Гликоген у грибов это – Гликоген-запасное питательное вещество грибов ? Грибы-это растения ,лишенные хлорофилла? Основа плодового тела гриба-грибница

Содержание

Гликоген в грибах - Справочник химика 21

    Все жизненные процессы сопровождаются гликолизом — биологическим расщеплением гликогена, приводящим к образованию молочной кислоты для животных организмов гликоген является одним из важнейших источников энергии. Он содержится во всех клетках животного организма. Наиболее богаты гликогеном печень (у упитанных животных до 10—20% гликогена) и мышцы (до 4%)- Он содержится также в некоторых низших растениях, например в дрожжах и грибах крахмал некоторых высших растений по свойствам близок к гликогену. [c.711]
    Гликоген содержится во всех животных тканях. Особенно его много в печени (до 20 о), в мышцах (до 4%). Ои содержится также в некоторых низших растениях, дрожжах и грибах. [c.256]

    Гликоген очень распространен в животных организмах. Наиболее богаты им печень (до 20%), в мышцах —до 4% от сырого веса. Много гликогена содержат дрожжи, высшие грибы и, в особенности, некоторые моллюски. Гликоген является резервным углеводом организма, играющим важнейшую роль в энергетическом его балансе. [c.362]

    УГЛЕВОДЫ. При наличии углеводов большинство клеток использует в качестве субстратов именно их. Полисахариды (крахмал у растений и гликоген у животных и грибов) вовлекаются в процесс дыхания лишь после того, как они будут гидролизованы до моносахаридов. [c.344]

    Питание. Практически все клетки независимо от их источника па 80% состоят из воды и на 20% из сухой массы. В сухой массе клетки — приблизительно 50—60% белка и 15—25% РНК (около 15% в растительных, животных клетках и у микроорганизмов, около 25% У бактерий). Содержание ДНК значительно варьирует. У бактерий относительное содержание ДНК наиболее велико — около 4% сухой массы. Почти во в сех растительных и животных клетках ДНК составляет приблизительно 1 % сухого веса, но в некоторых клетках, особенно у грибов, только 0,1%. Содержание полисахаридов (крахмал, гликоген, целлюлоза и т. д.) обычно составляет около 10%, а липидов — несколько процентов (за исклю- [c.71]

    Отдел объединяет бесхлорофилльные организмы, которые по своему строению и образу жизни занимают промежуточное положение между животными и грибами. Одни из них имеют микроскопически малые размеры и представлены одно- или многоядерной амебоидной клеткой, другие крупные, многоядерные, обычно подвижные (0,1—0,4 мм/мин), бесцветные или окрашенные, подчас достигающие более 30 см. В состав плазмодия входят белки, гликоген, жиры, пигменты и другие вещества. 

[c.144]

    Гликоген (животный крахмал). Содержится в печени (2—10%, в среднем 57о), скелетных и гладких мьпицах, головном молге. Значительные количества гликсзгена найдены у грибов- аскомицетов, фикомицетов, базидиоми-цетов. Гликоген в горячей воде образует коллоидные растворы, которые с иодом дают красно-бурое или Краснова то фиолетовое окрашивание. [c.216]

    Родственным растительному крахмалу веществом является живот ный крахмал — гликоген, который содержится в различных тканя и органах животных. Гликогена также много и в некоторых растениях в зерне сахарной кукурузы, дрожжах и грибах. В настоящее врем разработаны методы определения количества крахмала. Их можш разделить на пять групп методы, основанные на прямом определени  [c.162]

    Гликоген, называемый также животным крахмалом и содержащейся в печени, мускульной ткани и в особенно больших количествах в моллюсках, является двойником крахмала в животном Ш1ре и играет роль депо питательных веществ и запасного углевода животных тканей. В незначительных количествах гликоген содержится также в грибах и дрожжах. Гликогеноподобные полисахариды встречаются также в зёрнах злаков и в бактериях. Молекулярная масса гликогена составляет от 400 тыс. до 4 млн (по другим источникам от 270 тыс. до 100 млн) даже в одном препарате гликогена наблюдается широкий разброс по размерам молекул. Так, гликоген растворяется в горячей воде, образуя коллоидный раствор, дающий с иодом жёлто-красную окраску однако гликоген, извлекаемый из животных клеток, имеет частицы гораздо меньшего размера, а его легко образующаяся дисперсия в воде окрашивается иодом в красно-фиолетовый цвет (подобно амилопектину). При кислотном гидролизе гликоген превращается в В-глюкозу, так как является полисахаридом, образованным за счёт а-(1,3)-, а-(1,4)- и а-(1,6)-глюкозидных связей, причем 1,6-связи возникают и в ветвях гликогена. Из-за большей степени разветвлён-НОСТИ молекулы гликогена имеют более плотную, более компактную форму, чем молекулы амилопектина. Как и а шло-пектин, гликоген гидролизуется а-амилазами до мальтозы и изомальтозы 1,6-связи гликогена расщепляются бактериальным ферментом пуллуланазой. 

[c.101]

    Flavoba terium —Бактерии, часто встречающиеся в реакторах с активным илом, биофильтрах, а также в метантенках ГАО — Гликоген-аккумулирующие организмы, не накапливают фосфат Geotri hum — Род грибов, обитающих в реакторах с активным илом и биофильтрах [c.88]

    Клетки многих грибов содержат различные включения. Основным запасным веществом является гликоген, который обычно в виде мелких гранул равномерно распределяется в цитоплазме грибной клетки. В вакуолях накапливаются полифосфаты (метахроматин, волютин). В клетках грибов можно обнаружить липиды в виде капелек, которые называют липосомами (микросомами, сферосомами). [c.72]

    Биол. ф-ции П. разнообразны. Крахмал, гликоген, ламн-наран, инулин, нек-рые растит, слизи — энергетич. резерв клеток растений и животных. Целлюлоза и гемицеллюлозы в растениях, хитин в беспозвоночных и грибах, мукополисахариды соединит, тканей животных — опорные П. Капсульные П. микроорганизмов, гиалуроновая кислота и гепарин в животных тканях выполняют защитную ф-цию. Липополисахариды бактерий и гликопротеиды пов-сти животных клеток обеспечивают специфичность межклеточного взаимод. и иммунологич. р-ций организма. 

[c.466]

    Гликоген — резервный полисахарид, находящийся в различных органах и тканях многих животных. Подобный гликогену лолисахарид, обладающий всеми свойствами гликогена, обнаружен также у грибов, дрожжей и водорослей. У высших животных особенно много гликогена в печени. Гликоген по многим свойствам напоминает крахмал, но отличается от него растворимостью в воде и тем, что с йодом дает красновато-бурую окраску. По характеру этой окраски и по содержанию остатка фос- форной кислоты сходен с амилопектином. Молекулярный вес 110000—140000. -Ы96°. Гликоген очень устойчив к дей- [c.94]

    Г люкоамилаза (ос-1,4-глюкан — глюкогидролаза, К-Ф-3.2.1.3) гидролизует а-1,4-глюкановые связи в полисахаридах, последовательно отщепляя остатки глюкозы от нередуцирующих концов цепей. Как и остальные амилазы, действует на крахмал, гликоген и родственные поли- и олигосахариды с образованием преимущественно глюкозы и небольшого количества декстринов. Препараты глюкоамилазы выделяют из плесневых грибов, с помощью этих препаратов можно получать глюкозу, не прибегая к кислотному гидролизу крахмала. 

[c.96]

    Гликоген, (СвНюОб)п— животный крахмал, представитель полисахаридов, играющий роль депо питательных вэществ и запасного углевода животных тканей. Содержится в основном в печени около 10%) и мышцах (около 2%). В незначительных количествах найден в грибах, дрожжах и др. Мол. масса составляет от 400 тыс. до 4 млн. В организме находится в комплексе с белками. Гликоген в чистом виде — белый аморфный порошок, легко растворяется в горячей воде, образуя коллоидный раствор. С иодом дает желто-красную окраску. Раствор гликогена вращает плоскость поляризации вправо с углом удельного вращения - -196°. При гидролизе кислотами гликоген превращается в О-глюкозу. [c.175]

    Распространение этих соединений в растениях носит на себе тот же отпечаток закономерной связи с систематическим положением отдельных растений, как и распространение других вен еств, а именно можно легко заметить, что гликоген встречается только в грибах среди цветковых растений есть крахмалоиакопители и сахаронакопители инулин встречается преимущественно в представителях сложноцветных отдельные гемицеллю-лозы характерны для тех или иных растительных групп к совершенно определенным систематическим единицам приурочивается способность образовывать гумми и слизи. Еще больше, конечно, различий чисто количественного порядка. 

[c.172]

    Гликоген содержится также в мускульной ткани. Находят гликоген и в низших растениях, например, в грибах. Гликоген иодом окрашивается в фиолетовокоричневый цвет. Не восста-, навливает фелинговой жидкости. Как и крахмал, в результате гидролиза превращается в глюкозу. [c.406]

    Сапротрофами называются организмы, извлекающие питательные вещества из мертвого органического материала. Грибы, относящиеся к сап-ротрофам, образуют целый ряд пищеварительных ферментов. Если сапротроф способен секретировать пищеварительные ферменты трех основных классов, а именно 1) ферменты, расщепляющие углеводы, например амилазы (расщепляют крахмал, гликоген и родственные полисахариды), [c.45]

    Гликоген — это эквивалент крахмала, синтезируемый в животном организме, т. е. это тоже резервный полисахарид, построенный из остатков а-глюкозы встречается гликоген и в клетках многих грибов. У позвоночных гликоген содержится главным образом в печени и мышцах, иными словами в местах высокой метаболической активности, где он служит важным источником энергии. Обратное его превращение в глюкозу регулируется гормонами, главным образом инсулином (гл. 9). По своему строению гликоген весьма схож с амилопектином (рис. 3.13), но цепи его ветвятся еще сильнее. В клетках гликоген отлагается в виде крошечных гранул, которые обьгано бывают связаны с агра-нулярным (гладким) эндоплазматическим ретикулумом (рис. 5.12). 

[c.117]

    Гликоген (СбНю05)п называют животным крахмалом, так как он синтезируется организмом животных и человека и откладывается во всех тканях. Главные места отложения его — печень (от 2 до 10%) и мышцы (0,2—2,0% и более к весу органа). Он найден также в растениях, например кукурузе, грибах и дрожжах. [c.97]

    Полиазы. К полназам относятся а-амилаза, р-амилаза, целлюлаза, ину-линаза и некоторые другие ферменты. Из них наиболее важны амилазы, катализирующие гидролиз крахмала и гликогена (животного крахмала) а- и -амилазы отличаются друг от друга по своим свойствам, способу действия на крахмал и гликоген и по распространению. а-Амилаза содержится в слюне, в соке поджелудочной железы, в крови и в тканях животных (в печени, мозге, мышцах молодых животных), а также в проросших зернах злаков и в плесневых грибах. Ее называют декстрогенной амилазой, так как в результате ее действия получается мало мальтозы и много декстринов, из которых затем возникает мальтоза. Что же касается р-амилазы, то она катализирует расщепление крахмала с образованием, главным образом, мальтозы и небольшого количества декстринов. Как а-, так и р-амилаза катализируют гидролиз только 1,4 глюкозидных связей. В связи с этим расщепление амилопектина в результате их действия сопровождается образованием некоторого количества декстринов, имеющих в своей структуре 1,4 и 1,6 глюкозидные связи. Эти декстрины носят название пограничных декстринов. 

[c.179]

    Гликоген — (СвНи05)дг— Печеночный крахмал встречается яе только в грибах и дрожжах, но и в животных организмах, чем и отличается от других видов крахмала, являющихся исключительно продуктами растений. Обычно его получают из печени хорошо упитанного кролика. чень кипятят сконцентрированным раствором едкого кали,чем разрушается ткань печени, гликоген же остается нетронутым. Много гликогена также в устрицах. Он является аморфным, бесцветным порошком, набухающим в воде уже при обычной температуре и дающим опалвсцирующий раствор при гидролизе получается только [c.289]

    Крахмал, глюканы (гликоген, декстран) - запасные вещества растений выполняют опорную функцию или являются основой слизей и капсул, образуемых рядом микроорганизмов. Они представляют собой нера ветв-ленные цепи остатков О-глюкозы, соединенных а-гликозидными связями между углеродными атомами в положениях 1 и 4 (амилоза), либо разветвленные молекулы поли-а-1,4-В-глюкозы (амилопектин, гликоген, декстран). Гидролиз крахмала осуществляется микроорганизмами (грибами, бактериями) под действием ферментов амилаз (а-амилаза, р-амилаза, глюкоамилаза и др.). [c.405]

    Из числа углеводов, локализованных в клетках грибов, для них характерны гликоген, маннит, дисахарид трегалоза (или микоза). Количество гликогена в плодовых телах и мицелии грибов может варьировать от 1,5 до 40% в зависимости от вида гриба и возраста плодового тела. В молодых плодовых телах и культурах грибов его соответственно больше на целый порядок, чем в старых с созревшими спорами. [c.29]

    Из других, помимо упомянутых липидов, запасных веществ, используемых в энергетическом обмене, в цитоплазме клеток грибов часто встречается гликоген, в а-форме в виде звездчатых образований или в разветвленной р-форме (Камалетдинова, Васильев, 

[c.207]

    Склероции — плотные переплетения гиф мицелия — служат для перенесения неблагоприятных условий зимой, во время засухи и т. д. Они имеют различные формы (шаровидную, овальную, в виде рожков и др.), размеры (от 1 мм до 20—30 см в диаметре) и массу (до 20 кг). Клетки склероциев богаты запасными питательными веществами — гликогеном, жирами. В склероциях спорыньи, например, содержится до 30% жира. Склероции образуют многие сумчатые, базидиальные и несовершенные грибы. Формируются они либо свободно на поверхности мицелия, либо внутри пораженного органа. Из склероциев развиваются мицелий или органы спороношения. [c.136]

    В цитоплазме клеток грибов есть эндоплазматический ретикулум, рибосомы, аппарат Гольджи, митохондрии, лизосомы, вакуоли. В отличие от высших растений у них нет хлоропластов. В качестве запасных веществ выявляются гликоген в виде гранул, волютин, липиды, иногда кристаллы солей кальция. [c.133]

    Пшкоген служит резервным питательным веществом в организме человека и животных, вследствие чего за ним сохраняется название животный крахмал . Однако он найден также в грибах, дрожжах и зернах кукурузы, что ставит под сомнение его название животный . Содержание гликогена в печени животных достигает 20%, а в мышцах—4%. Распадаясь до простых продуктов довольно сложным путем, который называется гликогенолизом (см. с. 351), гликоген обеспечивает потребность организма в энергии и метаболитах. Таким образом, его биологическая роль весьма велика. [c.323]


chem21.info

Гликоген

Гликоген, или животный крахмал, является сильно разветвленным резервным полисахаридом, состоящим из остатков глюкозы.[ ...]

Гликоген (Гл) — полимерный углеводород, накапливается в гетеротрофных организмах при обработке промышленных стоков, богатых углеводородами [43], или в ФАО вместе с ПНО. Накопление и расходование гликогена и ПНО в ФАО происходит в противофазе: пока одно вещество создается, другое расходуется (см. рис. 3.15). Накопление гликогена имеет для биомассы в реакторе долгосрочный эффект, так как может обеспечить запас энергии на 1-2 дня.[ ...]

Гликоген — форма углевода, запасаемого в клетках.[ ...]

Жиры, крахмал и гликоген являются запасными питательными веществами клетки и организма в целом. Глюкоза, фруктоза, сахароза и другие сахара входят в состав корней и листьев, плодов растений. Глюкоза является обязательным компонентом плазмы крови человека и многих животных. При расщеплении углеводов и жиров в организме выделяется большое количество энергии, необходимой для процессов жизнедеятельности.[ ...]

Из других углеводов в грибах содержится гликоген (вид крахмала), характерный только для животных организмов.[ ...]

В клетках животных и человека накапливается гликоген. Этот полисахарид отличается от крахмала большей разветвленностью молекул. Особенно много гликогена содержится в клетках печени, а также в мышцах.[ ...]

По исследованиям японских химиков М. Мигита и Т, Ханаока (1937), гликоген образуется преимущественно в печени и накапливается в ней тем больше, чем больше масса самой печени. Содержание гликогена в мышцах рыб составляет (в процентах) у кеты 1,45; у сельди 1,29; у трески 1,22; у камбалы 0,96; у акулы 0,94 и у карпа 1,34.[ ...]

Из запасных веществ в клетках большинства простейших откладывается гликоген, в некоторых — жир. Окрашенные Protozoa накапливают крахмал.[ ...]

Вместе с тем активация гликогенсинтетазы — фермента, синтезирующего гликоген, происходит в результате отщепления от ее молекулы фосфорной кислоты, а фосфо-рилирование снижает ее активность. Таким образом, катехоламины, стимулируя образование цАМФ, не только увеличивают использование гликогена, но и ограничивают его обратный синтез, направляя все гликогенные запасы на энергетическое обеспечение функций организма.[ ...]

Клетки многих грибов содержат различные включения. Основным запасным веществом является гликоген, который обычно в виде мелких гранул равномерно распределяется в цитоплазме грибной клетки. В клетках грибов можно обнаружить липиды в виде капелек, которые называют липосомами (микросомами, сферосомами).[ ...]

Метаболизм ФАО в аэробных и анаэробных условиях. ПНО — полимерные насыщенные оксикислоты, Гл — гликоген, ПФ — полифосфаты, НАс — ацетат.

Главными углеводами, содержащимися в растительной пище, являются крахмал и целлюлоза, а в животной пище — гликоген.[ ...]

По оси абсцисс — время; по оси ординат — изменения от уровня покоя, Д%. 1 — молочная кислота, 2 — АТФ, 3 — КФ, 4 — гликоген.[ ...]

За легко разлагаемые органические вещества с ФАО могут также конкурировать другие бактерии — С-бактерии, или ГАО (гликоген-аккумулирующие организмы). Эти бактерии не накапливают фосфаты и обычно не влияют на процесс удаления фосфора.[ ...]

Плазмодий — сложное образование. В его составе около 75% воды, а из остальной части около 30% белков; кроме того, в нем содержится гликоген, или животный крахмал, и пульсирующие вакуоли. Некоторые слизевики характеризуются наличием большого количества извести (до 28%) или других включений. У большинства слизевиков в плазмодии находятся пигменты, придающие им самые различные окраски: ярко-желтую, розовую, красную, фиолетовую, почти черную. При этом окраска плазмодия постоянна для данного вида слизевика, но на ее интенсивность очень влияют реакция среды, освещение, температура, питание и другие факторы окружающей среды. Предполагают, что некоторые пигменты представляют собой фоторецепторы, играющие важную роль в развитии слизевиков. Для слизевиков с окрашенными плазмодиями свет необходим для формирования спороношения, которое образуется после периода вегетативного роста.[ ...]

Во время усиленной деятельности мускула пропорционально этой деятельности усиливается потребление составных частей плазмы, и гликоген образует мясо-колочную кислоту, которая придает мускулу кислую реакцию, тогда как в пскойном состоянии реакция щелочная. При расщеплении гликогена и миозина конечными продуктами являются, кроме того, еще вода и угсльная кислота, при чем, разумеется, должен увеличиваться приток кислорода и потому рефлекторно усиливается дыхание.[ ...]

Кроме гранул в протоплазме бактерий содержатся также разнообразные включения запасных питательных веществ, например, гранулеза и гликоген, волютин, жир, сера. Запасные питательные вещества клетки весьма разнообразны по своему химическому составу: сера — неорганическое вещество, а из органических соединений гранулеза, гликоген и жир относятся к числу безазотистых соединений в отличие от волютина, в состав которого входит азот. В протоплазме некоторых бактерий содержатся красящие вещества (пигменты).[ ...]

В цитоплазме бактериальной клетки встречаются разные включения, играющие роль запасных питательных веществ: гранулеза, гликоген и другие полисахариды, жир, гранулы полифосфатов, или волютиновые гранулы, сера. Количество жира может достигать у некоторых микробов 50% к сухой массе. Содержащиеся в клеточном соке соли обусловливают осмотическое давление, достигающее у бактерий обычно 3—6, а в некоторых случаях до 30 атм.[ ...]

Гликолиз продолжается, пока имеет место гипоксия (эндогенного или экзогенного происхождения) и пока не исчерпан субстрат анаэробного метаболизма — гликоген. Только после завершения периода гипоксии или аноксии, т. е. с появлением необходимого количества кислорода в тканях, тормозится процесс гликолиза и начинается период аэробного энергетического обмена, во время которого избыток лактата превращается в пиру-ват либо в самой мышце, либо большая его часть поступает в печень — основной орган глюконеогенеза и здесь "почти количественно" перерабатывается в глюкозу или гликоген. Следовательно, аэробное окисление накопленного в организме лактата и освобождение от его избытка должны вести к снятию "утомления", а не к его развитию.[ ...]

Продуктом фотосинтеза в клетках сине-зеленых водорослей является гликопротеид, который возникает в хроматоплазме и там же отлагается. Гликопротеид похож на гликоген — от раствора иода в иодистом калии он приобретает коричневый цвет. Волютиновые зерна в центроплазме представляют собой запасные вещества белкового происхождения. В плазме обитателей серных водоемов появляются зернышки серы.[ ...]

Помимо органелл в цитоплазме часто встречаются гранулы различной формы и размеров. Это могут быть гранулы гликогена, волютина, грану-лезы, капельки жира. Все эти включения играют роль запасных веществ и обычно образуются, если клетка снабжается достаточным количеством питательных веществ. Клетки некоторых видов бактерий содержат красящие вещества — пигменты.[ ...]

При совершающихся в мускуле химических процессах происходит освобождение энергии, идущей на производимую мускулом работу, и в этом отношении играют громадную роль углеводы (гликоген), дающие энергию путем своего сгорания. Азотистые же вещества (миозин) необходимы для поддержания существа самой мышцы. Само собою разумеется, что при этом развивается и тепло.[ ...]

Помимо глицерина у насекомых и некоторых других беспозвоночных функционируют и другие биологические антифризы —как низкомолекулярные (сахара), так и высокомолекулярные (белки, гликоген), благодаря которым при акклиматизации к низким температурам повышается процент связанной воды.[ ...]

В настоящее время еще нет достаточной ясности относительно взаимодействия КФ с ионами М§2+. Помимо того что уже было описано выше, можно отметить участие его в образовании комплекса КФ с гликогеном [47], а также участие в катализируемой киназой реакции путем образования комплекса М§-АТФ [3]. Однако характер влияния свободного М§2+ на ферментативную активность является спорным. Имеющиеся сведения довольно противоречивы. Известны, однако, и другие данные, показавшие, что в зависимости от концентрации металла проявлялось активирующее или ингибирующее действие [162]. Более детальное выяснение роли М.%2+ в механизмах регуляции активности фермента, безусловно, представляет большой интерес для дальнейших исследований.[ ...]

Полисахариды обладают свойствами полимеров. Будучи образованными сотнями или даже тысячами моносахаридных единиц, они являются либо линейными полимерами (целлюлоза), либо разветвленными (гликоген).[ ...]

Запасные вещества. В качестве продукта ассимиляции у красных водорослей откладывается полисахарид, называемый багрянковым крахмалом. По химической природе он ближе всего к амилопектину и гликогену и, по-видимому, занимает промежуточное положение между обычным крахмалом и гликогеном. Откладывается багрянковый крахмал в виде мелких полутвердых телец различной формы и окраски. Эти тельца могут иметь форму конусов или плоских овальных пластинок с углублением на широкой поверхности. Часто на них можно видеть концентрические зоны. Зерна багрянкового крахмала образуются частично в цитоплазме, частично на поверхности хлоро-пластов, но они никогда не образуются внутри пластид, в отличие от обычного крахмала зеленых растений. У форм, имеющих пиреноид, последний в какой-то мере участвует в синтезе крахмала.[ ...]

Как и животные, грибы не способны синтезировать органические вещества из неорганических, не имеют пластид и фотосинтезирующих пигментов, в качестве запасного питательного вещества накапливают гликоген, а не крахмал, клеточную оболочку строят из хитина, а не из целлюлозы.[ ...]

Если микроорганизмы лишены источников питания, они некоторое время могут существовать за счет внутриклеточных запасов. В качестве запасных веществ большинство микробов откладывают полисахариды (гликоген и крахмал) и жир. Эндогенное дыхание за счет этих веществ протекает по тому же пути, что и окисление экзогенных источников энергии. Когда запасы питательных веществ исчерпаны,‘начинается окисление клеточных белков.[ ...]

Обычный цвет клеток сине-зеленый, но иногда они могут быть желтоватыми или красноватыми. Наличие псевдовакуолей, содержащих газы, придает некоторым видам облик черноватых гранул. Запасной продукт — гликоген. Подвижные стадии отсутствуют.[ ...]

Глюкоза и фруктоза содержатся главным образом в ягодах и фруктах, в меде. Моно- и дисахариды легко растворяются в воде, быстро всасываются в пищеварительном тракте. Часть глюкозы поступает в печень, где превращается в животный крахмал гликоген. Гликоген — это углеводный запас в организме, который по мере возрастающих потребностей тратится для питания работающих мышц, органов и систем. Избыток углеводов превращается в жир.[ ...]

Анализ содержания гликогена в гонадах 5. пис1ш и 5. ШегтесИш показал, что его концентрация одинакова в период активного гаметогенеза, имеющего место в мае и в октябре, и не зависит от половой принадлежности особи. В гонадах этих видов ежей гликоген присутствует в количестве 2,3-3,3 % от сырой массы ткани.[ ...]

Более того, в условиях аэробного обмена за счет липидов сохраняются углеводные резервы мышечной ткани, необходимые для работы в анаэробных условиях [195]. Поэтому, возможно, что после длительной мышечной нагрузки, в период утомления и у костистых рыб гликоген, скорее всего, используется в анаэробной фазе энергетического метаболизма. Вопрос этот требует дальнейшего изучения, в частности, необходимо параллельное определение уровня гликогена и лактата в сердечной мышце при легкой, умеренной и острой гипоксии.[ ...]

В пищевых продуктах углеводы содержатся в виде простых и сложных соединений. К простым относятся моносахариды (глюкоза, фруктоза) и дисахариды — сахароза (тростниковый и свекольный сахар), лактоза (молочный сахар). К сложным углеводам относятся полисахариды (крахмал, гликоген, пектиновые вещества, клетчатка).[ ...]

Возбудителями брожения являются маслянокислые бактерии, получающие энергию для жизнедеятельности путем сбраживания углеводов. Они могут сбраживать разнообразные вещества — углеводы, спирты и кислоты, способны разлагать и сбраживать даже высокомолекулярные углеводы — крахмал, гликоген, декстрины.[ ...]

Пожалуй, самым удивительным является содержимое мюллеровских телец: оно состоит главным образом из гликогена (животного крахмала) — основного запасного углевода животных п грибов. У цекропии (как и у других высших растений) основные запасные углеводы представлены в форме крахмала, гликоген же синтезируется только и мюллеровских тельцах, причем па ранних стадиях их развития, как показали недавние исследования с помощью электронной микроскопии (Ф. Риксон, 1971, 1974), в этих образованиях гликогена нет. Небольшое число гли-когеповых пластид образуется также к жемчужных железках — крохотных беловатых выростах, изредка появляющиеся на черешках и нижней поверхности листьев цекропии м также поедаемых муравьями.[ ...]

Следует отметить, что синтез большинства полисахаридов обычно протекает как последовательное присоединение элементарных звеньев к растущим макромолекулам, но механизмы образования отдельных полисахаридов могут существенно различаться. Механизм образования бактериальных гетероиолисахаридов, по-видимому, более сложный.[ ...]

Принципиальная формула этих соединений углерода, водорода и кислорода — Ст(Н20)„. В класс углеводов входят сахара: моносахариды—С6Н 206, дисахариды—С12Н220М, полисахариды, которые образуют весьма сложные комплексы. Из полисахаридов для растений важнейшую роль играют крахмал, для животных — гликоген, а также целлюлоза, составляющая основу растительных клеток.[ ...]

Голодающая рыба не имеет постоянного притока питательных веществ извне. Чтобы осуществлялся обмен веществ в наиболее жизненно важных органах и тканях, происходит перераспределение питательных веществ внутри самого организма между отдельными органами и тканями. При голодании сначала потребляются резервы (жир, гликоген), которые всегда имеются в организме рыбы в разных количествах. После использования резервов (отложений) происходит переработка менее важных для жизни рыбы органов и тканей. Голодающая рыба постепенно «сама себя съедает». Но это происходит таким образом, что наиболее жизненно важные органы и ткани сохраняются дольше всего.. Например, мозг и нервная система, а также сердце наиболее долго сохраняют свои нормальные функции. Такой порядок «самопоедаемости»-есть выражение приспособления рыб к сохранению жизни в условиях: прерывистого питания. Если рыба имеет возможность питаться после длительного голодания, то она легко восстанавливает’ утраченные во время голодания маловажные органы и ткани. Это она может осуществить только благодаря сохранившимся наиболее жизненно важным органам — нервной системе, сердцу, органам дыхания.[ ...]

Грибы как продукты питания известны с давних времен. Главное, что отличает грибы от других пищевых продуктов, - это характерный запах и приятный сладковатый привкус, обусловленный присутствием ароматических веществ, виноградного сахара, глюкозы, маннита, микозы, или грибного сахара. Грибы содержат вещества: хитин, гликоген, мочевину, белки, сахара, жиры, кислоты (щавелевая, фумаровая, яблочная, винная, гелльвеловая, синильная). Ферменты сохраняют активность и в высушенных грибах. С - 1...7. В лисичках содержится до 4 мг % каротина. По количеству минеральных веществ грибы приближаются к фруктам и овощам, а калия, фосфора и серы в них даже больше. Содержание белков и жиров в грибах выше, чем в хлебе и крупе. Питательность 100 г сушеных белых грибов 286 кал, что в 2 раза больше по сравнению с такой же массой куриных яиц. Однако клетчатка и белок грибов трудно перевариваются. Поэтому не рекомендуется съедать за один раз больше 200 г свежих, или 100 г соленых, или 20 г сушеных грибов. Грибы служат хорошей приправой к кушаньям, так как вызывают усиленное выделение желудочного сока, а это содействует лучшему перевариванию пищи.[ ...]

Теоретические предпосылки такого исследования основаны на представлении, что пищевые вещества в теле рыбы сперва идут на самые необходимые жизненные нужды, без которых невозможно существование, а затем уже после удовлетворения этих потребностей идут на образование новых клеток (рост) и на отложения (например, жир, гликоген). Обмен веществ рыбы, обеспечивающий только поддержание этих необходимых жизненных нужд, был назван поддерживающим, обменом веществ.[ ...]

Углеводный обмен у разных видов рыб несколько различается. Форель и другие лососевые наименее эффективно используют углеводы. За счет низкого продуцирования инсулина углеводный обмен у них носит характер диабетического и если рыба долгое время получает богатую углеводную пищу развивается симптом перегрузки печени гликогеном. Для лососевых рыб количество углеводов не должно превышать 20...30 %, причем в пище для- молоди должно находиться меньше углеводов.[ ...]

Хондриозомы состоят из липопротеидов, представляющих со-5ой соединение белка с жнроподобными веществами. В состав оболочек дрожжевых клеток входит грибная клетчатка (близкая к растительной). Дрожжевая камедь ходит в состав некоторых дрожжей, имеющих ослнзненную обо-ючку. В теле грибов найдены шестнатомный спирт манннт (7—10% от сухого вещества), сорбит и другие вещества углевод-юго характера. В клеточных стенках дрожжей нандеи маннан.[ ...]

Поступление в организм, превращения и выделение. Для действия А. нужны очень высокие его концентрации в крови, накопление же идет медленно. Поэтому внезапных острых отравлений А. не бывает. А. частично усваивается организмом: при воздействии на крысу 1—7 мг/кг (СиНз)гСО и (СН3)гС140 7% выделилось в неизмененном виде, 50% — в виде СО2; С14 был обнаружен в гликогене, мочевине, холестерине, жирных кислотах, некоторых аминокислотах и т. д. В неизмененном виде через легкие и почки выделяется тем большая часть А., чем меньше его проникло в организм. Так, у белых крыс при концентрации А. в крови 2310 мг/л 87% выделяется через легкие, а 13% подвергается превращениям; при концентрации в крови 23 мг/л 16% выделяется с выдыхаемым воздухом, а 84% подвергается превращениям. Подобная же зависимость обнаружена и для организма человека. Выделение А. очень растянуто — поэтому возможно длительное его обнаружение в крови. После приема внутрь 80 мг/кг через сутки А. еще обнаруживался в крови. Содержание А. в тканях составляет примерно 80% от концентрации в крови (Хаггард и др.). А плохо всасывается через здоровую кожу (Нунцицианте и Пинерло), однако известны отравления при наложении на кожу больных иммобилизующих повязок, в которых как растворитель был использован А.[ ...]

Это вещества, представляющие собой соединения углерода, водорода и кислорода с принципиальной формулой Сж ИгО)«. К этому классу относятся сахара, подразделяющиеся на моно- (СвНиО«) и дисахариды (С12Н22О11), а также полисахариды, в которых молекулы простых сахаров объединяются в сложные комплексы. Наиболее важны из полисахаридов — крахмал (характерен для растений), гликоген (характерен для животных) и клетчатка (целлюлоза), составляющая основу растительных клеток.[ ...]

Восстановление нормальных, дорабочих биохимических соотношений, т. е. полный ресинтез АТФ, КФ и гликогена и устранение избытка молочной кислоты, происходит уже во время отдыха, когда организм «расплачивается» за анаэробное энергообеспечение мышечной деятельности. Эта «расплата», называемая кислородным долгом, выражается в повышенном поглощении кислорода в периоде отдыха, что делает возможным и окисление или превращение в гликоген молочной кислоты, и все репаративные синтезы. Кислородный долг всегда в той или иной мере больше кислородного дефицита (рис. 10). Повышенно поглощаемый кислород используется не только на энергообеспечение ресинтеза АТФ, КФ, гликогена и устранение избытка молочной кислоты, но и на полное восстановление биохимических соотношений в мышцах, нарушенных их повышенной деятельностью. Если во время мышечной работы кислородный запрос удовлетворяется не полностью, то миоглобин теряет свой кислород, повышенно разрушаются белки, фосфолипиды и даже некоторые субклеточные структуры, например часть митохондрий. Все это требует восстановления, а значит, дополнительного поглощения кислорода, являющегося как бы «процентами» за долг, которые тоже надо оплатить.[ ...]

Интересно отметить, что во многих видах рода панэолус (Рапаео1и8) найдено вещество ин-дольной природы — серотонин (5-окситрипт-амин). Он встречается и в животных организмах, где его основная функция — регулирование тонуса почечных сосудов. В грибах из разных родов найдены производные бетаина — четвертичного аммониевого основания — три-гонеллин и гомарин, которые также были известны раньше только в животиых объектах. Здесь обнаруживается одна из сходных черт обмена веществ у грибов и животных. Известно также, что запасное вещество в клетках грибов — гликоген — тоже характерно для животной клетки и не встречается у большинства других растений. В клеточной оболочке большинства грибов содержится не целлюлоза, как это характерно для растений, а хитин— вещество, близкое по составу к хитину насекомых. На основании таких фактов выдвинута гипотеза, что грибы более близки животным организмам, чем растительным, и их предлагают выделить в самостоятельное царство грибов Мусо1а наряду с царствами растений и животных.[ ...]

Углеводы являются важнейшим источником энергии в организме, которая освобождается в результате окислительно-восстановительных реакций. Установлено, что окисление 1 г углевода сопровождается образованием энергии в количестве 4,2 ккал. Целлюлоза не переваривается в желудочно-кишечном тракте позвоночных из-за отсутствия гидролизующего фермента. Она переваривается лишь в организме жвачных животных (крупный и мелкий рогатый скот, верблюды, жирафы и другие). Что касается крахмала и гликогена, то в желудочно-кишечном тракте млекопитающих они легко расщепляются ферментами-амилазами. Гликоген в же-лудочно-кишечном тракте расщепляется до глюкозы и некоторого количества мальтозы, но в клетках животных он расщепляется гликогенфосфорилазой с образованием глюкозо-1-фосфата. Наконец, углеводы служат своеобразным питательным резервом клеток, запасаясь в них в виде гликогена в клетках животных и крахмала в клетках растений.[ ...]

ru-ecology.info

Запасающие полисахариды животных и грибов | Углеводы  |  Читать онлайн, без регистрации

Запасающие полисахариды животных и грибов

Рисунок 21. Структура гликогена

Гликоген – полисахарид, в виде которого углеводы запасаются в организме животного. Его часто называют животным крахмалом. В наибольшем количестве гликоген содержится в печени, где на его долю приходится до 7% общего веса органа; гликоген имеется также в скелетных мышцах. В клетках печени гликоген присутствует в виде крупных гранул, состоящих в свою очередь из меньших гранул; последние образованы единичными сильно разветвленными молекулами гликогена со средней молекулярной массой в несколько миллионов. С этими же гранулами прочно связаны ферменты, ответственные за синтез и распад гликогена. Гликоген откладывается в виде гранул в цитоплазме клетки.

У грибов гликоген запасается в клетках гифов.

Гликоген – редуцирующий гомополисахарид, образованный остатками α-D-глюкопиранозы. Гликоген характеризуется более разветвленной структурой, чем амилопектин, линейные отрезки цепи включают 11—18 остатков α-D-глюкопиранозы [соединенных α (1—4) -гликозидными связями], в точках ветвления остатки соединены α (1—6) -гликозидными связями (Рисунок 21).

velib.com

Особенности грибов — Науколандия

Грибы выделяют в отдельное царство живых организмов. Раньше их относили к царству Растения. Однако, несмотря на схожий с растениями образ жизни, у грибов были обнаружены принципиальные отличия.

Грибы имеют ряд особенностей, сходных с растениями, ряд особенностей, сходных с животными, и ряд своих собственных особенностей, которые есть только у грибов.

Самым главным отличием от растений является отсутствие у грибов фотосинтеза. То есть грибы не могут синтезировать органические вещества из неорганических, как это делают растения. Поэтому грибы могут расти только там, где есть готовые органические вещества (в почве, продуктах питания, телах организмов и др). Отсутствие процесса фотосинтеза объединяет грибы с животными, а также объясняет, почему грибы не зеленые.

Также как растения грибы растут в течение всей жизни, ведут прикрепленный образ жизни, необходимые им вещества получают через поверхность тела, их клетки имеют клеточную оболочку. Однако эта оболочка состоит не из целлюлозы, как у растений, а преимущественно из хитина, как внешний скелет насекомых. Кроме этого с животными грибы объединяет конечный продукт обмена веществ: и у животных, и у грибов образуется мочевина. Также как у животных у грибов запасное питательное вещество углеводного типа — гликоген. В то время как у растений им является крахмал. Центральной вакуоли в нестарых клетках грибов не образуется. Это тоже роднит их с животными.

К собственным особенностям грибов относится многоядерность их клеток: в клетках грибов может быть несколько ядер. Также существуют особенности при делении клеток. У грибов наблюдается такое явление как внешнее пищеварение. Они выделяют в окружающую среду свои пищеварительные ферменты, которые расщепляют сложные органические вещества до более простых. После этого грибы всасывают растворенные более простые органические вещества.

Большинство грибов — многоклеточные организмы. Однако бывают и одноклеточные. Тело многоклеточного гриба называется мицелий (или грибница). Мицелий состоит из тонких нитей, которые называются гифы. Гифы всасывают питательные вещества из окружающей среды.

На мицелии гриба для размножения образуются плодовые тела. У шляпочных грибов, которые собирают грибники, эти плодовые тела и называют «грибами». Хотя сам гриб (его мицелий) находится обычно в почве.

scienceland.info

Гликоген: роль и функции в организме

Гликоген – это «запасной» углевод в человеческом организме, принадлежащий к классу полисахаридов.

Иногда его ошибочно называют термином «глюкоген». Важно не путать оба названия, поскольку второй термин – это белковый гормон-антагонист инсулина, вырабатываемый в поджелудочной железе.

Что такое гликоген?

Практически с каждым приемом пищи организм получает углеводы, которые поступают в кровь в виде глюкозы. Но порой ее количество превышает потребности организма и тогда глюкозные излишки накапливаются в форме гликогена, который при надобности расщепляется и обогащает тело дополнительной энергией.

Где хранятся запасы

Запасы гликогена в форме мельчайших гранул хранятся в печени и мышечной ткани. Также этот полисахарид есть в клетках нервной системы, почек, аорты, эпителия, мозга, в эмбриональных тканях и в слизистой оболочке матки. В теле здорового взрослого человека обычно есть около 400 г вещества. Но, кстати, при повышенных физических нагрузках организм преимущественно использует гликоген из мышц. Поэтому культуристы примерно за 2 часа до тренировки должны дополнительно насытить себя высокоуглеводной пищей, дабы восстановить запасы вещества.

Биохимические свойства

Полисахарид с формулой (C6h20O5)n химики называют гликогеном. Другое название этого вещества – животный крахмал. И хоть гликоген хранится в животных клетках, но это название является не совсем правильным. Открыл вещество французский физиолог Бернар. Почти 160 лет тому назад ученый впервые нашел в клетках печени «запасные» углеводы.

«Запасной» углевод хранится в цитоплазме клеток. Но если организм ощущает внезапный недостаток глюкозы, гликоген высвобождается и попадает в кровь. Но, что интересно, трансформироваться в глюкозу, которая способна насытить «голодный» организм, способен только полисахарид, накопленный в печени (гепатоцид). Запасы гликогена в железе могут достигать 5 процентов от ее массы, и во взрослом организме составлять около 100-120 г. Своей максимальной концентрации гепатоциды достигают примерно через полтора часа после трапезы, насыщенной углеводам (кондитерские изделия, мучное, крахмалистая пища).

В составе мышц полисахарид занимает не больше 1-2 процентов от массы ткани. Но, учитывая общую площадь мускул, становится понятно, что гликогеновые «залежи» в мышцах превышают запасы вещества в печени. Также небольшие запасы углевода есть в почках, глиальных клетках мозга и в лейкоцитах (белых кровяных клетках). Таким образом, общие запасы гликогена во взрослом организме могут составить почти полкилограмма.

Интересно, что «запасной» сахарид найден в клетках некоторых растений, в грибах (дрожжевых) и бактериях.

Роль гликогена

В основном гликоген концентрируется в клетках печени и мышц. И следует понимать, что эти два источника резервной энергии обладают разными функциями. Полисахарид из печени поставляет глюкозу для организма в целом. То есть отвечает за стабильность уровня сахара в крови. При чрезмерной активности или между приемами пищи уровень глюкозы в плазме снижается. И дабы избежать гипогликемии гликоген, содержащийся в клетках печени, расщепляется и попадает в кровоток, выравнивая глюкозный показатель. Регуляторную функцию печени в этом плане нельзя недооценивать, поскольку изменение уровня сахара в любую сторону чревато серьезными проблемами, вплоть до летального исхода.

Мышечные запасы необходимы для поддержания работы опорно-двигательной системы. Сердце также является мышцей, в которой есть запасы гликогена. Зная об этом, становится понятно, почему у большинства людей после длительного голодания или при анорексиии возникают проблемы с сердцем.

Но если излишки глюкозы могут отложиться в форме гликогена, тогда возникает вопрос: «Почему углеводная пища откладывается на теле жировой прослойкой?». Этому также есть объяснение. Запасы гликогена в организме не безразмерны. При низкой физической активности запасы животного крахмала не успевают тратиться, поэтому глюкоза накапливается в другой форме – в виде липидов под кожей.

Помимо этого, гликоген необходим для катаболизма сложных углеводов, участвует в обменных процессах в организме.

Синтезирование

Гликоген – это стратегический запас энергии, который синтезируется в организме из углеводов.

Сначала тело использует полученные углеводы в стратегических целях, а остатки откладывает «на черный день». Дефицит энергии является причиной для расщепления гликогена к состоянию глюкозы.

Синтез вещества регулируется гормонами и нервной системой. Этот процесс, в частности в мышцах, «запускает» адреналин. А расщепление животного крахмала в печени активизирует гормон глюкагон (вырабатывается поджелудочной железой во время голодания). За синтезирование «запасного» углевода отвечает гормон инсулин. Процесс состоит из нескольких этапов и происходит исключительно во время приема пищи.

Гликогеноз и другие нарушения

Но в некоторых случаях расщепление гликогена не происходит. В результате гликоген накапливается в клетках всех органов и тканей. Обычно подобное нарушение наблюдают у людей с генетическими нарушениями (дисфункция ферментов, необходимых для расщепления вещества). Такое состояние называют термином гликогеноз и относят его к списку аутосомно-рецессивных патологий. На сегодня в медицине известны 12 типов этого заболевания, но пока достаточно изученной является только половина из них.

Но это не единственная патология, связанная с животным крахмалом. В число гликогеновых заболеваний также входит агликогеноз – нарушение, сопровождающееся полным отсутствием фермента, отвечающего за синтез гликогена. Симптомы болезни – ярко выраженные гипогликемии и судороги. Наличие агликогеноза определяют путем биопсии печени.

Потребность организма в гликогене

Гликоген, как запасной источник энергии, важно регулярно восстанавливать. Так, по крайней мере, утверждают ученые. Повышенная физическая активность может привести к тотальному истощению углеводных запасов в печени и мышцах, что в результате скажется на жизненной активности и работоспособности человека. В результате длительной безуглеводной диеты запасы гликогена в печени снижаются почти к нулю. Мышечные резервы истощаются во время интенсивных силовых тренировок.

Минимальная суточная доза гликогена составляет от 100 г и выше. Но эту цифру важно увеличить при:

  • интенсивных физических нагрузках;
  • усиленной умственной деятельности;
  • после «голодных» диет.

Напротив, осторожно к пище, богатой гликогеном, стоит отнестись лицам с дисфункцией печени, недостатком ферментов. Кроме того, диета с высоким содержанием глюкозы предусматривает снижение употребления гликогена.

Пища для накопления гликогена

Как утверждают исследователи, для адекватного накопления гликогена примерно 65 процентов калорий организм должен получать из углеводных продуктов. В частности, для восстановления запасов животного крахмала важно ввести в рацион хлебобулочные изделия, каши, злаки, разные фрукты и овощи.

Лучшие источники гликогена: сахар, мед, шоколад, мармелад, варенье, финики, изюм, инжир, бананы, арбуз, хурма, сладкая выпечка, соки из фруктов.

Влияние гликогена на вес тела

Ученые определили, что во взрослом организме может накопиться около 400 граммов гликогена. Но также ученые определили и то, что каждый грамм резервной глюкозы связывает примерно 4 грамма воды. Вот и получается, что 400 г полисахарида – это примерно 2 кг гликогенного водного раствора. Этим объясняется обильное потоотделение во время тренировок: организм расходует гликоген и при этом теряет в 4 раза больше жидкости.

Этим свойством гликогена объясняется и быстрый результат экспресс-диет для похудения. Безуглеводные диеты провоцируют интенсивное израсходование гликогена, а с ним – жидкости из организма. Один литр воды, как известно, – это 1 кг веса. Но как только человек возвращается к обычному рациону с содержанием углеводов, запасы животного крахмала восстанавливаются, а с ними и потерянная за период диеты жидкость. В этом и кроется причина недолгосрочности результата экспресс-похудения.

Для по-настоящему эффективного похудения врачи советуют не только пересматривать рацион (отдавать предпочтение протеинам), но и усиливать физические нагрузки, которые ведут к быстрому израсходованию гликогена. Кстати, исследователи рассчитали, что 2-8 минут интенсивных кардиотренировок достаточно для использования запасов гликогена и потери лишнего веса. Но эта формула подходит исключительно лицам, не имеющим кардиологических проблем.

Дефицит и излишек: как определить

Организм, в котором, содержатся лишние порции гликогена, скорее всего, сообщит об этом сгущением крови и нарушениями работы печени. У людей с чрезмерными запасами этого полисахарида также случаются сбои в работе кишечника, увеличивается вес тела.

Но и нехватка гликогена не проходит для организма бесследно. Дефицит животного крахмала может послужить причиной эмоционально-психических нарушений. Возникают апатии, депрессивные состояния. Также заподозрить истощение энергетических резервов можно у людей с ослабленным иммунитетом, плохой памятью и после резкой потери мышечной массы.

Гликоген – важный резервный источник энергии для организма. Его недостаток – это не только снижение тонуса и упадок жизненных сил. Дефицит вещества скажется на качестве волос, кожи. И даже потеря блеска в глазах – это также результат нехватки гликогена. Если вы заметили у себя симптомы недостатка полисахарида, самое время подумать об усовершенствовании своего рациона.

 

foodandhealth.ru

Гликогены. Что это такое? Давайте узнаем!

Гликоген является сложным, комплексным углеводом, который в процессе гликогенеза образуется из глюкозы, поступающей в организм человека вместе с пищей. С химической точки зрения он определяется формулой C6h20O5 и представляет собой коллоидальный полисахарид, имеющий сильно разветвленную цепь из остатков глюкозы. В этой статье мы расскажем все про гликогены: что это такое, каковы их функции, где они запасаются. Также мы опишем, какие бывают отклонения в процессе их синтезирования.

Гликогены: что это и как они синтезируются?

Гликоген является необходимым организму резервом глюкозы. В организме человека он синтезируется следующим образом. Во время приема пищи углеводы (в том числе крахмал и дисахариды - лактоза, мальтоза и сахароза) под действием фермента (амилазы) расщепляются на мелкие молекулы. Затем в тонком кишечнике такие ферменты, как сахараза, панкреатическая амилаза и мальтаза осуществляют гидролиз углеводных остатков до моносахаридов, в том числе и глюкозы. Одна часть высвобожденной глюкозы, поступив в кровоток, направляется в печень, а другая транспортируется в клетки других органов. Непосредственно в клетках, в том числе и в мышечных, происходит последующий распад моносахарида глюкозы, который называется гликолиз. В процессе гликолиза, происходящего с участием или без участия (аэробный и анаэробный) кислорода синтезируются молекулы АТФ, которые являются источником энергии во всех живых организмах. Но не вся глюкоза, попадающая с пищей в организм человека, расходуется на синтез АТФ. Часть ее запасается в форме гликогена. Процесс гликогенеза предполагает полимеризацию, то есть последовательное присоединение друг к другу мономеров глюкозы и формирование полисахаридной разветвленной цепи под воздействием специальных ферментов.

Где находится гликоген?

Хранится полученный гликоген в виде особых гранул в цитоплазме (цитозоле) многих клеток организма. Особенно велико содержание гликогена в печени и мышечной ткани. Причем мышечный гликоген - это источник запаса глюкозы для самой мышечной клетки (в случае сильной нагрузки), а печеночный поддерживает нормальную концентрацию глюкозы в крови. Также запас этих сложных углеводов имеется в нервных клетках, клетках сердца, аорты, эпителиальных покровов, соединительной ткани, слизистой оболочки матки и эмбриональных тканей. Итак, мы рассмотрели, что понимается под термином "гликогены". Что это такое, теперь понятно. Далее поговорим про их функции.

Для чего необходимы организму гликогены?

В организме гликоген служит в качестве энергетического резерва. В случае острой необходимости организм сможет получить из него недостающую глюкозу. Как это происходит? Распад гликогена осуществляется в периодах между приемами пищи, а также значительно ускоряется во время серьезной физической работы. Этот процесс происходит путем отщепления глюкозных остатков под воздействием особых ферментов. В итоге гликоген распадается до свободной глюкозы и глюкозо-6-фосфата без затрат АТФ.

Зачем нужен гликоген в печени?

Печень является одним важнейших внутренних органов человеческого тела. Она выполняет множество разнообразных жизненно необходимых функций. В том числе обеспечивает нормальный уровень сахара в крови, необходимый для функционирования головного мозга. Главными механизмами, при помощи которых осуществляется поддержание глюкозы в нормальном диапазоне - от 80 до 120 мг/дл, являются липогенез с последующим распадом гликогена, глюконеогенез и трансформация других сахаров в глюкозу. При понижении уровня сахара в крови происходит активизация фосфорилазы, и тогда гликоген печени расщепляется. Из цитоплазмы клеток исчезают его скопления, и глюкоза поступает в кровь, давая организму необходимую энергию. При повышении уровня сахара, к примеру после приема пищи, клетки печени начинают активно синтезировать гликоген и депонировать его. Глюконеогенез представляет собой процесс синтезирования печенью глюкозы из других веществ, в том числе и аминокислот. Регуляторная функция печени делает ее критически необходимым для нормальной жизнедеятельности органа. Отклонения - значительные повышения/понижения уровня глюкозы в крови - представляют для здоровья человека серьезную опасность.

Нарушение синтеза гликогена

Нарушения обмена гликогена представляют собой группу наследственных гликогеновых заболеваний. Их причинами являются различные дефекты ферментов, непосредственно участвующих в регуляции процессов образования или расщепления гликогенов. Среди гликогеновых заболеваний выделяют гликогенозы и агликогенозы. Первые представляют собой редкие наследственные патологии, обусловленные чрезмерным накоплением полисахарида C6h20O5 в клетках. Синтез гликогена и его последующее избыточное нахождение в печени, легких, почках, скелетных и сердечной мышцах вызываются дефектами ферментов (например, глюкоза-6-фосфатазы), участвующих в распаде гликогена. Чаще всего при гликогенозе наблюдаются нарушения развития органов, задержка психомоторного развития, тяжелые гипогликемические состояния, вплоть до наступления комы. Для подтверждения диагноза и определения типа гликогеноза проводят биопсию печени и мышц, после чего отправляют полученный материал на гистохимическое исследование. В ходе него устанавливают содержание гликогена в тканях, а также активность ферментов, способствующих его синтезу и распаду.

Если в организме отсуствуют гликогены, что это значит?

Агликогенозы представляют собой тяжелое наследственное заболевание, вызванное отсутствием фермента, способного осуществлять синтез гликогена (гликогенсинтетазы). При наличии данной патологии в печени полностью отсутствует гликоген. Клинические проявления заболевания таковы: крайне низкое содержание глюкозы в крови, вследствие чего - постоянные гипогликемические судороги. Состояние больных определяется как крайне тяжелое. Наличие агликогеноза исследуют, осуществляя биопсию печени.

fb.ru

что это такое и его роль в организме, в печени, в мышцах

Гликоген — полисахарид на основе глюкозы, выполняющий в организме функцию энергетического резерва. Формально соединение относится к сложным углеводам, встречается только в живых организмах и предназначено для восполнения затрат энергии при физических нагрузках.

Из статьи вы узнаете о функциях гликогена, особенностях его синтеза, роли, которую играет это вещество в спорте и диетическом питании.

Что это такое?

Говоря простым языком, гликоген (в особенности для спортсмена) – это альтернатива жирным кислотам, которая используется в качестве запасающего вещества. В чем суть? Все просто: мышечных клетках есть специальные энергетические структуры — «гликогеновые депо». В них хранится гликоген, который в случае необходимости быстро распадается на простейшую глюкозу и питает организм дополнительной энергией.

Фактически, гликоген – это основные батарейки, которые используются исключительно для совершения движений в стрессовых условиях.

Синтез и превращение

Прежде чем рассматривать пользу гликогена как сложного углевода, разберемся, почему вообще в организме возникает такая альтернатива — гликоген в мышцах или жировые ткани. Для этого рассмотрим структуру вещества. Гликоген – это соединение из сотен молекул глюкозы. Фактически это чистый сахар, который нейтрализован и не попадает в кровь, пока организм сам его не запросит.

Синтезируется гликоген в печени, которая перерабатывает поступающий сахар и жирные кислоты по своему усмотрению.

Жирная кислота

Что же такое жирная кислота, которая получается из углеводов? Фактически – это более сложная структура, в которой участвуют не только углеводы но и транспортирующие белки. Последние связывают и уплотняют глюкозу до более трудно расщепляемого состояния. Это позволяет в свою очередь увеличить энергетическую ценность жиров (с 300 до 700 ккал) и уменьшить вероятность случайного распада.

Все это делается исключительно для создания резерва энергии в случае серьезного дефицита калорий. Гликоген же накапливается в клетках, и распадается на глюкозу при малейшем стрессе. Но и синтез его значительно проще.

Содержание гликогена в организме человека

Сколько гликогена может содержать организм? Здесь все зависит от тренировки собственных энергетических систем. Изначально размер гликогенового депо нетренированного человека минимален, что обусловлено его двигательными потребностями.

В дальнейшем, через 3-4 месяца интенсивных высокообъемных тренировок, гликогеновое депо под воздействием пампинга, насыщения крови и принципа супервосстановления постепенно увеличивается.

При интенсивном и продолжительном тренинге запасы гликогена увеличиваются в организме в несколько раз.

Что в свою очередь приводит к таким результатам:

  • возрастает выносливость;
  • объём мышечной ткани увеличивается;
  • наблюдаются значительные колебания в весе во время тренировочного процесса

Гликоген не влияет напрямую на силовые показатели спортсмена. Кроме того, чтобы увеличивать размер гликогенового депо, нужны специальные тренировки. Так, например, пауэрлифтеры лишены серьезных запасов гликогена в виду и особенностей тренировочного процесса.

Функции гликогена в организме человека

Обмен гликогена происходит в печени. Её основная функция — не превращение сахара в полезные нутриенты, а фильтрация и защита организма. Фактически, печень негативно реагирует на повышение сахара в крови, появление насыщенных жирных кислот и физические нагрузки.

Все это физически разрушает клетки печени, которые, к счастью, регенерируют. Чрезмерное потребление сладкого (и жирного), в совокупности с интенсивными физическими нагрузками чревато не только дисфункцией поджелудочной железы и проблемами с печенью, но и серьёзными нарушениями обмена веществ со стороны печени.

Организм всегда пытается адаптироваться к изменяющимся условиям с минимальной энергопотерей. Если создать ситуацию, при которой печень (способная переработать не более 100 грамм глюкозы за раз), будет хронически испытывать переизбыток сахара, то новые восстановленные клетки будут превращать сахар напрямую в жирные кислоты, минуя стадию гликогена.

Этот процесс называется «жировое перерождение печени». При полном жировом перерождении наступает гепатит. Но частичное перерождение считается нормой для многих тяжелоатлетов: такое изменение роли печени в синтезе гликогена приводит к замедлению обмена веществ и появлению избыточной жировой прослойки.

Гликогеновые запасы и спорт

Гликоген в организме выполняет задачу главного энергоносителя. Он накапливается в печени и мышцах, откуда напрямую попадает в кровеносную систему, обеспечивая нас необходимой энергией.

Рассмотрим, как напрямую влияет гликоген на работу спортсмена:

  1. Гликоген быстро истощается благодаря нагрузкам. Фактически за одну интенсивную тренировку можно растратить до 80% всего гликогена.
  2. Это в свою очередь вызывает «углеводное окно», когда организм требует быстрых углеводов, для восстановления.
  3. Под воздействием наполнения мышц кровью, гликогеновое депо растягивается, увеличивается размер клеток, которые могут хранить его.
  4. Гликоген поступает в кровь только до тех пор, пока пульс не пересечет отметку в 80% от максимального ЧСС. В случае превышения этого порога, недостаток кислорода приводит к стремительному окислению жирных кислот. На этом принципе основана «сушка организма».
  5. Гликоген не влияет на силовые показатели – только на выносливость.

Интересный факт: в углеводное окно можно безболезненно употреблять любое количество сладкого и вредного, так как организм в первую очередь восстанавливает гликогеновое депо.

Взаимосвязь гликогена и спортивных результатов предельно проста. Чем больше повторений – больше истощения, больше гликогена в дальнейшем, а значит, больше повторений в итоге.

Гликоген и похудение

Увы, но накопление гликогена не способствует похудению. Тем не менее, не стоит бросать тренировки и переходить на диеты. Рассмотрим ситуацию подробнее. Регулярные тренировки приводят к увеличению гликогенового депо. Суммарно за год оно способно увеличится на 300-600%, что выражается в 7-12% повышения общего веса. Да, это те самые килограммы от которых стремятся бежать многие женщины. Но с другой стороны, эти килограммы оседают не на боках, а остаются в мышечных тканях, что приводит к увеличению самих мышц. Например, ягодичных.

В свою очередь, наличие и опустошение гликогенового депо позволяет спортсмену корректировать свой вес в короткие сроки. Например, если нужно похудеть на дополнительные 5-7 килограмм за несколько дней, истощение гликогенового депо серьезными аэробными нагрузками поможет быстро войти в весовую категорию.

Другая важная особенность расщепления и накопления гликогена — перераспределение функций печени. В частности, при увеличенном размере депо избыток калорий связывается в углеводные цепочки без превращения их в жирные кислоты. А что это значит? Все просто – тренированный спортсмен меньше склонен к набору жировой ткани. Так, даже у маститых бодибилдеров, вес которых в межсезонье касается отметок в 140-150 кг, процент жировой прослойки редко достигает 25-27%.

Факторы влияющие на уровень гликогена

Важно понимать, что не только тренировки влияют на количество гликогена в печени. Этому способствует и основная регуляция гормонов инсулина и глюкагона, которая происходит благодаря потреблению определенного типа пищи. Так, быстрые углеводы при общем насыщении организма скорее всего превратятся в жировую ткань, а медленные углеводы полностью превратятся в энергию, минуя гликогеновые цепочки. Так как же правильно определить, как распределится съеденная пища?

Для этого необходимо учитывать следующие факторы:

  1. Гликемический индекс. Высокие показатели способствуют росту сахара в крови, который нужно в срочном порядке законсервировать в жиры. Низкие показатели,стимулируют постепенное повышение глюкозы в крови, что способствует полному её расщеплению. И только средние показатели (от 30 до 60) способствуют превращению сахара в гликоген.
  2. Гликемическая нагрузка. Зависимость обратно пропорциональная. Чем ниже нагрузка, тем больше шансов превращения углеводов в гликоген.
  3. Тип самого углевода. Всё зависит от того, насколько просто углеводное соединение расщепляется на простые моносахариды. Так, например мальтодекстрин с большей вероятностью превратится в гликоген, хотя имеет высокий гликемический индекс. Этот полисахарид попадает напрямую в печень, минуя пищеварительный процесс, и в этом случае его проще расщепить на гликоген, чем превратить в глюкозу и снова пересобрать молекулу.
  4. Количество углеводов. Если правильно дозировать количество углеводов в один прием пищи, то даже питаясь шоколадками и кексами вам удастся избежать жирового отложения.

Таблица вероятности превращения углеводов в гликоген

Итак, углеводы неравноценны по своей способности превращения в гликоген или в жирные полинасыщенные кислоты. Во что превратится поступающая глюкоза, зависит только от того, в каком количестве она выделится при расщеплении продукта. Так, например, очень медленные углеводы с большой вероятностью вообще не превратятся ни в жирные кислоты, ни в гликоген. В то же время чистый сахар уйдет в жировую прослойку практически целиком.

Примечание редакции: приведённый ниже список продуктов нельзя рассматривать как истину в последней инстанции. Метаболические процессы зависят от индивидуальных особенностей конкретно взятого человека. Мы указываем лишь процентную вероятность, что этот продукт будет более полезным или более вредным для вас.

Наименование Гликемический индекс Процент вероятности полного сжигания Процент вероятности превращения в жир Процент вероятности превращения в гликоген
Финики сушёные 204 3.7% 62.4% <10%
Финики свежие 202 2.5% 58.5% <10%
Семечки подсолнуха сухие 8 85% 28.8% 7%
Арахис 20 65% 8.8% 7%
Брокколи 20 65% 2.2% 7%
Грибы 20 65% 2.2% 7%
Салат листовой 20 65% 2.4% 7%
Салат-латук 20 65% 0.8% 7%
Помидоры 20 65% 4.8% 7%
Баклажаны 20 65% 5.2% 7%
Зеленый перец 20 65% 5.4% 7%
Капуста белокочанная 20 65% 4.6% 7%
Чеснок 20 65% 5.2% 7%
Лук репчатый 20 65% 8.2% 7%
Абрикосы свежие 20 65% 8.0% 7%
Фруктоза 20 65% 88.8% 7%
Сливы 22 65% 8.5% 7%
Перловка 22 65% 24% 7%
Грейпфруты 22 65% 5.5% 7%
Вишня 22 65% 22.4% 7%
Шоколад черный (60% какао) 22 65% 52.5% 7%
Орехи грецкие 25 37% 28.4% 27%
Молоко снятое 26 37% 4.6% 27%
Сосиски 28 37% 0.8% 27%
Виноград 40 37% 25.0% 27%
Горошек зеленый свежий 40 37% 22.8% 27%
Сок апельсиновый свежеотжатый без сахара 40 37% 28% 27%
Молоко 2.5 % 40 37% 4.64% 27%
Яблоки 40 37% 8.0% 27%
Сок яблочный без сахара 40 37% 8.2% 27%
Мамалыга (каша из кукурузной муки) 40 37% 22.2% 27%
Фасоль белая 40 37% 22.5% 27%
Хлеб зерновой пшеничный, хлеб ржаной 40 37% 44.8% 27%
Персики 40 37% 8.5% 27%
Мармелад ягодный без сахара, джем без сахара 40 37% 65% 27%
Молоко соевое 40 37% 2.6% 27%
Молоко цельное 42 37% 4.6% 27%
Клубника 42 37% 5.4% 27%
Фасоль цветная отварная 42 37% 22.5% 27%
Груши консервированные 44 37% 28.2% 27%
Груши 44 37% 8.5% 27%
Зерна ржаные. пророщенные 44 37% 56.2% 27%
Йогурт натуральный 4.2% жирности 45 37% 4.5% 27%
Йогурт обезжиренный 45 37% 4.5% 27%
Хлеб с отрубями 45 37% 22.4% 27%
Сок ананасовый. без сахара 45 37% 25.6% 27%
Курага 45 37% 55% 27%
Морковь сырая 45 37% 6.2% 27%
Апельсины 45 37% 8.2% 27%
Инжир 45 37% 22.2% 27%
Овсяная каша молочная 48 37% 24.2% 27%
Горошек зеленый. консервированный 48 31% 5.5% 42%
Сок виноградный без сахара 48 31% 24.8% 42%
Спагетти из муки грубого помола 48 31% 58.4% 42%
Сок грейпфрута без сахара 48 31% 8.0% 42%
Щербет 50 31% 84% 42%
Киви 50 31% 4.0% 42%
Хлеб, блины из гречневой муки 50 31% 44.2% 42%
Картофель сладкий (батат) 50 31% 24.5% 42%
Тортеллини с сыром 50 31% 24.8% 42%
Гречка рассыпчатая 50 31% 40.5% 42%
Спагетти. макароны 50 31% 58.4% 42%
Рис белый рассыпчатый 50 31% 24.8% 42%
Пицца с помидорами и сыром 50 31% 28.4% 42%
Булочки для гамбургеров 52 31% 54.6% 42%
Твикс 52 31% 54% 42%
Йогурт сладкий 52 31% 8.5% 42%
Мороженое пломбир 52 31% 20.8% 42%
Оладьи из пшеничной муки 52 31% 40% 42%
Отруби 52 31% 24.5% 42%
Бисквит 54 31% 54.2% 42%
Изюм 54 31% 55% 42%
Печенье песочное 54 31% 65.8% 42%
Свекла 54 31% 8.8% 42%
Макароны с сыром 54 31% 24.8% 42%
Зерна пшеничные. пророщенные 54 31% 28.2% 42%
Пиво 2.8% алкоголя 220 20% 4.4% <10%
Манная крупа 55 12% 56.6% <10%
Овсяная каша, быстрорастворимая 55 12% 55% <10%
Печенье сдобное 55 12% 65. 8% <10%
Сок апельсиновый (готовый) 55 12% 22.8% <10%
Салат фруктовый со сливками взбитыми с сахаром 55 12% 55.2% <10%
Кускус 55 12% 64% <10%
Печенье овсяное 55 12% 62% <10%
Манго 55 12% 22.5% <10%
Ананас 55 12% 22.5% <10%
Хлеб черный 55 12% 40.6% <10%
бананы 55 12% 22% <10%
Дыня 55 12% 8.2% <10%
Картофель. вареный «в мундире» 55 12% 40.4% <10%
Рис дикий отварной 56 12% 22.44% <10%
Круассан 56 12% 40.6% <10%
Мука пшеничная 58 12% 58.8% <10%
Папайя 58 12% 8.2% <10%
Кукуруза консервированная 58 12% 22.2% <10%
Мармелад, джем с сахаром 60 12% 60% <10%
Шоколад молочный 60 12% 52.5% <10%
Крахмал картофельный, кукурузный 60 12% 68.2% <10%
Рис белый, обработанный паром 60 12% 68.4% <10%
Сахар (сахароза) 60 12% 88.8% <10%
Пельмени, равиоли 60 12% 22% <10%
Кока-кола, фанта, спрайт 60 12% 42% <10%
Марс, сникерс (батончики) 60 12% 28% <10%
Картофель вареный 60 12% 25.6% <10%
Кукуруза вареная 60 12% 22.2% <10%
Бублик пшеничный 62 12% 58.5% <10%
Пшено 62 12% 55.5% <10%
Сухари молотые для панировки 64 12% 62.5% <10%
Вафли несладкие 65 12% 80.2% <10%
Тыква 65 12% 4.4% <10%
Арбуз 65 12% 8.8% <10%
Пончики 65 12% 48.8% <10%
Кабачки 65 12% 4.8% <10%
Мюсли с орехами и изюмом 80 12% 55.4% <10%
Картофельные чипсы 80 12% 48.5% <10%
Крекеры 80 12% 55.2% <10%
Рисовая каша быстрого приготовления 80 12% 65.2% <10%
Мед 80 12% 80.4% <10%
Картофельное пюре 80 12% 24.4% <10%
Джем 82 12% 58% <10%
Абрикосы консервированные 82 12% 22% <10%
Картофельное пюре быстрого приготовления 84 12% 45% <10%
Картофель печеный 85 12% 22.5% <10%
Хлеб белый 85 12% 48.5% <10%
Поп корн 85 12% 62% <10%
Кукурузные хлопья 85 12% 68.5% <10%
Булочки французские 85 12% 54% <10%
Рисовая мука 85 12% 82.5% <10%
Морковь отварная 85 12% 28% <10%
тост из белого хлеба 200 7% 55% <10%

Итог

Гликоген в мышцах и печени особенно важен для атлетов, практикующих кроссфит. Механизмы накопления гликогена предполагают стабильное увеличение базового веса. Тренировка энергетических систем поможет не только достичь высоких спортивных результатов, но и увеличит общий запас дневной энергии. Вы будете меньше уставать и лучше себя чувствовать.

Для спортсмена наращивание гликогеновых запасов — не только необходимость, но и профилактика ожирения. Сложные углеводы могут храниться в мышцах сколь угодно долго, не окисляясь и не распадаясь. При этом любая нагрузка приводит к их растрате и регуляции общего состояния организма.

И напоследок один интересный факт: именно распад гликогена ведет к тому, что большая часть глюкозы попадает через кровь напрямую в ЦНС, стимулируя выброс эндорфинов и улучшая мозговую деятельность.

Оцените материал

cross.expert

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *