось лишь у клеток, которые стали играть защитную роль. Роль лейкоцитов не ограничивается функцией защиты. Благодаря наличию ферментов лейкоциты принимают участие в обмене белков и жиров. Не случайно после приема пищи количество лейкоцитов увеличивается (пищевой лейкоцитоз). Лейкоциты вырабатывают вещества, стимулирующие новообразование клеток, что особенно важно при заживлении ран. Наконец, они освобождают организм от погибших клеток.

Количество лейкоцитов в крови животных значительно меньше, чем эритроцитов, и исчисляется не миллионами, а лишь тысячами в 1 мм3 крови.

Морфология и биологические свойства лейкоцитов очень разнообразны. Более специализированные формы лейкоцитов составляют группу гранулоцитов, менее специализированные образуют группу агранулоцитов.

Гранулоциты в цитоплазме имеют включения в виде зерен—гранул. Это высокоспециализированные формы, обладающие амебовидной подвижностью и утратившие способность делиться. Ядро гранулоцитов очень богато хроматином и узкими перетяжками разделено на несколько долек (сегментов). В их цитоплазме содержится оксидаза — фермент, активизирующий молекулярный кислород. Все гранулоциты в несколько раз крупнее эритроцитов. Развиваются гранулоциты в красном костном мозге. По отношению зернистости к красителям гранулоциты, в свою очередь, делят на нейтрофилы, эозинофилы, базофилы.

Нейтрофилы, или нейтрофильные гранулоциты, — округлые клетки, диаметр которых у коровы колеблется от 9,9 до 15,4 мкм. В их цитоплазме (в центре клетки) находится мелкая пылеватая зернистость. У большинства животных она красится смесью кислых и основных красок, принимая промежуточный тон, то есть является как бы нейтральной. Зернистость нейтрофилов представляет скопление лизосом, содержащие гидролитические ферменты и отличающиеся высоким содержанием кислой фосфатазы. С лизосомами связана фагоцитарная деятельность нейтрофилов. В нейтрофилах хорошо развита центросфера, с двумя центриолями в середине. Центросфера
занимает центральное положение в клетке, смещая ядро к периферии. С помощью электронного микроскопа у нейтрофила обнаружены тончайшие отростки (рис.3). В самой цитоплазме наблюдается большое количество митохондрий, цитоплазматическая сеть выражена относительно слабо. Цитолемма одноконтурная, толщина ее составляет 80—100 А. Ядро молодых нейтрофилов имеет вид изогнутой палочки. С возрастом нейтрофила форма его ядра усложняется, оно приобретает характерную узловатость или сегментацию. Чем старше клетка, тем больше сегментировано ее ядро. Соответственно изменению формы ядра различают нейтрофилы юные, палочкоядерные и сегментоядерные.

Количество нейтрофилов различно у животных разных видов, причем в крови одних животных (лошадь, хищные) нейтрофилов больше, чем всех прочих форм лейкоцитов, тогда как в крови других животных (корова, овца, свинья) они составляют вторую по численности группу. Повышенное количество нейтрофилов наблюдается при беременности, при усиленной мышечной работе, а также у только что родившихся животных. Нейтрофилы легко выходят за пределы кровеносного русла и в огромных количествах накапливаются в местах инфекции. Здесь они являются активными фагоцитами (макрофаги), уничтожающими микроорганизмы, причем сами они при этом погибают. Погибшие нейтрофилы выделяют вещества, стимулирующие образование клеток.

Эозинофилов, или эозинофильных гранулоцитов в крови относительно немного. Они несколько крупнее нейтрофилов (у коровы 11—16,5 мкм). Цитоплазма эозинофилов содержит митохондрии, пластинчатый комплекс, иногда центросому и крупную лепешкообразную зернистость, которая интенсивно красится эозином (отсюда и название эозинофилы) или другими кислыми красителями в интенсивно-розовый цвет. Зерна эозинофила состоят из липопротеидов и содержат фосфор и окислительные ферменты. На электронных микрофотографиях гранулы имеют вид сложных пластинчатых образований. В центре гранулы различают угловатое тельце, рассекающее ее как бы на две части. Ядра эозинофилов, как правило, состоят из 2—3 сегментов, соединенных между собой тонкими перемычками.
Ядро палочкоядерных эозинофилов обычно подковообразной формы. У юных ядро бобовидное, с крупными глыбками хроматина. Но эти формы встречаются в периферической крови очень редко. Эозинофилы способны к амебовидному движению, но фагоцитозной активности почти не обнаруживают. Предполагают, что эти клетки участвуют в окислительных процессах, способны устранять неблагоприятные действия чужеродных белков, токсинов, а также белковоподобные продукты, образующиеся при отмирании тканей организма. Очевидно, со всем этим связано увеличение количества эозинофилов при некоторых заболеваниях (рожа свиней, гельминтозы и др.).

Базофилы (базофильные гранулоциты) по размеру близки к эозинофилам. Количество базофилов в крови сельскохозяйственных животных не превышает 1,5%. Зернистость красится основными красителями, поэтому и вся клетка называется базофилом. Зерна базофилов мельче, чем у эозинофилов, но крупнее, чем у нейтрофилов, и размещены неравномерно. В них
обнаружены гликоген, мукополисахариды и РНК. Зернистость легко растворяется в воде. Ядро базофила крупное, слабосегментированное или округлое. Базофилы содержат окислительные ферменты. При введении в организм чужеродных белков количество базофилов возрастает.
Предполагают, что базофилы защищают организм от токсического действия чужеродных белков. Кроме того, они содержат гепарин и гистамин.

Незернистые лейкоциты, или агранулоциты, отличаются тем, что в их цитоплазме нет специфической зернистости, и ядро не сегментировано. В эту группу входят лимфоциты и моноциты.

Лимфоциты у сельскохозяйственных животных являются либо преобладающей формой лейкоцитов, либо составляют вторую по численности группу. Так, у рогатого скота и свиньи их 57—60%, у лошадей 35% от общего количества лейкоцитов. В молодом организме число лимфоцитов выше, чем в старом. Различают лимфоциты малые (4—7 мкм), средние (7—10 мкм)
и крупные (10 мкм и более). Ядро лимфоцитов округлое или слегка бобовидное. Оно очень плотное и относительно крупное, особенно у малых лимфоцитов. У средних и больших лимфоцитов ядро светлее, в нем различают ядрышки. Размер ядра у всех лимфоцитов примерно одинаков. Цитоплазма малого лимфоцита в виде очень тоненького ободка окружает ядро и хорошо красится основными красителями — базофилия. В среднем лимфоците и, особенно, в крупном цитоплазмы значительно больше. Вокруг ядра цитоплазма светлее, чем по периферии, где она резко базофильна. Базофилия цитоплазмы обусловлена содержанием рибонуклеопротеидов. Под электронным микроскопом в цитоплазме обнаружены цитоплазматическая сеть, митохондрии овальной формы, рибосомы, вакуоли. Лимфоциты,
находящиеся в кровеносном русле, способны делиться. Присутствие фермента липазы указывает на то, что лимфоциты имеют отношение к обмену жиров; кроме того, они, видимо, способны образовывать иммунные тела. Подвижность их невелика. В тканях лимфоциты могут превращаться в макрофаги, которые поглощают не только микроорганизмы, но и отмершие ткани. Г. К. Хрущев считает, что лимфоциты участвуют в образовании трефонов — веществ, при участии которых клетки строят цитоплазму.

Моноцитов в крови всех животных относительно мало. В крови рогатого скота количество их в норме не превышает 5%. Цитоплазма моноцитов красится слабобазофильно. Электронной микроскопией установлено, что в цитоплазме митохондрии имеют овальную форму, мельче по размерам, чем в лимфоцитах, но более многочисленны. Остальные органеллы не имеют заметных особенностей. Ядро крупное, бобовидное, слабо окрашивается. Моноциты обладают амебовидной подвижностью и высокой способностью к фагоцитозу (макрофаги), который осуществляется в кровеносном русле, но особенно активно в тканях различных органов, куда моноциты мигрируют. Они поглощают остатки отмерших клеток, бактериальные клетки и инородные частички. Моноциты способны также образовывать протеолитические ферменты.

Лейкоцитарная формула — количество разных видов лейкоцитов, выраженное в процентах от их общего числа. Так как характер лейкоцитарной формулы изменяется в зависимости от состояния организма, то она приобретает большое значение для суждения о происходящих в теле животного процессах и используется с целью диагностики различных заболеваний.

Кровяные пластинки в свежей крови имеют вид мельчайших бесцветных телец (1—2 мкм) округлой, овальной и веретеновидной формы. Эго отделившиеся от гигантских клеток костного мозга (мегакариоцит) фрагменты цитоплазмы. Обычно в препарате они располагаются группами. Каждая кровяная пластинка состоит из хромомера — зернистой центральной
части и гиаломера — гомогенной периферической части. Электронной микроскопией в хромомере обнаружены митохондрии, вакуоли, мембраны цитоплазматической сети. В специальной литературе различают пять видов кровяных пластинок: юные, зрелые, старые, дегенеративные, гигантские. В 1 см3 крови их в среднем содержится 300 ООО. Кровяные пластинки принимают участие в свертывании крови, вызывая при ранении сосудов
выпадение нитей фибрина из плазмы крови. У птиц эту роль выполняют настоящие клетки — тромбоциты.

Плазма крови — вязкая жидкость слегка желтоватого цвета. Содержит свыше 90% воды. Сухой остаток ее состоит главным образом из белков, а также органических соединений и минеральных веществ. Содержание последних определяет величину осмотического давления крови, которое у млекопитающих равно давлению 0,9%-ного раствора поваренной соли. Среди белков крови основное значение имеют альбумин, глобулин, а также фибриноген; последний при воздействии фермента тромбина превращается в фибрин. Фибрин выпадает в осадок в виде
кристаллов, которые участвуют в образовании сгустка, закрывающего отверстие раны. В сыворотке крови могут содержаться антитела, возникающие при попадании в организм чужеродных белков, а также врожденные антитела. Плазма крови имеет pH около 7,36.

Кровь как интерьерный показатель. Кровь, являясь внутренней средой для всех органов и тканей, наиболее полно отражает в себе разнообразные физиологические процессы, происходящие в организме. Ее морфологические и биохимические свойства у животных разных видов различны: в пределах одного вида животных состав крови зависит от породы, пола, возраста, физиологического состояния животного, продуктивности, ухода и содержания. Видовые особенности крови отражают, очевидно, условия, в которых живет вид. Так, у животных, обитающих в водной среде, то есть при недостатке кислорода, в крови содержится больше гемоглобина и эритроцитов, чем у наземных млекопитающих. Из сельскохозяйственных животных наибольшее количество эритроцитов в крови овцы и козы, далее идут чистокровные верховые лошади, верблюды, кролики и, наконец, крупный рогатый скот. Установлены породные различия в крови различных животных. Так, у чистокровных скаковых лошадей число эритроцитов, объем их, количество гемоглобина выше, чем у рысистых, а у последних выше, чем у тяжеловозов. Вместе с тем у быстроаллюрных лошадей больше нейтрофилов и меньше эозинофилов и лимфоцитов, чем у шаговых. Половые различия сказываются в том, что у мужских особей число эритроцитов выше, они мельче и больше насыщены гемоглобином, чем у самок.

Морфология крови связана со скоростью передвижения и продуктивностью сельскохозяйственных животных. По мере раздоя и повышения молочной продуктивности в крови коров возрастает число эритроцитов и процент гемоглобина. Среди лошадей быстрых аллюров особи с максимально выраженной способностью к бегу имеют увеличенный относительный объем, диаметр и число эритроцитов, а также количество гемоглобина. Установлено, что у крупного рогатого скота с возрастом увеличивается размер эритроцитов. Изменение интенсивности роста сопровождается соответствующими изменениями количества форменных элементов и гемоглобина в крови. Общее число лейкоцитов в крови коров с возрастом уменьшается, однако число нейтрофилов увеличивается особенно к моменту отела; ко времени же полового созревания возрастает количество эозинофилов. У новорожденных телят в крови преобладают нейтрофилы, а к 30-му дню, наоборот, нейтрофилов становится меньше, и резко превалируют лимфоциты. У крупного рогатого скота и свиней общее количество белой крови с возрастом меняется мало, но изменяются процентные отношения отдельных видов лейкоцитов. Так, до года наблюдается уменьшение количества эозинофилов, затем количество их сильно возрастает и сохраняется на этом уровне в последующие годы. Количество нейтрофилов в первые три месяца после рождения резко падает, а затем медленно увеличивается. Изменения числа лимфоцитов обратны изменениям нейтрофилов. На морфологический состав крови сильное влияние оказывают содержание и кормление. Например, при однообразном кормлении гусей и уток в их крови понижается количество лимфоцитов, количество же эритроцитов и гемоглобина не изменяется. При тренировке у лошадей увеличивается размер эритроцитов.

 

 

5. ЛИМФА

Кровеносная система является замкнутой, поэтому кровь нигде непосредственно не соприкасается с тканями. Питательные вещества и кислород из кровеносных сосудов передаются тканям через лимфу (lympha — чистая вода, влага). Через нее же продукты жизнедеятельности тканей и органов поступают в кровь.

Таким образом, лимфа является посредником между кровью и тканевыми элементами всех органов.

Лимфа представляет собой жидкость различного состава в зависимости от того, притекает ли она к органу или оттекает от него. Притекающая лимфа образуется за счет плазмы крови, проникающей через стенки кровеносных капилляров. Эта лимфа богата необходимыми для жизнедеятельности тканей веществами. В лимфе, оттекающей от органа, находится большое количество продуктов его жизнедеятельности. Некоторые из них, например продукты
белкового обмена, ядовиты. Оттекающая лимфа, в конце концов, вливается в кровеносное русло. Попадая с кровью в печень, ядовитые продукты белкового обмена синтезируются здесь в безвредную мочевину, которая вместе с другими продуктами жизнедеятельности тканей выводится из организма. Как и в крови, в лимфе различают форменные элементы и плазму. Форменные элементы представлены главным образом лимфоцитами, которыми лимфа обогащается при прохождении через лимфатические узлы. По химическому составу плазма лимфы близка к плазме крови, но содержит меньше белка. Среди фракции белка альбумин преобладает над глобулином. Плазма содержит также простые сахара, нейтральные жиры,
растворы минеральных солей NaCI, Na3C03 и т. д.

6. СОЕДИНИТЕЛЬНАЯ ТКАНЬ.

Соединительная ткань подразделяется на три вида: собственно соединительную, хрящевую и костную.

Выполняет она несколько функций:

1) трофическую, так как участвует в переносе питательных веществ из крови к другим тканям и наоборот;

2) защитную, благодаря деятельности фагоцитов и выработке иммунных тел;

3) пластическую, выражающуюся в активном участии в процессах регенерации, заживления
рак;

4) механическую, так как образует строму многих органов и формирует скелет;

5) соединительная ткань с особыми свойствами (ретикулярная) принимает участие в функции кроветворения.

 

megaobuchalka.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *