Элементарные частицы это в физике – Элементарные частицы | ЭТО ФИЗИКА

Элементарные частицы | ЭТО ФИЗИКА

Существование элементарных частиц ученые обнаружили при исследовании ядерных процессов, поэтому вплоть до середины XX века физика элементарных частиц была разделом ядерной физики. В настоящее время эти разделы физики являются близкими, но самостоятельными, объединенными общностью многих рассматриваемых проблем и применяемыми методами исследования. Главная задача физики элементарных частиц – это исследование природы, свойств и взаимных превращений элементарных частиц.

Представление о том, что мир состоит из фундаментальных частиц, имеет долгую историю. Впервые мысль о существовании мельчайших невидимых частиц, из которых состоят все окружающие предметы, была высказана за 400 лет до нашей эры греческим философом Демокритом. Он назвал эти частицы атомами, т. е. неделимыми частицами. Наука начала использовать представление об атомах только в начале XIX века, когда на этой основе удалось объяснить целый ряд химических явлений. В 30-е годы XIX века в теории электролиза, развитой М. Фарадеем, появилось понятие иона и было выполнено измерение элементарного заряда. Конец XIX века ознаменовался открытием явления радиоактивности (А. Беккерель,1896), а также открытиями электронов (Дж. Томсон 1876) и α-частиц (Э. Резерфорд, 1899). В 1905 году в физике возникло представление о квантах электромагнитного поля – фотонах (А. Эйнштейн).

В 1911 году было открыто атомное ядро (Э. Резерфорд) и окончательно было доказано, что атомы имеют сложное строение. В 1919 году Резерфорд в продуктах расщепления ядер атомов ряда элементов обнаружил протоны. В 1932 году Дж. Чедвик открыл нейтрон. Стало ясно, что ядра атомов, как и сами атомы, имеют сложное строение. Возникла протон-нейтронная теория строения ядер (Д.Д Иваненко и В.Гейзенберг). В том же 1932 году в космических лучах был открыт позитрон (К. Андерсон). Позитрон – положительно заряженная частица, имеющая ту же массу и тот же (по модулю) заряд, что и электрон. Существование позитрона было предсказано П. Дираком в 1928 году. В эти годы были обнаружены и исследованы взаимные превращения протонов и нейтронов и стало ясно, что эти частицы также не являются неизменными элементарными «кирпичиками» природы. В 1937 году в космических лучах были обнаружены частицы с массой в 207 электронных масс, названные

мюонами (μ-мезонами). Затем в 1947–1950 годах были открыты пионы (т. е. π-мезоны), которые, по современным представлениям, осуществляют взаимодействие между нуклонами в ядре. В последующие годы число вновь открываемых частиц стало быстро расти. Этому способствовали исследования космических лучей, развитие ускорительной техники и изучение ядерных реакций.

В настоящее время известно около 400 субъядерных частиц, которые принято называть элементарными. Подавляющее большинство этих частиц являются нестабильными. Исключение составляют лишь фотон, электрон, протон и нейтрино. Все остальные частицы через определенные промежутки времени испытывают

самопроизвольные превращения в другие частицы. Нестабильные элементарные частицы сильно отличаются друг от друга по временам жизни. Наиболее долгоживущей частицей является нейтрон. Время жизни нейтрона порядка 15 мин. Другие частицы «живут» гораздо меньшее время. Например, среднее время жизни μ-мезона равно 2,2·10–6 с, нейтрального π-мезона – 0,87·10–16 с. Многие массивные частицы – гипероны – имеют среднее время жизни порядка 10–10 с.

Существует несколько десятков частиц со временем жизни, превосходящим 10–17 с. По масштабам микромира это значительное время. Такие частицы называют относительно стабильными. Большинство короткоживущих элементарных частиц имеют времена жизни порядка 10–22–10–23 с.

Способность к взаимным превращениям – это наиболее важное свойство всех элементарных частиц. Они способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами. Примером может служить

аннигиляция (т. е. исчезновение) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии. Может протекать и обратный процесс – рождение электронно-позитронной пары, например, при столкновении фотона достаточно большой энергии с ядром. Такой опасный двойник, каким для электрона является позитрон, есть и у протона. Он называется антипротоном. Электрический заряд антипротона отрицателен. В настоящее время античастицы найдены у всех частиц. Античастицы противопоставляются частицам потому, что при встрече любой частицы со своей античастицей происходит их аннигиляция, т. е. обе частицы исчезают, превращаясь в кванты излучения или другие частицы.

Античастица обнаружена даже у нейтрона. Нейтрон и антинейтрон отличаются только знаками магнитного момента и так называемого барионного заряда. Возможно существование атомов антивещества, ядра которых состоят из антинуклонов, а оболочка – из позитронов. При аннигиляции антивещества с веществом энергия покоя превращается в энергию квантов излучения. Это огромная энергия, значительно превосходящая ту, которая выделяется при ядерных и термоядерных реакциях.

В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации. В табл. 6.9.1 представлены некоторые сведенья о свойствах элементарных частиц со временем жизни более 10–20 с. Из многих свойств, характеризующих элементарную частицу, в таблице указаны только масса частицы (в электронных массах), электрический заряд (в единицах элементарного заряда) и момент импульса (так называемый

спин) в единицах постоянной Планка h = h / 2π. В таблице указано также среднее время жизни частицы.

Группа

Название частицы

Символ

Масса (в электронных массах)

Электрический заряд

Спин

Время жизни (с)

Частица

Античастица

Фотоны

Фотон

γ

0

0

1

Стабилен

Лептоны

Нейтрино электронное

νe

0

0

1 / 2

Стабильно

Нейтрино мюонное

νμ

0

0

1 / 2

Стабильно

Электрон

e

e+

1

–1      1

1 / 2

Стабилен

Мю-мезон

μ

μ+

206,8

–1      1

1 / 2

2,2•10–6

Адроны

Мезоны

Пи-мезоны

π0

264,1

0

0

0,87•10–16

π+

π

273,1

1      –1

0

2,6•10–8

К-мезоны

K +

K

966,4

1      –1

0

1,24•10–8

K 0

974,1

0

0

≈ 10–10–10–8

Эта-нуль-мезон

η0

1074

0

0

≈ 10–18

Барионы

Протон

p

1836,1

1      –1

1 / 2

Стабилен

Нейтрон

n

1838,6

0

1 / 2

898

Лямбда-гиперон

Λ0

2183,1

0

1 / 2

2,63•10–10

Сигма-гипероны

Σ +

2327,6

1      –1

1 / 2

0,8•10–10

Σ 0

2333,6

0

1 / 2

7,4•10–20

Σ

2343,1

–1      1

1 / 2

1,48•10–10

Кси-гипероны

Ξ 0

2572,8

0

1 / 2

2,9•10–10

Ξ

2585,6

–1      1

1 / 2

1,64•10–10

Омега-минус-гиперон

Ω

3273

–1      1

1 / 2

0,82•10–11

Таблица 6.9.1

Элементарные частицы объединяются в три группы: фотоны, лептоны и адроны.

К группе фотонов относится единственная частица – фотон, которая является носителем электромагнитного взаимодействия.

Следующая группа состоит из легких частиц – лептонов. В эту группу входят два сорта нейтрино (электронное и мюонное), электрон и μ-мезон. К лептонам относятся еще ряд частиц, не указанных в таблице. Все лептоны имеют спин 1/2 .

Третью большую группу составляют тяжелые частицы, называемые адронами. Эта группа делится на две части. Более легкие частицы составляют подгруппу мезонов. Наиболее легкие из них – положительно и отрицательно заряженные, а также нейтральные π-мезоны с массами порядка 250 электронных масс (табл. 6.9.1). Пионы являются квантами ядерного поля, подобно тому, как фотоны являются квантами электромагнитного поля. В эту подгруппу входят также четыре K-мезона и один η0-мезон. Все мезоны имеют спин, равный нулю.

Вторая подгруппа – барионы – включает более тяжелые частицы. Она является наиболее обширной. Самыми легкими из барионов являются нуклоны – протоны и нейтроны. За ними следуют так называемые гипероны. Замыкает таблицу омега-минус-гиперон, открытый в 1964 г. Это тяжелая частица с массой в 3273 электронных масс. Все барионы имеют спин 1/2 .

Обилие открытых и вновь открываемых адронов навела ученых на мысль, что все они построены из каких-то других более фундаментальных частиц. В 1964 г. американским физиком М. Гелл-Манном была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые частицы – адроны – построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых. Теория Гелл-Мана предполагала существование трех кварков и трех антикварков, соединяющихся между собой в различных комбинациях. Так, каждый барион состоит из трех кварков, антибарион – из трех антикварков. Мезоны состоят из пар кварк–антикварк.

С принятием гипотезы кварков удалось создать стройную систему элементарных частиц. Однако предсказанные свойства этих гипотетических частиц оказались довольно неожиданными. Электрический заряд кварков должен выражаться дробными числами, равными 2/3 и 1/3   элементарного заряда.

Многочисленные поиски кварков в свободном состоянии, производившиеся на ускорителях высоких энергий и в космических лучах, оказались безуспешными. Ученые считают, что одной из причин ненаблюдаемости свободных кварков являются, возможно, их очень большие массы. Это препятствует рождению кварков при тех энергиях, которые достигаются на современных ускорителях. Тем не менее, большинство специалистов сейчас уверены в том, что кварки существуют внутри тяжелых частиц – адронов.

Фундаментальные взаимодействия. Процессы, в которых участвуют различные элементарные частицы, сильно различаются по энергиям и характерным временам их протекания. Согласно современным представлениям, в природе осуществляется четыре вида взаимодействий, которые не могут быть сведены к другим, более простым видам: сильное, электромагнитное, слабое и гравитационное. Эти виды взаимодействий называют фундаментальными.

Сильное (или ядерное) взаимодействие – наиболее интенсивное. Оно обуславливает исключительно прочную связь между протонами и нейтронами в ядрах атомов. В сильном взаимодействии могут принимать участие только тяжелые частицы – адроны (мезоны и барионы). Сильное взаимодействие проявляется на расстояниях порядка 10–15 м и менее. Поэтому его называют короткодействующим.

Электромагнитное взаимодействие. В нем могут принимать участие любые электрически заряженные частицы, а так же фотоны – кванты электромагнитного поля. Электромагнитное взаимодействие ответственно, в частности, за существование атомов и молекул. Оно определяет многие свойства веществ в твердом, жидком и газообразном состояниях. Кулоновское отталкивание протонов приводит к неустойчивости ядер с большими массовыми числами. Электромагнитное взаимодействие обуславливает процессы поглощения и излучения фотонов атомами и молекулами вещества и многие другие процессы физики микро- и макромира.

Слабое взаимодействие – определяет ход наиболее медленных процессов, протекающих в микромире. В нем могут принимать участие любые элементарные частицы, кроме фотонов. Слабое взаимодействие ответственно за протекание процессов с участием нейтрино или антинейтрино, например, β-распад нейтрона

 

а также безнейтринные процессы распада частиц с большим временем жизни (τ ≥ 10–10 с).

Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц силы гравитационного взаимодействия между ними пренебрежимо малы и в процессах микромира их роль несущественна. Гравитационные силы играют решающую роль при взаимодействии космических объектов (звезд, планет и т. п.) с их огромными массами.

В 30-е годы XX века возникла гипотеза о том, что в мире элементарных частиц взаимодействия осуществляются посредством обмена квантами какого-либо поля. Эта гипотеза первоначально была выдвинута нашими соотечественниками И.Е. Таммом и Д.Д Иваненко. Они предположили, что фундаментальные взаимодействия возникают в результате обмена частицами, подобно тому, как ковалентная химическая связь атомов возникает при обмене валентными электронами, которые объединяются на незаполненных электронных оболочках.

Взаимодействие, осуществляемое путем обмена частицами, получило в физике название обменного взаимодействия. Так, например, электромагнитное взаимодействие между заряженными частицами, возникает вследствие обмена фотонами – квантами электромагнитного поля.

Теория обменного взаимодействия получила признание после того, как в 1935 г. японский физик Х. Юкава теоретически показал, что сильное взаимодействие между нуклонами в ядрах атомов может быть объяснено, если предположить, что нуклоны обмениваются гипотетическими частицами, получившими название мезонов. Юкава вычислил массу этих частиц, которая оказалась приблизительно равной 300 электронным массам. Частицы с такой массой были впоследствии действительно обнаружены. Эти частицы получили название π-мезонов (пионов). В настоящее время известны три вида пионов: π+, π и π0 (см. табл. 6.9.1).

В 1957 году было теоретически предсказано существование тяжелых частиц, так называемых векторных бозонов W+, W и Z0, обуславливающих обменный механизм слабого взаимодействия. Эти частицы были обнаружены в 1983 году в экспериментах на ускорителе на встречных пучках протонов и антипротонов с высокой энергией. Открытие векторных бозонов явилось очень важным достижением физики элементарных частиц. Это открытие ознаменовало успех теории, объединившей электромагнитное и слабое взаимодействия в единое так называемое электрослабое взаимодействие. Эта новая теория рассматривает электромагнитное поле и поле слабого взаимодействия как разные компоненты одного поля, в котором наряду с квантом участвуют векторные бозоны.

После этого открытия в современной физике значительно возросла уверенность в том, что все виды взаимодействий тесно связаны между собой и, по существу, являются различными проявлениями некоторого единого поля. Однако объединение всех взаимодействий остается пока лишь привлекательной научной гипотезой (Единой Теорией поля).

Физики-теоретики прилагают значительные усилия, чтобы рассмотреть на единой основе не только электромагнитное и слабое, но и сильное взаимодействие. Эта теория получила название Великого объединения. Ученые предполагают, что и у гравитационного взаимодействия должен быть свой переносчик – гипотетическая частица, названная гравитоном. Однако эта частица до сих пор не обнаружена.

В настоящее время считается доказанным, что единое поле, объединяющее все виды взаимодействия, может существовать только при чрезвычайно больших энергиях частиц, недостижимых на современных ускорителях. Такими большими энергиями частицы могли обладать только на самых ранних этапах существования Вселенной, которая возникла в результате так называемого Большого взрыва (Big Bang). Космология – наука об эволюции Вселенной – предполагает, что Большой взрыв произошел около 13,7 миллиардов лет тому назад. В стандартной модели эволюции Вселенной предполагается, что в первый период после взрыва температура могла достигать 1032 К, а энергия частиц E = kT достигать значений 1019 ГэВ. В этот период материя существовала в форме кварков и нейтрино, при этом все виды взаимодействий были объединены в единое силовое поле. Постепенно по мере расширения Вселенной энергия частиц уменьшалась, и из единого поля взаимодействий сначала выделилось гравитационное взаимодействие (при энергиях частиц ≤ 1019 ГэВ), а затем сильное взаимодействие отделилось от электрослабого (при энергиях порядка 1014 ГэВ). При энергиях порядка 103 ГэВ все четыре вида фундаментальных взаимодействий оказались разделенными. Одновременно с этими процессами шло формирование более сложных форм материи – нуклонов, легких ядер, ионов, атомов и т. д. Космология в своей модели пытается проследить эволюцию Вселенной на разных этапах ее развития от Большого взрыва до наших дней, опираясь на законы физики элементарных частиц, а также ядерной и атомной физики.

www.its-physics.org

Частица (физика) — это… Что такое Частица (физика)?

Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить (или пока это не доказано) на составные части. Их строение и поведение изучается физикой элементарных частиц. Понятие элементарных частиц основывается на факте дискретного строения вещества. Ряд элементарных частиц имеет сложную внутреннюю структуру, однако разделить их на части невозможно. Другие элементарные частицы являются бесструктурными и могут считаться первичными фундаментальными частицами.

Со времён первого открытия элементарной частицы (электрона) в 1897 году обнаружено уже более 400 элементарных частиц.

Классификация

По величине спина все элементарные частицы делятся на два класса:

По видам взаимодействий элементарные частицы делятся на следующие группы:

Составные частицы:

Фундаментальные (бесструктурные) частицы:

  • лептоны — фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.
  • кварки — дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались. Как и лептоны, делятся на 6 типов и являются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.
  • калибровочные бозоны — частицы, посредством обмена которыми осуществляются взаимодействия:

Адроны и лептоны образуют вещество. Калибровочные бозоны — это кванты разных видов излучения.

Кроме того, в Стандартной Модели с необходимостью присутствует хиггсовский бозон, который, впрочем, пока ещё не обнаружен экспериментально.

Первоначально термин «элементарная частица» подразумевал нечто абсолютно элементарное, первокирпичик материи. Однако, когда в 1950-х и 1960-х годах были открыты сотни адронов с похожими свойствами, стало ясно, что по крайней мере адроны обладают внутренними степенями свободы, т. е. не являются в строгом смысле слова элементарными. Это подозрение в дальнейшем подтвердилось, когда выяснилось, что адроны состоят из кварков.

Таким образом, мы продвинулись ещё немного вглубь строения вещества: самыми элементарными, точечными частями вещества сейчас считаются лептоны и кварки. Для них (вместе с калибровочными бозонами) и применяется термин «фундаментальные частицы».

Стандартная модель

Стандартная модель включает в себя 12 ароматов фермионов, соответствующие им античастицы, а также калибровочные бозоны (фотон, глюоны, W- и Z-бозоны), которые переносят взаимодействия между частицами, и не обнаруженный на данный момент бозон Хиггса, отвечающий за наличие массы у частиц. Однако Стандартная модель в значительной степени рассматривается скорее как теория временная, а не действительно фундаментальная, поскольку она не включает в себя гравитацию и содержит несколько десятков свободных параметров (массы частиц и т. д.), значения которых не вытекают непосредственно из теории. Возможно, существуют элементарные частицы, которые не описываются Стандартной моделью, такие как гравитон (частица, переносящая гравитационные силы) или суперсимметричные партнёры обычных частиц.

Фермионы

12 ароматов фермионов разделяются на 3 семейства (поколения) по 4 частицы в каждом. Шесть из них — кварки. Другие шесть — лептоны, три из которых являются нейтрино, а оставшиеся три несут единичный отрицательный заряд: электрон, мюон и тау-лептон.

Античастицы

Также существуют 12 фермионных античастиц, соответствующих вышеуказанным двенадцати частицам.

Кварки

Кварки и антикварки никогда не были обнаружены в свободном состоянии — это объясняется явлением конфайнмента.

См. также

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Тема 10. ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

чения Le,Lμ,Lτ = 0, +1,−1. Например, e−, электронное нейтриноνe имеютLe = +l;eμ+ ,~νe имеютLe =− l. Все адроны имеютLe = Lμ = Lτ = 0 .

Барионное число В. Барионное число имеет значениеВ = 0, +1,−1. Барионы, например,n,р, Λ, Σ, нуклонные резонансы имеют барионное числоВ = +1. Мезоны, мезонные резонансы имеютВ = 0, антибарионы имеютВ =−1.

Странность s. Квантовое число s может принимать значения−3,−2,−1, 0, +1, +2, +3 и определяется кварковым составом адронов. Например, гипероны Λ, Σ имеютs =−l;K+- ,K–-мезоны имеютs = + l.

Charm с. Квантовое числос может принимать значения−3,−2,−1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие с = 0, +1 и−1. Например, барион Λ+ имеетс = +1.

Bottomness b. Квантовое числоb может принимать значения−3,−2,−1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющиеb = 0, +1,−1. Например,В+-мезонимеетb = +1.

Topness t. Квантовое числоt может принимать значения−3,−2,−1, 0, +1, +2, +3. В настоящее время обнаружено всего одно состояние сt = +1.

Изоспин I. Сильновзаимодействующие частицы можно разбить на группы частиц, обладающих схожими свойствами (одинаковое значение спина, чётности, барионного числа, странности и др. квантовых чисел, сохраняющихся в сильных взаимодействиях)− изотопические мультиплеты. Величина изоспинаI определяет число частиц, входящих в один изотопический мультиплет,n ир составляет изотопический дуплет

I = 1/2; Σ+, Σ−, Σ0, входят в составизотопического триплета I = 1, Λ− изотопический синглет I = 0, число частиц, входящих в одинизотопический мультиплет, 2I + 1.

G − четность − это квантовое число, соответствующее симметрии относительно одновременной операции зарядового сопряженияс и изменения знака третьего компонентаI изоспина.G-четностьсохраняется только в сильных взаимодействиях.

10.4.Странные частицы

Вначале 50-хгодов ХХ в. было обнаружено, что некоторые из недавно открытых частиц, а именноK, Λ, Σ, ведут себя странно в двух

отношениях.

•Во-первых,они всегда рождаются парами. Например, реакция

π− + p → K 0 + Λ0 проходит с вероятностью, близкой к 1, а реакция

studfiles.net

Элементарные частицы (физика) — Традиция

Материал из свободной русской энциклопедии «Традиция»

Элемента́рные части́цы — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Их строение и поведение изучается физикой элементарных частиц. Понятие элементарных частиц основывается на факте дискретного строения вещества. Ряд элементарных частиц имеет сложную внутреннюю структуру, однако разделить их на части невозможно. Другие элементарные частицы являются бесструктурными и могут считаться первичными фундаментальными частицами.

Всего вместе с античастицами открыто более 350 элементарных частиц. Из них стабильны фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы. Остальные элементарные частицы самопроизвольно распадаются за время от приблизительно 1000 секунд (для свободного нейтрона) до ничтожно малой доли секунды (от 10−24 до 10−22, для резонансов).

Строение и поведение элементарных частиц изучается физикой элементарных частиц.

Размеры элементарных частиц[править]

Несмотря на большое разнообразие элементарных частиц, их размеры укладываются в две группы. Размеры адронов (как барионов, так и мезонов) составляют около 10−15 м, что близко к среднему расстоянию между входящими в них кварками. Размеры фундаментальных, бесструктурных частиц — калибровочных бозонов, кварков и лептонов — в пределах погрешности эксперимента согласуются с их точечностью (верхний предел диаметра составляет около 10−18 м). Если в дальнейших экспериментах окончательные размеры этих частиц не будут обнаружены, то это может свидетельствовать о том, что размеры калибровочных бозонов, кварков и лептонов близки к фундаментальной длине (которая весьма вероятно[2] может оказаться планковской длиной, равной 1,6·10−35 м).

traditio.wiki

Элементарные частицы « Интереcно о науке

Элементарные частицы – это основные компоненты энергии и материи. Их изучение занимается физика элементарных частиц. Элементарные частицы также иногда называют фундаментальными частицами. Они принадлежат к классу частиц, принадлежащих к классу субатомных, то есть размером меньше атома.

Физики изучают элементарные частицы в основном с помощью специальных приборов – ускорителей частиц. Ускорители частиц обеспечивают высокую энергию, которая разгоняет атомы на встречу друг другу. В результате столкновения они разрушаются на составляющие, что и дает ученым возможность для исследования.

До открытия электрона английским физиком Томсоном в 1897 году, ученые полагали, что наименьшими единицами материи были атомы. Об этом говорит их название, так как в переводе с греческого атом – неделимый. Однако к 1950 году ученые уже обладали знаниями о большом количестве субатомных частиц, как через изучение космических лучей, так и в ускорителях субатомных частиц.

В физике элементарные частицы классифицируются на 3 основные группы: кварки, лептоны и бозоны.

Кварки являются основными составляющими субатомных частиц, называемых адронами. Два из наиболее важных видов адронов, которые составляют ядра атомов – это нейтроны и протоны. Существует целый ряд различных видов кварков, каждый из которых обладает зарядом, который называется цветом. Для каждого вида кварков существует также антикварки, заряды которых равны по значению, но противоположны по знакам обычным частицам.

Кварки также как и антикварки всегда объединяются в группы по 2 или по 3. Сочетание кварка и антикварка образует очень недолгое соединение называемое мезоном. Комбинации из трех кварков образуют соединение, называемое барионом, к которым относятся протоны и нейтроны.

К лептонам относятся электроны, несколько видов нейтрино и их античастиц.

Бозоны – это элементарные частицы, которые переносят энергию от других элементарных частиц. Кварки создают и поглощают бозоны, называемые глюонами. Кварки объединяются вместе, образуя мезоны и барионы, через постоянный обмен глюонами. Фотоны – это бозоны, которыми обмениваются лептоны.

В середине 1980-х годов ученые стали приходить к теории о том, что элементарные субатомные частицы – это не точки, а имеют ленточное строение. Это дало толчок к разработке новых теорий строения материи и взаимодействия фундаментальных частиц.

coolsci.ru

Физика элементарных частиц — Традиция

Для других видов использования слова «частица» в физике и в других местах, см. Частица (значения).

Физика элементарных частиц — это отрасль физики , которая изучает природу элементарных частиц, составляющих то, что обычно называют материей en:Matter и излучением. В нынешнем понимании частиц — возбуждение квантовых полей и их динамические взаимодействия. Хотя слово частица en:Particle может использоваться в отношении многих объектов (например, протон, газ-частица, или даже бытовая пыль), термин физика элементарных частиц обычно относится к изучению мельчайших частиц и фундаментальных полей, которые должны быть определены для того, чтобы объяснить наблюдаемые частицы. Они не могут быть определены путем комбинации других фундаментальных полей, т.е. метод выбора частиц комбинированием разными наборами полей. Текущий набор фундаментальных полей и их динамика приведены в теории, называемой стандартной моделью en:Standard_Model, поэтому физика элементарных частиц в значительной степени — это изучение стандартной модели частиц контента и его возможные расширения при нахождении недавнего бозона Хиггса en:Higgs_boson.[1][2]

Национальный исследовательский центр «Курчатовский институт»[править]

Физика элементарных частиц и высоких энергий — передовая область современной науки, изучающая строительные блоки материи. Она регулярно оказывается в центре внимания широкой общественности не только благодаря фундаментальному характеру затрагиваемых вопросов (например, бозон Хиггса en:Higgs_boson.[3], о вероятном открытии которого недавно заявили ученые, несет ответственность за наличие в природе массы), но и прикладным результатам своих исследований.

За последние пять лет несколько ведущих физических институтов, занятых фундаментальными исследованиями, сменили юрисдикцию и перешли — кто из РАН, а кто из «Росатома» — в национальный исследовательский центр «Курчатовский институт», возглавляемый Михаилом Ковальчуком. При этом сотрудники одного из них, Института теоретической и экспериментальной физики, тут же начали жаловаться на препоны в работе.[4]

Субатомные частицы[править]

Содержание частиц стандартной модели из физики

Современные научные исследования частиц по физике ориентированы на субатомные частицы, в том числе и атомные составляющие, такие как электроны, протоны и нейтроны (протоны и нейтроны, которые являются составной частью частиц, называемых барионами; изготовленные из кварков) частицы процессов радиоактивного рассеяния, таких как фотоны, нейтрино и мюоны en:Muon. Современные научные исследования частиц по физике также затрагивают широкий спектр теоретических экзотических частиц. Динамика частиц также регулируется квантовой механикой; они демонстрируют в виде волны-частицы en:Wave–particle_duality — отображение частиц как поведение при определенных экспериментальных условиях в виде волны как поведение в других условиях. В более технических терминах их описывают как квантовое состояние en:Wave–particle_duality векторов в Гильбертовом пространстве, которое рассматривается в квантовой теории поля en:Quantum_field_theory. Следующие Конвенции частиц, физики как понятие элементарных частиц, применяется для тех частиц, которые, согласно современному пониманию, предположительно неделимым и не состоят из других частиц.[5]

Все частицы и их взаимодействие, наблюдаемых на сегодняшний день, могут быть описаны практически полностью с помощью квантовой теории поля, называемой стандартной моделью.[6]Стандартная модель в настоящее время сформулирована и она содержит 61 элементарных частиц.[5]

Те элементарные частицы, которые образуют составные частицы, бухгалтерского учета и для сотен других видов частиц были обнаружены с 1960-х годов. В стандартной модели было установлено, в согласии почти со всеми экспериментальными испытаниями, проведенные до настоящего времени. Однако большинство частиц физики считают, что это неполное описание природы, и, что более фундаментальную теорию ждет discovery (см. Теория всего). В последние годы при измерениях массы нейтрино позволили получить первые экспериментальные отклонения от стандартной модели (нейтрино масса первоначально является электрически нейтральной, со слабо взаимодействующими элементарными субатомными частицами).

Идея о том, что всё вещество состоит из элементарных частиц датируется, по крайней мере, в 6-м веке до нашей эры.[7] В 19 веке, Джон Дальтон en:John_Dalton, и через его работу по стехиометрии en:Stoichiometry пришли к выводу, что каждый элемент природы, состоит из одного уникального типа частиц.[8] Слово атом после греческого слова atomos означает «неделимый», обозначает — наименьшая частица химического элемента у физиков, но вскоре обнаружили, что атомы не являются, по сути, фундаментальными частицами природы, но и конгломераты даже более мелкие частицы, такие как электрон. В начале 20-го века исследования в области ядерной физики en:Nuclear_physics и квантовой физики en:Quantum_mechanics завершились доказательстваvb ядерного деления en:Nuclear_fission. В 1939 году Лиза Мейтнер (на основе экспериментов по Otto Hahn), ядерного синтеза en:Nuclear_fusion; Ханс бете в том же году; оба открытия, привели к разработке дерного оружия. На протяжении 1950-х и 1960-х годов, невероятным разнообразием частиц были обнаружены в экспериментах по упругому рассеянию en:Deep_inelastic_scattering. Это называется зоопарк частиц en:Particle_zoo. Этот устаревшим термин после формулировки стандартной модели в 1970-е годы, в которой большое количество частиц, объяснил, как сочетания (относительно) небольшого числа фундаментальных частиц.

Стандартные модели[править]

Современное состояние классификации всех элементарных частиц объясняется стандартной моделью en:Standard_Model. Она описывает сильные en:Strong_interaction, слабые en:Weak_interaction электромагнитные взаимодействия с помощью посредника калибровочных бозонов en:Gauge_boson. Видами калибровочных бозонов являются глюоны en:Gluon, W-, W+ и Z — бозоны en:W_and_Z_bosons и фотоны.[6] Стандартная модель также содержит 24 фундаментальных частиц en:Elementary_particle, (12 частиц и связанных с ними анти-частиц), которые являются составляющими всех вопросов.[9] Наконец, стандартная модель также предсказывает существование модели типа Хиггса en:Boson , известной как бозон Хиггса en:Higgs_boson. Рано утром 4 июля 2012 года физики на большом Адронном коллайдере в ЦЕРНЕ объявили, что они обнаружили новую частицу, которая ведет себя аналогично, что ожидается от бозона Хиггса.[10]

Экспериментальные лаборатории[править]

В области физики элементарных частиц, крупнейшие международные лаборатории расположены в:

  • Брукхейвенской Национальной Лаборатории (Лонг-Айленд, США) en:Brookhaven_National_Laboratory. Ее основной базой является Relativistic Heavy Ion Collider (RHIC) en:Relativistic_Heavy_Ion_Collider, которая сталкивается тяжелых ионов , таких как ионы золота и поляризованные протоны. Это первый в мире heavy ion collider, и единственный в мире коллайдер поляризованных протонов.[11][не в цитировании данного]
  • Им. Г.И. Будкера Институт ядерной физики (Новосибирск, Россия) en:Budker_Institute_of_Nuclear_Physics. Основные проекты сейчас электрон —позитронных коллайдеров ВЭПП-2000,[12] эксплуатируется с 2006 года, и ВЭПП-4,[13] начал эксперименты в 1994 году. Ранее ради удобства включают первый electron-electron beam-луч коллайдер ВЭП-1, который проводил эксперименты с 1964 по 1968 год; электрон-позитронный коллайдер ВЭПП-2, эксплуатируется с 1965 по 1974 г.; его преемник ВЭПП-2м,[14] проведены эксперименты с 1974 по 2000 год.[15]
  • ЦЕРН en:CERN, (Франко-швейцарской границы, близ Женевы). Его главный проект сейчас находится на большом Адронном коллайдере (LHC), который провел свой первый луч обращения на 10 сентября 2008 года, и сейчас они в мире самые энергичные коллайдеры протонов. Он также стал самым энергичным коллайдером тяжелых ионов после начала столкновения ионов свинца. Раньше, в отеле есть большой Электрон-позитронный коллайдер (LEP), который был остановлен на 2 ноября 2000 года, а затем демонтирован, чтобы уступить дорогу для LHC; и супер-Протонный Синхротрон, который используется повторно в качестве предварительного ускорителя LHC.[16]
  • DESY en:DESY (Гамбург, Германия). Ее основной базой является адронное Электронное кольцо Anlage (HERA), которое вступает в противоставление электронов и позитронов с протонами.[17]
  • Fermilab en:DESY, (Батавия, США). Его основной объект до 2011 года был Tevatron, который занимался столкновениями протонов и антипротонов и был самым высоким в энергии частиц в коллайдере на земле до тех пор, пока большой адронный коллайдер превзошел его на 29 ноября 2009 года.[18]
  • KEK en:KEK, (г. Цукуба, Япония). Он является домом для ряда экспериментов, таких как K2K эксперимент, по экспериментам осцилляциям нейтрино и Belle, где ведутся эксперименты, измерения CP violation of B-мезонов.[19]

Существуют многие другие ускорители частиц.

Методы, необходимые, чтобы сделать современную, экспериментальную физику частиц, весьма разнообразны и сложны, которые являются составляющими суб-специальностей, почти полностью отличаются от теоретической стороны поля.[20]


Теоретическая физика элементарных частиц — попытки разработать модели, теоретические основы и математические инструменты, чтобы понять текущие эксперименты и делать прогнозы для будущих экспериментов. См. также теоретическая физика en:Theoretical_physics. Существуют несколько основных взаимосвязанных усилий, предпринимаемые в области теоретической физики элементарных частиц на сегодняшний день. Одним из важных — отдельно попытка лучше понять стандартную модель и ее испытания. Путем извлечения параметров стандартной модели — от экспериментов с меньшей неопределенностью. Эта работа исследует пределы стандартной модели и, следовательно, расширяет наше понимание природы строительных блоков. Эти усилия осуществляются сложно, наличие сложности расчёта величин в квантовой хромодинамике en:Quantum_chromodynamics. Некоторые теоретики, работающие в этой области называют себя phenomenologists en:Quantum_chromodynamics и они могут использовать инструменты квантовой теории поля en:Quantum_field_theory и эффективной теории поля en:Effective_field_theory. Другие делают ставку на использование решеточной теории поля en:Lattice_field_theory и называют себя теоретиками решетки.

Другие основные усилия в процессе создания модели, где строительство модели en:Model_building_(particle_physics) требует разработку идей для того, что бы физика могла лежать за пределами стандартной модели en:Physics_beyond_the_Standard_Model (при более высоких энергиях или меньших расстояниях). Эта работа часто мотивируется проблемами иерархии en:Hierarchy_problem и сдерживается существующими экспериментальными данными. Основные усилия могут включать в себя работы по суперсимметрии en:Supersymmetry, альтернативы Хиггсовского механизма en:Higgs_mechanism, дополнительных пространственных измерений (таких, как Рэндалл-Sundrum моделей en:Randall–Sundrum_model), Preon en:Preon теории, комбинации этих или других идей.

Третие значительные усилия в области теоретической физики элементарных частиц — теория струн en:String_theory. Струнные теоретики пытаются построить единое описание квантовой механики и общей теории относительности путем построения теории, основанной на малых струнах и мембранах en:Brane , а не на частицах. Если теория успешна, ее можно считать теорией всего en:Theory_of_everything.

Есть и другие направления работы в области теоретической физики элементарных частиц, начиная от частиц, космологии для петлевой квантовой гравитации en:Loop_quantum_gravity.

Это деление усилий в области физики элементарных частиц отражается в названиях категорий как: архивные en:wiki/ArXiv (имеющиеся теории), архива бумаг (не разработанных теорий en:Preprint):[21] hep-th (теория), hep-ph (феноменология), hep-ex (эксперименты), hep-lat (решеточная калибровочная теория en:Lattice_gauge_theory).

Практические применения[править]

На снимке в стандартном ПЭТ—центре, оснащённый ECAT Exact HR+ ПЭТ-сканером. Подобные ПЭТ-сканеры неуклонно изменяют системы, сочетающие в себе оба ПЭТ-и КТ-сканера в единое ПЭТ/КТ устройство.

В принципе, все физика (и практические приложения, разработанные в ней) могут быть получены из исследования фундаментальных частиц. На практике, даже если физика элементарных частиц означает только высокую энергию сокрушителей атома, многие технологии были разработаны в ходе этих пионерских исследований, которые впоследствии нашли широкое применение в обществе. Циклотроны используются для производства медицинских изотопов, для исследования и лечения (например, изотопы, используемые в ПЭТ en:Positron_emission_tomography), или использовать непосредственно для определенных методов лечения рака. Разработка Сверхпроводников en:Superconductivity была выдвинута вперед для их применения в физике частиц. World Wide Web и технологии сенсорного управления, были первоначально разработаны в ЦЕРН en:CERN.

Дополнительные приложения в медицине, национальной безопасности, промышленности, вычислительной техники, науки, и развития трудовых ресурсов, иллюстрирующие долго и постоянно растущий список полезных практических приложений с помощью взносов от физики элементарных частиц.[22]

Темная материя невидима. На основе эффекта гравитационного линзирования, кольцо из темной материи было обнаружено в образе galaxy cluster (CL0024+17) и представлено в синем цвете.[23]

Основная цель, которая преследуется в нескольких различных способах исследований заключается в том, чтобы найти и понять, что физика может лежать за пределами стандартной модели en:Physics_beyond_the_Standard_Model. Есть несколько мощных экспериментальных оснований ожидать в появлении новой физики, в том числе и тайн тёмной материи en:Dark_matter и массы нейтрино en:Neutrino#MassNeutrino#Mass. Существуют также теоретические намеки на то, что новая физика должна быть найдена в доступных энергетических масштабах. Кроме того, там могут быть сюрпризы, которые дадут нам возможность узнать о их природе.

Много прикладывается усилий, чтобы найти этот новый физический закон, который сориентирован на новом коллайдере экспериментов. На большом Адронном коллайдере en:Large_Hadron_Collider (LHC) было завершено в 2008 году, чтобы помочь продолжить поиск бозона Хиггса en:Higgs_boson, суперсимметричных en:Superpartner частиц, и других новых физических явлений. Промежуточной целью является строительство Международного линейного коллайдера [:en:International_Linear_Collider] (ILC), который будет дополнять LHC за счёт счет более точных измерений характеристик вновь найденных частиц. В августе 2004 года решение для технологии МКТ было принято, но сайты до сих пор не согласованы.

Кроме того, существуют важные номера-коллайдеров экспериментов, которые также пытаются найти и понять физику за пределами стандартной модели en:Physics_beyond_the_Standard_Model. Одним из важных номеров-коллайдера являются усилия в определении нейтрино массы, поскольку эти массы могут возникнуть в результате смешивания нейтрино с очень тяжелыми частицами. Кроме того, космологические наблюдения en:Physical_cosmology дают много полезных ограничений по темной материи, хотя это может быть невозможно определить точную природу темной материи без коллайдеров. Наконец, нижние границы на очень долгое время жизни протона en:Proton_decay поставили ограничения на Grand Unified Theories en:Grand_Unified_Theory в энергии весов значительно выше, чем в коллайдере экспериментов, которые смогут зондировать природу тёмной материи в ближайшее время.

В мае 2014 года, в физике частиц приоритезации проектов панель en:Particle_Physics_Project_Prioritization_Panel опубликовала свой доклад по физике элементарных частиц, повлиявших на приоритеты финансирования в США в течение следующего десятилетия. В этом докладе подчеркивалось, продолжение участия США в LHC и ILC, и расширение Long Baseline Neutrino Experiment en:Long_Baseline_Neutrino_Experiment, среди других рекомендаций.

В начале октября 2014 года на коллайдере обнаружена новая частица, которую обнаружили у четырех кварков, названных tetraquark en:Tetraquark.[24]

Дополнительная литература[править]

Вступительное чтение[править]

Расширенное чтение[править]

  • David J. Griffiths Introduction to Elementary Particles. — Wiley, John & Sons, Inc, 1987. — ISBN 0-471-60386-4>
  • Gordon L. Kane Modern Elementary Particle Physics. — Perseus Books, 1987. — ISBN 0-201-11749-5>
  • Donald H. Perkins Introduction to High Energy Physics. — Cambridge University Press, 1999. — ISBN 0-521-62196-8

traditio.wiki

Физика элементарных частиц | Наука

https://ru.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_%D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D1%8B%D1%85_%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86


Для других видов использования слова «частица» в физике и в других местах, см. Частица (значения).

Фи́зика элемента́рных части́ц (ФЭЧ) — это область физики , которая изучает природу элементарных частиц, составляющих то, что обычно называют материей и излучением. В нынешнем понимании частиц — возбуждение квантовых полей и их динамические взаимодействия. Хотя слово частица может использоваться в отношении многих объектов (например, протон, газ-частица, или даже бытовая пыль), термин физика элементарных частиц обычно относится к изучению мельчайших частиц и фундаментальных полей, которые должны быть определены для того, чтобы объяснить наблюдаемые частицы. Они не могут быть определены путем комбинации других фундаментальных полей, т.е. метод выбора частиц комбинированием разными наборами полей. Текущий набор фундаментальных полей и их динамика приведены в теории, называемой стандартной моделью, поэтому физика элементарных частиц в значительной степени — это изучение стандартной модели частиц контента и его возможные расширения при нахождении недавнего бозона Хиггса en:Higgs_boson.[1][2]


(ФЭЧ), часто называемая также фи́зикой высо́ких эне́ргий — раздел физики, изучающий структуру и свойства элементарных частиц и их взаимодействия.

Теоретическая ФЭЧПравить

Основное орудие исследования в теоретической физике элементарных частиц — квантовая теория поля. Т.е. любая элементарная частица — это не «кусочек» какой-то сплошной материи, а определённое (одночастичное) возбуждение абстрактного гильбертового пространства. Можно сказать, что весь наш мир видится в ФЭЧ как вектор в гильбертовом пространстве состояний, который «вращается» в нем со временем.

Главным результатом современной теоретической физики элементарных частиц является Стандартная Модель. За последние пару десятков лет её предсказания были многократно перепроверены в экспериментах, и в настоящее время она — единственная физическая теория, адекватно описывающая устройство нашего мира вплоть до расстояний порядка 10−18м.

Взаимодействие частиц в ФЭЧ принципиально отличается от взаимодействия объектов в других областях физики. Например, в механике мы изучаем движение тел, которые, в принципе, могут друг с другом взаимодействовать. Однако как именно, за счет чего такое взаимодействие происходит — механика не изучает. В противоположность этому, ФЭЧ уделяет одинаковое внимание, как самим частицам, так и процессу их взаимодействия. Связано это с тем, что в ФЭЧ удается описать электромагнитное, сильное и слабое взаимодействие как обмен виртуальными частицами. Важным постулатом в таком описании явилось требование симметрии нашего мира относительно калибровочных преобразований.

Равноправие частиц и их взаимодействий красивым образом проявляется в суперсимметричных теориях, в которых постулируется существование в нашем мире ещё одной скрытой симметрии: суперсимметрии. Можно сказать, что при преобразовании суперсимметрии частицы превращаются во взаимодействия, а взаимодействия — в частицы.

Уже отсюда видна исключительная фундаментальность ФЭЧ — в ней делается попытка понять многие свойства нашего мира, которые до этого (в других разделах физики) принимались лишь как данность.

Экспериментальная ФЭЧПравить

Экспериментальная физика элементарных частиц делится на два больших класса: ускорительную и неускорительную.

Ускорительная ФЭЧ — это разгон долгоживущих элементарных частиц в ускорителе (коллайдере) до высоких энергий и столкновение их друг с другом или с неподвижной мишенью. В процессе такого столкновения удается получить очень высокую концентрацию энергии в микроскопическом объёме, что приводит к рождению новых, обычно нестабильных, частиц. Изучая характеристики таких реакций (количество рождённых частиц того или иного сорта, зависимость этого количества от энергии, типа, поляризации исходных частиц, от угла вылета и т. д.), можно восстановить внутреннюю структуру исходных частиц, их свойства, то, как они взаимодействуют друг с другом.

Неускорительная ФЭЧ — это процесс «пассивного наблюдения» за нашим миром. В неускорительных экспериментах поставщиком элементарных частиц является Природа, а от исследователя требуется лишь внимательно следить за происходящим. Типичные неускорительные эксперименты — наблюдение за нейтрино в так называемых нейтринных телескопах, ожидание распада протона, безнейтринного двойного бета-распада и прочих крайне редких событий в большом объеме вещества, эксперименты с космическими лучами.


Ошибка цитирования Для существующего тега <ref> не найдено соответствующего тега <references/>

ru.science.wikia.com

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *