Все формулы по теме кинематика: Ошибка: 404 Материал не найден

Содержание

формулы, определения, методы решения задач

Кинематика — это специальный раздел теоретической механики. Направление сформировалось несколько позднее, чем статика и динамика: во второй половине XIX столетия. Первые исследования в области кинематики были посвящены огнестрельному оружию. Ученые стремились понять процесс полета снаряда, производили расчет траектории его движения. В дальнейшем кинематика как научное направление получило широкое распространение и существенно повлияло на развитие технического прогресса.

Кинематика — описание

Кинематика является разделом механики, цель которого — изучение механического движения тел с пренебрежением к причинам, вызывающим это движение.

Механика представляет собой научную область физики, которой посвящены исследования механического движения тел. Основной целью данного направления служит определение точного положения тела в пространстве в любой момент времени. Важным понятием этого раздела является материальная точка в виде тела с определенной массой и размерами, которыми можно пренебречь для решения задачи при наличии следующих условий:

  1. Путь, который преодолевает тело, существенно больше, чем его размеры.
  2. Расстояние между телами значительно превышает их размеры.
  3. Объект совершает поступательное движение.

Движение тела рассматривают в системе отсчета, состоящей из системы координат и прибора, измеряющего время. Траекторией называют линию, которую объект описывает, совершая движение. Путь является скалярной величиной, определяемой как длина траектории. Перемещением обозначают вектор, который соединяет начальное и конечное положение тела, преодолеваемое им в течение определенного промежутка времени.

Совершая движение, тело может только увеличивать пройденный путь, при этом перемещение увеличивается или уменьшается. К примеру, уменьшение перемещения наблюдается во время обратного движения тела. Если объект движется прямолинейно в одном направлении, то путь определяется модулем перемещения. В случае криволинейного движения — путь превышает перемещение. При рассмотрении замкнутой траектории перемещение будет равно нулю.

Теория и формулы

Благодаря многолетним исследованиям в области кинематики ученым удалось вывести определенные закономерности движения тела. С помощью справедливых уравнений представляется возможным ответить на многие вопросы о разных характеристиках, которые изменяются либо остаются постоянными во время движения объектов.

Путь, время, скорость

Расстояние представляет собой удаленность одной точки положения тела от другой. Тело преодолевает путь, который представляет собой важную характеристику механического движения. Общепринятым обозначением пути является латинская буква s. Данный параметр измеряют метрами и километрами, если речь идет о больших расстояниях.

Скорость представляет собой путь, который тело преодолело в течение единицы времени. В качестве единицы времени часто используют 1 час, 1 минуту, 1 секунду. Для расчета скорости необходимо определить отношение пути к времени движения. В случае, когда в условиях задачи расстояние измеряется в метрах, а время пути — в секундах, то скорость следует рассчитывать в метрах в секунду (м/с). Для обозначения скорости используют латинскую букву \(v\).

Нередко требуется определить время пути. Данный параметр обозначают с помощью латинской буквы \(t\).

Важно отметить, что скорость, путь и время взаимосвязаны. При известных характеристиках скорости и времени можно определить расстояние, которое преодолело тело. Путь в данном случае равен произведению скорости и времени, рассчитывается по формуле:

\(s=v\times t\)

При известных величинах времени и расстояния достаточно просто определить скорость движения тела, руководствуясь следующим уравнением:

\(v=\frac{s}{t}\)

Равномерное движение

Равномерным движением называют движение тела, которое совершает равные перемещения в течение любых равных промежутков времени.

Источник: goodfon.ru

Скорость при равномерном движении определяется как отношение перемещения ко времени, в течение которого данное перемещение было совершено. Уравнение имеет следующий вид:

\(\vec{v}=\frac{\vec{s}}{t}\)

\(\vec{v}=const\)

Проекция вектора скорости на ось ОХ выглядит таким образом:

\(v_{x}=\frac{s_{x}}{t}\)

\(v_{x}=const\)

Если вектор скорости спроецировать на ось координат, то она будет равна быстроте изменения данной координаты:

\(v_{x}=\frac{x-x_{0}}{t}\)

Прямолинейное равноускоренное движение

Прямолинейным равноускоренным движением называют движение по прямой траектории, для которого характерно постоянное ускорение.

Ускорение для прямолинейного равноускоренного движения обозначают следующим образом:

\(\vec{a}=const\)

При таком движении можно наблюдать увеличение или уменьшение скорости. Чтобы определить скорость, необходимо выполнить следующий расчет:

\(\vec{v}=\vec{v}_{0}+\vec{a}t\)

Если тело разгоняется в проекции оси ОХ, то скорость можно определить по формуле:

\(v_{x}=v_{0x}+a_{x}t\)

a>0, движение является равноускоренным.

Источник: fizi4ka.ru

Во время торможения в проекции на ось ОХ скорость рассчитывают следующим образом:

\(v_{x}=v_{0x}-a_{x}t\)

а<0, движение является равнозамедленным.

Источник: fizi4ka.ru

Графически зависимость ускорения от времени, то есть график ускорения во время равноускоренного движения тела, можно представить в виде:

Источник: fizi4ka.ru

График ускорения, характеризующий равноускоренное движение тела, представляет собой прямую, которая параллельна оси времени:

  • график 1 находится над осью t, тело совершает разгон, ах>0;
  • график 2 размещен под осью t, тело тормозит, ах<0.

Графически скорость или проекция скорости изображается в виде зависимости скорости от времени:

Источник: fizi4ka.ru

Графически скорость, характерная для равноускоренного движения тела, имеет вид прямой. График 1 направлен вверх, тело будет совершать равноускоренное движение в положительном направлении оси ОХ:

\(v_{0x}>0\)

\(a_x>0\)

\(a_{1x} = tg α \)

График 2 направлен вниз, тело будет двигаться равнозамедленно в положительном направлении оси ОХ:

\(v_{0x}>0\)

\(a_x<0\)

\(a_{2x} = tg α \)

График 3 направлен вниз, тело свершает равноускоренное движение против оси ОХ:

\(v_{0x}<0\)

\(a_x<0\)

Исходя из графика зависимости скорости от времени, определяют перемещение, которое тело преодолело в течение определенного промежутка времени \(t_2-t_1\).{2}}{-2g}\)

В максимальной верхней точке тело, брошенное вверх, будет обладать нулевой скоростью, \(v=0\). Для расчета времени подъема можно воспользоваться формулой:

\(t=\frac{v_{0}}{g}\)

Свободно падающее тело

Свободным падением называют движение тела в условиях безвоздушного пространства под действием силы тяжести.

В условиях свободного падения ускорения тел с разной массой будут равны. Данный параметр называют ускорением свободного падения. Оно всегда направлено к центру нашей планеты, то есть вертикально вниз. Величина обозначается латинской буквой g, а единицами измерения являются м/с2.

Ускорение свободного падения равно 9,8 м/с2. В задачах по физике допускается использовать значение g=10 м/с2.

Движение по окружности с постоянной по модулю скоростью

Движением по окружности при постоянной по модулю скоростью называют простейшим видом криволинейного движения.{-1}\) (Гц).

\(\nu=\frac{N}{t}\)

Период и частота являются взаимно обратными величинами:

\(T=\frac{1}{\nu}\)

\(\nu =\frac{1}{T}\)

Линейная скорость представляет собой скорость движения тела по окружности. Параметр обозначают латинской буквой v, единицами измерения являются м/с. Линейная скорость направлена по касательной к окружности и рассчитывается по формуле:

\(v=\frac{2\pi \times R}{T}\)

\(R\) является радиусом окружности.

Угловой скоростью называют физическую величину, которая определяется как отношение угла поворота и времени, за которое тело совершает этот поворот. Обозначают параметр как ω. Единицами измерения угловой скорости являются рад/с. Угловая скорость определяется по формуле:

\(\omega =\frac{\varphi }{t}\)

\(\varphi\) представляет собой угол поворота.

Источник: fizi4ka.ru

Направление угловой скорости определяют с помощью правила правого винта или буравчика. В случае, когда вращательное движение винта соотносится с направлением движения тела по окружности, то поступательное движение винта и направление угловой скорости совпадают.{2}R\)

\(\omega = \frac{2\pi }{T}\)

\(\omega = 2\pi v\)

Во время равномерного движения тела по окружности точки, расположенные на радиусе, перемещаются с равной угловой скоростью, так как радиус за одно и то же время поворачивается на одинаковый угол. В это время линейная скорость разных точек радиуса отличается в зависимости от того, насколько близко или далеко от центра они размещены:

\(v_{1}=\omega r\)

\(v_{2}=\omega R\)

\(\frac{v_{1}}{v_{2}}=\frac{r}{R}\)

Источник: fizi4ka.ru

При рассмотрении равномерного движения двух соединенных тел можно наблюдать отсутствие отличий в линейных скоростях, но при этом угловые скорости тел будут различны в зависимости от радиуса тела:

\(\omega _{1}=\frac{v}{R_{1}}\)

\(\omega _{2}=\frac{v}{R_{2}}\)

\(\frac{\omega _{1}}{\omega _{2}}=\frac{R_{1}}{R_{2}}\)

Источник: fizi4ka.ru

Движение тела, брошенного под углом к горизонту

Движение тела, которое бросили под углом к горизонту, можно представить в виде суперпозиции двух движений:

  1. Равномерного горизонтального перемещения.{2}}\)

    Дальность полета тела соответствует уравнению:

    \(l=v_{0x}t=v_{0x}\sqrt{\frac{2h_{0}}{g}}\)

    Вычислить угол между вектором скорости и осью ОХ можно с помощью формулы:

    \(\tan \beta =\frac{v_{y}}{v_{x}}=\frac{-gt}{v_{0x}}\)

    Задачи по кинематике, их решение

    Задача 1

    Рассмотрим путь велосипедиста из одного населенного пункта в другой. Половина расстояния была преодолена со скоростью 12 км/ч (\(v_1\)). Далее половину оставшегося времени он ехал со скоростью 6 км/ч (\(v_2\)). Остаток расстояния путник преодолел пешком со скоростью 4км/ч (\(v_3\)). Необходимо рассчитать среднюю скорость на всем пути следования велосипедиста.

    Решение

    Данный пример относится к теме равномерного прямолинейного движения одного тела. Процесс можно изобразить схематично:

    Источник: pandia.ru

    \(S = S_1 + S_2 + S_3\)

    \(t = t_1 + t_2 + t_3\)

    На каждый отрезок пути необходимо составить уравнение движения:

    \(S_1 = v_1t_1\)

    \(S_2 = v_2t_2\)

    \(S_3 = v_3t_3\)

    Далее можно представить дополнительные условия задачи:

    \(S_1 = S_2 + S_3\)

    \(t_2 = t_3\)

    \(v_{sr}=\frac{S}{t}=\frac{S_{1}+S_{2}+S_{3}}{t_{1}+t_{2}+t_{3}}\)

    Следует преобразить формулу и подставить числовые значения:

    \(v_{sr}=\frac{2S_{1}}{\frac{S_{1}}{v_{1}}+\frac{2S_{1}}{v_{2}+v_{3}}}=\frac{2v_{1}\left(v_{2}+v_{3} \right)}{2v_{1}+v_{2}+v_{3}}\)

    \(v_{sr}=\frac{2\times 12\left(6+4 \right)}{2\times 12+6+4}=7\)

    Ответ: средняя скорость составляет \(7\) км/ч.{2}}=\frac{9,81}{0,17}=57,7\)

    Ответ: камень упал с высоты \(57,7\) м.

    Решение задач по кинематике основано на простых формулах. Успешность результата зависит от умения грамотно применять справедливые уравнения в том или ином случае. Бывают ситуации, когда в процессе изучения физики возникают некоторые трудности. Простым решением будет обратиться к порталу Феникс.Хелп.

    Основные понятия кинематики

    Определение 1

    Кинематика − это раздел механики, который рассматривает движение тел без объяснения вызывающих его причин. 

    Определение 2

    Механическое движение тела − это изменение положения данного тела в пространстве относительно других тел во времени. 

    Как мы сказали, механическое движение тела относительно. Движение одного и того же тела относительно разных тел может быть разным.

    Определение 3

    Для характеристики движения тела указывается, по отношению к какому из тел рассматривается это движение. Это будет тело отсчета.

    Определение 4

    Система отсчета − система координат, которая связана с телом отсчета и временем для отсчета. Она позволяет определить положение передвигающегося тела в любой отрезок времени.

    В СИ единицей длины выступает метр, а единицей времени – секунда.

    У каждого тела есть определенные размеры. Разные части тела расположены в разных пространственных местах. Но в большинстве задач механики не нужно указывать положение отдельных частей тела. Если размеры тела маленькие в сравнении с расстояниями до остальных тел, тогда заданное тело считается его материальной точкой. Таким образом поступают при изучении перемещения планет вокруг Солнца.

    Определение 5

    Механическое движение называют поступательным, в случае если все части тела перемещаются одинаково.

    Пример 1

    Поступательное движение наблюдается у кабин в аттракционе «Колесо обозрения» или у автомобиля на прямолинейном участке пути.

    При поступательном движении тела его также рассматривают в качестве материальной точки.

    Определение 6

    Материальная точка − это тело, размерами которого при заданных условиях можно пренебречь. 

    Материальная точка в механике

    Термин “материальная точка” имеет важное значение в механике.

    Определение 7

    Траектория движения тела − некоторая линия, которую тело или материальная точка описывает, перемещаясь во времени от одной точки до другой.

    Местонахождение материальной точки в пространстве в любой временной отрезок (закон движения) определяют, используя зависимость координат от времени x=x(t), y=y(t), z=z(t) или зависимость от времени радиус-вектора r→=r→(t), проведенного от начала координат до заданной точки. Наглядно это представлено на рисунке 1.1.1.

    Рисунок 1.1.1. Определение положения точки при помощи координат x=x (t), y=y (t) и z=z (t) и радиус-вектора r→(t), r0→ – радиус-вектор положения точки в начальный момент времени.

    Определение 8

    Перемещение тела s→=∆r→=r→-r0→ – это направленный отрезок прямой, который соединяет начальное положение тела с его дальнейшим положением. Перемещение является векторной величиной.

    Пройденный путь l равняется длине дуги траектории, преодоленной телом за определенное время t. Путь является скалярной величиной.

    Если движение тела рассматривается в течение довольно короткого отрезка времени, тогда вектор перемещения оказывается направленным по касательной к траектории в заданной точке, а его длина равняется преодоленному пути.

    В случае небольшого промежутка времени Δt преодоленный телом путь Δl практически совпадает с модулем вектора перемещения ∆s→. При перемещении тела по криволинейной траектории модуль вектора движения все время меньше пройденного пути (рисунок 1.1.2).

    Рисунок 1.1.2. Пройденный путь l и вектор перемещения ∆s→ при криволинейном движении тела.
    a и b – это начальная и конечная точки пути.

    Нужна помощь преподавателя?

    Опиши задание — и наши эксперты тебе помогут!

    Описать задание

    Определение средней и мгновенной скорости движения тела. Основные формулы кинематики

    Для описания движения в физике введено понятие средней скорости: υ→=∆s→∆t=∆r→∆t.

    Физиков больше интересует формула не средней, а мгновенной скорости, которая рассчитывается как предел, к которому стремится средняя скорость на бесконечно маленьком промежутке времени Δt, то есть υ→=∆s→∆t=∆r→∆t; ∆t→0.

    В математике данный предел называется производная и обозначается dr→dt или r→˙.

    Мгновенная скорость υ→ тела в каждой точке криволинейной траектории направлена по касательной к траектории в заданной точке. Отличие между средней и мгновенной скоростями демонстрирует рисунок 1.1.3.

    Рисунок 1.1.3. Средняя и мгновенная скорости. ∆s1→, ∆s2→, ∆s3→ – перемещения за время ∆t1<∆t2<∆t3 соответственно. При t→0, υ→ср→υ→.

    При перемещении тела по криволинейной траектории скорость υ→ меняется по модулю и по направлению. Изменение вектора скорости υ→ за какой-то маленький промежуток времени Δt задается при помощи вектора ∆υ→ (рисунок 1.1.4).

    Вектор изменения скорости ∆υ→=υ2→-υ1→ за короткий промежуток времени Δt раскладывается на 2 составляющие: ∆υr→, которая направлена вдоль вектора υ→ (касательная составляющая) и ∆υn→, которая направлена перпендикулярно вектору υ→ (нормальная составляющая).

    Рисунок 1.1.4. Изменение вектора скорости по величине и по направлению. ∆υ→=∆υ→r+∆υ→n – изменение вектора скорости за промежуток времени Δt.

    Определение 9

    Мгновенное ускорение тела a→ – это предел отношения небольшого изменения скорости ∆υ→ к короткому отрезку времени Δt, в течение которого изменялась скорость: a→=∆υ→∆t=∆υ→τ∆t+∆υ→n∆t; (∆t→0).

    Направление вектора ускорения a→, при криволинейном движении, не совпадает с направлением вектора скорости υ→. Составляющие вектора ускорения a→ – это касательные (тангенциальные) a→τ и нормальные a→n ускорения (рисунок 1.1.5).

     Рисунок 1.1.5.Касательное и нормальное ускорения. 

    Касательное ускорение показывает, как быстро меняется скорость тела по модулю: aτ=∆υ∆t; ∆t→0.

    Вектор a→τ направлен по касательной к траектории.

    Нормальное ускорение показывает, как быстро скорость тела меняется по направлению.

    Пример 2

    Представим криволинейное движение, как движение по дугам окружностей (рисунок 1.1.6).

    Рисунок 1.1.6. Движение по дугам окружностей.

    Нормальное ускорение находится в зависимости от модуля скорости υ и радиуса R окружности, по дуге которой тело перемещается в определенный момент времени: an=υ2R.

    Вектор an→ все время направлен к центру окружности.

    По рисунку 1.1.5 видно, модуль полного ускорения равен a=aτ2+an2.

    Итак, основные физические величины в кинематике материальной точки – это пройденный путь l, перемещение s→, скорость υ→ и ускорение a→.

    Путь l – скалярная величина.

    Перемещение s→, скорость υ→ и ускорение a→ – векторные величины.

    Для того чтобы задать какую-нибудь векторную величину, необходимо задать ее модуль и определить направление. Вектора подчиняются математическим правилам: их можно проектировать на координатные оси, складывать, вычитать и др.

    Нужны формулы по физике ,,тема; кинематика. кто даст все формулы то я поделюсь 80 б

    Средняя скорость перемещения vср — это вектор, определяемый выражением
    vср = Δr/Δt.
    Мгновенная скорость перемещения v — это вектор, определяемый выражением
    v = dr/dt.
    Средняя скорость пути vср — это скаляр, определяемый выражением
    vср = Δs/Δt.
    Мгновенная скорость пути v — это скаляр, определяемый выражением
    v = ds/dt.
    Модуль мгновенной скорости перемещения и мгновенная скорость пути — это одно и то же, поскольку dr = ds.
    Среднее ускорение aср — это вектор, определяемый выражением
    aср = Δv/Δt.
    Мгновенное ускорение (или просто, ускорение) a — это вектор, определяемый выражением
    a =dv/dt.
    Касательное (тангенциальное) ускорение aτ (нижний индекс — это греческая строчная буква тау) — это вектор, являющийся векторной проекцией мгновенного ускорения на касательную ось.
    Нормальное (центростремительное) ускорение an — это вектор, являющийся векторной проекцией мгновенного ускорения на ось нормали. 
    Модуль касательного ускорения
    | aτ | = dv/dt, 
    то есть это — производная модуля мгновенной скорости по времени.
    Модуль нормального ускорения
    | an | = v2/r,
    где r — величина радиуса кривизны траектории в точке нахождения тела.
    Мгновенная угловая скорость (или просто, угловая скорость) ω — это вектор, определяемый выражением
    ω = dφ/dt
    Мгновенное угловое ускорение (или просто, угловое ускорение) ε — это вектор, определяемый выражением
    ε = dω/dt. 
    Кинематическое уравнение равномерного и прямолинейного движения имеет вид:
    r = r0 + v t,
    где r — радиус-вектор объекта в момент времени t, r0 — то же в начальный момент времени t0 (в момент начала наблюдений). 
    Кинематическое уравнение движения с постоянным ускорением имеет вид:
    r = r0 + v0 t + at2/2, где v0 скорость объекта в момент t0 . 
    Уравнение для скорости тела при движении с постоянным ускорением имеет вид:
    v = v0 + a t. 
    Кинематическое уравнение равномерного движения по окружности в полярных координатахимеет вид: 
    φ = φ0 + ωz t,
    где φ — угловая координата тела в данный момент времени, φ0 — угловая координата тела в момент начала наблюдения (в начальный момент времени), ωz — проекция угловой скорости ω на ось Z (обычно эта ось выбирается перпендикулярно плоскости вращения).
    Кинематическое уравнение движения по окружности с постоянным ускорением в полярных координатах имеет вид:
    φ = φ0 + ω0z t + εz t2/2.
    Кинематическое уравнение гармонических колебаний вдоль оси X имеет вид: 
    х = А Cos (ω t + φ0),
    где A — амплитуда колебаний, ω — циклическая частота, φ0 — начальная фаза колебаний.
    Проекция скорости точки, колеблющейся вдоль оси X, на эту ось равна:
    vx = − ω · A · Sin (ω t + φ0).
    Проекция ускорения точки, колеблющейся вдоль оси X, на эту ось равна:
    аx = − ω2 · A · Cos (ω t + φ0).
    Связь между циклической частотой ω, обычной частотой ƒ и периодом колебаний T:
    ω = 2 πƒ = 2 π/T ( π = 3,14 — число пи).

    .

    Основные понятия кинематики и формулы. Кинематика

    Что представляют собой основные понятия кинематики? Что это вообще за наука и изучением чего она занимается? Сегодня мы поговорим о том, что представляет собой кинематика, какие основные понятия кинематики имеют место в задачах и что они означают. Дополнительно поговорим о величинах, с которыми наиболее часто приходится иметь дело.

    Кинематика. Основные понятия и определения

    Для начала поговорим о том, что она собой представляет. Одним из наиболее изучаемых разделов физики в школьном курсе является механика. За ней в неопределенном порядке следует электричество, оптика и некоторые другие разделы, такие как, например, ядерная и атомная физика. Но давайте подробнее разберемся с механикой. Этот занимается изучением механического движения тел. В нем устанавливаются некоторые закономерности и изучаются его способы.

    Кинематика как часть механики

    Последняя подразделяется на три части: кинематика, динамика и три поднауки, если их так можно назвать, имеют некоторые особенности. Например, статика изучает правила равновесия механических систем. Сразу же в голову приходит ассоциация с чашами весов. Динамика изучает закономерности движения тел, но при этом обращает внимание на силы, действующие на них. А вот кинематика занимается тем же самым, только в учет силы не принимаются. Следовательно, не учитывается в задачах и масса тех самых тел.

    Основные понятия кинематики. Механическое движение

    Субъектом в этой науке является Под ней понимается тело, размерами которого, по сравнению с определенной механической системой, можно пренебречь. Это так называемое идеализированное тело, сродни идеальному газу, который рассматривают в разделе молекулярной физики. Вообще, понятие материальной точки, как в механике в общем, так и в кинематике в частности, играет достаточно важную роль. Наиболее часто рассматривается так называемое

    Что это значит и каким оно может быть?

    Обычно движения подразделяют на вращательное и поступательное. Основные понятия кинематики поступательного движения связаны в основном с применяемыми в формулах величинами. О них мы поговорим позднее, а пока что вернемся к типу движения. Понятно, что если речь идет о вращательном, то тело крутится. Соответственно, поступательным движением будет называться перемещение тела в плоскости или линейно.

    Теоретическая база для решения задач

    Кинематика, основные понятия и формулы которой рассматриваем сейчас, имеет огромное количество задач. Это достигается за счет обычной комбинаторики. Один из методов разнообразия здесь — изменение неизвестных условий. Одну и ту же задачу можно представить в разном свете, просто меняя цель ее решения. Требуется найти расстояние, скорость, время, ускорение. Как видите, вариантов целое море. Если же сюда подключить условия свободного падения, простор становится просто невообразимым.

    Величины и формулы

    Прежде всего сделаем одну оговорку. Как известно, величины могут иметь двоякую природу. С одной стороны, определенной величине может соответствовать то или иное численное значение. Но с другой, она может иметь и направление распространения. Например, волна. В оптике мы сталкиваемся с таким понятием, как длина волны. Но ведь если есть когерентный источник света (тот же самый лазер), то мы имеем дело в пучком плоскополяризованных волн. Таким образом, волне будет соответствовать не только численное значение, обозначающее ее длину, но и заданное направление распространения.

    Классический пример

    Подобные случаи являются аналогией в механике. Допустим, перед нами катится тележка. По характеру движения мы можем определить векторные характеристики ее скорости и ускорения. Сделать это при поступательном движении (например, по ровному полу) будет чуточку сложнее, поэтому мы рассмотрим два случая: когда тележка закатывается наверх и когда она скатывается вниз.

    Итак, представим себе, что тележка едет вверх по небольшому уклону. В таком случае она будет замедляться, если на нее не действуют внешние силы. Но в обратной ситуации, а именно, когда тележка скатывается сверху вниз, она будет ускоряться. Скорость в двух случаях направлена туда, куда движется объект. Это нужно взять за правило. А вот ускорение может изменять вектор. При замедлении оно направлено в противоположную для вектора скорости сторону. Этим объясняется замедление. Аналогичную логическую цепочку можно применить и для второй ситуации.

    Остальные величины

    Только что мы поговорили о том, что в кинематике оперируют не только скалярными величинами, но и векторными. Теперь сделаем еще один шаг вперед. Кроме скорости и ускорения при решении задач применяются такие характеристики, как расстояние и время. Кстати, скорость подразделяется на начальную и мгновенную. Первая из них является частным случаем второй. — эта та скорость, которую можно найти в любой момент времени. А с начальной, наверное, все и так понятно.

    Задача

    Немалая часть теории была изучена нами ранее в предыдущих пунктах. Теперь осталось только привести основные формулы. Но мы сделаем еще лучше: не просто рассмотрим формулы, но и применим их при решении задачи, чтобы окончательно закрепить полученные знания. В кинематике используется целый набор формул, комбинируя которые, можно добиться всего, чего нужно для решения. Приведем задачу с двумя условиями, чтобы разобраться в этом полностью.

    Велосипедист тормозит после пересечения финишной черты. Для полной остановки ему потребовалось пять секунд. Узнайте, с каким ускорением он тормозил, а также какой тормозной путь успел пройти. считать линейным, конечную скорость принять равной нулю. В момент пересечения финишной черты скорость была равна 4 метрам в секунду.

    На самом деле, задача достаточно интересная и не такая простая, как может показаться на первый взгляд. Если мы попробуем взять формулу расстояния в кинематике (S = Vot +(-) (at^2/2)), то ничего у нас не выйдет, поскольку мы будем иметь уравнение с двумя переменными. Как же поступить в таком случае? Мы можем пойти двумя путями: сначала вычислить ускорение, подставив данные в формулу V = Vo — at или же выразить оттуда ускорение и подставить его в формулу расстояния. Давайте используем первый способ.

    Итак, конечная скорость равна нулю. Начальная — 4 метра в секунду. Путем переноса соответствующих величин в левые и правые части уравнения добиваемся выражения ускорения. Вот оно: a = Vo/t. Таким образом, оно будет равно 0,8 метров на секунду в квадрате и будет нести тормозящий характер.

    Переходим к формуле расстояния. В нее просто подставляем данные. Получим ответ: тормозной путь равен 10 метрам.

    Масса.

    Масса m — скалярная физическая величина, характеризующая свойство тел притягиваться к земле и к другим телам.

    Масса тела — постоянная величина.

    Единица массы — 1 килограмм (кг).

    Плотность.

    Плотностью ρ называется отношение массы m тела к занимаемому им объёму V:

    Единица плотности — 1 кг/м 3 .

    Сила.

    Сила F — физическая величина, характеризующая действие тел друг на друга и являющаяся мерой их взаимодействия. Сила — векторная величина; вектор силы характеризуется модулем (числовым значением) F, точкой приложения и направлением.

    Единица силы — 1 ньютон (Н).

    Сила тяжести.

    Сила тяжести — сила, с которой тела притягиваются к Земле. Она направлена к центру Земли и, следовательно, перпендикулярна к её поверхности:

    Давление.

    Давление p — скалярная физическая величина, равная отношению силы F, действующей перпендикулярно поверхности, к площади этой поверхности S:

    Единица давления — 1 паскаль (Па) = 1 Н/м 2 .

    Работа.

    Работа A — скалярная физическая велечина, равная произведению силы F на расстояние S, пройденное телом под действием этой силы:

    Единица работы — 1 джоуль (Дж) = 1 Н*м.

    Энергия.

    Энергия E — скалярная физическая величина, характеризующая любое движение и любое взаимодействие и определяющая способность тела совершать работу.

    Единица энергии, как и работы, — 1 Дж.

    Кинематика

    Движение.

    Механическим движением тела называют изменение с течением времени его положения в пространстве.

    Система отсчёта.

    Связанные с телом отсчёта систему координат и часы называют системой отсчёта.

    Материальная точка.

    Тело, размерами которого можно пренебречь в данной ситуации, называется материальной точкой. Строго говоря, все законы механики справедливы для материальных точек.

    Траектория.

    Линия, вдоль которой перемещается тело, называется траекторией. По виду траектории движения разделяются на два типа — прямолинейное и криволинейное.

    Путь и перемещение.

    Путь — скальрная величина, равная расстоянию, пройденному телом вдоль траектории движения. Перемещение — вектор, соединяющий начальную и конечную точки пути.

    Скорость.

    Скоростью υ называют векторную физическую величину, характеризующую быстроту и направление перемещения тела. Для равномерного движения скорость равна отношению перемещения ко времени, за которое оно произошло:

    Единица скорости — 1 м/с, но часто пользуются км/ч (36 км/ч = 10 м/с).

    Уравнение движения.

    Уравнение движения — зависимость перемещения от времени. Для равномерного прямолинейного движения уравнение движения имеет вид

    Мгновенная скорость.

    Мгновенная скорость — отношение очень малого перемещения к промежутку времени, за который оно произошло:

    Средняя скорость:

    Ускорение.

    Ускорением a называют векторную физическую величину, характеризующую быстроту изменения скорости движения. При равнопеременном движении (т.е при равноускоренном или равнозамедленном) ускорение равно отношению изменения скорости к промежутку времени, за который это изменение произошло:

    Для того чтобы понять, что изучает механика, необходимо рассмотреть, что означает движение в самом общем смысле. Значение этого слова подразумевает под собой изменение чего-либо. Например, политическое движение выступает за равноправие разных слоев населения вне зависимости от их расовой принадлежности. Раньше его не было, затем что-то изменилось и теперь каждый человек имеет равные права. Это движение цивилизации вперед. Еще пример — экологическое. В прошлом, выбравшись на природу, никто не задумывался о том, что оставляет после себя мусор. Сегодня же любой цивилизованный человек соберет его за собой и отвезет в специально отведенное место для дальнейшей утилизации.

    Что-то подобное можно наблюдать и в механике. При механическом движении изменяется положение тела в пространстве относительно других предметов с течением времени. Основная задача механики — указать, где находится объект в любой момент, учитывая даже тот, который еще не наступил. То есть, предсказать положение тела в заданное время, а не только узнать, где именно в пространстве оно находилось в прошлом.

    Кинематика — это раздел механики, который изучает движение тела, не анализируя его причины. Это значит, что она учит не объяснять, а описывать. То есть, придумать способ, с помощью которого можно было бы задать положение тела в любой момент времени. Основные понятия кинематики включают в себя скорость, ускорение, расстояние, время и перемещение.

    Сложность в описании движения

    Первая проблема, с которой сталкивается кинематика — это то, что у каждого тела есть определенный размер. Допустим, необходимо описать движение какого-нибудь предмета. Это значит научиться обозначать его положение в любой момент времени. Но каждый предмет занимает в пространстве какое-то место. То есть, что все части этого объекта в один и тот же момент времени занимают разное положение.

    Какую точку в таком случае необходимо взять для описания нахождения всего предмета? Если учитывать каждую, то расчеты окажутся слишком сложными. Поэтому решение ответа на этот вопрос можно максимально упростить. Если все точки одного тела движутся в одинаковом направлении, то для описания движения достаточно одной такой, которую содержит это тело.

    Виды движения в кинематике

    Существует три типа:

    1. Поступательным называется движение, при котором любая прямая проведенная в теле остается параллельной самой себе. Например, автомобиль, который движется по шоссе, совершает такой вид движения.
    2. Вращательным называется такое движение тела при котором все его точки движутся по окружностям с центрами, лежащими на одной прямой, называемой осью вращения. Например, вращение Земли относительно своей оси.
    3. Колебательным называется движение, при котором тело повторяет свою траекторию через определенный отрезок времени. Например, движение маятника.

    Основные понятия кинематики — материальная точка

    Любое сложное движение можно описать как комбинацию двух простейших видов — поступательного и вращательного. Например колесо автомобиля или юла, стоящая на движущейся прямо платформе, участвуют одновременно в этих двух типах перемещения.

    Но что делать, если движение тела нельзя представить в виде комбинации? Например, если автомобиль едет по ухабистой дороге, его положение будет меняться очень сложным образом. Если рассчитывать только то, что этот транспорт перемещается из одного города в другой, то в такой ситуации становится не важно какого размера тело движется из точки А в точку Б и им можно пренебречь. В данном случае важно только за какое время автомобиль прошел определенное расстояние и с какой скоростью двигался.

    Однако следует учитывать, что пренебрежение размером допускается не в каждой задаче. Например, если рассчитывать движение при парковке автомобиля, то игнорирование величины данного тела, приведет к пагубным последствием. Поэтому, только в тех ситуациях, когда в рамках конкретной задачи, размерами движущегося объекта можно пренебречь, то такое тело принято называть материальной точкой.

    Формулы кинематики

    Числа, с помощью которых задается положение точки в пространстве, называются координатами. Чтобы определить его на прямой, достаточно одного числа, когда речь идет о поверхности, то двух, о пространстве — трех. Большего количества чисел в трехмерном мире (для описывания положения материальной точки) не требуется.

    Существует три основных уравнения для понятия кинематики, как раздела о движении тел:

    1. v = u + at.
    2. S = ut + 1/2at 2 .
    3. v 2 = u 2 + 2as.

    v = конечная скорость,

    u = Начальная скорость,

    a = ускорение,

    s = расстояние, пройденное телом,

    Формулы кинематики в одномерном пространстве:

    X — X o = V o t + 1/2a t2

    V 2 = V o 1 + 2a (X — X o)

    X — X o = 1\2 (V o + V) t
    Где,

    V — конечная скорость (м / с),

    V o — начальная скорость (м / с),

    a — ускорение (м / с 2),

    t — время (с),

    X — конечное положение (м),

    Формулы кинематики в двумерном пространстве

    Поскольку следующие уравнения используются для описания материальной точки на плоскости, стоит рассматривать ось X и Y.

    Учитывая направление Х:

    a x = constant

    V fx = V i x + a x Δt

    X f = X i + V i x Δt +1/2a x Δt 2

    Δt = V fx -V ix /a x

    V fx 2 = V ix 2 + 2ax Δx

    X f = X i + 1/2 (V fx + V ix) Δ t .
    И учитывая направление y:

    a y = constant

    V fy = V iy + a y Δt

    y f = y i + V iy Δt + 1/2 a x Δt 2

    Δt = V fy — V iy /a y

    V fy 2 = V iy 2 + 2 ay Δ y

    y f = y i +1/2 (V fy + V iy) Δt.

    V f — конечная скорость (м / с),

    V i — начальная скорость (м / с),

    a — ускорение (m / с 2),

    t — время (с),

    X — конечное положение (м),

    X 0 — начальное положение (м).

    Перемещение брошенного снаряда — лучший пример для описания движения объекта в двух измерениях. Здесь тело перемещается, как в вертикальном положении У, так и в горизонтальном положении Х, поэтому можно сказать, что предмет имеет две скорости.

    Примеры задач по кинематике

    Задача 1 : Начальная скорость грузовика равна нулю. Изначально этот объект находится в состоянии покоя. На него начинает действовать равномерное ускорение в течение временного интервала 5,21 секунды. Расстояние, пройденное грузовиком, составляет 110 м. Найти ускорение.

    Решение:
    Пройденное расстояние s = 110 м,
    начальная скорость v i = 0,
    время t = 5,21 с,
    ускорение a =?
    Используя основные понятие и формулы кинематики, можно заключить, что,
    s = v i t + 1/2 a t 2 ,
    110 м = (0) × (5.21) + 1/2 × a (5.21) 2 ,
    a = 8,10 м / с 2 .

    Задача 2: Точка движется вдоль оси х (в см), после t секунд путешествия, ее можно представить, используя ​​уравнение x = 14t 2 — t + 10. Необходимо найти среднюю скорость точки, при условии, что t = 3s?

    Решение:
    Положение точки при t = 0, равно x = 10 см.
    При t = 3s, x = 133 см.
    Средняя скорость, V av = Δx/Δt = 133-10/3-0 = 41 см / с.

    Что такое тело отсчета

    О движении можно говорить только если существует что-то, относительно чего рассматривается изменение положения изучаемого объекта. Такой предмет называется телом отсчета и оно условно всегда принимается за неподвижное.

    Если в задаче не указано в какой системе отчета движется материальная точка, то телом отсчета считается земля по умолчанию. Однако, это не означает, что за неподвижный в заданный момент времени объект, относительно которого совершается движение, нельзя принять любой другой удобный для расчета. Например, за тело отсчета можно взять движущийся поезд, поворачивающий автомобиль и так далее.

    Система отсчета и ее значение в кинематике

    Для описания движения необходимы три составляющие:

    1. Система координат.
    2. Тело отсчета.
    3. Прибор для измерения времени.

    Тело отсчета, система координат, связанная с ним и прибор для измерения времени образуют систему отсчета. Бессмысленно говорить о движении, если ее не указывать. Правильно подобранная система отсчета, позволяет упростить описание перемещения и, наоборот, усложнить, если она выбрана неудачно.

    Именно по этой причине, человечество долго считало, что Солнце движется вокруг Земли и что она находится в центре вселенной. Такое сложное движение светил, связанное с тем, что земные наблюдатели находятся в системе отсчета, которая очень замысловато движется. Земля вращается вокруг свое оси и одновременно вокруг Солнца. На самом деле, если сменить систему отсчета, то все движения небесных тел легко описываются. Это в свое время было сделано Коперником. Он предложил собственное описание мироустройства, в котором Солнце неподвижно. Относительно него описать движение планет гораздо проще, чем если телом отсчета будет являться Земля.

    Основные понятия кинематики — путь и траектория

    Пусть некоторая точка первое время находилась в положении А, спустя некоторое время она оказалась в положении В. Между ними можно провести одну линию. Но для того, чтобы эта прямая несла больше информации о движении, то есть было понятно откуда и куда двигалось тело, это должен быть не просто отрезок, а направленный, обычно обозначающийся буквой S. Перемещением тела, называется вектор, проведенный из начального положения предмета в конечное.

    Если тело изначально находилось в точке А, а затем оказалось в точке В, это не означает, что оно двигалось только по прямой. Из одного положения в другое можно попасть бесконечным количеством способов. Линия, вдоль которой движется тело, является еще одним основным понятием кинематики — траекторией. А ее длина называется путь, который обычно обозначается буквами L или l.

    КИНЕМАТИКА

    Основные понятия, законы и формулы.

    Кинематика — раздел механики, в котором изучается механическое движение тел без учета причин, вызывающих движение.

    Механическим движением называют изменение положения тела в пространстве с течением времени относительно других тел.

    Простейшим механическим движением является движение материальной точки — тела, размеры и форму которого можно не учитывать при описании его движения.

    Движение материальной точки характеризуют траекторией, длиной пути, перемещением, скоростью и ускорением.

    Траекторией называют линию в пространстве, описываемую точкой при своем движении.

    Расстояние , пройденное телом вдоль траектории движения, — путь(S).

    Перемещение — направленный отрезок, соединяющий начальное и конечное положение тела.

    Длина пути — величина скалярная, перемещение — величина векторная.

    Средняя скорость — это физическая величена, равная отношению вектора перемещения к промежутку времени, за которое произошло перемещение:

    Мгновенная скорость или скорость в данной точке траектории — это физическая величина, равная пределу, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Dt:

    Величину характеризующую изменение скорости за единицу времени, называют средним ускорением :

    .

    Аналогично понятию мгновенной скорости вводится понятие мгновенного ускорения:

    При равноускоренном движении ускорение постоянно.

    Простейший вид механического движения-прямолинейное движение точки с постоянным ускорением.

    Движение с постоянным ускорением называется равнопеременным; в этом случае:

    ; ; https://pandia.ru/text/78/108/images/image014_3.gif»>; ; https://pandia.ru/text/78/108/images/image017_1.gif»>; ;

    Связь между линейными и угловыми величинами при вращательном движении :

    ; ; https://pandia.ru/text/78/108/images/image024_1.gif»>.

    Любое сложное движение можно рассматривать как результат сложения простых движений. Результирующее перемещение равно геометрической сумме и находится по правилу сложения векторов. Скорость тела и скорость системы отсчета так же складывается векторно.

    При решении задач на те или иные разделы курса, кроме общих правил решения, приходится учитывать некоторые дополнения к ним, связанные со спецификой самих разделов.

    Задачи по кинематике , разбираемые в курсе элементарной физики, включают в себя: задачи о равнопеременном прямолинейном движении одной или нескольких точек, задачи о криволинейном движении точки на плоскости. Мы рассмотрим каждый из этих типов задач отдельно.

    Прочитав условие задачи, нужно сделать схематический чертеж, на котором следует изобразить систему отсчета, и указать траекторию движения точки.

    После того как выполнен чертеж, с помощью формул:

    ; ; https://pandia.ru/text/78/108/images/image027_0.gif»>; .

    Подстановкой в них развёрнутых выражений для Sn, S0, vn, v0 и т. д. и заканчивается первая часть решения.

    Пример 1 . Велосипедист ехал из одного города в другой. Половину пути он проехал со скоростью v1 = 12 км/ч далее половину оставшегося времени он ехал со скоростью v2 = 6 км/ч, а затем до конца пути шел пешком со скоростью v3 = 4 км/ч. Определить среднюю скорость велосипедиста на всем пути.

    а) Эта задача на равномерное прямолинейное движение одного тела. Представляем ввиде схемы. При составлении ее изображаем траекторию движения и выбираем на ней начало отсчета (точка 0). Весь путь разбиваем на три отрезка S1,S2, S3, на каждом из них указываем скорости v1, v2, v3 и отмечаем время движения t1, t2, t3.

    S = S1 + S2 + S3, t = t1 + t2 + t3.

    б) Составляем уравнения движения для каждого отрезка пути:

    S1 = v1t1; S2 = v2t2; S3 = v3t3 и записываем дополнительные условия задачи:

    S1 = S2 + S3; t2 = t3; .

    в) Читаем еще раз условие задачи, выписываем числовые значения известных величин и, определив число неизвестных в полученной системе уравнений (их 7: S1, S2, S3, t1, t2, t3, vср), решаем ее относительно искомой величины vср.

    Если при решении задачи полностью учтены все условия, но в составленных уравнениях число неизвестных получается больше числа уравнений, это означает, что при последующих вычислениях одно из неизвестных сократится, такой случай имеет место и в данной задаче.

    Решение системы относительно средней скорости дает:

    .

    г) Подставив числовые значения в расчётную формулу, получим:

    ; vср 7 км/ч.

    Напоминаем, что числовые значения удобнее подставлять в окончательную расчетную формулу, минуя все промежуточные. Это экономит время на решение задачи и предотвращает дополнительные ошибки в расчётах.

    Решая задачи на движение тел, брошенных вертикально вверх, нужно обратить особое внимание на следующее. Уравнения скорости и перемещения для тела, брошенного вертикально вверх, дают общую зависимость v и h от t для всего времени движения тела. Они справедливы (со знаком минус) не только для замедленного подъема вверх, но и для дальнейшего равноускоренного падения тела, поскольку движение тела после мгновенной остановки в верхней точке траектории происходит с прежним ускоронием. Под h при этом всегда подразумевают перемещение движущейся точки по вертикали, то есть ее координату в данный момент времени — расстояние от начала отсчета движения до точки.

    Если тело брошено вертикально вверх со скоростью V0, то время tпод и высота hmax его подъема равны:

    ; .

    Кроме того, время падения этого тела в исходную точку равно времени подъема на максимальную высоту (tпад = tпод), а скорость падения равна начальной скорости бросания (vпад = v0).

    Пример 2 . Тело брошено вертикально вверх с начальной скоростью v0 = 3,13 м/с. Когда оно достигло верхней точки полета, из того же начального пункта с такой же начальной скоростью бросили второе тело. Определите, на каком расстоянии от точки бросания встретятся тела; сопротивление воздуха не учитывать.

    Решение . Делаем чертеж. Отмечаем на нем траекторию движения первого и второго тела. Выбрав начало отсчета в точке, указываем начальную скорость тел v0, высоту h, на которой произошла встреча (координату y=h), и время t1 и t2 движения каждого тела до момента встречи.

    Уравнение перемещения тела, брошенного вверх, позволяет найти координату движущегося тела для любого момента времени независимо от того, поднимается ли тело вверх или падает после подъема вниз, поэтому для первого тела

    ,

    а для второго

    .

    Третье уравнение составляем, исходя из условия, что второе тело бросили позднее первого на время максимального подъема:

    Решая систему трех уравнений относительно h, получаем:

    ; ; https://pandia.ru/text/78/108/images/image017_1.gif»>; ,

    где и ; https://pandia.ru/text/78/108/images/image042.gif»>.gif»>

    Прямоугольную систему координат выбираем так, чтобы ее начало совпало с точкой бросания, а оси были направлены вдоль поверхности Земли и по нормали к ней в сторону начального смещения снаряда. Изображаем траекторию снаряда, его начальную скорость , угол бросания a, высоту h, горизонтальное перемещение S, скорость в момент падения (она направлена по касательной к траектории в точке падения) и угол падения j (углом падения тела называют угол между касательной к траектории, проведенной в точку падения, и нормалью к поверхности Земли).

    Движение тела, брошенного под углом к горизонту, можно представить как результат сложения двух прямолинейных движений: одного-вдоль поверхности Земли (оно будет равномерным, поскольку сопротивление воздуха не учитывается) и второго-перпендикулярно поверхности Земли (в данном случае это будет движение тела, брошенного вертикально вверх). Для замены сложного движения двумя простыми разложим (по правилу параллелограмма) скорости и https://pandia.ru/text/78/108/images/image047.gif»>и — для скорости и vx и vy — для скорости .

    а, б) Составляем уравнение скорости и перемещения для их проекций по каждому направлению. Так как в горизонтальном направлении снаряд летит равномерно, то его скорость и координаты в любой момент времени удовлетворяют уравнениям

    и . (2)

    Для вертикального направления:

    (3)

    и . (4)

    В момент времени t1, когда снаряд упадет на землю, его координаты равны:

    В последнем уравнении перемещение h взято со знаком «минус», так как за время движения снаряд сместится относительно уровня отсчета 0 высоты в сторону противоположную направлению, принятому за положительное.

    Результирующая скорость в момент падения равна:

    В составленной системе уравнений пять неизвестных, нам нужно определить S и v.

    При отсутствии сопротивления воздуха, скрость падения тел равна начальной скорости бросания независимо от того, под каким углом было брошено тело, лишь бы точки бросания и падения находились на одном уровне. Учитывая, что горизонтальная составляющая скорости с течением времени не изменяется, легко установить, что в момент падения скорость тела образует с горизонтом такой же угол, как и в момент бросания.

    д) Решая уровнения (2), (4) и (5) относительно начального угла бросания a получим:

    . (10)

    Поскольку угол бросания не может быть мнимым, то это выражение имеет физический смысл лишь при условии, что

    ,

    то есть,

    откуда следует, что максимальное перемещение снаряда по горизонтальному направлению равно:

    .

    Подставляя выражение для S = Smax в формулу (10), получим для угла a, при котором дальность полета наибольшая:

    Кинематика формулы по физике 9. Основные понятия кинематики и формулы. Теоретическая база для решения задач

    Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

    Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

    Основные формулы по физике динамика, кинематика, статика

    Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

    Формулы кинематики:

    Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

    После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

    Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


    Основные формулы молекулярной физики и термодинамики

    Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

    Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева — все эти милые сердцу формулы собраны ниже.

    Кстати! Для всех наших читателей сейчас действует скидка 10% на .


    Основные формулы по физике: электричество

    Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

    И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

    На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

    Основные единицы измерения величин в системе СИ таковы:

    1. единица измерения длины — метр (1 м),
    2. времени — секунда (1 с),
    3. массы — килограмм (1 кг),
    4. количества вещества — моль (1 моль),
    5. температуры — кельвин (1 К),
    6. силы электрического тока — ампер (1 А),
    7. Справочно: силы света — кандела (1 кд, фактически не используется при решении школьных задач).

    При выполнении расчетов в системе СИ углы измеряются в радианах.

    Если в задаче по физике не указано, в каких единицах нужно дать ответ, его нужно дать в единицах системы СИ или в производных от них величинах, соответствующих той физической величине, о которой спрашивается в задаче. Например, если в задаче требуется найти скорость, и не сказано в чем ее нужно выразить, то ответ нужно дать в м/с.

    Для удобства в задачах по физике часто приходится использовать дольные (уменьшающие) и кратные (увеличивающие) приставки. их можно применять к любой физической величине. Например, мм – миллиметр, кт – килотонна, нс – наносекунда, Мг – мегаграмм, ммоль – миллимоль, мкА – микроампер. Запомните, что в физике не существует двойных приставок. Например, мкг – это микрограмм, а не милликилограмм. Учтите, что при сложении и вычитании величин Вы можете оперировать только величинами одинаковой размерности. Например, килограммы можно складывать только с килограммами, из миллиметров можно вычитать только миллиметры, и так далее. При переводе величин пользуйтесь следующей таблицей.

    Путь и перемещение

    Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения.

    Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

    Всякое тело имеет определенные размеры. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать материальной точкой . Так при движении автомобиля на большие расстояния можно пренебречь его длиной, так как длина автомобиля мала по сравнению с расстояниями, которое он проходит.

    Интуитивно понятно, что характеристики движения (скорость, траектория и т.д.) зависят от того, откуда мы на него смотрим. Поэтому для описания движения вводится понятие системы отсчета. Система отсчета (СО) – совокупность тела отсчета (оно считается абсолютно твердым), привязанной к нему системой координат, линейки (прибора, измеряющего расстояния), часов и синхронизатора времени.

    Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает в данной СО некоторую линию, которую называют траекторией движения тела .

    Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его конечным положением. Перемещение есть векторная величина. Перемещение может в процессе движения увеличиваться, уменьшаться и становиться равным нулю.

    Пройденный путь равен длине траектории, пройденной телом за некоторое время. Путь – скалярная величина. Путь не может уменьшаться. Путь только возрастает либо остается постоянным (если тело не движется). При движении тела по криволинейной траектории модуль (длина) вектора перемещения всегда меньше пройденного пути.

    При равномерном (с постоянной скоростью) движении путь L может быть найден по формуле:

    где: v – скорость тела, t – время в течении которого оно двигалось. При решении задач по кинематике перемещение обычно находится из геометрических соображений. Часто геометрические соображения для нахождения перемещения требуют знания теоремы Пифагора.

    Средняя скорость

    Скорость – векторная величина, характеризующая быстроту перемещения тела в пространстве. Скорость бывает средней и мгновенной. Мгновенная скорость описывает движение в данный конкретный момент времени в данной конкретной точке пространства, а средняя скорость характеризует все движение в целом, в общем, не описывая подробности движения на каждом конкретном участке.

    Средняя скорость пути – это отношение всего пути ко всему времени движения:

    где: L полн – весь путь, который прошло тело, t полн – все время движения.

    Средняя скорость перемещения – это отношение всего перемещения ко всему времени движения:

    Эта величина направлена так же, как и полное перемещение тела (то есть из начальной точки движения в конечную точку). При этом не забывайте, что полное перемещение не всегда равно алгебраической сумме перемещений на определённых этапах движения. Вектор полного перемещения равен векторной сумме перемещений на отдельных этапах движения.

    • При решении задач по кинематике не совершайте очень распространенную ошибку. Средняя скорость, как правило, не равна среднему арифметическому скоростей тела на каждом этапе движения. Среднее арифметическое получается только в некоторых частных случаях.
    • И уж тем более средняя скорость не равна одной из скоростей, с которыми двигалось тело в процессе движения, даже если эта скорость имела примерно промежуточное значение относительно других скоростей, с которыми двигалось тело.

    Равноускоренное прямолинейное движение

    Ускорение – векторная физическая величина, определяющая быстроту изменения скорости тела. Ускорением тела называют отношение изменения скорости к промежутку времени, в течение которого происходило изменение скорости:

    где: v 0 – начальная скорость тела, v – конечная скорость тела (то есть спустя промежуток времени t ).

    Далее, если иное не указано в условии задачи, мы считаем, что если тело движется с ускорением, то это ускорение остается постоянным. Такое движение тела называется равноускоренным (или равнопеременным). При равноускоренном движении скорость тела изменяется на одинаковую величину за любые равные промежутки времени.

    Равноускоренное движение бывает собственно ускоренным, когда тело увеличивает скорость движения, и замедленным, когда скорость уменьшается. Для простоты решения задач удобно для замедленного движения брать ускорение со знаком «–».

    Из предыдущей формулы, следует другая более распространённая формула, описывающая изменение скорости со временем при равноускоренном движении:

    Перемещение (но не путь) при равноускоренном движении рассчитывается по формулам:

    В последней формуле использована одна особенность равноускоренного движения. При равноускоренном движении среднюю скорость можно рассчитывать, как среднее арифметическое начальной и конечной скоростей (этим свойством очень удобно пользоваться при решении некоторых задач):

    С расчетом пути все сложнее. Если тело не меняло направления движения, то при равноускоренном прямолинейном движении путь численно равен перемещению. А если меняло – надо отдельно считать путь до остановки (момента разворота) и путь после остановки (момента разворота). А просто подстановка времени в формулы для перемещения в этом случае приведет к типичной ошибке.

    Координата при равноускоренном движении изменяется по закону:

    Проекция скорости при равноускоренном движении изменяется по такому закону:

    Аналогичные формулы получаются для остальных координатных осей.

    Свободное падение по вертикали

    На все тела, находящиеся в поле тяготения Земли, действует сила тяжести. В отсутствие опоры или подвеса эта сила заставляет тела падать к поверхности Земли. Если пренебречь сопротивлением воздуха, то движение тел только под действием силы тяжести называется свободным падением. Сила тяжести сообщает любым телам, независимо от их формы, массы и размеров, одинаковое ускорение, называемое ускорением свободного падения. Вблизи поверхности Земли ускорение свободного падения составляет:

    Это значит, что свободное падение всех тел вблизи поверхности Земли является равноускоренным (но не обязательно прямолинейным) движением. Вначале рассмотрим простейший случай свободного падения, когда тело движется строго по вертикали. Такое движение является равноускоренным прямолинейным движением, поэтому все изученные ранее закономерности и фокусы такого движения подходят и для свободного падения. Только ускорение всегда равно ускорению свободного падения.

    Традиционно при свободном падении используют направленную вертикально ось OY. Ничего страшного здесь нет. Просто надо во всех формулах вместо индекса «х » писать «у ». Смысл этого индекса и правило определения знаков сохраняется. Куда направлять ось OY – Ваш выбор, зависящий от удобства решения задачи. Вариантов 2: вверх или вниз.

    Приведем несколько формул, которые являются решением некоторых конкретных задач по кинематике на свободное падение по вертикали. Например, скорость, с которой упадет тело падающее с высоты h без начальной скорости:

    Время падения тела с высоты h без начальной скорости:

    Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v 0 , время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

    Горизонтальный бросок

    При горизонтальном броске с начальной скоростью v 0 движение тела удобно рассматривать как два движения: равномерное вдоль оси ОХ (вдоль оси ОХ нет никаких сил препятствующих или помогающих движению) и равноускоренного движения вдоль оси OY.

    Скорость в любой момент времени направлена по касательной к траектории. Ее можно разложить на две составляющие: горизонтальную и вертикальную. Горизонтальная составляющая всегда остается неизменной и равна v x = v 0 . А вертикальная возрастает по законам ускоренного движения v y = gt . При этом полная скорость тела может быть найдена по формулам:

    При этом важно понять, что время падения тела на землю никоим образом не зависит от того, с какой горизонтальной скоростью его бросили, а определяется только высотой, с которой было брошено тело. Время падения тела на землю находится по формуле:

    Пока тело падает, оно одновременно движется вдоль горизонтальной оси. Следовательно, дальность полета тела или расстояние, которое тело сможет пролететь вдоль оси ОХ, будет равно:

    Угол между горизонтом и скоростью тела легко найти из соотношения:

    Также иногда в задачах могут спросить о моменте времени, при котором полная скорость тела будет наклонена под определенным углом к вертикали . Тогда этот угол будет находиться из соотношения:

    Важно понять, какой именно угол фигурирует в задаче (с вертикалью или с горизонталью). Это и поможет вам выбрать правильную формулу. Если же решать эту задачу координатным методом, то общая формула для закона изменения координаты при равноускоренном движении:

    Преобразуется в следующий закон движения по оси OY для тела брошенного горизонтально:

    При ее помощи мы можем найти высоту на которой будет находится тело в любой момент времени. При этом в момент падения тела на землю координата тела по оси OY будет равна нулю. Очевидно, что вдоль оси OХ тело движется равномерно, поэтому в рамках координатного метода горизонтальная координата изменятся по закону:

    Бросок под углом к горизонту (с земли на землю)

    Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

    Время подъема до максимальной высоты при броске под углом к горизонту:

    Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

    Минимальная скорость тела брошенного под углом к горизонту – в наивысшей точке подъёма, и равна:

    Максимальная скорость тела брошенного под углом к горизонту – в моменты броска и падения на землю, и равна начальной. Это утверждение верно только для броска с земли на землю. Если тело продолжает лететь ниже того уровня, с которого его бросали, то оно будет там приобретать все большую и большую скорость.

    Сложение скоростей

    Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными. Таким образом, покой и движение тела относительны.

    Таким образом, абсолютная скорость тела равна векторной сумме его скорости относительно подвижной системы координат и скорости самой подвижной системы отсчета. Или, другими словами, скорость тела в неподвижной системе отсчета равна векторной сумме скорости тела в подвижной системе отсчета и скорости подвижной системы отсчета относительно неподвижной.

    Равномерное движение по окружности

    Движение тела по окружности является частным случаем криволинейного движения. Такой вид движения также рассматривается в кинематике. При криволинейном движении вектор скорости тела всегда направлен по касательной к траектории. То же самое происходит и при движении по окружности (см. рисунок). Равномерное движение тела по окружности характеризуется рядом величин.

    Период – время, за которое тело, двигаясь по окружности, совершает один полный оборот. Единица измерения – 1 с. Период рассчитывается по формуле:

    Частота – количество оборотов, которое совершило тело, двигаясь по окружности, в единицу времени. Единица измерения – 1 об/с или 1 Гц. Частота рассчитывается по формуле:

    В обеих формулах: N – количество оборотов за время t . Как видно из вышеприведенных формул, период и частота величины взаимообратные:

    При равномерном вращении скорость тела будет определяется следующим образом:

    где: l – длина окружности или путь, пройденный телом за время равное периоду T . При движении тела по окружности удобно рассматривать угловое перемещение φ (или угол поворота), измеряемое в радианах. Угловой скоростью ω тела в данной точке называют отношение малого углового перемещения Δφ к малому промежутку времени Δt . Очевидно, что за время равное периоду T тело пройдет угол равный 2π , следовательно при равномерном движении по окружности выполняются формулы:

    Угловая скорость измеряется в рад/с. Не забывайте переводить углы из градусов в радианы. Длина дуги l связана с углом поворота соотношением:

    Связь между модулем линейной скорости v и угловой скоростью ω :

    При движении тела по окружности с постоянной по модулю скоростью изменяется только направление вектора скорости, поэтому движение тела по окружности с постоянной по модулю скоростью является движением с ускорением (но не равноускоренным), так как меняется направление скорости. В этом случае ускорение направлено по радиусу к центру окружности. Его называют нормальным, или центростремительным ускорением , так как вектор ускорения в любой точке окружности направлен к ее центру (см. рисунок).

    Модуль центростремительного ускорения связан с линейной v на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  4. Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Для того чтобы понять, что изучает механика, необходимо рассмотреть, что означает движение в самом общем смысле. Значение этого слова подразумевает под собой изменение чего-либо. Например, политическое движение выступает за равноправие разных слоев населения вне зависимости от их расовой принадлежности. Раньше его не было, затем что-то изменилось и теперь каждый человек имеет равные права. Это движение цивилизации вперед. Еще пример — экологическое. В прошлом, выбравшись на природу, никто не задумывался о том, что оставляет после себя мусор. Сегодня же любой цивилизованный человек соберет его за собой и отвезет в специально отведенное место для дальнейшей утилизации.

    Что-то подобное можно наблюдать и в механике. При механическом движении изменяется положение тела в пространстве относительно других предметов с течением времени. Основная задача механики — указать, где находится объект в любой момент, учитывая даже тот, который еще не наступил. То есть, предсказать положение тела в заданное время, а не только узнать, где именно в пространстве оно находилось в прошлом.

    Кинематика — это раздел механики, который изучает движение тела, не анализируя его причины. Это значит, что она учит не объяснять, а описывать. То есть, придумать способ, с помощью которого можно было бы задать положение тела в любой момент времени. Основные понятия кинематики включают в себя скорость, ускорение, расстояние, время и перемещение.

    Сложность в описании движения

    Первая проблема, с которой сталкивается кинематика — это то, что у каждого тела есть определенный размер. Допустим, необходимо описать движение какого-нибудь предмета. Это значит научиться обозначать его положение в любой момент времени. Но каждый предмет занимает в пространстве какое-то место. То есть, что все части этого объекта в один и тот же момент времени занимают разное положение.

    Какую точку в таком случае необходимо взять для описания нахождения всего предмета? Если учитывать каждую, то расчеты окажутся слишком сложными. Поэтому решение ответа на этот вопрос можно максимально упростить. Если все точки одного тела движутся в одинаковом направлении, то для описания движения достаточно одной такой, которую содержит это тело.

    Виды движения в кинематике

    Существует три типа:

    1. Поступательным называется движение, при котором любая прямая проведенная в теле остается параллельной самой себе. Например, автомобиль, который движется по шоссе, совершает такой вид движения.
    2. Вращательным называется такое движение тела при котором все его точки движутся по окружностям с центрами, лежащими на одной прямой, называемой осью вращения. Например, вращение Земли относительно своей оси.
    3. Колебательным называется движение, при котором тело повторяет свою траекторию через определенный отрезок времени. Например, движение маятника.

    Основные понятия кинематики — материальная точка

    Любое сложное движение можно описать как комбинацию двух простейших видов — поступательного и вращательного. Например колесо автомобиля или юла, стоящая на движущейся прямо платформе, участвуют одновременно в этих двух типах перемещения.

    Но что делать, если движение тела нельзя представить в виде комбинации? Например, если автомобиль едет по ухабистой дороге, его положение будет меняться очень сложным образом. Если рассчитывать только то, что этот транспорт перемещается из одного города в другой, то в такой ситуации становится не важно какого размера тело движется из точки А в точку Б и им можно пренебречь. В данном случае важно только за какое время автомобиль прошел определенное расстояние и с какой скоростью двигался.

    Однако следует учитывать, что пренебрежение размером допускается не в каждой задаче. Например, если рассчитывать движение при парковке автомобиля, то игнорирование величины данного тела, приведет к пагубным последствием. Поэтому, только в тех ситуациях, когда в рамках конкретной задачи, размерами движущегося объекта можно пренебречь, то такое тело принято называть материальной точкой.

    Формулы кинематики

    Числа, с помощью которых задается положение точки в пространстве, называются координатами. Чтобы определить его на прямой, достаточно одного числа, когда речь идет о поверхности, то двух, о пространстве — трех. Большего количества чисел в трехмерном мире (для описывания положения материальной точки) не требуется.

    Существует три основных уравнения для понятия кинематики, как раздела о движении тел:

    1. v = u + at.
    2. S = ut + 1/2at 2 .
    3. v 2 = u 2 + 2as.

    v = конечная скорость,

    u = Начальная скорость,

    a = ускорение,

    s = расстояние, пройденное телом,

    Формулы кинематики в одномерном пространстве:

    X — X o = V o t + 1/2a t2

    V 2 = V o 1 + 2a (X — X o)

    X — X o = 1\2 (V o + V) t
    Где,

    V — конечная скорость (м / с),

    V o — начальная скорость (м / с),

    a — ускорение (м / с 2),

    t — время (с),

    X — конечное положение (м),

    Формулы кинематики в двумерном пространстве

    Поскольку следующие уравнения используются для описания материальной точки на плоскости, стоит рассматривать ось X и Y.

    Учитывая направление Х:

    a x = constant

    V fx = V i x + a x Δt

    X f = X i + V i x Δt +1/2a x Δt 2

    Δt = V fx -V ix /a x

    V fx 2 = V ix 2 + 2ax Δx

    X f = X i + 1/2 (V fx + V ix) Δ t .
    И учитывая направление y:

    a y = constant

    V fy = V iy + a y Δt

    y f = y i + V iy Δt + 1/2 a x Δt 2

    Δt = V fy — V iy /a y

    V fy 2 = V iy 2 + 2 ay Δ y

    y f = y i +1/2 (V fy + V iy) Δt.

    V f — конечная скорость (м / с),

    V i — начальная скорость (м / с),

    a — ускорение (m / с 2),

    t — время (с),

    X — конечное положение (м),

    X 0 — начальное положение (м).

    Перемещение брошенного снаряда — лучший пример для описания движения объекта в двух измерениях. Здесь тело перемещается, как в вертикальном положении У, так и в горизонтальном положении Х, поэтому можно сказать, что предмет имеет две скорости.

    Примеры задач по кинематике

    Задача 1 : Начальная скорость грузовика равна нулю. Изначально этот объект находится в состоянии покоя. На него начинает действовать равномерное ускорение в течение временного интервала 5,21 секунды. Расстояние, пройденное грузовиком, составляет 110 м. Найти ускорение.

    Решение:
    Пройденное расстояние s = 110 м,
    начальная скорость v i = 0,
    время t = 5,21 с,
    ускорение a =?
    Используя основные понятие и формулы кинематики, можно заключить, что,
    s = v i t + 1/2 a t 2 ,
    110 м = (0) × (5.21) + 1/2 × a (5.21) 2 ,
    a = 8,10 м / с 2 .

    Задача 2: Точка движется вдоль оси х (в см), после t секунд путешествия, ее можно представить, используя ​​уравнение x = 14t 2 — t + 10. Необходимо найти среднюю скорость точки, при условии, что t = 3s?

    Решение:
    Положение точки при t = 0, равно x = 10 см.
    При t = 3s, x = 133 см.
    Средняя скорость, V av = Δx/Δt = 133-10/3-0 = 41 см / с.

    Что такое тело отсчета

    О движении можно говорить только если существует что-то, относительно чего рассматривается изменение положения изучаемого объекта. Такой предмет называется телом отсчета и оно условно всегда принимается за неподвижное.

    Если в задаче не указано в какой системе отчета движется материальная точка, то телом отсчета считается земля по умолчанию. Однако, это не означает, что за неподвижный в заданный момент времени объект, относительно которого совершается движение, нельзя принять любой другой удобный для расчета. Например, за тело отсчета можно взять движущийся поезд, поворачивающий автомобиль и так далее.

    Система отсчета и ее значение в кинематике

    Для описания движения необходимы три составляющие:

    1. Система координат.
    2. Тело отсчета.
    3. Прибор для измерения времени.

    Тело отсчета, система координат, связанная с ним и прибор для измерения времени образуют систему отсчета. Бессмысленно говорить о движении, если ее не указывать. Правильно подобранная система отсчета, позволяет упростить описание перемещения и, наоборот, усложнить, если она выбрана неудачно.

    Именно по этой причине, человечество долго считало, что Солнце движется вокруг Земли и что она находится в центре вселенной. Такое сложное движение светил, связанное с тем, что земные наблюдатели находятся в системе отсчета, которая очень замысловато движется. Земля вращается вокруг свое оси и одновременно вокруг Солнца. На самом деле, если сменить систему отсчета, то все движения небесных тел легко описываются. Это в свое время было сделано Коперником. Он предложил собственное описание мироустройства, в котором Солнце неподвижно. Относительно него описать движение планет гораздо проще, чем если телом отсчета будет являться Земля.

    Основные понятия кинематики — путь и траектория

    Пусть некоторая точка первое время находилась в положении А, спустя некоторое время она оказалась в положении В. Между ними можно провести одну линию. Но для того, чтобы эта прямая несла больше информации о движении, то есть было понятно откуда и куда двигалось тело, это должен быть не просто отрезок, а направленный, обычно обозначающийся буквой S. Перемещением тела, называется вектор, проведенный из начального положения предмета в конечное.

    Если тело изначально находилось в точке А, а затем оказалось в точке В, это не означает, что оно двигалось только по прямой. Из одного положения в другое можно попасть бесконечным количеством способов. Линия, вдоль которой движется тело, является еще одним основным понятием кинематики — траекторией. А ее длина называется путь, который обычно обозначается буквами L или l.

    Определение 1

    Кинематика − это раздел механики, который рассматривает движение тел без объяснения вызывающих его причин.

    Определение 2

    Механическое движение тела − это изменение положения данного тела в пространстве относительно других тел во времени.

    Как мы сказали, механическое движение тела относительно. Движение одного и того же тела относительно разных тел может быть разным.

    Определение 3

    Для характеристики движения тела указывается, по отношению к какому из тел рассматривается это движение. Это будет тело отсчета .

    Определение 4

    Система отсчета − система координат, которая связана с телом отсчета и временем для отсчета. Она позволяет определить положение передвигающегося тела в любой отрезок времени.

    В С И единицей длины выступает метр, а единицей времени – секунда.

    У каждого тела есть определенные размеры. Разные части тела расположены в разных пространственных местах. Но в большинстве задач механики не нужно указывать положение отдельных частей тела. Если размеры тела маленькие в сравнении с расстояниями до остальных тел, тогда заданное тело считается его материальной точкой. Таким образом поступают при изучении перемещения планет вокруг Солнца.

    Определение 5

    Механическое движение называют поступательным , в случае если все части тела перемещаются одинаково.

    Пример 1

    Поступательное движение наблюдается у кабин в аттракционе «Колесо обозрения» или у автомобиля на прямолинейном участке пути.

    При поступательном движении тела его также рассматривают в качестве материальной точки.

    Определение 6

    Материальная точка − это тело, размерами которого при заданных условиях можно пренебречь.

    Термин “материальная точка” имеет важное значение в механике.

    Определение 7

    Траектория движения тела − некоторая линия, которую тело или материальная точка описывает, перемещаясь во времени от одной точки до другой.

    Местонахождение материальной точки в пространстве в любой временной отрезок (закон движения) определяют, используя зависимость координат от времени x = x (t) , y = y (t) , z = z (t) или зависимость от времени радиус-вектора r → = r → (t) , проведенного от начала координат до заданной точки. Наглядно это представлено на рисунке 1 . 1 . 1 .

    Рисунок 1 . 1 . 1 . Определение положения точки при помощи координат x = x (t) , y = y (t) и z = z (t) и радиус-вектора r → (t) , r 0 → – радиус-вектор положения точки в начальный момент времени.

    Определение 8

    Перемещение тела s → = ∆ r → = r → — r 0 → – это направленный отрезок прямой, который соединяет начальное положение тела с его дальнейшим положением. Перемещение является векторной величиной.

    Пройденный путь l равняется длине дуги траектории, преодоленной телом за определенное время t . Путь является скалярной величиной.

    Если движение тела рассматривается в течение довольно короткого отрезка времени, тогда вектор перемещения оказывается направленным по касательной к траектории в заданной точке, а его длина равняется преодоленному пути.

    В случае небольшого промежутка времени Δ t преодоленный телом путь Δ l практически совпадает с модулем вектора перемещения ∆ s → . При перемещении тела по криволинейной траектории модуль вектора движения все время меньше пройденного пути (рисунок 1 . 1 . 2).

    Рисунок 1 . 1 . 2 . Пройденный путь l и вектор перемещения ∆ s → при криволинейном движении тела.
    a и b – это начальная и конечная точки пути.

    Для описания движения в физике введено понятие средней скорости: υ → = ∆ s → ∆ t = ∆ r → ∆ t .

    Физиков больше интересует формула не средней, а мгновенной скорости, которая рассчитывается как предел, к которому стремится средняя скорость на бесконечно маленьком промежутке времени Δ t , то есть υ → = ∆ s → ∆ t = ∆ r → ∆ t ; ∆ t → 0 .

    В математике данный предел называется производная и обозначается d r → d t или r → ˙ .

    Мгновенная скорость υ → тела в каждой точке криволинейной траектории направлена по касательной к траектории в заданной точке. Отличие между средней и мгновенной скоростями демонстрирует рисунок 1 . 1 . 3 .

    Рисунок 1 . 1 . 3 . Средняя и мгновенная скорости. ∆ s 1 → , ∆ s 2 → , ∆ s 3 → – перемещения за время ∆ t 1 соответственно. При t → 0 , υ → с р → υ → .

    При перемещении тела по криволинейной траектории скорость υ → меняется по модулю и по направлению. Изменение вектора скорости υ → за какой-то маленький промежуток времени Δ t задается при помощи вектора ∆ υ → (рисунок 1 . 1 . 4).

    Вектор изменения скорости ∆ υ → = υ 2 → — υ 1 → за короткий промежуток времени Δ t раскладывается на 2 составляющие: ∆ υ r → , которая направлена вдоль вектора υ → (касательная составляющая) и ∆ υ n → , которая направлена перпендикулярно вектору υ → (нормальная составляющая).

    Рисунок 1 . 1 . 4 . Изменение вектора скорости по величине и по направлению. ∆ υ → = ∆ υ → r + ∆ υ → n – изменение вектора скорости за промежуток времени Δ t .

    Определение 9

    Мгновенное ускорение тела a → – это предел отношения небольшого изменения скорости ∆ υ → к короткому отрезку времени Δ t , в течение которого изменялась скорость: a → = ∆ υ → ∆ t = ∆ υ → τ ∆ t + ∆ υ → n ∆ t ; (∆ t → 0) .

    Направление вектора ускорения a → , при криволинейном движении, не совпадает с направлением вектора скорости υ → . Составляющие вектора ускорения a → – это касательные (тангенциальные) a → τ и нормальные a → n ускорения (рисунок 1 . 1 . 5).

    Рисунок 1 . 1 . 5 . Касательное и нормальное ускорения.

    Касательное ускорение показывает, как быстро меняется скорость тела по модулю: a τ = ∆ υ ∆ t ; ∆ t → 0 .

    Вектор a → τ направлен по касательной к траектории.

    Нормальное ускорение показывает, как быстро скорость тела меняется по направлению.

    Пример 2

    Представим криволинейное движение, как движение по дугам окружностей (рисунок 1 . 1 . 6).

    Рисунок 1 . 1 . 6 . Движение по дугам окружностей.

    Нормальное ускорение находится в зависимости от модуля скорости υ и радиуса R окружности, по дуге которой тело перемещается в определенный момент времени: a n = υ 2 R .

    Вектор a n → все время направлен к центру окружности.

    По рисунку 1 . 1 . 5 видно, модуль полного ускорения равен a = a τ 2 + a n 2 .

    Итак, основные физические величины в кинематике материальной точки – это пройденный путь l , перемещение s → , скорость υ → и ускорение a → .

    Путь l – скалярная величина.

    Перемещение s → , скорость υ → и ускорение a → – векторные величины.

    Для того чтобы задать какую-нибудь векторную величину, необходимо задать ее модуль и определить направление. Вектора подчиняются математическим правилам: их можно проектировать на координатные оси, складывать, вычитать и др.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Прежде всего, следует заметить, что речь будет идти о геометрической точке, то есть области пространства, не имеющей размеров. Именно для этого абстрактного образа (модели) и справедливы все представленные ниже определения и формулы. Однако для краткости я в дальнейшем буду часто говорить о движении тела , объекта или частицы . Это я делаю только для того, чтобы Вам легче было читать. Но всегда помните, что речь идет о геометрической точке.

    Радиус-вектор точки — это вектор, начало которого совпадает с началом системы координат, а конец — с данной точкой. Радиус-вектор обозначается, как правило, буквой r . К сожалению некоторые авторы обозначают его буквой s . Настоятельно советую не использовать обозначение s для радиус-вектора. Дело в том, что подавляющее большинство авторов (как отечественных, так и зарубежных) используют букву s для обозначения пути, который является скаляром и к радиус-вектору, как правило, отношения не имеет. Если вы будете обозначать радиус-вектор как s , то легко можете запутаться. Еще раз, мы, как и все нормальные люди, будем использовать следующие обозначения: r — радиус-вектор точки, s — путь, пройденный точкой.

    Вектор перемещения (часто говорят просто — перемещение ) — это вектор , начало которого совпадает с той точкой траектории, где было тело, когда мы начали изучать данное движение, а конец этого вектора совпадает с той точкой траектории, где мы это изучение закончили. Будем обозначать этот вектор как Δr . Использование символа Δ очевидно: Δr — это разность между радиус-вектором r конечной точки изучаемого отрезка траектории и радиус-вектором r 0 точки начала этого отрезка (рис. 1), то есть Δr = r r 0 .

    Траектория — это линия, вдоль которой движется тело.

    Путь — это сумма длин всех участков траектории, последовательно проходимых телом при движения. Обозначается либо ΔS, если речь идет об участке траектории, либо S, если речь идет о всей траектории наблюдаемого движения. Иногда (редко) путь обозначают и другой буквой, например, L (только не обозначайте его как r, мы уже об этом говорили). Запомните! Путь — это положительный скаляр ! Путь в процессе движения может только увеличиваться .

    Средняя скорость перемещения v ср

    v ср = Δr /Δt.

    Мгновенная скорость перемещения v — это вектор, определяемый выражением

    v = dr /dt.

    Средняя скорость пути v ср — это скаляр, определяемый выражением

    V ср = Δs/Δt.

    Часто встречаются и другие обозначения, например, .

    Мгновенная скорость пути v — это скаляр, определяемый выражением

    Модуль мгновенной скорости перемещения и мгновенная скорость пути — это одно и то же, поскольку dr = ds.

    Среднее ускорение a

    a ср = Δv /Δt.

    Мгновенное ускорение (или просто, ускорение ) a — это вектор, определяемый выражением

    a =dv /dt.

    Касательное (тангенциальное) ускорение a τ (нижний индекс — это греческая строчная буква тау) — это вектор , являющийся векторной проекцией мгновенного ускорения на касательную ось .

    Нормальное (центростремительное) ускорение a n — это вектор , являющийся векторной проекцией мгновенного ускорения на ось нормали .

    Модуль касательного ускорения

    | a τ | = dv/dt,

    То есть это — производная модуля мгновенной скорости по времени.

    Модуль нормального ускорения

    | a n | = v 2 /r,

    Где r — величина радиуса кривизны траектории в точке нахождения тела.

    Важно! Хочу обратить внимание на следующее. Не путайтесь с обозначениями, касающимися касательного и нормального ускорений! Дело в том, что в литературе по этому поводу традиционно наблюдается полная чехарда.

    Запомните!

    a τ — это вектор касательного ускорения,

    a n — это вектор нормального ускорения.

    a τ и a n являются векторными проекциями полного ускорения а на касательную ось и ось нормали соответственно,

    A τ — это проекция (скалярная!) касательного ускорения на касательную ось,

    A n — это проекция (скалярная!) нормального ускорения на ось нормали,

    | a τ |- это модуль вектора касательного ускорения,

    | a n | — это модуль вектора нормального ускорения.

    Особенно не удивляйтесь, если, читая в литературе о криволинейном (в частности, вращательном) движении, Вы обнаружите, что автор под a τ понимает и вектор, и его проекцию, и его модуль. То же самое относится и к a n . Все, как говорится, «в одном флаконе». И такое, к сожалению, сплошь и рядом. Даже учебники для высшей школы не являются исключением, во многих из них (поверьте — в большинстве!) царит полная неразбериха по этому поводу.

    Вот так, не зная азов векторной алгебры или пренебрегая ими, очень легко полностью запутаться при изучении и анализе физических процессов. Поэтому знание векторной алгебры является наиглавнейшим условием успеха в изучении механики. И не только механики. В дальнейшем, при изучении других разделов физики, Вы неоднократно в этом убедитесь.

    Мгновенная угловая скорость (или просто, угловая скорость ) ω — это вектор, определяемый выражением

    ω = dφ /dt,

    Где dφ — бесконечно малое изменение угловой координаты (dφ — вектор!).

    Мгновенное угловое ускорение (или просто, угловое ускорение ) ε — это вектор, определяемый выражением

    ε = dω /dt.

    Связь между v , ω и r :

    v = ω × r .

    Связь между v, ω и r:

    Связь между | a τ |, ε и r:

    | a τ | = ε · r.

    Теперь перейдем к кинематическим уравнениям конкретных видов движения. Эти уравнения надо выучить наизусть .

    Кинематическое уравнение равномерного и прямолинейного движения имеет вид:

    r = r 0 + v t,

    Где r — радиус-вектор объекта в момент времени t, r 0 — то же в начальный момент времени t 0 (в момент начала наблюдений).

    Кинематическое уравнение движения с постоянным ускорением имеет вид:

    r = r 0 + v 0 t + a t 2 /2, где v 0 скорость объекта в момент t 0 .

    Уравнение для скорости тела при движении с постоянным ускорением имеет вид:

    v = v 0 + a t.

    Кинематическое уравнение равномерного движения по окружности в полярных координатах имеет вид:

    φ = φ 0 + ω z t,

    Где φ — угловая координата тела в данный момент времени, φ 0 — угловая координата тела в момент начала наблюдения (в начальный момент времени), ω z — проекция угловой скорости ω на ось Z (обычно эта ось выбирается перпендикулярно плоскости вращения).

    Кинематическое уравнение движения по окружности с постоянным ускорением в полярных координатах имеет вид:

    φ = φ 0 + ω 0z t + ε z t 2 /2.

    Кинематическое уравнение гармонических колебаний вдоль оси X имеет вид:

    Х = А Cos (ω t + φ 0),

    Где A — амплитуда колебаний, ω — циклическая частота, φ 0 — начальная фаза колебаний.

    Проекция скорости точки, колеблющейся вдоль оси X, на эту ось равна:

    V x = − ω · A · Sin (ω t + φ 0).

    Проекция ускорения точки, колеблющейся вдоль оси X, на эту ось равна:

    А x = − ω 2 · A · Cos (ω t + φ 0).

    Связь между циклической частотой ω, обычной частотой ƒ и периодом колебаний T:

    ω = 2 πƒ = 2 π/T (π = 3,14 — число пи).

    Математический маятник имеет период колебаний T, определяемый выражением:

    В числителе подкоренного выражения — длина нити маятника, в знаменателе — ускорение свободного падения

    Связь между абсолютной v абс, относительной v отн и переносной v пер скоростями:

    v абс = v отн + v пер.

    Вот, пожалуй, и все определения и формулы, которые могут понадобиться при решении задач на кинематику. Приведенная информация носит только справочный характер и не может заменить электронную книгу, где доступно, подробно и, надеюсь, увлекательно изложена теория этого раздела механики.

    Основное уравнение кинематики. Кинематика, законы и формулы

    Основные единицы измерения величин в системе СИ таковы:

    1. единица измерения длины — метр (1 м),
    2. времени — секунда (1 с),
    3. массы — килограмм (1 кг),
    4. количества вещества — моль (1 моль),
    5. температуры — кельвин (1 К),
    6. силы электрического тока — ампер (1 А),
    7. Справочно: силы света — кандела (1 кд, фактически не используется при решении школьных задач).

    При выполнении расчетов в системе СИ углы измеряются в радианах.

    Если в задаче по физике не указано, в каких единицах нужно дать ответ, его нужно дать в единицах системы СИ или в производных от них величинах, соответствующих той физической величине, о которой спрашивается в задаче. Например, если в задаче требуется найти скорость, и не сказано в чем ее нужно выразить, то ответ нужно дать в м/с.

    Для удобства в задачах по физике часто приходится использовать дольные (уменьшающие) и кратные (увеличивающие) приставки. их можно применять к любой физической величине. Например, мм – миллиметр, кт – килотонна, нс – наносекунда, Мг – мегаграмм, ммоль – миллимоль, мкА – микроампер. Запомните, что в физике не существует двойных приставок. Например, мкг – это микрограмм, а не милликилограмм. Учтите, что при сложении и вычитании величин Вы можете оперировать только величинами одинаковой размерности. Например, килограммы можно складывать только с килограммами, из миллиметров можно вычитать только миллиметры, и так далее. При переводе величин пользуйтесь следующей таблицей.

    Путь и перемещение

    Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения.

    Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

    Всякое тело имеет определенные размеры. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать материальной точкой . Так при движении автомобиля на большие расстояния можно пренебречь его длиной, так как длина автомобиля мала по сравнению с расстояниями, которое он проходит.

    Интуитивно понятно, что характеристики движения (скорость, траектория и т.д.) зависят от того, откуда мы на него смотрим. Поэтому для описания движения вводится понятие системы отсчета. Система отсчета (СО) – совокупность тела отсчета (оно считается абсолютно твердым), привязанной к нему системой координат, линейки (прибора, измеряющего расстояния), часов и синхронизатора времени.

    Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает в данной СО некоторую линию, которую называют траекторией движения тела .

    Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его конечным положением. Перемещение есть векторная величина. Перемещение может в процессе движения увеличиваться, уменьшаться и становиться равным нулю.

    Пройденный путь равен длине траектории, пройденной телом за некоторое время. Путь – скалярная величина. Путь не может уменьшаться. Путь только возрастает либо остается постоянным (если тело не движется). При движении тела по криволинейной траектории модуль (длина) вектора перемещения всегда меньше пройденного пути.

    При равномерном (с постоянной скоростью) движении путь L может быть найден по формуле:

    где: v – скорость тела, t – время в течении которого оно двигалось. При решении задач по кинематике перемещение обычно находится из геометрических соображений. Часто геометрические соображения для нахождения перемещения требуют знания теоремы Пифагора.

    Средняя скорость

    Скорость – векторная величина, характеризующая быстроту перемещения тела в пространстве. Скорость бывает средней и мгновенной. Мгновенная скорость описывает движение в данный конкретный момент времени в данной конкретной точке пространства, а средняя скорость характеризует все движение в целом, в общем, не описывая подробности движения на каждом конкретном участке.

    Средняя скорость пути – это отношение всего пути ко всему времени движения:

    где: L полн – весь путь, который прошло тело, t полн – все время движения.

    Средняя скорость перемещения – это отношение всего перемещения ко всему времени движения:

    Эта величина направлена так же, как и полное перемещение тела (то есть из начальной точки движения в конечную точку). При этом не забывайте, что полное перемещение не всегда равно алгебраической сумме перемещений на определённых этапах движения. Вектор полного перемещения равен векторной сумме перемещений на отдельных этапах движения.

    • При решении задач по кинематике не совершайте очень распространенную ошибку. Средняя скорость, как правило, не равна среднему арифметическому скоростей тела на каждом этапе движения. Среднее арифметическое получается только в некоторых частных случаях.
    • И уж тем более средняя скорость не равна одной из скоростей, с которыми двигалось тело в процессе движения, даже если эта скорость имела примерно промежуточное значение относительно других скоростей, с которыми двигалось тело.

    Равноускоренное прямолинейное движение

    Ускорение – векторная физическая величина, определяющая быстроту изменения скорости тела. Ускорением тела называют отношение изменения скорости к промежутку времени, в течение которого происходило изменение скорости:

    где: v 0 – начальная скорость тела, v – конечная скорость тела (то есть спустя промежуток времени t ).

    Далее, если иное не указано в условии задачи, мы считаем, что если тело движется с ускорением, то это ускорение остается постоянным. Такое движение тела называется равноускоренным (или равнопеременным). При равноускоренном движении скорость тела изменяется на одинаковую величину за любые равные промежутки времени.

    Равноускоренное движение бывает собственно ускоренным, когда тело увеличивает скорость движения, и замедленным, когда скорость уменьшается. Для простоты решения задач удобно для замедленного движения брать ускорение со знаком «–».

    Из предыдущей формулы, следует другая более распространённая формула, описывающая изменение скорости со временем при равноускоренном движении:

    Перемещение (но не путь) при равноускоренном движении рассчитывается по формулам:

    В последней формуле использована одна особенность равноускоренного движения. При равноускоренном движении среднюю скорость можно рассчитывать, как среднее арифметическое начальной и конечной скоростей (этим свойством очень удобно пользоваться при решении некоторых задач):

    С расчетом пути все сложнее. Если тело не меняло направления движения, то при равноускоренном прямолинейном движении путь численно равен перемещению. А если меняло – надо отдельно считать путь до остановки (момента разворота) и путь после остановки (момента разворота). А просто подстановка времени в формулы для перемещения в этом случае приведет к типичной ошибке.

    Координата при равноускоренном движении изменяется по закону:

    Проекция скорости при равноускоренном движении изменяется по такому закону:

    Аналогичные формулы получаются для остальных координатных осей.

    Свободное падение по вертикали

    На все тела, находящиеся в поле тяготения Земли, действует сила тяжести. В отсутствие опоры или подвеса эта сила заставляет тела падать к поверхности Земли. Если пренебречь сопротивлением воздуха, то движение тел только под действием силы тяжести называется свободным падением. Сила тяжести сообщает любым телам, независимо от их формы, массы и размеров, одинаковое ускорение, называемое ускорением свободного падения. Вблизи поверхности Земли ускорение свободного падения составляет:

    Это значит, что свободное падение всех тел вблизи поверхности Земли является равноускоренным (но не обязательно прямолинейным) движением. Вначале рассмотрим простейший случай свободного падения, когда тело движется строго по вертикали. Такое движение является равноускоренным прямолинейным движением, поэтому все изученные ранее закономерности и фокусы такого движения подходят и для свободного падения. Только ускорение всегда равно ускорению свободного падения.

    Традиционно при свободном падении используют направленную вертикально ось OY. Ничего страшного здесь нет. Просто надо во всех формулах вместо индекса «х » писать «у ». Смысл этого индекса и правило определения знаков сохраняется. Куда направлять ось OY – Ваш выбор, зависящий от удобства решения задачи. Вариантов 2: вверх или вниз.

    Приведем несколько формул, которые являются решением некоторых конкретных задач по кинематике на свободное падение по вертикали. Например, скорость, с которой упадет тело падающее с высоты h без начальной скорости:

    Время падения тела с высоты h без начальной скорости:

    Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v 0 , время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

    Горизонтальный бросок

    При горизонтальном броске с начальной скоростью v 0 движение тела удобно рассматривать как два движения: равномерное вдоль оси ОХ (вдоль оси ОХ нет никаких сил препятствующих или помогающих движению) и равноускоренного движения вдоль оси OY.

    Скорость в любой момент времени направлена по касательной к траектории. Ее можно разложить на две составляющие: горизонтальную и вертикальную. Горизонтальная составляющая всегда остается неизменной и равна v x = v 0 . А вертикальная возрастает по законам ускоренного движения v y = gt . При этом полная скорость тела может быть найдена по формулам:

    При этом важно понять, что время падения тела на землю никоим образом не зависит от того, с какой горизонтальной скоростью его бросили, а определяется только высотой, с которой было брошено тело. Время падения тела на землю находится по формуле:

    Пока тело падает, оно одновременно движется вдоль горизонтальной оси. Следовательно, дальность полета тела или расстояние, которое тело сможет пролететь вдоль оси ОХ, будет равно:

    Угол между горизонтом и скоростью тела легко найти из соотношения:

    Также иногда в задачах могут спросить о моменте времени, при котором полная скорость тела будет наклонена под определенным углом к вертикали . Тогда этот угол будет находиться из соотношения:

    Важно понять, какой именно угол фигурирует в задаче (с вертикалью или с горизонталью). Это и поможет вам выбрать правильную формулу. Если же решать эту задачу координатным методом, то общая формула для закона изменения координаты при равноускоренном движении:

    Преобразуется в следующий закон движения по оси OY для тела брошенного горизонтально:

    При ее помощи мы можем найти высоту на которой будет находится тело в любой момент времени. При этом в момент падения тела на землю координата тела по оси OY будет равна нулю. Очевидно, что вдоль оси OХ тело движется равномерно, поэтому в рамках координатного метода горизонтальная координата изменятся по закону:

    Бросок под углом к горизонту (с земли на землю)

    Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

    Время подъема до максимальной высоты при броске под углом к горизонту:

    Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

    Минимальная скорость тела брошенного под углом к горизонту – в наивысшей точке подъёма, и равна:

    Максимальная скорость тела брошенного под углом к горизонту – в моменты броска и падения на землю, и равна начальной. Это утверждение верно только для броска с земли на землю. Если тело продолжает лететь ниже того уровня, с которого его бросали, то оно будет там приобретать все большую и большую скорость.

    Сложение скоростей

    Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными. Таким образом, покой и движение тела относительны.

    Таким образом, абсолютная скорость тела равна векторной сумме его скорости относительно подвижной системы координат и скорости самой подвижной системы отсчета. Или, другими словами, скорость тела в неподвижной системе отсчета равна векторной сумме скорости тела в подвижной системе отсчета и скорости подвижной системы отсчета относительно неподвижной.

    Равномерное движение по окружности

    Движение тела по окружности является частным случаем криволинейного движения. Такой вид движения также рассматривается в кинематике. При криволинейном движении вектор скорости тела всегда направлен по касательной к траектории. То же самое происходит и при движении по окружности (см. рисунок). Равномерное движение тела по окружности характеризуется рядом величин.

    Период – время, за которое тело, двигаясь по окружности, совершает один полный оборот. Единица измерения – 1 с. Период рассчитывается по формуле:

    Частота – количество оборотов, которое совершило тело, двигаясь по окружности, в единицу времени. Единица измерения – 1 об/с или 1 Гц. Частота рассчитывается по формуле:

    В обеих формулах: N – количество оборотов за время t . Как видно из вышеприведенных формул, период и частота величины взаимообратные:

    При равномерном вращении скорость тела будет определяется следующим образом:

    где: l – длина окружности или путь, пройденный телом за время равное периоду T . При движении тела по окружности удобно рассматривать угловое перемещение φ (или угол поворота), измеряемое в радианах. Угловой скоростью ω тела в данной точке называют отношение малого углового перемещения Δφ к малому промежутку времени Δt . Очевидно, что за время равное периоду T тело пройдет угол равный 2π , следовательно при равномерном движении по окружности выполняются формулы:

    Угловая скорость измеряется в рад/с. Не забывайте переводить углы из градусов в радианы. Длина дуги l связана с углом поворота соотношением:

    Связь между модулем линейной скорости v и угловой скоростью ω :

    При движении тела по окружности с постоянной по модулю скоростью изменяется только направление вектора скорости, поэтому движение тела по окружности с постоянной по модулю скоростью является движением с ускорением (но не равноускоренным), так как меняется направление скорости. В этом случае ускорение направлено по радиусу к центру окружности. Его называют нормальным, или центростремительным ускорением , так как вектор ускорения в любой точке окружности направлен к ее центру (см. рисунок).

    Модуль центростремительного ускорения связан с линейной v на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  5. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  6. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  7. Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Для того чтобы понять, что изучает механика, необходимо рассмотреть, что означает движение в самом общем смысле. Значение этого слова подразумевает под собой изменение чего-либо. Например, политическое движение выступает за равноправие разных слоев населения вне зависимости от их расовой принадлежности. Раньше его не было, затем что-то изменилось и теперь каждый человек имеет равные права. Это движение цивилизации вперед. Еще пример — экологическое. В прошлом, выбравшись на природу, никто не задумывался о том, что оставляет после себя мусор. Сегодня же любой цивилизованный человек соберет его за собой и отвезет в специально отведенное место для дальнейшей утилизации.

    Что-то подобное можно наблюдать и в механике. При механическом движении изменяется положение тела в пространстве относительно других предметов с течением времени. Основная задача механики — указать, где находится объект в любой момент, учитывая даже тот, который еще не наступил. То есть, предсказать положение тела в заданное время, а не только узнать, где именно в пространстве оно находилось в прошлом.

    Кинематика — это раздел механики, который изучает движение тела, не анализируя его причины. Это значит, что она учит не объяснять, а описывать. То есть, придумать способ, с помощью которого можно было бы задать положение тела в любой момент времени. Основные понятия кинематики включают в себя скорость, ускорение, расстояние, время и перемещение.

    Сложность в описании движения

    Первая проблема, с которой сталкивается кинематика — это то, что у каждого тела есть определенный размер. Допустим, необходимо описать движение какого-нибудь предмета. Это значит научиться обозначать его положение в любой момент времени. Но каждый предмет занимает в пространстве какое-то место. То есть, что все части этого объекта в один и тот же момент времени занимают разное положение.

    Какую точку в таком случае необходимо взять для описания нахождения всего предмета? Если учитывать каждую, то расчеты окажутся слишком сложными. Поэтому решение ответа на этот вопрос можно максимально упростить. Если все точки одного тела движутся в одинаковом направлении, то для описания движения достаточно одной такой, которую содержит это тело.

    Виды движения в кинематике

    Существует три типа:

    1. Поступательным называется движение, при котором любая прямая проведенная в теле остается параллельной самой себе. Например, автомобиль, который движется по шоссе, совершает такой вид движения.
    2. Вращательным называется такое движение тела при котором все его точки движутся по окружностям с центрами, лежащими на одной прямой, называемой осью вращения. Например, вращение Земли относительно своей оси.
    3. Колебательным называется движение, при котором тело повторяет свою траекторию через определенный отрезок времени. Например, движение маятника.

    Основные понятия кинематики — материальная точка

    Любое сложное движение можно описать как комбинацию двух простейших видов — поступательного и вращательного. Например колесо автомобиля или юла, стоящая на движущейся прямо платформе, участвуют одновременно в этих двух типах перемещения.

    Но что делать, если движение тела нельзя представить в виде комбинации? Например, если автомобиль едет по ухабистой дороге, его положение будет меняться очень сложным образом. Если рассчитывать только то, что этот транспорт перемещается из одного города в другой, то в такой ситуации становится не важно какого размера тело движется из точки А в точку Б и им можно пренебречь. В данном случае важно только за какое время автомобиль прошел определенное расстояние и с какой скоростью двигался.

    Однако следует учитывать, что пренебрежение размером допускается не в каждой задаче. Например, если рассчитывать движение при парковке автомобиля, то игнорирование величины данного тела, приведет к пагубным последствием. Поэтому, только в тех ситуациях, когда в рамках конкретной задачи, размерами движущегося объекта можно пренебречь, то такое тело принято называть материальной точкой.

    Формулы кинематики

    Числа, с помощью которых задается положение точки в пространстве, называются координатами. Чтобы определить его на прямой, достаточно одного числа, когда речь идет о поверхности, то двух, о пространстве — трех. Большего количества чисел в трехмерном мире (для описывания положения материальной точки) не требуется.

    Существует три основных уравнения для понятия кинематики, как раздела о движении тел:

    1. v = u + at.
    2. S = ut + 1/2at 2 .
    3. v 2 = u 2 + 2as.

    v = конечная скорость,

    u = Начальная скорость,

    a = ускорение,

    s = расстояние, пройденное телом,

    Формулы кинематики в одномерном пространстве:

    X — X o = V o t + 1/2a t2

    V 2 = V o 1 + 2a (X — X o)

    X — X o = 1\2 (V o + V) t
    Где,

    V — конечная скорость (м / с),

    V o — начальная скорость (м / с),

    a — ускорение (м / с 2),

    t — время (с),

    X — конечное положение (м),

    Формулы кинематики в двумерном пространстве

    Поскольку следующие уравнения используются для описания материальной точки на плоскости, стоит рассматривать ось X и Y.

    Учитывая направление Х:

    a x = constant

    V fx = V i x + a x Δt

    X f = X i + V i x Δt +1/2a x Δt 2

    Δt = V fx -V ix /a x

    V fx 2 = V ix 2 + 2ax Δx

    X f = X i + 1/2 (V fx + V ix) Δ t .
    И учитывая направление y:

    a y = constant

    V fy = V iy + a y Δt

    y f = y i + V iy Δt + 1/2 a x Δt 2

    Δt = V fy — V iy /a y

    V fy 2 = V iy 2 + 2 ay Δ y

    y f = y i +1/2 (V fy + V iy) Δt.

    V f — конечная скорость (м / с),

    V i — начальная скорость (м / с),

    a — ускорение (m / с 2),

    t — время (с),

    X — конечное положение (м),

    X 0 — начальное положение (м).

    Перемещение брошенного снаряда — лучший пример для описания движения объекта в двух измерениях. Здесь тело перемещается, как в вертикальном положении У, так и в горизонтальном положении Х, поэтому можно сказать, что предмет имеет две скорости.

    Примеры задач по кинематике

    Задача 1 : Начальная скорость грузовика равна нулю. Изначально этот объект находится в состоянии покоя. На него начинает действовать равномерное ускорение в течение временного интервала 5,21 секунды. Расстояние, пройденное грузовиком, составляет 110 м. Найти ускорение.

    Решение:
    Пройденное расстояние s = 110 м,
    начальная скорость v i = 0,
    время t = 5,21 с,
    ускорение a =?
    Используя основные понятие и формулы кинематики, можно заключить, что,
    s = v i t + 1/2 a t 2 ,
    110 м = (0) × (5.21) + 1/2 × a (5.21) 2 ,
    a = 8,10 м / с 2 .

    Задача 2: Точка движется вдоль оси х (в см), после t секунд путешествия, ее можно представить, используя ​​уравнение x = 14t 2 — t + 10. Необходимо найти среднюю скорость точки, при условии, что t = 3s?

    Решение:
    Положение точки при t = 0, равно x = 10 см.
    При t = 3s, x = 133 см.
    Средняя скорость, V av = Δx/Δt = 133-10/3-0 = 41 см / с.

    Что такое тело отсчета

    О движении можно говорить только если существует что-то, относительно чего рассматривается изменение положения изучаемого объекта. Такой предмет называется телом отсчета и оно условно всегда принимается за неподвижное.

    Если в задаче не указано в какой системе отчета движется материальная точка, то телом отсчета считается земля по умолчанию. Однако, это не означает, что за неподвижный в заданный момент времени объект, относительно которого совершается движение, нельзя принять любой другой удобный для расчета. Например, за тело отсчета можно взять движущийся поезд, поворачивающий автомобиль и так далее.

    Система отсчета и ее значение в кинематике

    Для описания движения необходимы три составляющие:

    1. Система координат.
    2. Тело отсчета.
    3. Прибор для измерения времени.

    Тело отсчета, система координат, связанная с ним и прибор для измерения времени образуют систему отсчета. Бессмысленно говорить о движении, если ее не указывать. Правильно подобранная система отсчета, позволяет упростить описание перемещения и, наоборот, усложнить, если она выбрана неудачно.

    Именно по этой причине, человечество долго считало, что Солнце движется вокруг Земли и что она находится в центре вселенной. Такое сложное движение светил, связанное с тем, что земные наблюдатели находятся в системе отсчета, которая очень замысловато движется. Земля вращается вокруг свое оси и одновременно вокруг Солнца. На самом деле, если сменить систему отсчета, то все движения небесных тел легко описываются. Это в свое время было сделано Коперником. Он предложил собственное описание мироустройства, в котором Солнце неподвижно. Относительно него описать движение планет гораздо проще, чем если телом отсчета будет являться Земля.

    Основные понятия кинематики — путь и траектория

    Пусть некоторая точка первое время находилась в положении А, спустя некоторое время она оказалась в положении В. Между ними можно провести одну линию. Но для того, чтобы эта прямая несла больше информации о движении, то есть было понятно откуда и куда двигалось тело, это должен быть не просто отрезок, а направленный, обычно обозначающийся буквой S. Перемещением тела, называется вектор, проведенный из начального положения предмета в конечное.

    Если тело изначально находилось в точке А, а затем оказалось в точке В, это не означает, что оно двигалось только по прямой. Из одного положения в другое можно попасть бесконечным количеством способов. Линия, вдоль которой движется тело, является еще одним основным понятием кинематики — траекторией. А ее длина называется путь, который обычно обозначается буквами L или l.

    Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

    Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

    Основные формулы по физике динамика, кинематика, статика

    Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

    Формулы кинематики:

    Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

    После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

    Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


    Основные формулы молекулярной физики и термодинамики

    Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

    Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева — все эти милые сердцу формулы собраны ниже.

    Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы .


    Основные формулы по физике: электричество

    Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

    И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

    На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

    Определение 1

    Кинематика − это раздел механики, который рассматривает движение тел без объяснения вызывающих его причин.

    Определение 2

    Механическое движение тела − это изменение положения данного тела в пространстве относительно других тел во времени.

    Как мы сказали, механическое движение тела относительно. Движение одного и того же тела относительно разных тел может быть разным.

    Определение 3

    Для характеристики движения тела указывается, по отношению к какому из тел рассматривается это движение. Это будет тело отсчета .

    Определение 4

    Система отсчета − система координат, которая связана с телом отсчета и временем для отсчета. Она позволяет определить положение передвигающегося тела в любой отрезок времени.

    В С И единицей длины выступает метр, а единицей времени – секунда.

    У каждого тела есть определенные размеры. Разные части тела расположены в разных пространственных местах. Но в большинстве задач механики не нужно указывать положение отдельных частей тела. Если размеры тела маленькие в сравнении с расстояниями до остальных тел, тогда заданное тело считается его материальной точкой. Таким образом поступают при изучении перемещения планет вокруг Солнца.

    Определение 5

    Механическое движение называют поступательным , в случае если все части тела перемещаются одинаково.

    Пример 1

    Поступательное движение наблюдается у кабин в аттракционе «Колесо обозрения» или у автомобиля на прямолинейном участке пути.

    При поступательном движении тела его также рассматривают в качестве материальной точки.

    Определение 6

    Материальная точка − это тело, размерами которого при заданных условиях можно пренебречь.

    Термин “материальная точка” имеет важное значение в механике.

    Определение 7

    Траектория движения тела − некоторая линия, которую тело или материальная точка описывает, перемещаясь во времени от одной точки до другой.

    Местонахождение материальной точки в пространстве в любой временной отрезок (закон движения) определяют, используя зависимость координат от времени x = x (t) , y = y (t) , z = z (t) или зависимость от времени радиус-вектора r → = r → (t) , проведенного от начала координат до заданной точки. Наглядно это представлено на рисунке 1 . 1 . 1 .

    Рисунок 1 . 1 . 1 . Определение положения точки при помощи координат x = x (t) , y = y (t) и z = z (t) и радиус-вектора r → (t) , r 0 → – радиус-вектор положения точки в начальный момент времени.

    Определение 8

    Перемещение тела s → = ∆ r → = r → — r 0 → – это направленный отрезок прямой, который соединяет начальное положение тела с его дальнейшим положением. Перемещение является векторной величиной.

    Пройденный путь l равняется длине дуги траектории, преодоленной телом за определенное время t . Путь является скалярной величиной.

    Если движение тела рассматривается в течение довольно короткого отрезка времени, тогда вектор перемещения оказывается направленным по касательной к траектории в заданной точке, а его длина равняется преодоленному пути.

    В случае небольшого промежутка времени Δ t преодоленный телом путь Δ l практически совпадает с модулем вектора перемещения ∆ s → . При перемещении тела по криволинейной траектории модуль вектора движения все время меньше пройденного пути (рисунок 1 . 1 . 2).

    Рисунок 1 . 1 . 2 . Пройденный путь l и вектор перемещения ∆ s → при криволинейном движении тела.
    a и b – это начальная и конечная точки пути.

    Для описания движения в физике введено понятие средней скорости: υ → = ∆ s → ∆ t = ∆ r → ∆ t .

    Физиков больше интересует формула не средней, а мгновенной скорости, которая рассчитывается как предел, к которому стремится средняя скорость на бесконечно маленьком промежутке времени Δ t , то есть υ → = ∆ s → ∆ t = ∆ r → ∆ t ; ∆ t → 0 .

    В математике данный предел называется производная и обозначается d r → d t или r → ˙ .

    Мгновенная скорость υ → тела в каждой точке криволинейной траектории направлена по касательной к траектории в заданной точке. Отличие между средней и мгновенной скоростями демонстрирует рисунок 1 . 1 . 3 .

    Рисунок 1 . 1 . 3 . Средняя и мгновенная скорости. ∆ s 1 → , ∆ s 2 → , ∆ s 3 → – перемещения за время ∆ t 1 соответственно. При t → 0 , υ → с р → υ → .

    При перемещении тела по криволинейной траектории скорость υ → меняется по модулю и по направлению. Изменение вектора скорости υ → за какой-то маленький промежуток времени Δ t задается при помощи вектора ∆ υ → (рисунок 1 . 1 . 4).

    Вектор изменения скорости ∆ υ → = υ 2 → — υ 1 → за короткий промежуток времени Δ t раскладывается на 2 составляющие: ∆ υ r → , которая направлена вдоль вектора υ → (касательная составляющая) и ∆ υ n → , которая направлена перпендикулярно вектору υ → (нормальная составляющая).

    Рисунок 1 . 1 . 4 . Изменение вектора скорости по величине и по направлению. ∆ υ → = ∆ υ → r + ∆ υ → n – изменение вектора скорости за промежуток времени Δ t .

    Определение 9

    Мгновенное ускорение тела a → – это предел отношения небольшого изменения скорости ∆ υ → к короткому отрезку времени Δ t , в течение которого изменялась скорость: a → = ∆ υ → ∆ t = ∆ υ → τ ∆ t + ∆ υ → n ∆ t ; (∆ t → 0) .

    Направление вектора ускорения a → , при криволинейном движении, не совпадает с направлением вектора скорости υ → . Составляющие вектора ускорения a → – это касательные (тангенциальные) a → τ и нормальные a → n ускорения (рисунок 1 . 1 . 5).

    Рисунок 1 . 1 . 5 . Касательное и нормальное ускорения.

    Касательное ускорение показывает, как быстро меняется скорость тела по модулю: a τ = ∆ υ ∆ t ; ∆ t → 0 .

    Вектор a → τ направлен по касательной к траектории.

    Нормальное ускорение показывает, как быстро скорость тела меняется по направлению.

    Пример 2

    Представим криволинейное движение, как движение по дугам окружностей (рисунок 1 . 1 . 6).

    Рисунок 1 . 1 . 6 . Движение по дугам окружностей.

    Нормальное ускорение находится в зависимости от модуля скорости υ и радиуса R окружности, по дуге которой тело перемещается в определенный момент времени: a n = υ 2 R .

    Вектор a n → все время направлен к центру окружности.

    По рисунку 1 . 1 . 5 видно, модуль полного ускорения равен a = a τ 2 + a n 2 .

    Итак, основные физические величины в кинематике материальной точки – это пройденный путь l , перемещение s → , скорость υ → и ускорение a → .

    Путь l – скалярная величина.

    Перемещение s → , скорость υ → и ускорение a → – векторные величины.

    Для того чтобы задать какую-нибудь векторную величину, необходимо задать ее модуль и определить направление. Вектора подчиняются математическим правилам: их можно проектировать на координатные оси, складывать, вычитать и др.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Формулы для кинематики в механике. Кинематика

    Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

    Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

    Основные формулы по физике динамика, кинематика, статика

    Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

    Формулы кинематики:

    Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

    После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

    Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


    Основные формулы молекулярной физики и термодинамики

    Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

    Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева — все эти милые сердцу формулы собраны ниже.

    Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы .


    Основные формулы по физике: электричество

    Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

    И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

    На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

    Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

    Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

    Основные формулы по физике динамика, кинематика, статика

    Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

    Формулы кинематики:

    Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

    После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

    Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


    Основные формулы молекулярной физики и термодинамики

    Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

    Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева — все эти милые сердцу формулы собраны ниже.

    Кстати! Для всех наших читателей сейчас действует скидка 10% на .


    Основные формулы по физике: электричество

    Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

    И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

    На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

    Прежде всего, следует заметить, что речь будет идти о геометрической точке, то есть области пространства, не имеющей размеров. Именно для этого абстрактного образа (модели) и справедливы все представленные ниже определения и формулы. Однако для краткости я в дальнейшем буду часто говорить о движении тела , объекта или частицы . Это я делаю только для того, чтобы Вам легче было читать. Но всегда помните, что речь идет о геометрической точке.

    Радиус-вектор точки — это вектор, начало которого совпадает с началом системы координат, а конец — с данной точкой. Радиус-вектор обозначается, как правило, буквой r . К сожалению некоторые авторы обозначают его буквой s . Настоятельно советую не использовать обозначение s для радиус-вектора. Дело в том, что подавляющее большинство авторов (как отечественных, так и зарубежных) используют букву s для обозначения пути, который является скаляром и к радиус-вектору, как правило, отношения не имеет. Если вы будете обозначать радиус-вектор как s , то легко можете запутаться. Еще раз, мы, как и все нормальные люди, будем использовать следующие обозначения: r — радиус-вектор точки, s — путь, пройденный точкой.

    Вектор перемещения (часто говорят просто — перемещение ) — это вектор , начало которого совпадает с той точкой траектории, где было тело, когда мы начали изучать данное движение, а конец этого вектора совпадает с той точкой траектории, где мы это изучение закончили. Будем обозначать этот вектор как Δr . Использование символа Δ очевидно: Δr — это разность между радиус-вектором r конечной точки изучаемого отрезка траектории и радиус-вектором r 0 точки начала этого отрезка (рис. 1), то есть Δr = r r 0 .

    Траектория — это линия, вдоль которой движется тело.

    Путь — это сумма длин всех участков траектории, последовательно проходимых телом при движения. Обозначается либо ΔS, если речь идет об участке траектории, либо S, если речь идет о всей траектории наблюдаемого движения. Иногда (редко) путь обозначают и другой буквой, например, L (только не обозначайте его как r, мы уже об этом говорили). Запомните! Путь — это положительный скаляр ! Путь в процессе движения может только увеличиваться .

    Средняя скорость перемещения v ср

    v ср = Δr /Δt.

    Мгновенная скорость перемещения v — это вектор, определяемый выражением

    v = dr /dt.

    Средняя скорость пути v ср — это скаляр, определяемый выражением

    V ср = Δs/Δt.

    Часто встречаются и другие обозначения, например, .

    Мгновенная скорость пути v — это скаляр, определяемый выражением

    Модуль мгновенной скорости перемещения и мгновенная скорость пути — это одно и то же, поскольку dr = ds.

    Среднее ускорение a

    a ср = Δv /Δt.

    Мгновенное ускорение (или просто, ускорение ) a — это вектор, определяемый выражением

    a =dv /dt.

    Касательное (тангенциальное) ускорение a τ (нижний индекс — это греческая строчная буква тау) — это вектор , являющийся векторной проекцией мгновенного ускорения на касательную ось .

    Нормальное (центростремительное) ускорение a n — это вектор , являющийся векторной проекцией мгновенного ускорения на ось нормали .

    Модуль касательного ускорения

    | a τ | = dv/dt,

    То есть это — производная модуля мгновенной скорости по времени.

    Модуль нормального ускорения

    | a n | = v 2 /r,

    Где r — величина радиуса кривизны траектории в точке нахождения тела.

    Важно! Хочу обратить внимание на следующее. Не путайтесь с обозначениями, касающимися касательного и нормального ускорений! Дело в том, что в литературе по этому поводу традиционно наблюдается полная чехарда.

    Запомните!

    a τ — это вектор касательного ускорения,

    a n — это вектор нормального ускорения.

    a τ и a n являются векторными проекциями полного ускорения а на касательную ось и ось нормали соответственно,

    A τ — это проекция (скалярная!) касательного ускорения на касательную ось,

    A n — это проекция (скалярная!) нормального ускорения на ось нормали,

    | a τ |- это модуль вектора касательного ускорения,

    | a n | — это модуль вектора нормального ускорения.

    Особенно не удивляйтесь, если, читая в литературе о криволинейном (в частности, вращательном) движении, Вы обнаружите, что автор под a τ понимает и вектор, и его проекцию, и его модуль. То же самое относится и к a n . Все, как говорится, «в одном флаконе». И такое, к сожалению, сплошь и рядом. Даже учебники для высшей школы не являются исключением, во многих из них (поверьте — в большинстве!) царит полная неразбериха по этому поводу.

    Вот так, не зная азов векторной алгебры или пренебрегая ими, очень легко полностью запутаться при изучении и анализе физических процессов. Поэтому знание векторной алгебры является наиглавнейшим условием успеха в изучении механики. И не только механики. В дальнейшем, при изучении других разделов физики, Вы неоднократно в этом убедитесь.

    Мгновенная угловая скорость (или просто, угловая скорость ) ω — это вектор, определяемый выражением

    ω = dφ /dt,

    Где dφ — бесконечно малое изменение угловой координаты (dφ — вектор!).

    Мгновенное угловое ускорение (или просто, угловое ускорение ) ε — это вектор, определяемый выражением

    ε = dω /dt.

    Связь между v , ω и r :

    v = ω × r .

    Связь между v, ω и r:

    Связь между | a τ |, ε и r:

    | a τ | = ε · r.

    Теперь перейдем к кинематическим уравнениям конкретных видов движения. Эти уравнения надо выучить наизусть .

    Кинематическое уравнение равномерного и прямолинейного движения имеет вид:

    r = r 0 + v t,

    Где r — радиус-вектор объекта в момент времени t, r 0 — то же в начальный момент времени t 0 (в момент начала наблюдений).

    Кинематическое уравнение движения с постоянным ускорением имеет вид:

    r = r 0 + v 0 t + a t 2 /2, где v 0 скорость объекта в момент t 0 .

    Уравнение для скорости тела при движении с постоянным ускорением имеет вид:

    v = v 0 + a t.

    Кинематическое уравнение равномерного движения по окружности в полярных координатах имеет вид:

    φ = φ 0 + ω z t,

    Где φ — угловая координата тела в данный момент времени, φ 0 — угловая координата тела в момент начала наблюдения (в начальный момент времени), ω z — проекция угловой скорости ω на ось Z (обычно эта ось выбирается перпендикулярно плоскости вращения).

    Кинематическое уравнение движения по окружности с постоянным ускорением в полярных координатах имеет вид:

    φ = φ 0 + ω 0z t + ε z t 2 /2.

    Кинематическое уравнение гармонических колебаний вдоль оси X имеет вид:

    Х = А Cos (ω t + φ 0),

    Где A — амплитуда колебаний, ω — циклическая частота, φ 0 — начальная фаза колебаний.

    Проекция скорости точки, колеблющейся вдоль оси X, на эту ось равна:

    V x = − ω · A · Sin (ω t + φ 0).

    Проекция ускорения точки, колеблющейся вдоль оси X, на эту ось равна:

    А x = − ω 2 · A · Cos (ω t + φ 0).

    Связь между циклической частотой ω, обычной частотой ƒ и периодом колебаний T:

    ω = 2 πƒ = 2 π/T (π = 3,14 — число пи).

    Математический маятник имеет период колебаний T, определяемый выражением:

    В числителе подкоренного выражения — длина нити маятника, в знаменателе — ускорение свободного падения

    Связь между абсолютной v абс, относительной v отн и переносной v пер скоростями:

    v абс = v отн + v пер.

    Вот, пожалуй, и все определения и формулы, которые могут понадобиться при решении задач на кинематику. Приведенная информация носит только справочный характер и не может заменить электронную книгу, где доступно, подробно и, надеюсь, увлекательно изложена теория этого раздела механики.

    КИНЕМАТИКА

    Основные понятия, законы и формулы.

    Кинематика — раздел механики, в котором изучается механическое движение тел без учета причин, вызывающих движение.

    Механическим движением называют изменение положения тела в пространстве с течением времени относительно других тел.

    Простейшим механическим движением является движение материальной точки — тела, размеры и форму которого можно не учитывать при описании его движения.

    Движение материальной точки характеризуют траекторией, длиной пути, перемещением, скоростью и ускорением.

    Траекторией называют линию в пространстве, описываемую точкой при своем движении.

    Расстояние , пройденное телом вдоль траектории движения, — путь(S).

    Перемещение — направленный отрезок, соединяющий начальное и конечное положение тела.

    Длина пути — величина скалярная, перемещение — величина векторная.

    Средняя скорость — это физическая величена, равная отношению вектора перемещения к промежутку времени, за которое произошло перемещение:

    Мгновенная скорость или скорость в данной точке траектории — это физическая величина, равная пределу, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Dt:

    Величину характеризующую изменение скорости за единицу времени, называют средним ускорением :

    .

    Аналогично понятию мгновенной скорости вводится понятие мгновенного ускорения:

    При равноускоренном движении ускорение постоянно.

    Простейший вид механического движения-прямолинейное движение точки с постоянным ускорением.

    Движение с постоянным ускорением называется равнопеременным; в этом случае:

    ; ; https://pandia.ru/text/78/108/images/image014_3.gif»>; ; https://pandia.ru/text/78/108/images/image017_1.gif»>; ;

    Связь между линейными и угловыми величинами при вращательном движении :

    ; ; https://pandia.ru/text/78/108/images/image024_1.gif»>.

    Любое сложное движение можно рассматривать как результат сложения простых движений. Результирующее перемещение равно геометрической сумме и находится по правилу сложения векторов. Скорость тела и скорость системы отсчета так же складывается векторно.

    При решении задач на те или иные разделы курса, кроме общих правил решения, приходится учитывать некоторые дополнения к ним, связанные со спецификой самих разделов.

    Задачи по кинематике , разбираемые в курсе элементарной физики, включают в себя: задачи о равнопеременном прямолинейном движении одной или нескольких точек, задачи о криволинейном движении точки на плоскости. Мы рассмотрим каждый из этих типов задач отдельно.

    Прочитав условие задачи, нужно сделать схематический чертеж, на котором следует изобразить систему отсчета, и указать траекторию движения точки.

    После того как выполнен чертеж, с помощью формул:

    ; ; https://pandia.ru/text/78/108/images/image027_0.gif»>; .

    Подстановкой в них развёрнутых выражений для Sn, S0, vn, v0 и т. д. и заканчивается первая часть решения.

    Пример 1 . Велосипедист ехал из одного города в другой. Половину пути он проехал со скоростью v1 = 12 км/ч далее половину оставшегося времени он ехал со скоростью v2 = 6 км/ч, а затем до конца пути шел пешком со скоростью v3 = 4 км/ч. Определить среднюю скорость велосипедиста на всем пути.

    а) Эта задача на равномерное прямолинейное движение одного тела. Представляем ввиде схемы. При составлении ее изображаем траекторию движения и выбираем на ней начало отсчета (точка 0). Весь путь разбиваем на три отрезка S1,S2, S3, на каждом из них указываем скорости v1, v2, v3 и отмечаем время движения t1, t2, t3.

    S = S1 + S2 + S3, t = t1 + t2 + t3.

    б) Составляем уравнения движения для каждого отрезка пути:

    S1 = v1t1; S2 = v2t2; S3 = v3t3 и записываем дополнительные условия задачи:

    S1 = S2 + S3; t2 = t3; .

    в) Читаем еще раз условие задачи, выписываем числовые значения известных величин и, определив число неизвестных в полученной системе уравнений (их 7: S1, S2, S3, t1, t2, t3, vср), решаем ее относительно искомой величины vср.

    Если при решении задачи полностью учтены все условия, но в составленных уравнениях число неизвестных получается больше числа уравнений, это означает, что при последующих вычислениях одно из неизвестных сократится, такой случай имеет место и в данной задаче.

    Решение системы относительно средней скорости дает:

    .

    г) Подставив числовые значения в расчётную формулу, получим:

    ; vср 7 км/ч.

    Напоминаем, что числовые значения удобнее подставлять в окончательную расчетную формулу, минуя все промежуточные. Это экономит время на решение задачи и предотвращает дополнительные ошибки в расчётах.

    Решая задачи на движение тел, брошенных вертикально вверх, нужно обратить особое внимание на следующее. Уравнения скорости и перемещения для тела, брошенного вертикально вверх, дают общую зависимость v и h от t для всего времени движения тела. Они справедливы (со знаком минус) не только для замедленного подъема вверх, но и для дальнейшего равноускоренного падения тела, поскольку движение тела после мгновенной остановки в верхней точке траектории происходит с прежним ускоронием. Под h при этом всегда подразумевают перемещение движущейся точки по вертикали, то есть ее координату в данный момент времени — расстояние от начала отсчета движения до точки.

    Если тело брошено вертикально вверх со скоростью V0, то время tпод и высота hmax его подъема равны:

    ; .

    Кроме того, время падения этого тела в исходную точку равно времени подъема на максимальную высоту (tпад = tпод), а скорость падения равна начальной скорости бросания (vпад = v0).

    Пример 2 . Тело брошено вертикально вверх с начальной скоростью v0 = 3,13 м/с. Когда оно достигло верхней точки полета, из того же начального пункта с такой же начальной скоростью бросили второе тело. Определите, на каком расстоянии от точки бросания встретятся тела; сопротивление воздуха не учитывать.

    Решение . Делаем чертеж. Отмечаем на нем траекторию движения первого и второго тела. Выбрав начало отсчета в точке, указываем начальную скорость тел v0, высоту h, на которой произошла встреча (координату y=h), и время t1 и t2 движения каждого тела до момента встречи.

    Уравнение перемещения тела, брошенного вверх, позволяет найти координату движущегося тела для любого момента времени независимо от того, поднимается ли тело вверх или падает после подъема вниз, поэтому для первого тела

    ,

    а для второго

    .

    Третье уравнение составляем, исходя из условия, что второе тело бросили позднее первого на время максимального подъема:

    Решая систему трех уравнений относительно h, получаем:

    ; ; https://pandia.ru/text/78/108/images/image017_1.gif»>; ,

    где и ; https://pandia.ru/text/78/108/images/image042.gif»>.gif»>

    Прямоугольную систему координат выбираем так, чтобы ее начало совпало с точкой бросания, а оси были направлены вдоль поверхности Земли и по нормали к ней в сторону начального смещения снаряда. Изображаем траекторию снаряда, его начальную скорость , угол бросания a, высоту h, горизонтальное перемещение S, скорость в момент падения (она направлена по касательной к траектории в точке падения) и угол падения j (углом падения тела называют угол между касательной к траектории, проведенной в точку падения, и нормалью к поверхности Земли).

    Движение тела, брошенного под углом к горизонту, можно представить как результат сложения двух прямолинейных движений: одного-вдоль поверхности Земли (оно будет равномерным, поскольку сопротивление воздуха не учитывается) и второго-перпендикулярно поверхности Земли (в данном случае это будет движение тела, брошенного вертикально вверх). Для замены сложного движения двумя простыми разложим (по правилу параллелограмма) скорости и https://pandia.ru/text/78/108/images/image047.gif»>и — для скорости и vx и vy — для скорости .

    а, б) Составляем уравнение скорости и перемещения для их проекций по каждому направлению. Так как в горизонтальном направлении снаряд летит равномерно, то его скорость и координаты в любой момент времени удовлетворяют уравнениям

    и . (2)

    Для вертикального направления:

    (3)

    и . (4)

    В момент времени t1, когда снаряд упадет на землю, его координаты равны:

    В последнем уравнении перемещение h взято со знаком «минус», так как за время движения снаряд сместится относительно уровня отсчета 0 высоты в сторону противоположную направлению, принятому за положительное.

    Результирующая скорость в момент падения равна:

    В составленной системе уравнений пять неизвестных, нам нужно определить S и v.

    При отсутствии сопротивления воздуха, скрость падения тел равна начальной скорости бросания независимо от того, под каким углом было брошено тело, лишь бы точки бросания и падения находились на одном уровне. Учитывая, что горизонтальная составляющая скорости с течением времени не изменяется, легко установить, что в момент падения скорость тела образует с горизонтом такой же угол, как и в момент бросания.

    д) Решая уровнения (2), (4) и (5) относительно начального угла бросания a получим:

    . (10)

    Поскольку угол бросания не может быть мнимым, то это выражение имеет физический смысл лишь при условии, что

    ,

    то есть,

    откуда следует, что максимальное перемещение снаряда по горизонтальному направлению равно:

    .

    Подставляя выражение для S = Smax в формулу (10), получим для угла a, при котором дальность полета наибольшая:

    Кинематические уравнения: когда и как использовать каждую формулу (с производными)

    Обновлено 28 декабря 2020 г.

    Автор GAYLE TOWELL

    Уравнения кинематики описывают движение объекта, испытывающего постоянное ускорение. Эти уравнения связывают переменные времени, положения, скорости и ускорения движущегося объекта, позволяя решить любую из этих переменных, если другие известны. 2 + 2a (x_f — x_i)

    Примечания по кинематическим уравнениям

    • Эти уравнения работают только с постоянным ускорением (которое может быть нулевым в случае постоянной скорости) .
    • В зависимости от того, какой источник вы читаете, окончательные количества могут не иметь нижнего индекса f и / или могут быть представлены в обозначении функций как x (t) — читать « x как функция времени» или « x при времени t » — и v (t) . Обратите внимание, что x (t) НЕ означает x , умноженное на t !
    • Иногда величина x f — x i записывается как

      Δx , что означает «изменение в x », или даже просто как d , что означает смещение.Все равноценны. Положение, скорость и ускорение являются векторными величинами, то есть с ними связано направление. В одном измерении направление обычно указывается знаками — положительные величины находятся в положительном направлении, а отрицательные величины — в отрицательном направлении. Индексы : «0» может использоваться для начального положения и скорости вместо i . Этот «0» означает «при t = 0», а x 0 и v 0 обычно произносятся как «x-ноль» и «v-ноль».»* Только одно из уравнений не включает время. При составлении заданных значений и определении того, какое уравнение использовать, это ключевой момент!

    Особый случай: свободное падение

    Свободное падение — это движение ускоряющегося объекта только за счет силы тяжести при отсутствии сопротивления воздуха. Применяются те же кинематические уравнения; однако значение ускорения у поверхности Земли известно. Величина этого ускорения часто представлена ​​как g , где g = 9.8 м / с 2 . Направление этого ускорения — вниз, к поверхности Земли. (Обратите внимание, что в некоторых источниках значение г может быть приблизительно равно 10 м / с 2 , а в других может использоваться значение с точностью до более чем двух десятичных знаков.)

    Стратегия решения проблем кинематики в одном измерении:

      Нарисуйте схему ситуации и выберите подходящую систему координат. (Напомним, что x , v и a — все векторные величины, поэтому, задав четкое положительное направление, будет легче отслеживать знаки.)

      Напишите список известных величин. (Помните, что иногда известные вещи не очевидны. Ищите фразы вроде «начинается с отдыха», что означает, что v i = 0, или «падает на землю», что означает, что x f = 0, и т. д.)

      Определите, какое количество вы хотите найти в вопросе. Какое неизвестное вы будете решать?

      Выберите соответствующее кинематическое уравнение. Это будет уравнение, которое содержит вашу неизвестную величину вместе с известными величинами.

      Решите уравнение для неизвестной величины, затем подставьте известные значения и вычислите окончательный ответ. (Будьте осторожны с единицами измерения! Иногда вам нужно будет преобразовать единицы перед вычислением.)

    Примеры одномерной кинематики

    Пример 1: В рекламе утверждается, что спортивный автомобиль может разогнаться от 0 до 60 миль в час за 2,7 секунды. Какое ускорение у этой машины в м / с 2 ? Как далеко он проходит за эти 2,7 секунды?

    Известные и неизвестные количества:

    v_i = 0 \ text {mph} \\ v_f = 60 \ text {mph} \\ t = 2.7 \ text {s} \\ x_i = 0 \\ a = \ text {?} \\ x_f = \ text {?}

    Первая часть вопроса требует решения для неизвестного ускорения. Здесь мы можем использовать уравнение № 1:

    v_f = v_i + at \ implies a = \ frac {(v_f-v_i)} t

    Однако, прежде чем вводить числа, нам нужно преобразовать 60 миль в час в м / с:

    60 \ cancel {\ text {mph}} \ Bigg (\ frac {0.477 \ text {m / s}} {\ cancel {\ text {mph}}} \ Bigg) = 26.8 \ text {m / s}

    Итак, ускорение будет:

    a = \ frac {(26.8-0)} {2.2 + 2 (-9,8) (0-1,5)} = \ pm \ sqrt {254.4} \ приблизительно \ pm16 \ text {m / s}

    Здесь есть два решения. Который правильный? Из нашей диаграммы мы видим, что конечная скорость должна быть отрицательной. Итак, ответ:

    v_f = \ underline {\ bold {-16} \ text {m / s}}

    Чтобы найти время, мы можем использовать уравнение №1 или уравнение №2. Поскольку с уравнением №1 проще работать, мы будем использовать его:

    v_f = v_i + at \ implies t = \ frac {(v_f-v_i)} {a} = \ frac {(-16-15)} {-9,8} \ приблизительно \ underline {\ bold {3.2} \ text {s}}

    Обратите внимание, что ответ на первую часть этого вопроса был не 0 м / с. Хотя это правда, что после того, как мяч приземлится, его скорость будет равна 0, но этот вопрос хочет знать, насколько быстро он летит за долю секунды до удара. Как только мяч касается земли, наши кинематические уравнения больше не применяются, потому что ускорение не будет постоянным.

    Кинематические уравнения движения снаряда (два измерения)

    Снаряд — это объект, движущийся в двух измерениях под действием силы тяжести Земли.Его путь — парабола, потому что единственное ускорение происходит за счет силы тяжести. Кинематические уравнения движения снаряда немного отличаются от кинематических уравнений, перечисленных выше. Мы используем тот факт, что компоненты движения, которые перпендикулярны друг другу, такие как горизонтальное направление x и вертикальное направление y , являются независимыми.

    Стратегия решения проблем для кинематики движения снаряда Задачи:

      Нарисуйте схему ситуации.Как и в случае с одномерным движением, полезно набросать сценарий и указать систему координат. Вместо того, чтобы использовать метки x , v и a для положения, скорости и ускорения, нам нужен способ маркировки движения в каждом измерении отдельно.

      Для горизонтального направления чаще всего используется x для положения и v x для x-компоненты скорости (обратите внимание, что в этом направлении ускорение равно 0, поэтому нам не нужна переменная для Это.) В направлении y чаще всего используется y для позиции и v y для y-компоненты скорости. Ускорение может быть обозначено как a y , или мы можем использовать тот факт, что мы знаем, что ускорение свободного падения составляет g в отрицательном направлении оси y, и просто использовать это вместо этого.

      Напишите список известных и неизвестных величин, разделив задачу на две части: вертикальное и горизонтальное движение.Используйте тригонометрию, чтобы найти x- и y-компоненты любых векторных величин, которые не лежат вдоль оси. Может быть полезно перечислить это в двух столбцах:

      Примечание: если скорость указана как величина вместе с углом, Ѳ , над горизонтом, тогда используйте векторное разложение, v x = vcos (Ѳ ) и v y = vsin (Ѳ) .

      Мы можем рассмотреть наши три кинематических уравнения из предыдущих и адаптировать их к направлениям x и y соответственно.2-2g (y_f — y_i)

      Обратите внимание, что ускорение в направлении y равно -g, если мы предполагаем, что вверх положительно. Распространенное заблуждение состоит в том, что g = -9,8 м / с 2 , но это неверно; g — это просто величина ускорения: g = 9,8 м / с 2 , поэтому нам нужно указать, что ускорение отрицательное.

      Найдите одно неизвестное в одном из этих измерений, а затем вставьте то, что является общим в обоих направлениях. Хотя движение в двух измерениях независимо, оно происходит в одной шкале времени, поэтому временная переменная одинакова в обоих измерениях.(Время, необходимое мячу для его вертикального движения, такое же, как и время, необходимое для его горизонтального движения.)

    Примеры кинематики движения снаряда

    Пример 1: Снаряд запускается горизонтально из обрыв высотой 20 м с начальной скоростью 50 м / с. 2 \ подразумевает t = \ sqrt {\ frac {(2 \ times 20)} g} = \ underline {\ bold {2.02} \ text {s}}

    Затем, чтобы найти место приземления, x f , мы можем использовать уравнение горизонтального движения:

    x_f = x_i + v_xt = 50 \ times2.02 = \ underline {\ полужирный {101} \ text {s}}

    Пример 2: Мяч запускается со скоростью 100 м / с от уровня земли под углом 30 градусов к горизонтали. Где он приземляется? Когда его скорость наименьшая? Каково его местонахождение в настоящее время?

    Известные и неизвестные величины:

    Сначала нам нужно разбить вектор скорости на составляющие:

    v_x = v_i \ cos (\ theta) = 100 \ cos (30) \ приблизительно 86.6 \ text {m / s} \\ v_ {yi} = v_i \ sin (\ theta) = 100 \ sin (30) = 50 \ text {m / s}

    Тогда наша таблица величин:

    Сначала нам нужно найти время, в которое мяч находится в полете. Мы можем сделать это с помощью второго вертикального уравнения_. Обратите внимание, что мы используем симметрию параболы, чтобы определить, что конечная скорость _y является отрицательной по отношению к начальной:

    Затем мы определяем, как далеко она перемещается в направлении x за это время:

    x_f = x_i + v_xt = 86,6 \ умножить на 10. 2 + 2a (x_f — x_i)

    Что такое кинематические формулы? — Получить образование

    Учитывая, что полноэкранный редактор не поддерживает индексы и надстрочные индексы, мы указываем мои обозначения для их представления: (1) Все кинематические переменные обозначаются заглавными буквами.Например, скорость обозначается буквой V, а ускорение буквой A. (2) обозначаются строчными буквами. Например, начальная скорость «V naught» равна Vo. (3) Полномочия обозначаются **. Например, «квадрат времени» — T ** 2.

    Первоначальной темой, которую большинство авторов рассматривают в своих вводных книгах по физике, является кинематика. Они делают этот выбор, потому что ученики должны твердо владеть позицией, скоростью и скоростью, прежде чем изучать различные предметы у ньютоновских техников. К сожалению, кинематика, похоже, побуждает обучаемых к поиску формул, а также к подключению.Когда ученики учатся решать кинематические проблемы, в их головах обычно крутится слишком много уравнений. Их услуги по выпуску включают уравнения, такие как V = Vo + AT, X = VT, формула разнообразия, формула максимальной высоты и т. Д. Но физика — это не изучение уравнений — это исследование фундаментальных принципов, большинство из которых имеют место. быть раскрытым в виде уравнений.

    Читайте также: Что такое принцип Премака? Пример

    Даже при обучении кинематике мы говорим ученикам, что они никогда не узнают физику, если они подойдут к ней как к большому количеству формул, которые нужно запомнить.мы подчеркиваем, что им нужно открывать, чтобы мыслить принципами. К сожалению, это сообщение сложно донести, когда ученики видят в своих книгах уравнение за формулой. Это явно сложно, поскольку в старших классах средней школы большинство учеников открыли для себя античный аналитический прием «идентифицировать известные, а затем вставлять их в идеальные формулы для открытия неизвестных».

    Что такое кинематика?

    Кинематика — это исследование деятельности без ссылки на силы, которые ее создают.Другими словами, кинематика фокусируется на положении, скорости, скорости и не управляет давлением. В кинематике есть пять важнейших величин: смещение (готовность к изменению), начальная скорость, конечная скорость, ускорение и время.

    Предварительная скорость — это именно то, насколько быстро объект движется при t = 0. Конечная скорость — это насколько быстро объект перемещается, когда время (t) больше, чем. Смещение — это то, насколько настройка изменилась за это время (t). Скорость — это цена, по которой изменяется скорость в то время как (t).Так же как время — это просто … ну, это момент — момент, который вы хотите, время, в течение которого объект двигался, ускорялся или что-то еще.

    Слишком много учеников рассматривают каждую физику как не что иное, как тренировку в поисках лучшей формулы. Мы успешно справились с этой прискорбной проблемой, создав набор стандартных уравнений кинематики постоянного ускорения, как будто они были фундаментальными принципами. Мы признаем, что это не фундаментальные концепции; тем не менее, мы просим обучаемых обращаться с этими формулами так, как если бы они были абсолютными.Мы показываем студентам, что все кинематические задачи (как одномерные, так и двумерные) запускаются с помощью одних и тех же основных уравнений.

    Логический ум, который они используют для решения проблем в кинематике, подобен тому, который они будут использовать позже, когда они познают основные принципы. Во всех книгах есть интегральные уравнения движения с постоянным ускорением. Все проблемы можно решить с помощью всего трех из них. При рассмотрении возможных проблем мы никогда не отклоняемся от этих трех уравнений.

    С Xo, а также Vo размещение и рейтинг при T = 0, три формулы очевидны:

    Положение по времени X = Xo + VoT + (AT ** 2) / 2.

    Скорость относительно времени V = Vo + AT.

    Скорость настройки V ** 2 = Vo ** 2 + 2A (X — Xo).

    Третье из этих уравнений может быть получено из двух других. Но это уравнение настолько ценно, что мы предпочитаем ставить его наравне с двумя другими. Обратите внимание на утверждения перед уравнениями.Мы призываем обучаемых принимать их вместо своих сопутствующих уравнений. Решение соответствия задаче достаточно ясно показывает, как мы обучаем кинематике.

    Проблема: как показано на рисунке, ребенок также бросает сферу прямо вверх, а она возвращается к нему за 4,0 с. а) Какая первая скорость снаряда? (b) Какой максимальной высоты H достигает снаряд?

    Сервис Мы используем систему координат (x, y) с началом в точке выпуска патрона, а ось y направлена ​​вверх.Тогда Yo = 0, а также A = — g = -9,8 м / с ** 2. Начальная скорость шара — неизвестная Vo. (a) Мы знаем, что изменение положения является абсолютным нет с интервалом в два раза в 4,0 с, поэтому мы связываем размещение со временем. (b) Нам нужно размещение (оптимальная высота H), когда скорость абсолютная нет, поэтому мы связываем скорость с размещением.

    (a) Размещение во времени

    X = Xo + VoT + (AT ** 2) / 2.

    0 = 0 + Vo (4,0 с) + ((- 9,8 м / с ** 2) (4,0 с) ** 2) / 2 0.

    , поэтому Vo = 19.6 м / с.

    (б) Оценить настройку.

    В ** 2 = Vo ** 2 + 2A (X — Xo).

    V ** 2 = Vo ** 2 + 2 (- 9,8 м / с ** 2) H.

    Заменяя здесь Vo из (a), мы получаем H = 19,6 м.

    Заключительные слова

    Изображение (не показано) сопровождает эту проблему. Обратите внимание на то, как студента поощряют подходить к решению проблемы, веря основным принципам кинематики постоянного ускорения — в данном случае, положение во времени и скорость во времени.Ко всем вариантам проблем для непрерывного ускорения подходят одинаково. Обстоятельства определяют отношения, это партнерство упоминается, а затем уравнение, представляющее эту связь, используется для решения проблемы. Когда ученики начинают свое физическое обучение с этой стратегией, многие избегают ловли формулы, которая также обычна в начальной физике. В будущем, когда они исследуют жизненно важные принципы автомеханики, некоторые из них исправят проблемы, систематически используя базовые концепции.Они начинают проблемы со второй регуляцией Ньютона, сохранением механической энергии и так далее.

    Наше сообщение относительно простое. Начальная физика начинается с темы, основанной на уравнениях, кинематики. Поэтому многие ученики начинают свое физическое образование с поиска формул. Мы рекомендуем противодействовать этой склонности, предлагая кинематику как предмет, контролируемый парой основных концепций. Затем многочисленные стажеры быстро приобретают отличные аналитические навыки, которые направляют их на оставшуюся часть их научных исследований и инженерных работ.

    Kinematics and Calculus — The Physics Hypertextbook

    Обсуждение

    постоянное ускорение

    Исчисление — это сложная математическая тема, но она значительно упрощает вывод двух из трех уравнений движения. По определению, ускорение — это первая производная скорости по времени. Возьмите операцию в этом определении и отмените ее. Вместо того, чтобы дифференцировать скорость, чтобы найти ускорение, интегрируйте ускорение, чтобы найти скорость. Это дает нам уравнение скорости-времени.Если мы предположим, что ускорение постоянное, мы получим так называемое первое уравнение движения [1].

    =
    дв = a dt
    =
    v v 0 = при
    v = v 0 + at [1]

    Опять же, по определению, скорость — это первая производная положения по времени.Выполните эту операцию в обратном порядке. Вместо того, чтобы различать положение для определения скорости, интегрируйте скорость, чтобы найти положение. Это дает нам уравнение положения-времени для постоянного ускорения, также известное как второе уравнение движения [2].

    v =
    DS = v dt
    DS = ( v 0 + at ) dt
    =
    т

    ( v 0 + at ) dt
    0
    с с 0 = v 0 t + ½ at 2
    с = s 0 + v 0 t + ½ at 2 [2]

    В отличие от первого и второго уравнений движения, нет очевидного способа вывести третье уравнение движения (то, которое связывает скорость с положением) с помощью расчетов.Мы не можем просто перепроектировать это по определению. Нам нужно разыграть довольно изощренный трюк.

    Первое уравнение движения связывает скорость со временем. По сути, мы вывели его из этой производной…

    Второе уравнение движения связывает положение со временем. Это произошло от этой производной…

    Третье уравнение движения связывает скорость с положением. По логике, это должно происходить от производной, которая выглядит так…

    Но что это значит? Ну, ничего по определению, но, как и все количества, оно равно самому себе.Он также равен самому себе, умноженному на 1. Мы будем использовать специальную версию 1 ( dt dt ) и специальную версию алгебры (алгебра с бесконечно малыми). Посмотрите, что происходит, когда мы это делаем. Мы получаем одну производную, равную ускорению ( dv dt ), а другую производную, равную обратной скорости ( dt ds ).

    дв = дв 1
    DS DS
    дв = дв дт
    DS DS дт
    дв = дв дт
    DS дт DS
    дв = a 1
    DS v

    Следующий шаг, разделение переменных.Соберите вместе похожие вещи и интегрируйте их. Вот что мы получаем при постоянном ускорении…

    =
    в дв = а DS
    =
    ½ ( v 2 v 0 2 ) = a ( с с 0 )
    v 2 = v 0 2 + 2 a ( s s 0 ) [3]

    Безусловно, умное решение, и оно было не намного сложнее, чем первые два варианта.Однако на самом деле это сработало только потому, что ускорение было постоянным — постоянным во времени и постоянным в пространстве. Если бы ускорение каким-либо образом менялось, этот метод был бы неудобно трудным. Мы вернемся к алгебре, чтобы спасти свое рассудок. Не то чтобы в этом что-то не так. Алгебра работает, а здравомыслие стоит сэкономить.

    v = v 0 + at [1]
    +
    с = s 0 + v 0 t + ½ at 2 [2]
    =
    v 2 = v 0 2 + 2 a ( s s 0 ) [3]

    рывок постоянный

    Показанный выше метод работает даже при непостоянном ускорении.Применим его к ситуации с необычным названием — постоянный рывок. Нет лжи, вот как это называется. Рывок — это скорость изменения ускорения во времени.

    Это делает рывком первую производную ускорения, вторую производную скорости и третью производную положения.

    j = da = d 2 v = d 3 s
    дт дт 2 дт 3

    Единица измерения рывка в системе СИ — это метров в секунду в кубе .



    м / с 3 = м / с 2

    с

    Альтернативная единица — г в секунду .

    Jerk — это не просто ответ некоторых мудрых физиков на вопрос: «Ах да, так как вы называете третью производную положения ?» Рывок — это значимая величина.

    Человеческое тело оснащено датчиками, определяющими ускорение и рывки.Глубоко внутри уха, в нашем черепе, находится ряд камер, называемых лабиринтом . Часть этого лабиринта предназначена для нашего слуха (улитка , ), а часть — для нашего чувства равновесия (вестибулярная система , ). Вестибулярная система оснащена датчиками, определяющими угловое ускорение (полукружные каналы , ) и датчиками, определяющими линейное ускорение (отолиты , ). У нас есть два отолита в каждом ухе — один для определения ускорения в горизонтальной плоскости (мешочек ) и один для определения ускорения в вертикальном месте (мешочек ).Отолиты — это наши собственные встроенные акселерометры.

    Слово отолит происходит от греческого οτο ( oto ) для уха и λιθος ( lithos ) для камня. Каждый из наших четырех отолитов состоит из твердой костеподобной пластины, прикрепленной к мату из сенсорных волокон. Когда голова ускоряется, пластина смещается в сторону, изгибая сенсорные волокна. Это посылает в мозг сигнал: «Мы ускоряемся». Поскольку гравитация также действует на пластины, сигнал может также означать, что «это путь вниз».«Мозг довольно хорошо понимает разницу между двумя интерпретациями. Настолько хорош, что мы склонны игнорировать это. Зрение, звук, запах, вкус, прикосновение — где баланс в этом списке? Мы игнорируем его, пока что-то не изменится в необычный, неожиданный или экстремальный способ.

    Я никогда не был на орбите и не жил на другой планете. Гравитация всегда одинаково тянет меня вниз. Стоять, ходить, сидеть, лежать — все довольно степенно. А теперь давайте сядем на американские горки или займемся не менее захватывающим занятием, например, катанием на горных лыжах, гонками Формулы-1 или ездой на велосипеде в пробках Манхэттена.Ускорение направлено сначала в одну сторону, затем в другую. Вы даже можете испытывать кратковременные периоды невесомости или инверсии. Подобные ощущения вызывают интенсивную умственную деятельность, поэтому нам нравится их выполнять. Они также обостряют нас и удерживают сосредоточенность в моменты, которые, возможно, заканчиваются жизнью, поэтому мы в первую очередь развили это чувство. Ваша способность чувствовать подергивание жизненно важна для вашего здоровья и благополучия. Рывок одновременно увлекателен и необходим.

    С постоянным рывком легко справиться математически.В качестве обучающего упражнения выведем уравнения движения для постоянного рывка. Если хотите, можете попробовать более сложные задачи с толчком.

    Рывок — это производная от ускорения. Отменить этот процесс. Интегрируйте рывок, чтобы получить ускорение в зависимости от времени. Я предлагаю называть это нулевым уравнением движения для постоянного рывка . Причина станет очевидной после того, как мы закончим следующий вывод.

    j = da
    дт
    da = j dt
    т

    da =
    j dt
    0 0
    a a 0 = jt
    = a 0 + jt [0]

    Ускорение — это производная скорости.Интегрируйте ускорение, чтобы получить скорость как функцию времени. Мы делали этот процесс раньше. Мы назвали результат соотношением скорость-время или первым уравнением движения, когда ускорение было постоянным. Мы должны дать ему похожее имя. Это первое уравнение движения для постоянного рывка .

    =
    дв = a dt
    дв = ( a 0 + jt ) dt
    v т

    дв =
    ( a 0 + jt ) dt
    v 0 0
    v v 0 = a 0 t + ½ jt 2
    v = v 0 + a 0 t + ½ jt 2 [1]

    Скорость — это производная от смещения.Интегрируйте скорость, чтобы получить смещение как функцию времени. Мы тоже это делали раньше. Результирующая зависимость смещения от времени будет нашим вторым уравнением движения для постоянного рывка .

    v =
    DS = v dt
    DS = ( v 0 + a 0 t + ½ jt 2 ) dt
    с т

    DS =
    ( v 0 + a 0 t + ½ jt 2 ) dt
    с 0 0
    с с 0 = v 0 t + ½ a 0 t 2 + ⅙ jt 3
    с = s 0 + v 0 t + ½ a 0 t 2 + ⅙ jt 3 [2]

    Обратите внимание на эти уравнения.Когда рывок равен нулю, все они возвращаются к уравнениям движения для постоянного ускорения. Нулевой рывок означает постоянное ускорение, так что с миром, который мы создали, все в порядке. (Я никогда не говорил, что постоянное ускорение реально. Постоянный рывок тоже миф. Однако в мире гипертекстов все возможно.)

    Куда мы пойдем дальше? Должны ли мы работать над соотношением скорость-смещение (третье уравнение движения для постоянного рывка)?

    v = v 0 + a 0 t + ½ jt 2 [1]
    +
    с = s 0 + v 0 t + ½ a 0 t 2 + ⅙ jt 3 [2]
    =
    v = f ( s ) [3]

    Как насчет зависимости ускорения от смещения (четвертое уравнение движения для постоянного рывка)?

    = a 0 + jt [1]
    +
    с = s 0 + v 0 t + ½ a 0 t 2 + ⅙ jt 3 [2]
    =
    = f ( s ) [4]

    Я даже не знаю, можно ли их вычислить алгебраически.Я сомневаюсь. Посмотрите на это страшное кубическое уравнение для смещения. Это не может быть нашим другом. На данный момент меня это не беспокоит. Не знаю, расскажет ли мне про это что-нибудь интересное. Я, , знаю, что мне никогда не требовалось третье или четвертое уравнение движения для постоянного рывка — пока нет. Я оставляю эту задачу математикам всего мира.

    Это проблема, которая отличает физиков от математиков. Математика не обязательно заботит физическая значимость, и он может просто поблагодарить физика за интересный вызов.Физика не обязательно заботит ответ, если он не окажется полезным, и в этом случае физик обязательно поблагодарит математика за его любопытство.

    константа ничего

    Эта страница в этой книге не о движении с постоянным ускорением, постоянным рывком, постоянным щелчком, треском или треском. Речь идет об общем методе определения количества движения (положения, скорости и ускорения) относительно времени и друг друга для любого вида движения.Для этого используется либо дифференцирование (нахождение производной)…

    • Производная положения по времени — это скорость ( v = ds dt ).
    • Производная скорости по времени — это ускорение ( a = dv dt ).

    или интегрирование (нахождение интеграла)…

    • Интеграл ускорения во времени — это изменение скорости (∆ v = ∫ a dt ).
    • Интеграл скорости во времени — это изменение положения (∆ с = ∫ v dt ).

    Вот как это работает. Некоторая характеристика движения объекта описывается функцией. Можете ли вы найти производную от этой функции? Это дает вам еще одну характеристику движения. Можете ли вы найти его неотъемлемую часть? Это дает вам другую характеристику. Повторите любую операцию столько раз, сколько необходимо. Затем примените методы и концепции, которые вы изучили в исчислении и связанных областях математики, чтобы извлечь больше смысла — диапазон, область, предел, асимптота, минимум, максимум, экстремум, вогнутость, перегиб, аналитический, числовой, точный, приблизительный и т. Д.Я добавил несколько важных примечаний по этому поводу в резюме по этой теме.

    Двумерные уравнения кинематики

    Двумерные уравнения кинематики

    3.2. Уравнения кинематики в двух измерениях

    Рисунок 3.3 Космический корабль движется с постоянным ускорением a х параллельно оси x. Нет движения в направлении y, и двигатель y выключен.

    Чтобы понять, как смещение, скорость и ускорение применяются к двумерному движению, рассмотрим космический корабль, оснащенный двумя двигателями, установленными перпендикулярно друг другу. Эти двигатели создают единственные силы, которые испытывает аппарат, и предполагается, что космический аппарат находится в начале координат, когда t 0 = 0 с, так что r 0 = 0 м. В более поздний момент времени t смещение КА составит Dr = r – r 0 = r.Относительно осей x и y смещение r имеет компоненты вектора x и y соответственно.

    На рисунке 3.3 работает только двигатель, ориентированный вдоль направления x, и транспортное средство ускоряется в этом направлении. Предполагается, что скорость в направлении y равна нулю, и она остается нулевой, поскольку двигатель y выключен. Движение космического корабля в направлении x описывается пятью кинематическими переменными x, a x , v x , v 0x и t.Здесь символ «x» напоминает нам, что мы имеем дело с компонентами x векторов смещения, скорости и ускорения. (См. Разделы 1.7 и 1.8 для обзора компонентов вектора.) Переменные x, a x , v x и v 0x являются скалярными компонентами (или для краткости «компонентами»). Как обсуждается в разделе 1.7, эти компоненты являются положительными или отрицательными числами (с единицами измерения), в зависимости от того, указывают ли соответствующие компоненты вектора вдоль оси + x или –x. Если космический аппарат имеет постоянное ускорение в направлении x, движение точно такое же, как описано в главе 2, и можно использовать уравнения кинематики.Для удобства эти уравнения записаны в левом столбце таблицы 3.1.

    Interactive LearningWare 3.1

    Лисица пробегает 85 м на юг за 18 с. Он начинает с отдыха и останавливается на незначительное время в конце бега. Затем он снова взлетает и пробегает 62 м на восток за 21 секунду. Во время этого второго пробега его ускорение постоянное. Для всего 39-секундного интервала найдите величину и направление средней скорости лисы (а) и (б) среднего ускорения.Укажите направления относительно юга.

    Сопутствующее домашнее задание: Проблемы 10

    Таблица 3.1 Уравнения кинематики для двумерного движения с постоянным ускорением

    Рисунок 3.4 аналогичен рисунку 3.3, за исключением того, что теперь работает только двигатель y, а космический корабль ускоряется в направлении y. Такое движение можно описать с помощью кинематических переменных y, a y , v y , v 0y и t.И если ускорение в направлении y постоянно, эти переменные связаны уравнениями кинематики, как написано в правом столбце Таблицы 3.1. Как и их аналоги в направлении x, скалярные компоненты y, a y , v y и v 0y могут быть положительными (+) или отрицательными (-) числами (с единицами измерения).

    Рисунок 3.4 Космический корабль движется с постоянным ускорением a г параллельно оси y.Нет движения в направлении x, и двигатель x выключен.

    Если оба двигателя космического корабля работают одновременно, результирующее движение происходит частично по оси x и частично по оси y, как показано на рисунке 3.5. Тяга каждого двигателя придает автомобилю соответствующую составляющую ускорения. Двигатель x ускоряет корабль в направлении x и вызывает изменение x-компоненты скорости. Точно так же y-двигатель вызывает изменение y-компоненты скорости. Важно понимать, что x-часть движения происходит точно так же, как если бы y-часть не происходила вообще. Аналогично, y-часть движения происходит точно так же, как если бы x-часть движения не существовала. Другими словами, движения по осям x и y не зависят друг от друга.

    Рисунок 3.5 Двумерное движение космического корабля можно рассматривать как комбинацию отдельных движений по осям x и y.

    ОБЗОР КОНЦЕПЦИИ Независимость движений по осям x и y лежит в основе двумерной кинематики. Это позволяет нам рассматривать двумерное движение как два отдельных одномерных движения, одно для направления x, а другое — для направления y. Как показано на диаграмме «Обзор концепций» на рис. 3.6, все, что мы узнали в главе 2 о кинематике в одном измерении, теперь будет применяться отдельно к каждому из двух направлений. Поступая таким образом, мы сможем описать переменные x и y по отдельности, а затем объединить эти описания, чтобы понять двумерную картину.В примере 4 этот подход применяется к движущемуся космическому кораблю.

    Рисунок 3.6 ОБЗОР КОНЦЕПЦИИ В двух измерениях движение по направлению x и движение по направлению y не зависят друг от друга. В результате каждый может быть проанализирован отдельно в соответствии с процедурами для одномерной кинематики, описанными в главе 2. На космическом шаттле Challenger движение в перпендикулярных направлениях контролируется двигателями.На фотографиях показан «Челленджер» на орбите с активированными двигателями. (С любезного разрешения НАСА).
    Пример 1 Движущийся космический корабль
    Проверьте свое понимание 2

    Моторная лодка, трогаясь с места, сохраняет постоянное ускорение. По прошествии определенного времени t его смещение и скорость равны r и v. Каковы были бы его смещение и скорость в момент времени 2, если предположить, что ускорение останется прежним?

    (а) 2р и 2в (б) 2р и 4в (в) 4р и 2в (г) 4р и 4в

    Справочная информация: Когда объект ускоряется, его перемещение и скорость зависят от времени.Если ускорение постоянное, применяются уравнения кинематики в таблице 3.1.

    По аналогичным вопросам (в том числе расчетным аналогам) обратитесь к Тесту самооценки 3.1. Этот тест описан в конце раздела 3.3.

    Следующая стратегия рассуждений дает обзор того, как уравнения кинематики применяются для описания движения в двух измерениях, например, в примере 1.

    Авторские права © 2000-2003 John Wiley & Sons, Inc. или связанных компаний. Все права защищены.

    Кинематические формулы в 1D — физика на основе алгебры 1

    Кинематические формулы (UAM) в 1 измерении


    Видео:

    Эти видео могут помочь вам, если у вас проблемы или вы пропустили урок.


    Mr.P из Flipping Physics объясняет, что такое кинематические формулы (UAM), и объясняет, что ускорение должно быть постоянным, чтобы это уравнение было истинным.

    Информационный бюллетень по новой концепции или принципу:

    Эти листы содержат краткую справку по некоторым из наиболее важных фактов о концепции.

    Кинематическая формула (UAM) … принцип или закон)

    Контрольный список для решения проблем:

    Вот как решать каждую кинетическую задачу.

    Контрольный список для решения проблем: кинематические формулы

    День 1: Концептуальные вопросы

    Это концептуальные вопросы и проблемы, на которые мы ответим и решим вместе в классе.

    Создание графиков для решения проблем (концептуальные вопросы)

    Webassign

    Выполните веб-назначение «Кинематические формулы (UAM), часть 1 (ABP)»

    Номер назначения веб-назначения 5886737

    для 9000 домашнее задание, если вы не закончите его в классе.

    Если вы застряли на какой-то проблеме, задайте себе эти вопросы, прежде чем сдаться или попросить о помощи.

    Покажите свою работу в начале следующего классного собрания, чтобы получить зачет.

    Никаких продлений не будет.

    Сделайте Webassign на своем телефоне, если у вас дома нет Интернета.

    День 2: Концептуальные вопросы

    Это концептуальные вопросы и проблемы, на которые мы ответим и решим вместе в классе.

    Дополнительная форма кинематики (UAM) … в 1D (вопросы концепции)

    Webassign

    «Кинематические формулы (UAM), часть 2 (ABP)»

    Webassign Номер задания 5886767

    Завершите домашнее задание, если не выполните его в классе.

    Если вы застряли на какой-то проблеме, задайте себе эти вопросы, прежде чем сдаться или попросить о помощи.

    Покажите свою работу в начале следующего классного собрания, чтобы получить зачет.

    Никаких продлений не будет.

    Сделайте Webassign на своем телефоне, если у вас дома нет Интернета.

    День 3: Рабочий лист задач стиля «наверстать упущенное»

    Устранить проблемы с кинематикой

    Вот версия рабочего листа для печати.

    Кинематика в двух измерениях

    Представьте себе шар, катящийся по горизонтальной поверхности, освещенный стробоскопическим светом.На рисунке (а) показано положение мяча через равные промежутки времени по пунктирной траектории. Случай 1 проиллюстрирован позициями с 1 по 3; величина и направление скорости не меняются (изображения расположены равномерно и по прямой линии), следовательно, ускорение отсутствует. Случай 2 указан для позиций с 3 по 5; мяч имеет постоянную скорость, но меняет направление, и поэтому существует ускорение. На рисунке (b) показано вычитание v 3 и v 4 и результирующее ускорение к центру дуги.Случай 3 встречается с 5 по 7 позиции; направление скорости постоянно, но величина меняется. Ускорение на этом участке пути соответствует направлению движения. Мяч изгибается от позиции 7 до 9, показывая случай 4; скорость меняет как направление, так и величину. В этом случае ускорение направлено почти вверх между 7 и 8 и имеет компонент к центру дуги из-за изменения направления скорости и компонент вдоль пути из-за изменения величины скорости.

    Рисунок 7

    (a) Путь шара по столу. (b) Ускорение между точками 3 и 4.

    Любой, кто наблюдал подброшенный объект — например, бейсбольный мяч в полете, — заметил движение снаряда . Для анализа этого распространенного типа движения делаются три основных предположения: (1) ускорение свободного падения постоянно и направлено вниз, (2) влияние сопротивления воздуха незначительно, и (3) поверхность земли неподвижна. плоскости (то есть кривизна земной поверхности и вращение земли незначительны).

    Чтобы проанализировать движение, разделите двумерное движение на вертикальные и горизонтальные составляющие. По вертикали объект испытывает постоянное ускорение силы тяжести. По горизонтали объект не испытывает ускорения и, следовательно, поддерживает постоянную скорость. Эта скорость проиллюстрирована на рисунке, где компоненты скорости изменяются в направлении y ; однако все они имеют одинаковую длину в направлении x (постоянное значение). Обратите внимание, что вектор скорости изменяется со временем из-за того, что изменяется вертикальная составляющая.


    Рисунок 8

    Движение снаряда.

    В этом примере частица покидает начало координат с начальной скоростью ( v o ) вверх под углом θ o . Исходные компоненты скорости x и y задаются формулами v x0 = v o и v y0 = v o sin θ o .

    Когда движения разделены на компоненты, величины в направлениях x и y могут быть проанализированы с помощью одномерных уравнений движения, обозначенных индексами для каждого направления: для горизонтального направления v x = v x0 и x = v x0 t ; для вертикального направления v y = v y0 — gt и y = v y0 — (1/2) gt 2 , где x и y представляют расстояния в горизонтальном и вертикальном направлениях соответственно, а ускорение свободного падения ( g ) равно 9.8 м / с 2 . (Отрицательный знак уже включен в уравнения.) Если объект стреляет под углом, составляющая y начальной скорости будет отрицательной. Скорость снаряда в любой момент времени может быть вычислена по компонентам в то время по теореме Пифагора, а направление может быть найдено по обратной тангенсе отношения компонентов:

    Другая информация полезна при решении проблем со снарядами. Рассмотрим пример, показанный на рисунке, где снаряд выстреливается под углом от уровня земли и возвращается на тот же уровень.Время, за которое снаряд достигнет земли из своей наивысшей точки, равно времени падения свободно падающего объекта, который падает прямо с той же высоты. Это равенство времени обусловлено тем, что горизонтальная составляющая начальной скорости снаряда влияет на то, как далеко снаряд летит по горизонтали, но не на время полета. Пути полета снаряда параболические и, следовательно, симметричные. Также в этом случае объект достигает вершины своего подъема за половину общего времени (T) полета.В верхней части подъема вертикальная скорость равна нулю. (Ускорение всегда равно g , даже на пике полета.) Эти факты можно использовать для получения дальности снаряда или расстояния, пройденного по горизонтали. На максимальной высоте v y = 0 и t = T /2; следовательно, уравнение скорости в вертикальном направлении принимает вид 0 = v o sin θ — g T /2 или решение для T , T = (2 v 0 sin θ) / г .

    Подстановка в уравнение горизонтального расстояния дает R = ( v o cos θ) T . Подставьте T в уравнение диапазона и используйте тождество тригонометрии sin 2θ = 2 sin θ cos θ, чтобы получить выражение для диапазона в терминах начальной скорости и угла движения, R = ( v o 2 / г ) sin 2θ. Как указано в этом выражении, максимальный диапазон возникает при θ = 45 градусов, потому что при этом значении θ sin 2θ имеет максимальное значение 1.На рисунке показаны траектории снарядов, выпущенных с одинаковой начальной скоростью под разными углами наклона.


    Рисунок 9

    Дальность выстрела снарядов под разными углами.

    Для равномерного движения объекта по горизонтальному кругу радиусом (R) постоянная скорость определяется как v = 2π R / T , что представляет собой расстояние одного оборота, деленное на время для одна революция.Время на один оборот (T) определяется как период. За один оборот головка вектора скорости за один период проходит по окружности 2π v ; таким образом, величина ускорения составляет a = 2π v / T . Объедините эти два уравнения, чтобы получить два дополнительных отношения в других переменных: a = v 2 / R и a = (4π 2 / T 2 ) R .

    Вектор смещения направлен из центра круга движения. Вектор скорости касается пути. Вектор ускорения, направленный к центру окружности, называется центростремительным ускорением . На рисунке показаны векторы смещения, скорости и ускорения в различных положениях, когда масса движется по кругу в горизонтальной плоскости без трения.

    Рисунок 10

    Равномерное круговое движение.

    физика: кинематика

    Кинематика (от греческого слова kinema для движения ) исследование траекторий движущихся объектов. Уравнения кинематики можно использовать для расчета того, как долго брошенный вверх мяч будет оставаться в воздухе, или для расчета ускорения, необходимого для разгона от 0 до 100 км / ч за 5 секунд. Для выполнения этих вычислений нам нужно знать, какое уравнение движения использовать, и начальные условия (начальное положение $ x_i $ и начальная скорость $ v_ {i} $).Подключите knowns к уравнениям движения а затем вы можете решить для желаемое неизвестное, используя один или два простых шага алгебры. Весь этот раздел сводится к трем уравнениям. Все дело в методе включения числа в уравнение.

    Цель этого раздела — убедиться, что вы знаете как использовать уравнения движения и понимать концепции нравится скорость и аккреция. Вы также узнаете, как легко распознать, какие уравнение целесообразно использовать для решения любой данной физической задачи.

    Концепции

    Ключевые понятия, используемые для описания движения объектов:

    • $ t $: время в секундах [с].

    • $ x (t) $: положение объекта как функция времени — также известное как уравнение движения. Положение объекта измеряется в метрах [м].

    • $ v (t) $: скорость объекта как функция времени. Измеряется в [м / с].

    • $ a (t) $: ускорение объекта как функция времени.2 $].

    • $ x_i = x (0), v_i = v (0) $: начальное (при $ t = 0 $) положение и скорость объекта (начальные условия).

    Положение, скорость и ускорение

    Движение объекта характеризуется тремя функциями: функция положения $ x (t) $, функция скорости $ v (t) $ и функция ускорения $ a (t) $. Функции $ x (t) $, $ v (t) $ и $ a (t) $ связаны — они все описывают разные аспекты одного и того же движения.

    Вы уже знакомы с этими понятиями по своему опыту вождения автомобиля.Уравнение движения $ x (t) $ описывает положение автомобиля как функцию времени. Скорость описывает изменение положения автомобиля или математически \ [ v (t) \ Equiv \ text {скорость изменения} x (t). \] Если мы измеряем $ x $ в метрах [м], а время $ t $ в секундах [с], тогда единицами измерения $ v (t) $ будут метры в секунду [м / с]. Например, объект движется с постоянной скоростью 30 $ [м / с] будет менять свою позицию на $ 30 [млн] каждую секунду.

    Скорость изменения скорости называется ускорением : \ [ a (t) \ Equiv \ text {скорость изменения} v (t).2 $]. Постоянное положительное ускорение означает скорость движения. постоянно увеличивается, как при нажатии на педаль газа. Постоянное отрицательное ускорение означает, что скорость неуклонно уменьшается, нравится когда нажимаешь на педаль тормоза.

    На рисунке справа показан одновременный график положение, скорость и ускорение автомобиля за некоторый промежуток времени. Через пару параграфов мы обсудим точные математические уравнения, которые описать $ x (t) $, $ v (t) $ и $ a (t) $.Но прежде чем мы перейдем к математике, давайте визуально проанализируем движение, показанное справа.

    Автомобиль стартует с начальной позиции $ x_i $ и просто сидит там какое-то время. Затем водитель полы педаль для максимального ускорения в течение некоторого времени, набирает скорость, а затем отпускает акселератор, но держит его достаточно нажатым, чтобы поддерживать постоянную скорость. Вдруг водитель видит вдалеке полицейскую машину и хлопает на тормозах (отрицательное ускорение) и вскоре после этого останавливает машину.Водитель ждет несколько секунд, чтобы убедиться, что копы прошли. Затем автомобиль немного ускоряется назад (задняя передача) и затем поддерживает постоянную скорость движения назад в течение длительного периода времени. Обратите внимание, как «движение назад» соответствует отрицательной скорости. В конце концов, водитель снова нажимает на тормоз, чтобы завести машину. до остановки. Конечная позиция — $ x_f $.

    В приведенном выше примере мы можем наблюдать два различных типа движения. Движение с постоянной скоростью (движение с постоянной скоростью, UVM) и движение с постоянным ускорением (равномерное ускорение движения, UAM).Конечно, может быть много других типов движения, но для В этом разделе вы несете ответственность только за этих двоих.

    автомобиль поддерживает постоянную скорость, то есть

     $ v (t) $ будет постоянной функцией.
     Постоянная скорость означает, что функция положения
     будет линией с постоянным наклоном, потому что по определению $ v (t) = \ text {slope of} x (t) $.
    * UAM: в то время, когда автомобиль испытывает постоянное ускорение $ a (t) = a $,
     скорость функции будет изменяться с постоянной скоростью. 2 + v_i t + x_i, \ nl
     v (t) & = at + v_i, \ nl
     а (т) & = а,
    \ end {выровнять *}
    \]
    где $ v_i $ - начальная скорость объекта, а $ x_i $ - его начальное положение.2 + 2a \ Delta x,
    \]
    где $ v_f $ обозначает конечную скорость, а $ \ Delta x $ обозначает  изменение  в координате $ x $.

    Вот и все. Запомните эти уравнения, вставьте правильные числа, и вы можете решить любую кинематическую задачу, которую только можно вообразить. Глава сделана.

    Равномерная скорость движения (УВМ)

    Частный случай, когда есть нулевое ускорение ($ a = 0 $), называется движение с равномерной скоростью или УВМ. Скорость остается постоянной (постоянной), потому что нет ускорения.Следующие три уравнения описывают движение объекта. при равномерной скорости: \ [ \ begin {align} х (t) & = v_it + x_i, \ nl v (t) & = v_i, \ nl а (т) & = 0. \ end {align} \] Как видите, это действительно те же уравнения, что и в случае с UAM. выше, но поскольку $ a = 0 $, некоторые термины отсутствуют.

    Свободное падение

    Мы говорим, что объект находится в свободном падении , если единственная сила, действующая на него, - это сила тяжести. На поверхности земли сила тяжести вызывает постоянное ускорение $ a = -9.2 $]. Отрицательный знак здесь, потому что ускорение свободного падения направлено вниз, и мы предполагаем, что ось $ y $ направлена ​​вверх. Движение объекта при свободном падении описывается уравнениями UAM.

    Примеры

    Теперь проиллюстрируем, как используются уравнения кинематики. решать физические задачи.

    Пример из Марокко

    Предположим, ваш друг хочет отправить вам мяч, завернутый в алюминий. фольга с его балкона, который находится на высоте $ x_i = 44.2 + 0 (t_ {fall}) + 44,145, \] который имеет решение $ t_ {fall} = \ sqrt {\ frac {44.145 \ times 2} {9.81}} = 3 $ [s].

    От 0 до 100 за 5 секунд

    Предположим, вы хотите иметь возможность разогнаться с 0 долларов до 100 долларов [км / ч] за 5 долларов за секунды на своей машине. Сколько ускорения нужно вашему двигателю, предполагая, что он производит постоянное ускорение.

    Мы можем вычислить необходимые $ a $, подставив необходимые значения в уравнение скорости для UAM: \ [ v (t) = at + v_i. \] Прежде чем мы дойдем до этого, нам нужно преобразовать скорость в [км / ч] до скорости в [м / с]: $ 100 $ [км / ч] $ = \ frac {100 [\ textrm {km}]} {1 [\ textrm {h}]} \ cdot \ frac {1000 [\ textrm {m}]} {1 [\ textrm {км}]} \ cdot \ frac {1 [\ textrm {h}]} {3600 [\ textrm {s}]} $ = 27.2 $] или больше.

    Пример Марокко II

    Некоторое время спустя ваш друг хочет отправить вам еще один алюминиевый мяч из своей квартиры, расположенной на 14 этаже (высота 44,145 $ [м]). Для уменьшения времени полета он бросает мяч прямо вниз с начальной скоростью $ 10 $ [м / с]. Сколько времени нужно, чтобы мяч коснулся земли?

    Представьте себе здание с осью $ y $, измеряющей расстояние вверх. начиная с первого этажа.2 - 4ac}} {2a} = \ frac {-10 \ pm \ sqrt {25 + 866.12}} {9.81} = 2,53 \ text {[s]}. \] Мы проигнорировали решение с отрицательным временем, потому что оно соответствует времени в прошлом. Сравнивая с первым марокканским примером, мы видим, что ответ имеет смысл - бросить мяч, направленный вниз, заставит его упасть на землю быстрее, чем просто бросить.

    Обсуждение

    Большинство кинематических задач, которые вам будет предложено решить, следуют той же схеме, что и в приведенных выше примерах. Вам дадут некоторые из начальных значений и попросят решить некоторую неизвестную величину.Важно помнить о знаков и чисел, которые вы подставляете в уравнения. Вы всегда должны рисовать систему координат и четко (себе) указывать Ось $ x $, которая измеряет смещение. Если величина скорости или ускорения указывает в том же направлении, что и ось $ x $, то это положительное число, в то время как величины, указывающие в противоположном направлении, - отрицательные числа.

    Все эти разговоры о том, что $ v (t) $ - это «скорость изменения $ x (t) $», начинают действовать мне на нервы.

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *