Что такое система счисления в информатике – какие системы счисления используется исключительно в информатике ? подскажите пожалуйста

Простая информатика — Система счисления

Система счисления – это способ записи чисел. Обычно, числа записываются с помощью специальных знаков – цифр (хотя и не всегда). Если вы никогда не изучали данный вопрос, то, по крайней мере, вам должны быть известны две системы счисления – это арабская и римская. В первой используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и это позиционная система счисления. А во второй – I, V, X, L, C, D, M и это непозиционная система счисления.

В позиционных системах счисления количество, обозначаемое цифрой в числе, зависит от ее позиции, а в непозиционных – нет. Например:

11 – здесь первая единица обозначает десять, а вторая – 1.
 II – здесь обе единицы обозначают единицу.

345, 259, 521 – здесь цифра 5 в первом случае обозначает 5, во втором – 50, а в третьем – 500.

XXV, XVI, VII – здесь, где бы ни стояла цифра V, она везде обозначает пять единиц. Другими словами, величина, обозначаемая знаком V, не зависит от его позиции.

Сложение, умножение и другие математические операции в позиционных системах счисления выполнить легче, чем в непозиционных, т.к. математические операции осуществляются по несложным алгоритмам (например, умножение в столбик, сравнение двух чисел). 

В мире наиболее распространены позиционные системы счисления. Помимо знакомой всем с детства десятичной (где используется десять цифр от 0 до 9), в технике широкое распространение нашли такие системы счисление как двоичная (используются цифры 0 и 1), восьмеричная и шестнадцатеричная.

Следует отметить, важную роль нуля. «Открытие» этой цифры в истории человечества сыграло большую роль в формировании позиционных систем счисления.

Основание системы счисления – это количество знаков, которое используется для записи цифр.

Разряд — это позиция цифры в числе. Разрядность числа — количество цифр, из которых состоит число (например, 264 — трехразрядное число, 00010101 — восьмиразрядное число). Разряды нумеруются справа на лево (например, в числе 598 восьмерка занимает первый разряд, а пятерка — третий).

Итак, в позиционной системе счисления числа записываются таким образом, что каждый следующий (движение справа на лево) разряд больше другого на степень основания системы счисления. (придумать схему)

Одно и тоже число (значение) можно представить в различных системах счисления. Представление числа при этом различно, а значение остается неизменным.

Двоичная система счисления

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни. 

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
 0 – это ноль
 1 – это один (и это предел разряда)
 10 – это два
 11 – это три (и это снова предел)
 100 – это четыре
 101 – пять
 110 – шесть
 111 – семь и т.д.
Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные. 

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

Можно пойти еще дальше и разложить так:

1476 = 1 * 103 + 4 * 102 + 7 * 101 + 6 * 100

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 — это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20

Если посчитать сумму составляющих, то в итоге мы получим десятичное число, соответствующее 10001001:

1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

100010012 = 13710
Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.
Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
 38 / 2 = 19 (0 остаток)
 19 / 2 = 9 (1 остаток)
 9 / 2 = 4 (1 остаток)
 4 / 2 = 2 (0 остаток)
 2 / 2 = 1 (0 остаток)
 1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*26 + 0*25 + 0*24 + 1*23 + 1*22 + 0*21 + 1*20 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

Восьмеричная система счисления

Итак, современное «железо понимает» лишь двоичную систему счисления. Однако человеку трудно воспринимать длинные записи нулей и единиц с одной стороны, а с другой – переводит числа из двоичной в десятичную систему и обратно, достаточно долго и трудоемко. В результате, часто программисты используют другие системы счисления: восьмеричную и шестнадцатеричную. И 8 и 16 являются степенями двойки, и преобразовывать двоичное число в них (так же как и выполнять обратную операцию) очень легко.

В восьмеричной системе счисления используется восемь знаков-цифр (от 0 до 7). Каждой цифре соответствуют набор из трех цифр в двоичной системе счисления:

000 – 0
 001 – 1
 010 – 2
 011 – 3
 100 – 4
 101 – 5
 110 – 6
 111 – 7

Для преобразования двоичного числа в восьмеричное достаточно разбить его на тройки и заменить их соответствующими им цифрами из восьмеричной системы счисления. Разбивать на тройки нужно начинать с конца, а недостающие цифры в начале заменить нулями. Например:

1011101 = 1 011 101 = 001 011 101 = 1 3 5 = 135

Т.е число 1011101 в двоичной системе счисления равно числу 135 в восьмеричной системе счисления. Или 10111012 = 1358.

Обратный перевод. Допустим, требуется перевести число 1008 (не заблуждайтесь! 100 в восьмеричной системе – это не 100 в десятичной) в двоичную систему счисления.

1008 = 1 0 0 = 001 000 000 = 001000000 = 10000002 

Перевод восьмеричного числа в десятичное можно осуществить по уже знакомой схеме:

6728 = 6 * 82 + 7 * 81 + 2 * 80 = 6 * 64 + 56 + 2 = 384 + 56 + 2 = 44210
 1008 = 1 * 82 + 0 * 81 + 0 * 80 = 6410

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления, так же как и восьмеричная, широко используется в компьютерной науке из-за легкости перевода в нее двоичных чисел. При шестнадцатеричной записи числа получаются более компактными.

В шестнадцатеричной системе счисления используются цифры от 0 до 9 и шесть первых латинских букв – A (10), B (11), C (12), D (13), E (14), F (15). 

При переводе двоичного числа в шестнадцатеричное, первое разбивается на группы по четыре разряда, начиная с конца. В случае, если количество разрядов не делится нацело, то первая четверка дописывается нулями впереди. Каждой четверке соответствует цифра шестнадцатеричной системе счисления:


Например:
 10001100101 = 0100 1100 0101 = 4 C 5 = 4C5

Если потребуется, то число 4C5 можно перевести в десятичную систему счисления следующим образом (C следует заменить на соответствующее данному символу число в десятичной системе счисления – это 12):

4C5 = 4 * 162 + 12 * 161 + 5 * 160 = 4 * 256 + 192 + 5 = 1221

Максимальное двухразрядное число, которое можно получить с помощью шестнадцатеричной записи — это FF.

FF = 15 * 161 + 15 * 160 = 240 + 15 = 255 

255 – это максимальное значение одного байта, равного 8 битам: 1111 1111 = FF. Поэтому с помощью шестнадцатеричной системы счисления очень удобно кратко (с помощью двух цифр-знаков) записывать значения байтов. Внимание! Состояний у 8-ми битного байта может быть 256, однако максимальное значение – 255. Не забывайте про 0 – это как раз 256-е состояние

informatic.my1.ru

Системы счисления | Информатика

Совокупность приемов записи и наименования чисел называется системой счисления.

Числа записываются с помощью символов, и по количеству символов, используемых для записи числа, системы счисления подразделяются на позиционные и непозиционные. Если для записи числа используется бесконечное множество символов, то система счисления называется непозиционной. Примером непозиционной системы счисления может служить римская. Например, для записи числа один используется буква I, два и три выглядят как совокупности символов II, III, но для записи числа пять выбирается новый символ V, шесть — VI, десять — вводится символ X, сто — С, тысяча — Ми т.д. Бесконечный ряд чисел потребует бесконечного числа символов для записи чисел. Кроме того, такой способ записи чисел приводит к очень сложным правилам арифметики.

Позиционные системы счисления для записи чисел используют ограниченный набор символов, называемых цифрами, и величина числа зависит не только от набора цифр, но и от того, в какой последовательности записаны цифры, т.е. от позиции, занимаемой цифрой, например, 125 и 215. Количество цифр, используемых для записи числа, называется основанием системы счисления, в дальнейшем его обозначим q.

В повседневной жизни мы пользуемся десятичной позиционной системой счисления, q = 10, т.е. используется 10 цифр: 0 1 2 3 4 5 6 7 8 9.

Рассмотрим правила записи чисел в позиционной десятичной системе счисления. Числа от 0 до 9 записываются цифрами, для записи следующего числа цифры не существует, поэтому вместо 9 пишут 0, но левее нуля образуется еще один разряд, называемый старшим, где записывается (прибавляется) 1, в результате получается 10. Затем пойдут числа 11, 12, но на 19 опять младший разряд заполнится и мы его снова заменим на 0, а старший разряд увеличим на 1, получим 20. Далее по аналогии 30, 40 … 90, 91, 92 … до 99. Здесь заполненными оказываются два разряда сразу; чтобы получить следующее число, мы заменяем оба на 0, а в старшем разряде, теперь
уже третьем, поставим 1 (т.е. получим число 100) и т.д. Очевидно, что, используя конечное число цифр, можно записать любое сколь угодно большое число. Заметим также, что производство арифметических действий в десятичной системе счисления весьма просто.

В информатике, вследствие применения электронных средств вычислительной техники, большое значение имеет двоичная система счисления, q = 2. На ранних этапах развития вычислительной техники арифметические операции с действительными числами производились в двоичной системе ввиду простоты их реализации в электронных схемах вычислительных машин. Например, таблица
сложения и таблица умножения будут иметь по четыре правила:

0 + 0 = 0

0x0 = 0

0+1 = 1

0x1=0

1+0=1

1×0 = 0

1 + 1 = 10

1×1 = 1

А значит, для реализации поразрядной арифметики в компьютере потребуются вместо двух таблиц по сто правил в десятичной системе счисления две таблицы по четыре правила в двоичной. Соответственно на аппаратном уровне вместо двухсот электронных схем —восемь.

Но запись числа в двоичной системе счисления длиннее записи того же числа в десятичной системе счисления в log2 10 раз (примерно в 3,3 раза). Это громоздко и не удобно для использования, так как обычно человек может одновременно воспринять не более пяти-семи единиц информации, т.е. удобно будет пользоваться такими системами счисления, в которых наиболее часто используемые числа (от единиц до тысяч) записывались бы одной-четырьмя цифрами.
Как это будет показано далее, перевод числа, записанного в двоичной системе счисления, в восьмеричную и шестнадцатеричную очень сильно упрощается по сравнению с переводом из десятичной в двоичную. Запись же чисел в них в три раза короче для восьмеричной и в четыре для шестнадцатеричной системы, чем в двоичной, но длины чисел в десятичной, восьмеричной и шестнадцатеричной системах счисления будут различаться ненамного. Поэтому, наряду с двоичной системой счисления, в информатике имеют хождение восьмеричная и шестнадцатеричная системы счисления.

Восьмеричная система счисления имеет восемь цифр: 0 12 3 4 5 6 7. Шестнадцатеричная — шестнадцать, причем первые 10 цифр совпадают по написанию с цифрами десятичной системы счисления, а для обозначения оставшихся шести цифр применяются большие латинские буквы, т.е. для шестнадцатеричной системы счисления получим набор цифр: 0123456789ABCDEF.

Если из контекста не ясно, к какой системе счисления относится запись, то основание системы записывается после числа в виде нижнего индекса. Например, одно и то же число 231, записанное в
десятичной системе, запишется в двоичной, восьмеричной и шестнадцатеричной системах счисления следующим образом:

23100)= 111001 ll(2)= 347(g)=E7(16).

Запишем начало натурального ряда в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления.

Десятичная

Двоичная

Восьмерич-

Шестнадцате-

ная

ричная

0

0

0

0

1

1

1

1

2

10

2

2

3

11

3

3

4

100

4

4

5

101

5

5

 

Десятичная

Двоичная

Восьме-
ричная

Шестнадца-
теричная

6

110

6

6

7

111

7

7

8

1000

10

8

9

1001

11

9

10

1010

12

А

11

1011

13

В

12

1100

14

С

13

1101

15

D

14

1110

16

Е

15

1111

17

F

16

10000

20

10

17

10001

21

11

ibrain.kz

1.6. Системы счисления, используемые в информатике

Каждая позиционная система счисления имеет строго определенное количество символов (цифр) для обозначения любого числа:

–двоичная — 2: 0 и 1;

–десятичная — 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Количество цифр, используемых в позиционной системе счисления для записи чисел, называется основанием системы счисления. Основанием системы счисления может быть любое натуральное число.

Пусть q — основание системы, тогда любое число в системе счисления с основанием q можно представить в виде:

Аq =anqn +an–1qn–1 + … +a1q1 +a0q0 +a–1q–1 +a–2q–2 + … +a–kq–k,(3) гдеАq — число, записанное в системе счисления с основаниемq,

n + 1 — количество разрядов целой части числа,

аi — цифры числа, причем 0 ≤аi <q,

k — количество разрядов в дробной части числа.

В информатике используются только позиционные системы счисления: десятичная, двоичная, восьмеричная, шестнадцатеричная.

1.6.1. Правила перевода чисел из одной системы счисления в другую

Правило 1. Для перевода целого десятичного числаА в систему счисления с основаниемq необходимо числоА делить на основаниеq до получения целого остатка, меньшегоq. Полученное частное следует снова делить наq до получения целого остатка, меньшегоq, и т.д. до тех пор, пока последнее частное не будет меньшеq. Тогда десятичное числоА в системе счисления с основаниемq следует записать в виде последовательности остатков деления в порядке, обратном их получению, причем старший разряд дает последнее частное.

Правило 2. Для перевода десятичной дроби в систему счисления с основаниемq следует умножить это число на основаниеq. Целая часть произведения будет первой цифрой числа в системе счисления с основаниемq. Затем, отбросив целую часть, снова умножить на основаниеq и т.д. до тех пор, пока не будет получено требуемое число разрядов в новой системе счисления или пока перевод не закончится.

Правило 3. Смешанные числа десятичной системы счисления переводятся в два приема: отдельно целая часть по своему правилу и отдельно дробная часть по своему правилу. Затем записывается общий результат, у которого дробная часть отделяется запятой.

Правило 4. Для перевода числа из системы счисления с основаниемq в десятичную систему счисления следует использовать форму записи числа в виде (3).

Правило 5. Для перевода целого числа из двоичной системы счисления в восьмеричную систему необходимо последовательность двоичных цифр раз-

studfiles.net

Информатика и ИКТ — Системы счисления

Системы счисления. Позиционная и непозиционная системы счисления

Система счисления – это способ записи чисел. Обычно, числа записываются с помощью специальных знаков – цифр (хотя и не всегда). Если вы никогда не изучали данный вопрос, то, по крайней мере, вам должны быть известны две системы счисления – это арабская и римская. В первой используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и это позиционная система счисления. А во второй – I, V, X, L, C, D, M и это непозиционная система счисления.

В позиционных системах счисления количество, обозначаемое цифрой в числе, зависит от ее позиции, а в непозиционных – нет. Например:

11 – здесь первая единица обозначает десять, а вторая – 1.
II – здесь обе единицы обозначают единицу.

345, 259, 521 – здесь цифра 5 в первом случае обозначает 5, во втором – 50, а в третьем – 500.

XXV, XVI, VII – здесь, где бы ни стояла цифра V, она везде обозначает пять единиц. Другими словами, величина, обозначаемая знаком V, не зависит от его позиции.

Сложение, умножение и другие математические операции в позиционных системах счисления выполнить легче, чем в непозиционных, т.к. математические операции осуществляются по несложным алгоритмам (например, умножение в столбик, сравнение двух чисел).

В мире наиболее распространены позиционные системы счисления. Помимо знакомой всем с детства десятичной (где используется десять цифр от 0 до 9), в технике широкое распространение нашли такие системы счисление как двоичная (используются цифры 0 и 1), восьмеричная и шестнадцатеричная.

Следует отметить, важную роль нуля. «Открытие» этой цифры в истории человечества сыграло большую роль в формировании позиционных систем счисления.

Основание системы счисления – это количество знаков, которое используется для записи цифр.

Разряд — это позиция цифры в числе. Разрядность числа — количество цифр, из которых состоит число (например, 264 — трехразрядное число, 00010101 — восьмиразрядное число). Разряды нумеруются справа на лево (например, в числе 598 восьмерка занимает первый разряд, а пятерка — третий).

Итак, в позиционной системе счисления числа записываются таким образом, что каждый следующий (движение справа на лево) разряд больше другого на степень основания системы счисления. (придумать схему)

Одно и тоже число (значение) можно представить в различных системах счисления. Представление числа при этом различно, а значение остается неизменным.

 

Двоичная система счисления

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.

Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

Можно пойти еще дальше и разложить так:

1476 = 1 * 103 + 4 * 102 + 7 * 101 + 6 * 100

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 — это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20

Если посчитать сумму составляющих, то в итоге мы получим десятичное число, соответствующее 10001001:

1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

100010012 = 13710

Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.

Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*26 + 0*25 + 0*24 + 1*23 + 1*22 + 0*21 + 1*20 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

Восьмеричная система счисления

Итак, современное «железо понимает» лишь двоичную систему счисления. Однако человеку трудно воспринимать длинные записи нулей и единиц с одной стороны, а с другой – переводит числа из двоичной в десятичную систему и обратно, достаточно долго и трудоемко. В результате, часто программисты используют другие системы счисления: восьмеричную и шестнадцатеричную. И 8 и 16 являются степенями двойки, и преобразовывать двоичное число в них (так же как и выполнять обратную операцию) очень легко.

В восьмеричной системе счисления используется восемь знаков-цифр (от 0 до 7). Каждой цифре соответствуют набор из трех цифр в двоичной системе счисления:

000 – 0
001 – 1
010 – 2
011 – 3
100 – 4
101 – 5
110 – 6
111 – 7

Для преобразования двоичного числа в восьмеричное достаточно разбить его на тройки и заменить их соответствующими им цифрами из восьмеричной системы счисления. Разбивать на тройки нужно начинать с конца, а недостающие цифры в начале заменить нулями. Например:

1011101 = 1 011 101 = 001 011 101 = 1 3 5 = 135

Т.е число 1011101 в двоичной системе счисления равно числу 135 в восьмеричной системе счисления. Или 10111012 = 1358.

Обратный перевод. Допустим, требуется перевести число 1008 (не заблуждайтесь! 100 в восьмеричной системе – это не 100 в десятичной) в двоичную систему счисления.

1008 = 1 0 0 = 001 000 000 = 001000000 = 10000002

Перевод восьмеричного числа в десятичное можно осуществить по уже знакомой схеме:

6728 = 6 * 82 + 7 * 81 + 2 * 80 = 6 * 64 + 56 + 2 = 384 + 56 + 2 = 44210
1008 = 1 * 82 + 0 * 81 + 0 * 80 = 6410

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления, так же как и восьмеричная, широко используется в компьютерной науке из-за легкости перевода в нее двоичных чисел. При шестнадцатеричной записи числа получаются более компактными.

В шестнадцатеричной системе счисления используются цифры от 0 до 9 и шесть первых латинских букв – A (10), B (11), C (12), D (13), E (14), F (15).

При переводе двоичного числа в шестнадцатеричное, первое разбивается на группы по четыре разряда, начиная с конца. В случае, если количество разрядов не делится нацело, то первая четверка дописывается нулями впереди. Каждой четверке соответствует цифра шестнадцатеричной системе счисления:

 

Например:
10001100101 = 0100 1100 0101 = 4 C 5 = 4C5

Если потребуется, то число 4C5 можно перевести в десятичную систему счисления следующим образом (C следует заменить на соответствующее данному символу число в десятичной системе счисления – это 12):

4C5 = 4 * 162 + 12 * 161 + 5 * 160 = 4 * 256 + 192 + 5 = 1221

Максимальное двухразрядное число, которое можно получить с помощью шестнадцатеричной записи — это FF.

FF = 15 * 161 + 15 * 160 = 240 + 15 = 255

255 – это максимальное значение одного байта, равного 8 битам: 1111 1111 = FF. Поэтому с помощью шестнадцатеричной системы счисления очень удобно кратко (с помощью двух цифр-знаков) записывать значения байтов. Внимание! Состояний у 8-ми битного байта может быть 256, однако максимальное значение – 255. Не забывайте про 0 – это как раз 256-е состояние.

 

iktinform.3dn.ru

Лекция 3 Системы счисления

 3.1. Основные понятия систем счисления

 3.2. Виды систем счисления

 3.3. Правила перевода чисел из одной системы счисления в другую

 3.4. Иллюстрированный вспомогательный материал

 3.5. Тестирование

 3.6. Контрольные вопросы

Разные народы в разные времена использовали разные системы счисления. Следы древних систем счета встречаются и сегодня в культуре многих народов. К древнему Вавилону восходит деление часа на 60 минут и угла на 360 градусов. К Древнему Риму — традиция записывать в римской записи числа I, II, III и т. д. К англосаксам — счет дюжинами: в году 12 месяцев, в футе 12 дюймов, сутки делятся на 2 периода по 12 часов.

По современным данным, развитые системы нумерации впервые появились в древнем Египте. Для записи чисел египтяне применяли иероглифы один, десять, сто, тысяча и т.д. Все остальные числа записывались с помощью этих иероглифов и операции сложения. Недостатки этой системы — невозможность записи больших чисел и громоздкость.

В конце концов, самой популярной системой счисления оказалась десятичная система. Десятичная система счисления пришла из Индии, где она появилась не позднее VI в. н. э. В ней всего 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 но информацию несет не только цифра, но также и место позиция, на которой она стоит. В числе 444 три одинаковых цифры обозначают количество и единиц, и десятков, и сотен. А вот в числе 400 первая цифра обозначает число сотен, два 0 сами по себе вклад в число не дают, а нужны лишь для указания позиции цифры 4.

3.1. Основные понятия систем счисления

Система счисления — это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления. Основание системы записывается в справа числа в нижнем индексе: ;;и т. д.

Различают два типа систем счисления:

позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа;

непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т.д.

Примером позиционной системы счисления является десятичная система, используемая повседневно.

Любое целое число в позиционной системе можно записать в форме многочлена:

где S — основание системы счисления;

— цифры числа, записанного в данной системе счисления;

n — количество разрядов числа.

Пример. Число запишется в форме многочлена следующим образом:

3.2. Виды систем счисления

Римская система счисленияявляется непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква — V пять, X — десять, L — пятьдесят, C — сто, D — пятьсот, M — тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2. Запись чисел в римской системе счисления

1

2

3

4

5

I

II

III

IV

V

6

7

8

9

10

VI

VII

VIII

IX

X

11

13

18

19

22

XI

XIII

XVIII

XIX

XXII

34

39

40

60

99

XXXIV

XXXIX

XL

LX

XCIX

200

438

649

999

1207

CC

CDXXXVIII

DCXLIX

CMXCIX

MCCVII

2045

3555

3678

3900

3999

MMXLV

MMMDLV

MMMDCLXXVIII

MMMCM

MMMCMXCIX

 

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичня система счисления– в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 — углов нет, 1 — один угол, 2 — два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке — наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале ХIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы “+” и “–” для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления, её основание — число 2. Для записи чисел в этой системе используют только две цифры — 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в ХVII — ХIХ веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные элементы — триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки — точки и тире, может передать практически любой текст.

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной — восьмеричная и шестнадцатеричная. Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра A соответствует десятеричному числу 10, шестнадцатеричная B – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

1

001

1

1

2

010

2

2

3

011

3

3

4

100

4

4

5

101

5

5

6

110

6

6

7

111

7

7

8

1000

10

8

9

1001

11

9

10

1010

12

A

11

1011

13

B

12

1100

14

C

13

1101

15

D

14

1110

16

E

15

1111

17

F

16

10000

20

10

studfiles.net

Системы счисления в информатике

Здравствуйте, дорогие друзья, сегодня мы с вами разберем, что такое системы счисления в информатике?

Понятие системы счисления встречаются в задании 4, 10, 12, 16 ЕГЭ по информатике. Так что разбираясь в этой теме вы сможете набрать максимум 4 дополнительных балла.

Что такое система счисления?
Система счисления — это способ записи чисел с помощью символов.

Мы все привыкли использовать десятичную систему счисления т. е. используем десять различных знаков для записи цифр.

Десятичная система [0 1 2 3 4 5 6 7 8 9]

Далее после девяти числа начинают строиться из этих десяти символов. Мы настолько привыкли к этой системе что не замечаем, как вообще строятся цифры. Сейчас давайте это разберем.

Если число у нас превышает 9, то добавляется дополнительный разряд и становится двухзначным 10, берется 1 следующая по списку после 0. Затем по порядку прибавляются числа
10 11 12 13 14 15 16 17 18 19 после 19 единица меняется на 2, и перечисление повторяется
20 21 22 23 24 25 26 27 28 29 и т. д.

Аналогично строятся числа и в других системах счисления.
Как правило, в ЕГЭ у нас используются:

  • Двоичная система [1 0]
  • Восьмеричная система [0 1 2 3 4 5 6 7]
  • Шестнадцатеричная система [0 1 2 3 4 5 6 7 8 9 A B C D E F]

Нужно повторить основы, из начальной школы, которые как правило все ученики старшего звена успешно забывают.

Речь пойдет о делении с остатком. В старших классах ученики привыкают к тому что число делятся с дробью.
Давайте разберем простой пример: [100 : 30] сто на тридцать не делиться нацело. Получается целое 3. Если [30 * 3 = 90] и разница между [100 — 90] и будет являться остатком [10].

Разберем как переводить из одной системы счисления в другую.

Переведем 50 из десятичной системы счисления в двоичную. Для это мы будем его делить на 2 пока у нас не получится 0. Остатком у нас и будет двоичное код.

50 : 2 = 25 остаток 0
25 : 2 = 12 остаток 1
12 : 2 = 6   остаток 0
6 : 2 = 3     остаток 0
3 : 2 = 1     остаток 1
1 : 2 = 0     остаток 1

Теперь записать его нужно снизу вверх: 110010 — это и есть 50 в двоичной системе.

Переведем в десятичную систему.

Двоично код 110010 нужно снова перевернуть 010011 затем каждый разряд его мы будем умножать на 2 потому что у нас число двоичное в степени начиная от 0 и заканчивая номером последнего разряда.

0 * 2^0 + 1 * 2^1 + 0 * 2^2 + 0 * 2^3 + 1 * 2^4 + 1 * 2^5 = 2 + 16 + 32 = 50.

Переведем из десятичной системы в шестнадцатеричную систему и обратно.

В шестнадцатеричной системе после 9 идут буквы A B C D E F.

Возьмем 500 и переведем его в шестнадцатеричную систему для этого нам нужно разделить его на 16 получиться 31.25 определим остаток способом, рассмотренным выше это 4.

500 : 16 = 31 остаток 4
16 * 31 = 496
500 — 496 = 4 остаток.

31 : 16 = 1 остаток 15
1 * 16 = 16
31 — 16 = 15 остаток.

1 : 16 = 0 остаток 1.

Если мы делим число, которое меньше того числа, на которое делим то получается 0. Остаток в данном случае 1.
Записываем остатки снизу вверх, но 15 будем записывать в виде буквы F.
500 [десятичная система] = 1F4 [шестнадцатеричная система]

Переведем обратно.

Принцип тот же только умножать будем не на 2 как с двоичной системой, а на 16. Числа переворачиваем и у нас получается 4,15,1.
Число в нулевой степени это 1.
4 * 16^0 + 15 * 16^1 + 1 * 16^2 = 4 + 240 + 256 = 500.

Итак, у нас все получилось надеюсь всем стало понятно, что такое системы счисления и как переводить из одной системы в другую.

murnik.ru

Ответы@Mail.Ru: системы исчисления в информатике

Системой счисления называется совокупность приемов наименования и записи чисел. В любой системе счисления для представления чисел выбираются некоторые символы (их называют цифрами) , а остальные числа получаются в результате каких-либо операций над цифрами данной системы счисления.
Система называется позиционной, если значение каждой цифры (ее вес) изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число.
Любая позиционная система характеризуется своим основанием.
Основание позиционной системы счисления — это количество различных знаков или символов, используемых для изображения цифр в данной системе.
За основание можно принять любое натуральное число — два, три, четыре, шестнадцать и т. д. Следовательно, возможно бесконечное множество позиционных систем.
В непозиционных системах счисления вес цифры не зависит от позиции, которую она занимает в числе. Так, например, в римской системе счисления в числе XXXII (тридцать два) вес цифры X в любой позиции равен просто десяти.

Десятичная система счисления
Пришла в Европу из Индии, где она появилась не позднее VI века н. э. В этой системе 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, но информацию несет не только цифра, но и место, на котором цифра стоит (то есть ее позиция) . В десятичной системе счисления особую роль играют число 10 и его степени: 10, 100, 1000 и т. д. Самая правая цифра числа показывает число единиц, вторая справа — число десятков, следующая — число сотен и т. д.

Двоичная система счисления
В этой системе всего две цифры — 0 и 1. Особую роль здесь играет число 2 и его степени: 2, 4, 8 и т. д. Самая правая цифра числа показывает число единиц, следующая цифра — число двоек, следующая — число четверок и т. д. Двоичная система счисления позволяет закодировать любое натуральное число — представить его в виде последовательности нулей и единиц. В двоичном виде можно представлять не только числа, но и любую другую информацию: тексты, картинки, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что легко реализуется технически

Восьмеричная система счисления
В этой системе счисления 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7. Цифра 1, указанная в самом младшем разряде, означает — как и в десятичном числе — просто единицу. Та же цифра 1 в следующем разряде означает 8, в следующем 64 и т. д. Число 100 (восьмеричное) есть не что иное, как 64 (десятичное) . Чтобы перевести в двоичную систему, например, число 611 (восьмеричное) , надо заменить каждую цифру эквивалентной ей двоичной триадой (тройкой цифр) . Легко догадаться, что для перевода многозначного двоичного числа в восьмеричную систему нужно разбить его на триады справа налево и заменить каждую триаду соответствующей восьмеричной цифрой.

Шестнадцатеричная система счисления
Запись числа в восьмеричной системе счисления достаточно компактна, но еще компактнее она получается в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцатеричных цифр взяты привычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а вот в качестве остальных 6 цифр используют первые буквы латинского алфавита: A, B, C, D, E, F. Цифра 1, записанная в самом младшем разряде, означат просто единицу. Та же цифра 1 в следующем — 16 (десятичное) , в следующем — 256 (десятичное) и т. д. Цифра F, указанная в самом младшем разряде, означает 15 (десятичное) . Перевод из шестнадцатеричной системы в двоичную и обратно производится аналогично тому, как это делается для восьмеричной системы.

Жду «+» в репутации

otvet.mail.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *