Фи в химии – φ — Греческая строчная буква фи (U+03C6) символ, знак, значок, иконка, html: φ φ — Греческий и коптский алфавиты

Что измеряется числом «фи»? Кто ввел этот термин?

Леонардо Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.

Определение

Числа Фибоначчи или Последовательность Фибоначчи — числовая последовательность, обладающая рядом свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т. д.) , что подтверждает существование так называемых коэффициентов Фибоначчи, т. е. постоянных соотношений.

Последовательност Фибоначчи начинается так: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…

Полное определение чисел Фибоначчи

Свойства последовательности Фибоначчи

1. Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют (ФИ) .

2. При делении каждого числа на следующее за ним, через одно получается число 0.382; наоборот – соответственно 2.618.

3. Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236.

Связь последовательности Фибоначчи и «золотого сечения»

Последовательность Фибоначчм асимптотически (пpиближаясь все медленнее и медленнее) стpемится к некотоpому постоянному соотношению. Однако, это соотношение иppационально, то есть пpедставляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифp в дpобной части. Его невозможно выразить точно.

Если какой-либо член последовательности Фибоначчи pазделить на пpедшествующий ему (напpимеp, 13:8), pезультатом будет величина, колеблющаяся около иppационального значения 1.61803398875… и чеpез pаз то пpевосходящая, то не достигающая его. Hо даже затpатив на это Вечность, невозможно узнать сотношение точно, до последней десятичной цифpы. Kpаткости pади, мы будем пpиводить его в виде 1.618. Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (сpедневековый математик) назвал его Божественной пpопоpцией. Cpеди его совpеменных названий есть такие, как Золотое сечение, Золотое сpеднее и oтношение веpтящихся квадpатов. Kеплеp назвал это соотношение одним из «сокpовищ геометpии». В алгебpе общепpинято его обозначение гpеческой буквой фи

Ф=1.618

Представим золотое сечение на примере отрезка.

Рассмотрим отрезок с концами A и B. Пусть точка С делит отрезок AB так что,

AC/CB = CB/AB или

AB/CB = CB/AC.

Представить это можно примерно так: A——C———B

Золотое сечение — это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью 0,618…,если AB принять за единицу, AC = 0,382.. Kак мы уже знаем числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи.

Пропорции Фибоначчи и золотого сечения в природе и истории

Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи. Просто удивительно, сколько постоянных можно вычислить пpи помощи последовательности Фибоначчи, и как ее члены проявляются в огромном количестве сочетаний. Однако не будет преувеличением сказать, что это не просто игра с числами, а самое важное математическое выражение природных явлений из всех когда-либо открытых.

otvet.mail.ru

Ответы@Mail.Ru: что такое число фи

Леонардо Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.

Числа Фибоначчи или Последовательность Фибоначчи — числовая последовательность, ­ обладающая рядом свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т. д.) , что подтверждает существование так называемых коэффициентов Фибоначчи, т. е. постоянных соотношений.

Последовательность Фибоначчи начинается так: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…

Свойства последовательности Фибоначчи
1. Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют (ФИ) .
2. При делении каждого числа на следующее за ним, через одно получается число 0.382; наоборот – соответственно 2.618.
3. Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236.

Связь последовательности Фибоначчи и «золотого сечения»
Последовательность Фибоначчм асимптотически (пpиближаясь все медленнее и медленнее) стpемится к некотоpому постоянному соотношению. Однако, это соотношение иppационально, то есть пpедставляет собой число с бесконечной, непредсказуемой последовательностью­ десятичных цифp в дpобной части. Его невозможно выразить точно.
Если какой-либо член последовательности Фибоначчи pазделить на пpедшествующий ему (напpимеp, 13:8), pезультатом будет величина, колеблющаяся около иppационального значения 1.61803398875… и чеpез pаз то пpевосходящая, то не достигающая его. Hо даже затpатив на это Вечность, невозможно узнать сотношение точно, до последней десятичной цифpы. Kpаткости pади, мы будем пpиводить его в виде 1.618. Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (сpедневековый математик) назвал его Божественной пpопоpцией. Cpеди его совpеменных названий есть такие, как Золотое сечение, Золотое сpеднее и oтношение веpтящихся квадpатов. Kеплеp назвал это соотношение одним из «сокpовищ геометpии». В алгебpе общепpинято его обозначение гpеческой буквой фи.
Ф=1.618

Золотое сечение — это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.
С Новым годом!!! !

otvet.mail.ru

Фи (число) Википедия

1,6180339887 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362


Первая тысяча знаков значения Φ[1].

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление) — соотношение двух величин b и a, a > b, когда справедливо a/b = (a+b)/a. Число, равное отношению a/b, обычно обозначается прописной греческой буквой Φ{\displaystyle \Phi }, в честь древнегреческого скульптора и архитектора Фидия[2], реже — греческой буквой τ{\displaystyle \tau }. Из исходного равенства нетрудно получить, что число

Φ=1+52{\displaystyle \Phi ={\frac {1+{\sqrt {5}}}{2}}}

Обратное число, обозначаемое строчной буквой φ{\displaystyle \varphi }[2],

φ=1Φ=−1+52{\displaystyle \varphi ={\frac {1}{\Phi }}={\frac {-1+{\sqrt {5}}}{2}}}

Отсюда следует, что

φ=Φ−1{\displaystyle \varphi =\Phi -1}.

Для практических целей ограничиваются приблизительным значением Φ{\displaystyle \Phi } = 1,618 или Φ{\displaystyle \Phi } = 1,62. В процентном округлённом значении золотое сечение — это деление какой-либо величины в отношении 62 % и 38 %.

Исторически изначально золотым сечением именовалось деление отрезка АВ точкой С на две части (меньший отрезок АС и больший отрезок ВС), чтобы для длин отрезков было верно AC/BC = BC/AВ. Говоря простыми словами, золотым сечением отрезок рассечён на две неравные части так, что меньшая часть относится к большей, как большая ко всему отрезку. Позже это понятие было распространено на произвольные величины.

Иллюстрация к определению

Число Φ{\displaystyle \Phi } называется также золотым числом.

Золотое сечение имеет множество замечательных свойств, но, кроме того, ему приписывают и многие вымышленные свойства[3][4][5].

История

В дошедшей до нас античной литературе деление отрезка в крайнем и среднем отношении (ἄκρος καὶ μέσος λόγος) впервые встречается в «Началах» Евклида (ок. 300 лет до н. э.), где оно применяется для построения правильного пятиугольника.

Лука Пачоли, современник и друг Леонардо да Винчи, усматривал в этом отношении «божественную суть», выражающую триединство Бога Отца, Сына и Святого Духа[6].

Неизвестно точно, кто и когда именно впервые ввел в обращение термин «золотое сечение». Несмотря на то, что некоторые авторитетные авторы связывают появление этого термина с Леонардо да Винчи в XV веке[7] или относят появление этого термина к XVI веку[8], самое раннее употребление этого термина находится у Мартина Ома в 1835 году в примечании ко второму изданию его книги «Чистая элементарная математика»[9], в котором Ом пишет, что это сечение часто называют золотым сечением (нем. goldener Schnitt). Из текста примечания Ома следует, что Ом не придумал этот термин сам

[10][11], хотя некоторые авторы утверждают обратное[12]. Тем не менее, исходя из того, что Ом не употребляет этот термин в первом издании своей книги[13], Роджер Герц-Фишлер делает вывод о том, что этот термин, возможно, появился в первой четверти XIX века.[14]Марио Ливио считает, что он получил популярность в устной традиции около 1830 года.[15] В любом случае, этот термин стал распространён в немецкой математической литературе после Ома.[16]

Математические свойства

1Φ=φ=tg⁡(arctg⁡(2)2)=21+1+22=21+5=5−12.{\displaystyle {\frac {1}{\Phi }}=\varphi =\operatorname {tg} \left({\frac {\operatorname {arctg} (2)}{2}}\right)={\frac {2}{1+{\sqrt {1+2^{2}}}}}={\frac {2}{1+{\sqrt {5}}}}={\frac {{\sqrt {5}}-1}{2}}.}
  • Φ{\displaystyle \Phi } представляется в виде бесконечной цепочки квадратных корней:
    Φ=1+1+1+1+….{\displaystyle \Phi ={\sqrt {1+{\sqrt {1+{\sqrt {1+{\sqrt {1+\dots }}}}}}}}.}
  • Φ{\displaystyle \Phi \;} представляется в виде бесконечной цепной дроби
    Φ=1+11+11+11+…,{\displaystyle \Phi =1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+\dots }}}}}},}
подходящими дробями которой служат отношения последовательных чисел Фибоначчи Fn+1Fn{\displaystyle {\frac {F_{n+1}}{F_{n}}}}. Таким образом,
Отрезание квадрата от прямоугольника, построенного по принципу золотого сечения
  • Отрезав квадрат от прямоугольника, построенного по принципу золотого сечения, мы получаем новый, уменьшенный прямоугольник с тем же отношением сторон Φ=a/b{\displaystyle \Phi =a/b}, что и у исходного прямоугольника Φ=(a+b)/a{\displaystyle \Phi =(a+b)/a}.
Золотое сечение в пятиконечной звезде
  • В правильной пятиконечной звезде каждый отрезок делится пересекающим его отрезком в золотом сечении. На приведённом рисунке отношения красного отрезка к зелёному, зелёного к синему и синего к пурпурному равны Φ{\displaystyle \Phi }. Кроме того, отношение красного отрезка к расстоянию между соседними вершинами звезды, которое равно зелёному отрезку, также равно Φ{\displaystyle \Phi }.
Построение золотого сечения
Φ=|AB||AE|=|AE||BE|.{\displaystyle \Phi ={\frac {|AB|}{|AE|}}={\frac {|AE|}{|BE|}}.}
Другой способ построить отрезок, равный по длине числу золотого сечения
  • Другой способ построить отрезок, равный по длине числу золотого сечения, — начертить сначала квадрат ABCD со стороной 1. После этого одну из сторон, например сторону AD, разделить точкой E пополам, так что AE=DE=1/2. От точки B или C до точки E провести гипотенузу треугольника АВЕ или DCE. Согласно теореме Пифагора ВE=СE=52{\displaystyle {\frac {\sqrt {5}}{2}}}. Затем провести дугу с центром в точке Е от точки В или точки С до момента её пересечения с продолжением стороны АD (точкой пересечения дуги и продолжения стороны АD пусть будет точка Н). Как радиусы круга BE=СЕ=ЕН. Так как АН=АЕ+ЕН, результатом будет отрезок АН длиной Φ{\displaystyle \Phi }. Так как DH=EH-ED, другим результатом будет отрезок DH длиной φ{\displaystyle \varphi }[17].
  • Отношение диагонали правильного пятиугольника к стороне равно золотому сечению.
  • Значения дроби после запятой для Φ{\displaystyle \Phi }, 1Φ{\displaystyle {\frac {1}{\Phi }}} и Φ2{\displaystyle \Phi ^{2}} в любой системе счисления будут равны[18].
  • ∑n=1∞(−1)n+1n2(2nn)=2ln2⁡φ{\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{2}{\binom {2n}{n}}}}=2\ln ^{2}\varphi }

Тогда как ∑n=1∞1n2(2nn)=π218{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}{\binom {2n}{n}}}}={\frac {\pi ^{2}}{18}}}[источник не указан 1038 дней]

Золотое сечение в науке

Общее сопротивление этой бесконечной цепи равно Фr.

Золотое число возникает в разных задачах, в том числе в физике. Например, бесконечная электрическая цепь, приведенная на рисунке имеет общее сопротивление (между двумя левыми концами) Ф·r.

Отношение амплитуд колебаний и частот ~ Ф.

Существуют колебательные системы, физические характеристики которых (отношения частот, амплитуд и др.) пропорциональны золотому сечению. Самый простой пример — система из двух шариков, соединенных последовательно пружинами одинаковой жесткости (см. рисунок).

Полностью эти две задачи рассматривается в книге «В поисках пятого порядка», глава «Две простые задачки»[19]. Более сложные примеры на механические колебания и их обобщения рассматриваются в этой же книге, в главе «Обобщения одной простой задачи по механике». В книге приведено много примеров проявления и применения золотого сечения в различных областях наук — небесной механике, физике, геофизике, биофизике, физической химии, биологии, физиологии.

Золотое сечение сильно связано с симметрией пятого порядка, наиболее известными трехмерными представителями которой являются додекаэдр и икосаэдр. Можно сказать, что всюду, где в структуре проявляются додекаэдр, икосаэдр или их производные, там в описании будет появляться и золотое сечение. Например, в пространственных группировках из Бора: В-12, В-50, В-78, В-84, В-90, …, В-1708, имеющих икосаэдрическую симметрию[20]. Молекула воды, у которой угол расхождения связей Н-О равен 104.70 , то есть близок к 108 градусам (угол в правильном пятиугольнике), может соединяться в плоские и трехмерные структуры с симметрией пятого порядка. Так в разреженной плазме был обнаружен Н+20)21, который представляет из себя ион Н30+, окруженный 20 молекулами воды, расположенными в вершинах додекаэдра[21]. В 80-х годах XX века были получены клатратные соединения, содержащие гексааквакомплекс кальция, окруженный 20 молекулами воды, расположенными в вершинах додекаэдра[22]. Есть и клатратные модели воды, в которых обыкновенная вода отчасти состоит из молекул воды, соединенных в структуры с симметрией пятого порядка. Такие структуры могут состоять из 20, 57, 912 молекул воды[23].

Золотое сечение и гармония в искусстве

Золотое сечение и зрительные центры

Некоторые из утверждений в доказательство гипотезы знания древними правила золотого сечения:

  • Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании.
  • Согласно Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению. В фасаде древнегреческого храма Парфенона также присутствуют золотые пропорции. В циркуле из древнеримского города Помпеи (музей в Неаполе) также заложены пропорции золотого деления, и т. д. При обсуждении оптимальных соотношений сторон прямоугольников (размеры листов бумаги A0 и кратные, размеры фотопластинок (6:9, 9:12) или кадров фотоплёнки (часто 2:3), размеры кино- и телевизионных экранов — например, 4:3 или 16:9) были испытаны самые разные варианты. Оказалось, что большинство людей не воспринимает золотое сечение как оптимальное и считает его пропорции «слишком вытянутыми»[источник не указан 3406 дней].
  • Следует отметить, что сама пропорция является, скорее, эталонным значением, матрицей, отклонения от которой у биологических видов, возможно, вызваны приспособлением к окружающей среде в процессе жизни. Примером таких «отклонений» может служить морская камбала.

Примеры сознательного использования

Начиная с Леонардо да Винчи, многие художники сознательно использовали пропорции «золотого сечения». Российский зодчий И. В. Жолтовский использовал золотое сечение в своих проектах[24]. Иоганн Себастьян Бах в своей трёхголосной инвенции E-dur № 6 BWV 792 использовал двухчастную форму, в которой соотношение размеров частей соответствует пропорциям золотого сечения. 1 часть — 17 тактов, 2 часть — 24 такта (небольшие несоответствия выравниваются за счёт ферматы в 34 такте)[источник не указан 631 день].

Одним из современных примеров применения золотого сечения может служить мозаика Пенроуза.

Золотое сечение в биологии и медицине

Золотое сечение в природе

Живые системы также обладают свойствами, характерными для «золотого сечения». Например: пропорции тел, спиральные структуры или параметры биоритмов[25][неавторитетный источник?] и др.

См. также

Примечания

  1. ↑ Взята из примера результата компьютерного расчета (1996 года) с гораздо большим числом знаков, чем 1000 Golden ratio 1000 digits
  2. 1 2 Савин А. Число Фидия — золотое сечение (рус.) // «Квант» : Научно-популярный физико-математический журнал (издается с января 1970 года). — 1997. — № 6.
  3. ↑ Радзюкевич А. В. Красивая сказка о «золотом сечении»
  4. ↑ Mario Livio, The Golden Ratio: The Story of Phi, The World’s Most Astonishing Number
  5. ↑ Devlin’s Angle, The Myth That Will Not Go Away
  6. В. Лаврус, Золотое сечение
  7. François Lasserre. The birth of mathematics in the age of Plato. — American Research Council, 1964-01-01. — 200 с. — P. 76.
  8. Boyer, Carl B. A History of Mathematics. — Second Edition. — John Wiley & Sons, Inc., 1991. — P. 50. — ISBN 0-471-54397-7.
  9. Martin Ohm. Die reine Elementar-Mathematik. — 2-е изд. — Jonas Verlags-buchhandlung, 1835. — С. 194. — 454 с.
  10. ↑ Herz-Fischler, 2013, p. 168.
  11. ↑ Livio, 2008, p. 6-7.
  12. Василенко С. Л. Знак-символ золотого сечения // Академия Тринитаризма. —
    М.
    , 05.02.2011. — № Эл № 77-6567, публ. 16335.
  13. Martin Ohm. Die reine Elementar-Mathematik. — 1-е изд.. — Berlin, 1826. — 492 с. — P. 188.
  14. ↑ Herz-Fischler, 2013, p. 169.
  15. ↑ Livio, 2008, p. 7.
  16. ↑ Herz-Fischler, 2013, p. 169-170.
  17. Тони Крилли. Математика: 50 идей, о которых нужно знать = 50 Mathematical Ideas you really need to know. — Phantom Press. — 209 с. — ISBN 9785864716700.
  18. ↑ Системы счисления.
  19. Ковалев А.Н. В поисках пятого порядка. — 2017. — 374 с. — ISBN 978-5-4485-3753-0.
  20. ↑ Современная Кристаллография / под ред. Вайнштейна Б. К.. — Т.2. — М.: Мир, 1979.
  21. Holland P. M. Casteiman A. W. A model for the formation and stabilization of chorqed water cluthrates // J. Chem. Phys.. — 1980. — Т. 72, № 1(11). — С. 5984.
  22. ↑ Электромагнитные поля в биосфере. — Сборник трудов конференции, Т.2. —
    М.
    , 1984. — С. 22.
  23. Зенин С.В. Структурированное состояние воды как основа управления поведением и безопасностью живых систем. — Диссертация докт. биол. наук. — М., 1999.
  24. ↑ Золотой запас зодчества Архивная копия от 29 января 2009 на Wayback Machine
  25. ↑ Цветков, В. Д. Сердце, золотое сечение и симметрия. — Пущино: ПНЦ РАН, 1997. — 170 с.

Литература

  • Аракелян Г. Б. Математика и история золотого сечения. — М.: Логос, 2014, 404 с. — ISBN 978-5-98704-663-0.
  • Бендукидзе А. Д. Золотое сечение «Квант» № 8, 1973
  • Васютинский Н. А. Золотая пропорция. — М.: Молодая гвардия, 1990. — 238[2]c. — (Эврика).
  • Власов В. Г. Новый энциклопедический словарь изобразительного искусства: В 10 т. — Т.3. — СПб.: Азбука-Классика, 2005. — С.725-732.
  • Власов В. Г. Искусство России в пространстве Евразии. — Т.3. Классическое искусствознание и «русский мир». — СПб.: Дмитрий Буланин, 2012. — С.156-192.
  • Мазель, Л.А. Опыт исследования золотого сечения в музыкальных построениях в свете общего анализа форм // Музыкальное образование. – 1930. – № 2. – С. 24-33.
  • Сабанеев Л. Л. Этюды Шопена в освещении закона золотого сечения. Опыт позитивного обоснования законов формы // Искусство. — 1925. — № 2. — С. 132—145; 1927. — № 2-3. — С. 32-56.
  • Шмигевский Н. В. Формула совершенства // Страна знаний. — 2010. — № 4. — С.2-7.
  • Mario Livio. The Golden Ratio: The Story of PHI, the World’s Most Astonishing Number. — Crown/Archetype, 2008. — 303 с. — ISBN 9780307485526. Русский перевод в
Марио Ливио. φ – Число Бога. Золотое сечение – формула мироздания. — Litres, 2015-04-17. — 481 с. — ISBN 9785457762732.

Ссылки

wikiredia.ru

чё за число фи?? где оно применяется?

Итальянский математик Леонардо Фибоначчи, который жил за 250 лет до другого Леонардо – да Винчи, любил гулять по лесу и размышлять. Например, о том, с какой геометрической прогрессией рождаются кролики. Неизвестно, долго ли он над этим думал, но именно размышляя о кроликах, придумал числовой, рад, каждое последующее число которого являлось суммой двух предыдущих: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597 и так до бесконечности. Стоило Фибоначчи вывести эту закономерность, как ее проявления стали проявляться по всюду. Так как Фибоначчи любил гулять, первая закономерность бросилась ему в глаза на лесной поляне. У ириса он насчитал 3 лепестка, у лютика 05, у некоторых дельфиниумов – 8, у разных видов маргариток – 34, 55, 89. Понаблюдав, как прорастает из земли тысячелистник, ученый, к своему удивлению, обнаружил, что сначала появляется один листик, потом два, чуть позже – три, затем пять… восемь… тринадцать. И никогда по-другому! Но тогда Фибоначчи даже не предполагал, насколько близко ему удалось приблизиться к разгадке одной из величайших тайн мироздания.

Позднее ученые установили, что выведенная Фибоначчи числовая закономерность – не единственная. Если поделить все числа ряда Фибоначчи друг на друга, мы получаем новый ряд, каждое число в котором так же будет суммой двух предыдущий. При делении большего числа на меньшее результат будет стремиться к числу 1,618, при делении меньшего на большее – 0,618. Они называются числами фи. Величина фи – 1,6180339 вошла в историю живописи и архитектуры как Золотое сечение.

Число бесконечно. Как частное от деления двух соседних чисел пропорции оно все время стремиться к 1,618 и никогда не приближается к ней. Каждая следующая дробь то меньше, то больше фи. Можно подключить к расчетам самые мощные компьютеры, и они исчерпают себя и остановятся, а число фи будет продолжаться.

Анализируя возможности применения этого числового ряда к природным феноменам, объектам и процессам, ученые, к величайшему своему изумлению, поняли, что эти числовые закономерности присутствуют буквально во всем: в растениях, животных, человеке. Как оказалось, пропорция фи – универсальный код Вселенной, который воспринимается человеческим сознанием во всей информационной и эмоциональной полноте. Вот почему мы воспринимаем ландшафт не как набор прямых линий и углов, а как гармонию и красоту природы. Вот почему нас волнуют произведения искусства, в которых соблюдены пропорции фи – Золотого сечения.

Кладезь пропорций фи – человек. Каждый зуб, губы и нос, глаза, пальцы рук и ног, основные чакры – все соотносится друг с другом согласно пропорциям Фибоначчи.

otvet.mail.ru

Греческий алфавит и физические величины – Tetran Translation Company

Заглавные греческие буквы, в написании похожие на латинские, используются очень редко:
Α, Β, Ε, Ζ, Η, Ι, Κ, Μ, Ν, Ο, Ρ, Τ, Υ, Χ.

СимволЗначение
αКоэффициент теплового расширения, альфа-частицы, угол, постоянная тонкой структуры, угловое ускорение, матрицы Дирака, коэффициент расширения,поляризованность, коэффициент теплоотдачи, коэффициент диссоциации, удельная термоэлектродвижущая сила, угол Маха, коэффициент поглощения, натуральный показатель поглощения света, степень черноты тела, постоянная затухания
βУгол, бета-частицы, скорость частицы разделена на скорость света, коэффициент квазиупругой силы, матрицы Дирака, изотермическая сжимаемость, адиабатическая сжимаемость, коэффициент затухания, угловая ширина полос интерференции, угловое ускорение
ΓГамма-функция, символы Кристофеля, фазовое пространство, величина адсорбции, циркуляция скорости, ширина энергетического уровня
γУгол, фактор Лоренца, фотон, гамма-лучи, удельный вес, матрицы Паули, гиромагнитное отношение, термодинамический коэффициент давления, коэффициент поверхностной ионизации, матрицы Дирака, показатель адиабаты
ΔИзменение величины (напр. Δx), оператор Лапласа, дисперсия, флуктуация, степень линейной поляризации, квантовый дефект
δНебольшое перемещение, дельта-функция Дирака, дельта Кронекера
εЭлектрическая постоянная, угловое ускорение, единичный антисимметричной тензор, энергия
ζДзета-функция Римана
ηКПД, динамический коэффициент вязкости, метрический тензор Минковского, коэффициент внутреннего трения, вязкость, фаза рассеяния, эта-мезон
ΘСтатистическая температура, точка Кюри, термодинамическая температура, момент инерции, функция Хевисайда
θУгол к оси X в плоскости XY в сферической и цилиндрической системах координат, потенциальная температура, температура Дебая, угол нутации, нормальная координата, мера смачивания, угол Каббибо, угол Вайнберга
κКоэффициент экстинкции, показатель адиабаты, магнитная восприимчивость среды, парамагнитная восприимчивость
ΛКосмологическая постоянная, Барион, оператор Лежандра, лямбда-гиперон, лямбда-плюс-гиперон
λДлина волны, удельная теплота плавления, линейная плотность, средняя длина свободного пробега, комптоновского длина волны, собственное значение оператора, матрицы Гелл-Мана
μКоэффициент трения, динамическая вязкость, магнитная проницаемость, магнитная постоянная, химический потенциал, магнетон Бора, мюон, возведённая масса, молярная масса, коэффициент Пуассона, ядерный магнетон
νЧастота, нейтрино, кинематический коэффициент вязкости, стехиометрический коэффициент, количество вещества, ларморова частота, колебательное квантовое число
ΞБольшой канонический ансамбль, кси-нуль-гиперон, кси-минус-гиперон
ξДлина когерентности, коэффициент Дарси
ΠПроизведение, коэффициент Пельтье, вектор Пойнтинга
π3.14159…, пи-связь, пи-плюс мезон, пи-ноль мезон
ρУдельное сопротивление, плотность, плотность заряда, радиус в полярной системе координат, сферической и цилиндрической системах координат, матрица плотности, плотность вероятности
ΣОператор суммирование, сигма-плюс-гиперон, сигма-нуль-гиперон, сигма-минус-гиперон
σЭлектропроводность, механическое напряжение (измеряемое в Па), постоянная Стефана-Больцмана, поверхностная плотность, поперечное сечение реакции,сигма-связь, секторная скорость, коэффициент поверхностного натяжения, удельная фотопроводимость, дифференциальное сечение рассеяния, постоянная экранирования, толщина
τВремя жизни, тау-лептон, интервал времени, время жизни, период, линейная плотность зарядов, коэффициент Томсона, время когерентности, матрица Паули,тангенциальный вектор
ΥY-бозон
ΦМагнитный поток, поток электрического смещения, работа выхода, диссипативная функция Рэлея, свободная энергия Гиббса, поток энергии волны, оптическая сила линзы, поток излучения, световой поток, квант магнитного потока
φУгол, электростатический потенциал, фаза, волновая функция, угол, гравитационный потенциал, функция, Золотое сечение, потенциал поля массовых сил
ΧX-бозон
χЧастота Раби, температуропроводность, диэлектрическая восприимчивость, спиновая волновая функция
ΨВолновая функция, апертура интерференции
ψВолновая функция, функция, функция тока
ΩОм, телесный угол, количество возможных состояний статистической системы, омега-минус-гиперон, угловая скорость прецессии, молекулярная рефракция,циклическая частота
ωУгловая частота, мезон, вероятность состояния, ларморова частота прецессии, Боровская частота, телесный угол, скорость течения

tetran.ru

Фи Википедия

Символы со сходным начертанием:
 ɸ · Ф · ф · ȹ · Փ ·  ·

Φ, φ (название: фи, греч. φι) — 21-я буква греческого алфавита. В системе греческой алфавитной записи чисел имеет числовое значение 500. От буквы «фи» произошла кириллическая буква Ф.

У строчной буквы начертание двоякое[1]: φ и ϕ; орфографического значения различие не несёт (определяется, как правило, типом шрифта, так же, как варианты начертания букв эпсилон и каппа).

В древнейших вариантах греческого алфавита буква фи отсутствовала. В отличие от большинства других греческих букв, которые происходят от финикийских, φ не имеет финикийского прообраза, и её происхождение неясно.

В современном греческом языке буква φ обозначает глухой лабиодентальный (губно-зубной) фрикатив[en], [f]. В древнегреческом обозначала звук [pʰ], глухой билабиальный смычный согласный с придыханием, образовавшийся в протогреческом в результате оглушения придыхательных из [bʰ]; латинским алфавитом часто передаётся сочетанием «ph».

Использование

Прописная Φ

Строчная φ

  • в географии, картографии, навигации — широта.
  • в физике — угол поворота.

Кодировки

В Юникоде представлено несколько форм буквы фи:

В некоторых старых шрифтах, не совместимых со спецификацией Unicode 3.0 1998 года, символ U+03D5 (GREEK PHI SYMBOL) мог быть представлен «петлеобразным» символом φ{\displaystyle \varphi }[2]. Это более не считается корректным. Символ U+03C6 (GREEK SMALL LETTER PHI) может быть представлен и «перечеркнутым» вариантом ϕ{\displaystyle \phi }, но предпочтительно — «петлеобразным» вариантом φ{\displaystyle \varphi }

[2].

HTML-мнемоники для прописной и строчной фи — это Φ и φ (Φ и φ, соответственно).

В LaTeX имеются математические символы \Phi, \phi и \varphi (Φ{\displaystyle \Phi }, ϕ{\displaystyle \phi } и φ{\displaystyle \varphi }, соответственно).

Примечания

wikiredia.ru

φ — Греческая строчная буква фи (U+03C6) символ, знак, значок, иконка, html: φ φ — Греческий и коптский алфавиты

U+03C6

Сохранить

Начертание этого символа в разных шрифтах

Описание символа

Извините, пока нет подробной информации.

Связанные символы


Кодировка

Кодировкаhexdec (bytes)decbinary
UTF-8CF 86207 1345312611001111 10000110
UTF-16BE03 C63 19896600000011 11000110
UTF-16LEC6 03198 35069111000110 00000011
UTF-32BE00 00 03 C60 0 3 19896600000000 00000000 00000011 11000110
UTF-32LEC6 03 00 00198 3 0 0332208537611000110 00000011 00000000 00000000

unicode-table.com

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *