Логические элементы
В данной статье расскажем что такое логические элементы, рассмотрим самые простые логические элементы.
Любое цифровое устройство — персональный компьютер, или современная система автоматики состоит из цифровых интегральных микросхем (ИМС), которые выполняют определённые сложные функции. Но для выполнения одной сложной функции необходимо выполнить несколько простейших функций. Например, сложение двух двоичных чисел размером в один байт происходит внутри цифровой микросхемы называемой «процессор» и выполняется в несколько этапов большим количеством логических элементов находящихся внутри процессора. Двоичные числа сначала запоминаются в буферной памяти процессора, потом переписываются в специальные «главные» регистры процессора, после выполняется их сложение, запоминание результата в другом регистре, и лишь после результат сложения выводится через буферную память из процессора на другие устройства компьютера.
Процессор состоит из функциональных узлов: интерфейсов ввода-вывода, ячеек памяти – буферных регистров и «аккумуляторов», сумматоров, регистров сдвига и т.д. Эти функциональные узлы состоят из простейших логических элементов, которые, в свою очередь состоят из полупроводниковых транзисторов, диодов и резисторов. При конструировании простых триггерных и других электронных импульсных схем, сложные процессоры не применить, а использовать транзисторные каскады – «прошлый век». Тут и приходят на помощь – логические элементы.
Логические элементы, это простейшие «кубики», составные части цифровой микросхемы, выполняющие определённые логические функции. При этом, цифровая микросхема может содержать в себе от одного, до нескольких единиц, десятков, …и до нескольких сотен тысяч логических элементов в зависимости от степени интеграции. Для того, чтобы разобраться, что такое логические элементы, мы будем рассматривать самые простейшие из них. А потом, наращивая знания, разберёмся и с более сложными цифровыми элементами.
Начнём с того, что единица цифровой информации это «один бит». Он может принимать два логических состояния – логический ноль «0», когда напряжение равно нулю (низкий уровень), и состояние логической единицы «1», когда напряжение равно напряжению питания микросхемы (высокий уровень).
Поскольку простейший логический элемент это электронное устройство, то это означает, что у него есть входы (входные выводы) и выходы (выходные выводы). И входов и выходов может быть один, а может быть и больше.
Для того, чтобы понять принципы работы простейших логических элементов используется «таблица истинности». Кроме того, для понимания принципов работы логических элементов, входы, в зависимости от их количества обозначают: Х1, Х2, … ХN, а выходы: Y1, Y2, … YN.
Функции, выполняемые простейшими логическими элементами, имеют названия. Как правило, впереди функции ставится цифра, обозначающая количество входов. Простейшие логические элементы всегда имеют лишь один выход.
Рассмотрим простейшие логические элементы
— «НЕ» (NOT) – функция отрицания (инверсии сигнала). Потому его чаще называют — «инвертор». Графически, инверсия обозначается пустым кружочком вокруг вывода элемента (микросхемы). Обычно кружок инверсии ставится у выхода, но в более сложных логических элементах, он может стоять и на входе. Графическое обозначение элемента «НЕ» и его таблица истинности представлены на рисунке слева.
У элемента «НЕ» всегда один вход и один выход. По таблице истинности следует, что при наличии на входе элемента логического нуля, на выходе будет логическая единица. И наоборот, при наличии на входе логической единицы, на выходе будет логический ноль. Цифра «1» внутри прямоугольника обозначает функцию «ИЛИ», её принято рисовать и внутри прямоугольника элемента «НЕ», но это ровным счётом ничего абсолютно не значит.
Обозначение D1.1 означает, что D — цифровой логический элемент, 1 (первая) — номер микросхемы в общей схеме, 1 (вторая) — номер элемента в микросхеме. Точно также расшифровываются и другие логические элементы.
Часто, чтобы отличить цифровые микросхемы от аналоговых микросхем, применяют обозначения из двух букв: DD – цифровая микросхема, DA – аналоговая микросхема. В последующем, мы не будем заострять внимание на это обозначение, а вернёмся лишь тогда, когда это будет необходимым.
Самой распространённой микросхемой «транзисторно-транзисторной логики» (ТТЛ), выполняющей функцию «НЕ», является интегральная микросхема (ИМС) К155ЛН1, внутри которой имеется шесть элементов «НЕ». Нумерация выводов этой микросхемы показана справа.
— «И» (AND) – функция сложения (если на всех входах единица, то на выходе будет единица, в противном случае, если хотя бы на одном входе ноль, то и на выходе всегда будет ноль). В алгебре-логике элемент «И» называют «конъюнктор»
Название элемента «2И» обозначает, что у него два входа, и он выполняет функцию «И». На схеме внутри прямоугольника микросхемы рисуется значок «&», что на английском языке означает «AND» (в переводе на русский — И).
По таблице истинности следует, что на выходе элемента «И» будет логическая единица только в одном случае — когда на обоих входах будет логическая единица. Если хотя бы на одном входе ноль, то и на выходе будет ноль.
Самой распространённой микросхемой «транзисторно-транзисторной логики» (ТТЛ), выполняющей функцию «2И», является интегральная микросхема (ИМС) К155ЛИ1, внутри которой имеется четыре элемента «2И». Нумерация выводов этой микросхемы показана справа.
Для того, чтобы вам было понятнее что такое «2И», «3И», «4И», и т.д., приведу графическое обозначение и таблицу истинности элемента «3И».
По таблице истинности следует, что на выходе элемента «3И» будет логическая единица только в том случае — когда на всех трёх входах будет логическая единица. Если хотя бы на одном входе будет логический ноль, то и на выходе элемента также будет логический ноль. Самой распространённой микросхемой ТТЛ, выполняющей функцию «3И», является микросхема К555ЛИ3, внутри которой имеется три элемента «3И».
— «И-НЕ» (NAND) – функция сложения с отрицанием (если на всех входах единица, то на выходе будет ноль, в противном случае на выходе всегда будет единица). Графическое обозначение элемента «2И-НЕ» и его таблица истинности приведены слева.
По таблице истинности следует, что на выходе элемента «2И-НЕ» будет логический ноль только в том случае, если на обоих входах будет логическая единица. Если хотя бы на одном входе ноль, то на выходе будет единица.
Самой распространённой микросхемой ТТЛ, выполняющей функцию «2И-НЕ», является ИМС К155ЛА3, а микросхемами
Сравнив таблицы истинности элемента «2И-НЕ» и элемента «2И» можно догадаться об эквивалентности схем:
Добавив к элементу «2И» элемент «НЕ» мы получили элемент «2И-НЕ». Так можно собрать схему, если нам необходим элемент «2И-НЕ», а у нас в распоряжении имеются только элементы «2И» и «НЕ».
И наоборот:
Добавив к элементу «2И-НЕ» элемент «НЕ» мы получили элемент «2И». Так можно собрать схему, если нам необходим элемент «2И», а у нас в распоряжении имеются только элементы «2И-НЕ» и «НЕ».
Аналогичным образом, путём соединения входов элемента «2И-НЕ» мы можем получить элемент «НЕ»:
Обратите внимание, что было введено новое в обозначении элементов – дефис, разделяющий правую и левую часть в названии «2И-НЕ». Этот дефис непременный атрибут при инверсии на выходе (функции «НЕ»).
— «ИЛИ» (OR) – функция выбора (если хотя бы на одном из входов – единица, то на выходе – единица, в противном случае на выходе всегда будет ноль). В алгебре-логике, элемент «ИЛИ» называют «дизъюнктор». Графическое обозначение элемента «2ИЛИ» и его таблица истинности приведены слева.
Самой распространённой микросхемой ТТЛ, выполняющей функцию «2ИЛИ», является ИМС К155ЛЛ1, внутри которой имеется четыре элемента «2ИЛИ». Нумерация выводов этой микросхемы показана справа.
Предположим, что нам в схеме необходим элемент, выполняющий функцию «2ИЛИ», но у нас есть в распоряжении только элементы «НЕ» и «2И-НЕ», тогда можно собрать схему, которая будет выполнять функцию «2ИЛИ»:
— «ИЛИ-НЕ» (NOR) – функция выбора (если хотя бы на одном из входов – единица, то на выходе – ноль, в противном случае на выходе всегда будет единица). Как вы поняли, элемент «ИЛИ-НЕ» выполняет функцию «ИЛИ», а потом инвертирует его функцией «НЕ».
Графическое обозначение элемента «2ИЛИ-НЕ» и его таблица истинности приведена слева.
Самой распространённой микросхемой ТТЛ, выполняющей функцию «2ИЛИ-НЕ», является ИМС К155ЛЕ1, а микросхемами КМОП – К561ЛЕ5 и К176ЛЕ5, внутри которых имеется четыре элемента «2ИЛИ-НЕ». Нумерация выводов этих микросхем показана справа.
Предположим, что нам в схеме необходим элемент, выполняющий функцию «2ИЛИ-НЕ», но у нас есть в распоряжении только элементы «НЕ» и «2И-НЕ», тогда можно собрать следующую схему, которая будет выполнять функцию «2ИЛИ-НЕ»:
По аналогии с элементом «2И-НЕ», путём соединения входов элемента «2ИЛИ-НЕ» мы можем получить элемент «НЕ»:
— «Исключающее ИЛИ» (XOR) — функция неравенства двух входов (если на обоих входах элемента одинаковые сигналы, то на выходе – ноль, в противном случае на выходе всегда будет единица). Операция, которую он выполняет, часто называют «сложение по модулю 2».
Графическое обозначение элемента «Исключающее ИЛИ» и его таблица истинности приведены слева.
Самой распространённой микросхемой ТТЛ, выполняющей функцию «Исключающее ИЛИ», является ИМС К155ЛП5, а микросхемами КМОП – К561ЛП2 и К176ЛП2, внутри которых имеется четыре элемента «Исключающее ИЛИ». Нумерация выводов этих микросхем показана справа.
Предположим, что нам в схеме необходим элемент, выполняющий функцию «Исключающее ИЛИ», но у нас есть в распоряжении только элементы «2И-НЕ», тогда можно собрать следующую схему, которая будет выполнять функцию «Исключающее ИЛИ»:
В цифровой схемотехнике процессоров главная функция — «Суммирование двоичных чисел», поэтому сложный логический элемент – «Сумматор» является неотъемлемой частью арифметико-логического устройства любого, без исключения процессора. Составной частью сумматора является набор логических элементов, выполняющих функцию «Исключающее ИЛИ с переносом остатка»
Графическое обозначение элемента «Исключающее ИЛИ с переносом» и его таблица истинности представлена слева.
Такая функция сложения одноразрядных чисел в простых устройствах обычно не используется, и как правило, интегрирована в состав одной микросхемы – сумматора, с минимальным количеством разрядов – четыре, для сложения четырехбитных чисел. По причине слабого спроса, промышленность таких логических элементов не выпускает. Поэтому, в случае необходимости, функцию «Исключающее ИЛИ с переносом» можно собрать по следующей схеме из элементов «2И-НЕ» и «2ИЛИ-НЕ», которая активно применяется как внутри простых сумматоров, так и во всех сложных процессорах (в том числе Pentium, Intel-Core, AMD и других, которые появятся в будущем):
Вышеперечисленные логические элементы выполняют статические функции, а на основе них строятся более сложные статические и динамические элементы (устройства): триггеры, регистры, счётчики, шифраторы, дешифраторы, сумматоры, мультиплексоры.
meanders.ru
Таблицы истинности
Логические операции удобно описывать так называемыми таблицами истинности, в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B).
Логические основы компьютера
В ЭВМ используются различные устройства, работу которых прекрасно описывает алгебра логики. К таким устройствам относятся группы переключателей, триггеры, сумматоры.
Кроме того, связь между булевой алгеброй и компьютерами лежит и в используемой в ЭВМ системе счисления. Как известно она двоичная. Поэтому в устройствах компьютера можно хранить и преобразовывать как числа, так и значения логических переменных.
Переключательные схемы
В ЭВМ применяются электрические схемы, состоящие из множества переключателей. Переключатель может находиться только в двух состояниях: замкнутом и разомкнутом. В первом случае – ток проходит, во втором – нет. Описывать работу таких схем очень удобно с помощью алгебры логики. В зависимости от положения переключателей можно получить или не получить сигналы на выходах.
Вентили, триггеры и сумматоры
Вентиль представляет собой логический элемент, который принимает одни двоичные значения и выдает другие в зависимости от своей реализации. Так, например, есть вентили, реализующие логическое умножение (конъюнкцию), сложение (дизъюнкцию) и отрицание.
Триггеры и сумматоры – это относительно сложные устройства, состоящие из более простых элементов – вентилей.
Триггер способен хранить один двоичный разряд, за счет того, что может находиться в двух устойчивых состояниях. В основном триггеры используется в регистрах процессора.
Сумматоры широко используются в арифметико-логических устройствах (АЛУ) процессора и выполняют суммирование двоичных разрядов.
Изображения, использованные в статье
Таблицы истинности для конъюнкции, дизъюнкции и отрицания
Законы алгебры логики
Раздел:
Логические основы компьютера
Номер темы:
2
Для логических величин обычно используются три операции:
Конъюнкция– логическое умножение (И) –and, &, ∧.
Дизъюнкция– логическое сложение (ИЛИ) –or, |, v.
Логическое отрицание (НЕ) – not, ¬.
Логические выражения можно преобразовывать в соответствии с законами алгебры логики:
Законы рефлексивности a ∨ a = a a ∧ a = a
Законы коммутативностиa∨b = b∨a a∧b = b∧a
Законы ассоциативности(a∧b)∧c = a∧(b∧c) (a∨b)∨c = a∨(b∨c)
Законы дистрибутивностиa∧(b∨c) = a∧b∨a∧c a∨b∧c = (a∨b)∧(a∨c)
Закон отрицания отрицания¬ (¬ a) = a
Законы де Моргана ¬ (a ∧ b) = ¬ a ∨ ¬ b ¬ (a ∨ b) = ¬ a ∧ ¬ b
Законы поглощения a ∨ a ∧ b = a a ∧ (a ∨ b) = a
Логические элементы. Вентили
Раздел:
Логические основы компьютера
Номер темы:
3
В основе построения компьютеров, а точнее аппаратного обеспечения, лежат так называемые вентили. Они представляют собой достаточно простые элементы, которые можно комбинировать между собой, создавая тем самым различные схемы. Одни схемы подходят для осуществленияарифметических операций, а на основе других строят различнуюпамятьЭВМ.
Простейший вентиль представляет собой транзисторный инвертор, который преобразует низкое напряжение в высокое или наоборот (высокое в низкое). Это можно представить как преобразование логического нуля в логическую единицу или наоборот. Т.е. получаем вентиль НЕ.
Соединив пару транзисторов различным способом, получают вентили ИЛИ-НЕиИ-НЕ. Эти вентили принимают уже не один, а два и более входных сигнала. Выходной сигнал всегда один и зависит (выдает высокое или низкое напряжение) от входных сигналов. В случае вентиля ИЛИ-НЕ получить высокое напряжение (логическую единицу) можно только при условии низкого напряжении на всех входах. В случае вентиля И-НЕ все наоборот: логическая единица получается, если все входные сигналы будут нулевыми. Как видно, это обратно таким привычным логическим операциям как И и ИЛИ. Однако обычно используются вентили И-НЕ и ИЛИ-НЕ, т.к. их реализация проще: И-НЕ и ИЛИ-НЕ реализуются двумя транзисторами, тогда как логические И и ИЛИ тремя.
Выходной сигнал вентиля можно выражать как функцию от входных.
Транзистору требуется очень мало времени для переключения из одного состояния в другое (время переключения оценивается в наносекундах). И в этом одно из существенных преимуществ схем, построенных на их основе.
Изображения, использованные в статье
Схемы вентилей
studfiles.net
5. Логические элементы цифровых устройств
Логические элементы — это электронные устройства, предназначенные для обработки информации представленной в виде двоичных кодов, отобpажаемыx напpяжeниeм (сигналом) выcoкого и низкого уpовня. Логические элементы реализyют логические функции И, ИЛИ, НЕ и их комбинации. Указанные логические операции выполняются с помощью электронных схем, входящих в состав микросхем. Из логических элементов И, ИЛИ, НЕ, можно сконстpуировать цифровое электронное устройство любой сложности.
Логические элементы могут выполнять логические функции в режимах положительной и отрицательной логики. В режиме положительной логики логической единице соответствует высокий уровень напряжения, а логическому нулю — низкий уровень напряжения. В режиме отрицательной логики наоборот логической единице соответствует низкий уровень напряжения, а логическому нулю — высокий.
Если в режиме положительной логики логический элемент, реализует операцию И, то в режиме отрицательной логики выполняет операцию ИЛИ, и наоборот. И если в режиме положительной логики — И-НЕ, то в режиме отрицательной логики — ИЛИ-НЕ.
Условное графическое обозначение логического элемента представляет собой прямоугольник, внутри которого ставится изображение указателя функции. Входы изображают линиями с левой стороны прямоугольника, выходы элемента — с правой стороны. При необходимости разрешается располагать входы сверху, а выходы снизу. У логических элементов И, ИЛИ может быть любое начиная с двух количество входов и один выход. У элемента НЕ один вход и один выход. Если вход обозначен окружностью, то это значит, что функция выполняется для сигнала низкого уровня (отрицательная логика). Если окружностью обозначен выход, то элемент производит логическое отрицание (инверсию) результата операции, указанной внутри прямоугольника.
Все цифровые устройства делятся на комбинационные и на последовательностные. В комбинационных устройствах выходные сигналы в данный момент времени однозначно определяются входными сигналами в тот же момент. Выходные сигналы последовательностного устройства (цифрового автомата) в данный момент времени определяются не только логическими переменными на его входах, но еще зависят и от предыдущего состояния этого устройства. Логические элементы И, ИЛИ, НЕ и их комбинации являются комбинационными устройствами. К последовательностным устройствам относятся триггеры, регистры, счетчики.
Логический элемент И (рис. 1) выполняет операцию логического умножения (конъюнкцию). Такую операцию обозначают символом /\ или значком умножения (·). Если все входные переменные равны 1, то и функция Y=X1·X2 принимает значение логической 1. Если хотя бы одна переменная равна 0, то и выходная функция будет равна 0.
Таблица 1 | ||||
Y=X1·X2 | X1 | X2 | Y | |
0 | 0 | 0 | ||
0 | 1 | 0 | ||
1 | 0 | 0 | ||
Рис. 1 | 1 | 1 | 1 |
Наиболее наглядно логическая функция характеризуется таблицей, называемой таблицей истинности (Табл. 1). Талица истинности содержит всевозможные комбинации входных переменных Х и соответствующие им значения функции Y. Количество комбинаций составляет 2n, где n – число аргументов.
Логичеcкий элeмент ИЛИ (рис. 2) выполняет операцию логического сложения (дизъюнкцию). Обозначают эту операцию символом \/ или знаком сложения (+). Функция Y=X1\/X2 принимает значение логической 1, если хотя бы одна переменная равна 1. (Табл. 2).
Таблица 2 | ||||
Y=X1\/X2 | X1 | X2 | Y | |
0 | 0 | 0 | ||
0 | 1 | 1 | ||
1 | 0 | 1 | ||
Рис. 2 | 1 | 1 | 1 |
Логический элемент НЕ (инвертор) выполняет операцию логического отрицания (инверсию). При логическом отрицании функция Y принимает значение противоположное входной переменной Х (Табл. 3). Эту операцию обозначают .
Таблица 3 | |||
Y= | X1 | Y | |
0 | 1 | ||
Рис. 3 | 1 | 0 |
Кроме указанных выше логических элементов, на практике широко используются элементы И-НЕ, ИЛИ-НЕ, Исключающее ИЛИ.
Логичеcкий элемeнт И-НЕ (рис. 4) выполняет операцию логического умнoжения над входными переменными, а затем инвертирует полученный результат и выдаёт его на выход.
Таблица 4 | ||||
X1 | X2 | Y | ||
0 | 0 | 1 | ||
0 | 1 | 1 | ||
1 | 0 | 1 | ||
Рис. 4 | 1 | 1 | 0 |
Логический элемент ИЛИ-НЕ (рис. 5) выполняет операцию логического сложения над входными переменными, а затем инвертирует полученный результат и выдаёт его на выход.
Таблица 5 | ||||
X1 | X2 | Y | ||
0 | 0 | 1 | ||
0 | 1 | 0 | ||
1 | 0 | 0 | ||
Рис. 5 | 1 | 1 | 0 |
Логический элемент Исключающее ИЛИ представлен на рис. 6. Логическая функция Исключающее ИЛИ (функция «неравнозначность» или сумма по модулю два) записывается в виде и принимает значение 1 при X1≠X2, и значение 0 при X1=X2=0 или X1=X2=1 (Табл. 6).
Таблица 6 | ||||
Y=X1X2 | X1 | X2 | Y | |
0 | 0 | 0 | ||
0 | 1 | 1 | ||
1 | 0 | 1 | ||
Рис. 6 | 1 | 1 | 0 |
Любой из выше перечисленных элементов можно заменить устройством, собранным только из базовых двухвходовых элементов ИЛИ-НЕ или И-НЕ. Например: операция НЕ (рис. 7, а) приX1 = X2 = X; операция И (рис. 7, б) .
Рис. 7
Интегральные логические элементы выпускаются в стандартных корпусах с 14 или 16 выводами. Один вывод используется для подключения источника питания, еще один является общим для источников сигналов и питания. Оставшиеся 12 (14) выводов используют как входы и выходы логических элементов. В одном корпусе может находится несколько самостоятельных логических элементов. На рисунке 8 показаны условные графические обозначения и цоколевка (нумерация выводов) некоторых микросхем.
К155ЛЕ1 К155ЛА3 К155ЛП5
Рис. 8
Базовый элемент транзисторно-транзисторной логики (ТТЛ). На рисунке 9 показана схема логического элемента И-НЕ ТТЛ с простым однотранзисторным ключом.
Рис. 9
Простейший логический элемент ТTЛ строится на базе многоэмиттерного транзистор VT1. Пpинцип дейcтвия такого транзистора тот же, что и у обычного биполяpного транзистора. Oтличие заключается в том, что инжекция носителей заряда в базу осуществляется через несколько самостoятельных эмиттерных р—n-переходов. При поступлении на входы логической единицы U1вх, запираются все эмиттерные переxоды VT1. Ток, текущий через резистор Rб, замкнется через открытые р-n—переходы: коллектoрный VT1 и эмиттерный VT2. Этoт ток откpоет транзиcтор VT2, и напряжение на его выходе станет близким к нулю, т. е. Y=U0вых. Если хотя бы на один вход (или на все входы) VT1 будет подан сигнал логического нуля U0вх, то ток, текyщий по Rб, замкнeтся через откpытый эмиттерный переход VT1. Пpи этoм входной ток VT2 будет близoк к нулю, и выходной транзистоp окажется запеpтым, т. е. Y=U1вых. Таким образом, рассмотренная схема осуществляет логическую операцию И-НЕ.
Контрольные вопросы.
Что называется логическим элементом?
Чем различаются положительная и отрицательная логики?
Что называется таблицей истинности?
Каким символом обозначают логическое умножение?
Как на схемах изображают логический элемент И?
При каких входных переменных на выходе логического элемента И формируется логическая 1?
Каким символом обозначают логическое сложение?
Как на схемах изображают логический элемент ИЛИ?
При каких входных переменных на выходе логического элемента ИЛИ формируется логическая 1?
Как на схемах изображают логический элемент НЕ?
Как на схемах изображают логический элемент И-НЕ?
При каких входных переменных на выходе логического элемента И-НЕ формируется логическая 1?
Как на схемах изображают логический элемент ИЛИ-НЕ?
При каких входных переменных на выходе логического элемента ИЛИ-НЕ формируется логическая 1?
Как на схемах изображают логический элемент Исключающее ИЛИ?
При каких входных переменных на выходе логического элемента Исключающее ИЛИ формируется логическая 1?
Как из элемента ИЛИ-НЕ получить элемент НЕ?
Как из элемента И-НЕ получить элемент НЕ?
Опишите принцип действия базового элемента ТТЛ.
studfiles.net
Логические элементы — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 мая 2017; проверки требуют 11 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 мая 2017; проверки требуют 11 правок.Логические элементы — устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого — «1» и низкого — «0» уровней в двоичной логике, последовательность «0», «1» и «2» в троичной логике, последовательностями «0», «1», «2», «3», «4», «5», «6», «7», «8» и «9» в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (на диодах и транзисторах), пневматическими, гидравлическими, оптическими и др.
С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам на электронных лампах, позже — на транзисторах. После доказательства в 1946 г. теоремы Джона фон Неймана об экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.
Логические элементы выполняют логическую функцию (операцию) над входными сигналами (операндами, данными).
Всего возможно x(xn)∗m{\displaystyle \ x^{(x^{n})*m}} логических функций и соответствующих им логических элементов, где x{\displaystyle \ x} — основание системы счисления, n{\displaystyle \ n} — число входов (аргументов),
ru.wikipedia.org
Логические функции алгебры логики: схемы и таблицы истинности
В данной статье мы начнем обозревать булевую алгебру или алгебру логики. Рассмотрим элементы функции на схеме, а так же приведем таблицы истинности для всех логических функций.
Введение в булевую алгебру
В 1854 году Джордж Буль провел исследование «законов мышления», которые основывались на упрощенной версии теории «групп» или «множеств», и из этого была выведена булевая алгебра.
Булева алгебра имеет дело, главным образом, с теорией, согласно которой логические операции и операции над множествами являются либо «ИСТИННЫМИ», либо «ЛОЖНЫМИ», но не обеими одновременно.
Например, A + A = A, а не 2A, как это было бы в обычной алгебре. Булева алгебра — это простой и эффективный способ представления действия переключения стандартных логических вентилей, а основные логические операторы, которые нас здесь интересуют, задаются операциями логических вентилей функций И , ИЛИ и НЕ.
Логическая функция «И» (умножение)
Функция логики И утверждает, что два или более события должны происходить вместе и одновременно, чтобы происходило выходное действие. Порядок, в котором происходят эти действия, не имеет значения, поскольку он не влияет на конечный результат. Например, & B = B & . В булевой алгебре функция логики И подчиняется коммутативному закону, который допускает изменение положения любой переменной.
Функция «И» представлена в электронике символом точки или полной остановки ( . ) Таким образом, 2-входное ( АВ ) «И» элемент имеет выходной термин, представленный логическим выражением A.B или просто AB.
Представление функции «И» на схеме
Здесь два переключателя A и B соединены вместе, образуя последовательную цепь. Поэтому в вышеупомянутой цепи оба выключателя A «И» B должны быть замкнуты (логика «1»), чтобы включить лампу. Другими словами, оба переключателя должны быть замкнуты или должны иметь логическую «1», чтобы лампа горела.
Тогда логический элемент этого типа (логический элемент «И» ) создает выход только тогда, когда все его входы истины. В терминах булевой алгебры вывод будет ИСТИНА, только когда все его входы ИСТИНА. В электрическом смысле логическая функция «И» равна последовательной цепи, как показано выше.
Поскольку имеется только два переключателя, каждый с двумя возможными состояниями «открытый» или «закрытый». Определяя логическую «0» как то, когда переключатель разомкнут, и логическую «1», когда переключатель замкнут, существует четыре различных способа или комбинации расположения двух переключателей вместе, как показано в таблице ниже.
Таблица истинности для функции «И»
Логические «И» элементы доступны как стандартные пакеты ic, такие как общие TTL 74LS08 Четырехпозиционные 2-входные положительные элементы «И» (или эквивалент CMOS 4081), TTL 74LS11 Тройные 3-входные положительные элементы «И» или 74LS21 Двойные 4-входные положительные элементы «И». «И» ворота можно также «каскадировать» вместе для создания цепей с более чем 4 входами.
Логическая функция «ИЛИ» (сложение)
Функция логического «ИЛИ» заявляет, что выходное действие станет ИСТИНОЙ, если одно «ИЛИ» больше событий ИСТИНЫ, но порядок, в котором они происходят, не имеет значения, поскольку он не влияет на конечный результат.
Так , например, А + В = В + А . В булевой алгебре функция логического «ИЛИ» подчиняется коммутативному закону так же, как и для логической функции «И», что позволяет изменять положение любой переменной.
Логика или логическое выражение, данное для логического элемента «ИЛИ», является логическим выражением, которое обозначается знаком плюс, ( + ). Таким образом, 2-входной ( АВ ) Логический элемент «ИЛИ» имеет выход термин, представленный булевой выражением: A + B = Q .
Представление функции «ИЛИ» на схеме
Здесь два переключателя А и B соединены параллельно и, либо переключатель A «ИЛИ» переключатель B может быть закрыт, чтобы включить лампу. Другими словами, выключатель может быть замкнут, либо быть на логике «1», чтобы лампа была включена.
Тогда этот тип логического элемента генерирует и выводит только тогда, когда присутствует «ЛЮБОЙ» из его входов, и в терминах Булевой алгебры выход будет ИСТИНА, если любой из его входов ИСТИНЕН. В электрическом смысле логическая функция «ИЛИ» равна параллельной цепи.
Как и в случае с функцией «И», есть два переключателя, каждый с двумя возможными положениями, открытыми или закрытыми, поэтому будет 4 различных способа расположения переключателей.
Таблица истинности для функции «ИЛИ»
Логические «ИЛИ» элементы доступны в виде стандартных пакетов ic, таких как общие TTL 74LS32 Четырехместные 2-входные положительные «ИЛИ» элементы. Как и в предыдущем логическом элементе «И», «ИЛИ» также может быть «каскадно» соединен для создания цепей с большим количеством входов, таких как системы охранной сигнализации (зона A или зона B или зона C и т.д.).
Логическая функция «НЕ» (отрицание)
Функция «Логическое НЕ» — это просто инвертор с одним входом, который изменяет вход логического уровня «1» на выход логического уровня «0» и наоборот.
«Функция логического НЕ» называется так, потому что ее выходное состояние НЕсовпадает с его входным состоянием с ее логическим выражением, обычно обозначаемым чертой или линией ( ¯ ) над его входным символом, который обозначает операцию инвертирования (отсюда ее название как инвертор).
Поскольку логическое «НЕ» выполняет логическую функцию инвертирования или комплементационной, их чаще называют инверторами, поскольку они инвертируют сигнал. В логических схемах это отрицание может быть представлено нормально замкнутым переключателем.
Представление функции «НЕ» на схеме
Если A означает, что переключатель замкнут, то «НЕ» A или А (с верхней чертой) говорит, что переключатель НЕ замкнут или, другими словами, он разомкнут. Функция логического НЕ имеет один вход и один выход, как показано на рисунке.
Таблица истинности для функции «НЕ»
Индикатор инверсии для логической функции «НЕ» является символом «пузыря», ( O) на выходе (или входе) символа логических элементов. В булевой алгебре инвертирующая логическая функция «НЕ» следует Закону дополнения, создающему инверсию.
Логические «НЕ» элементы или «Инверторы», как их чаще называют, могут быть связаны со стандартными элементами «И» и» ИЛИ» для создания элементов «НЕ И» и «НЕ ИЛИ» соответственно. Инверторы также могут использоваться для генерации «дополнительных» сигналов в более сложных декодерах / логических схемах, например, дополнение логики A — это «НЕ» A , а два последовательно соединенных инвертора дают двойную инверсию, которая выдает на своем выходе исходное значение A.
При проектировании логических схем вам может понадобиться только один или два инвертора в вашей конструкции, но если у вас нет места или денег для выделенного чипа инвертора, такого как 74LS04. Тогда вы можете легко заставить логику «НЕ» функционировать, используя любые запасные элементы «НЕ А» или «НЕ ИЛИ», просто соединяя их входы вместе, как показано ниже.
Логическая функция «НЕ И»
Функция «НЕ И» представляет собой комбинацию двух отдельных логических функций, функции «И» и функции «НЕ» последовательно. Логическая функция «НЕ И» может быть выражена логическим выражением AB (с верхней чертой)
Функция логического «НЕ И» генерирует выход, только когда «ЛЮБЫЕ» из ее входов отсутствуют, и в терминах булевой алгебры выход будет ИСТИНА, только когда любой из ее входов ЛОЖЬ (0).
Представление функции «НЕ И» на схеме
Таблица истинности для функции «НЕ И» противоположна таблице для предыдущей функции «И», потому что элемент «НЕ И» выполняет обратную операцию элемента «И». Другими словами, элемент «НЕ И» является дополнением элемента «И».
Таблица истинности для функции «НЕ И»
Функция «НЕ И» обозначается вертикальной чертой или стрелкой вверх, например, логический B = A | Bили A ↑ B .
Логика «НЕ И» используется в качестве основных «строительных блоков», чтобы построить другие функции логического элемента и доступны в стандартных IC пакетов, такие как общий TTL — 74LS00 Четырехместный 2-входной «НЕ И» элемент, TTL — 74LS10 Тройной 3-входной «НЕ И» элемент или 74LS20 Двойной 4-х входной «НЕ И» элемент. Есть даже один чип 74LS30 с 8 входами «НЕ И» элемента.
Логическая функция «НЕ ИЛИ»
Логический элемент «НЕ ИЛИ» представляет собой комбинацию двух отдельных логических функций, «НЕ» и «ИЛИ», соединенных вместе, чтобы сформировать единую логическую функцию, которая идентична функции «ИЛИ», за исключением того, что выход инвертирован.
Чтобы создать вентиль «НЕ ИЛИ», функция «ИЛИ» и функция «НЕ» соединены вместе последовательно, и ее операция определяется булевым выражением как, A + B (с верхней чертой).
Функция логического «НЕ ИЛИ» генерирует и выводит только тогда, когда отсутствуют «ВСЕ» ее входы, и в терминах булевой алгебры выход будет ИСТИНА только тогда, когда все ее входы ЛОЖНЫ .
Представление функции «НЕ ИЛИ» на схеме
Таблица истинности для функции «НЕ ИЛИ» противоположна таблице для предыдущей функции «ИЛИ», потому что элемент «НЕ ИЛИ» выполняет обратную операцию элемента «ИЛИ». Тогда мы можем видеть, что элемент «НЕ ИЛИ» является дополнением элемента «ИЛИ».
Таблица истинности для функции «НЕ ИЛИ»
Функция «НЕ ИЛИ» иногда известна как функция Пирса и обозначается стрелкой вниз, А «НЕ ИЛИ» B = A ↓ B.
Логика элемента «НЕ ИЛИ» доступны как стандартные IC пакетов, таких как TTL 74LS02 Четырехместный 2-входной элемент «НЕ ИЛИ», TTL 74LS27 Тройной 3-входной элемент «НЕ ИЛИ» или 74LS260 Двойной 5-входной элемент «НЕ ИЛИ».
meanders.ru
Логические элементы и таблица истинности
В основе всех цифровых систем лежат четыре основных логических элемента (операций):
Логическое сложение, дизъюнкция, ИЛИ
Логическое умножение, конъюнкция, И
ИЛИ — исключающее
Отрицание, НЕ
Все эти элементы обладают свойством функциональной полноты, т.е. на их основе может быть решена любая логическая непротиворечивая функция.
В электротехнических системах логические элементы принято обозначать в виде прямоугольников со сторонами кратным 5 мм, причем, слева показаны входы, справа выходы.
Входные величины по правилам алгебры логики обозначаются, как правило, заглавными латинскими буквами (A,B,C…), так же обозначаются и выходные переменные. Связь между входами и выходами определяется конкретной логической функцией.
Одним из основных инструментов для анализа цифровых комбинационных схем на этих элементах является таблица истинности, которая состоит из N– столбцов, гдеN– 1 равно количеству входных переменных. А последний столбец принимает значение выходной переменной. Если количество входных переменных равноK, то количество строк в этой таблице равно 2K. Важной особенностью всех входных и выходных переменных в алгебре логике является то, что все они могут принимать только два значения – нуля или единицы.
Логическое сложение, дизъюнкция, элемент или
Для обозначения операции ИЛИ в алгебре логике используется символ «+». Например, AилиB=A+B.
Примем, что если ключ A(B) замкнут, то А (В) равно единице, и наоборот, если разомкнут, тоA(B) равно Ø. Если лампочкаQгорит, тоQ=1, если не горит, тоQ=Ø.
Анализ выполним с помощью таблицы истинности. Выходными переменными являются А и В, выходной переменной –Q.
A | B | C | Q |
0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
A | B | Q |
0 | 0 | 0 |
1 | 0 | 1 |
0 | 1 | 1 |
1 | 1 | 1 |
Все физические процессы протекают и исследуются, как правило, во времени, поэтому чтобы знать, когда и как произошло, то или иное событие используются диаграммы состояний.
Логическое умножение, конъюнкция, элемент и
В алгебре логике операция логического умножения обозначается символом умножить «·». Например, А и В =.
A | B | Q |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
A | B | C | Q |
0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 |
Диаграмма состояний для этой функции изображается так же:
ИЛИ – исключающее
Для обозначения этой операции в алгебре логике используют символ. Например, АВ=Q.
Проиллюстрировать работу этого элемента с помощью ключей и лампочки невозможно, поэтому необходимо знать таблицу истинности.
A | B | Q |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
A | B | C | Q |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
studfiles.net
Схемная реализация логических элементов И-ИЛИ-НЕ и других
Для выполнения логических операций и решать логические задачи с помощью средств электроники были изобретены логические элементы. Их создают с помощью диодов, транзисторов и комбинированных элементов (диодно-транзисторные). Такая логика получила название диодной логики (ДЛ), транзисторной (ТЛ) и диодно–транзисторной (ДТЛ). Используют как полевые, так и биполярные транзисторы. В последнем случае предпочтение отдается устройствам типа n-p-n, так как они обладают большим быстродействием.
Логический элемент «ИЛИ»
Схема логического элемента «ИЛИ» представлена на рисунке 1 а. На каждый из входов может подаваться сигнал в виде какого-то напряжения (единица) или его отсутствия (ноль). На резисторе R появиться напряжение даже при его появлении на каком – либо из диодов.
Рис. 1Элементы или могут иметь несколько логических входов. Если используются не все входы, то те входы которые не используются следует соединять с землей (заземлять), чтобы избежать появления посторонних сигналов.
На рисунке 1б показано обозначение на электрической схеме элемента, а на 1в таблица истинности.
Логический элемент «И»
Схема элемента приведена на рис. 2. Если хотя – бы к одному из входов будет сигнал равный нулю, то через диод будет протекать ток. Падение напряжения на диоде стремится к нулю, соответственно на выходе тоже будет ноль. На выходе сможет появится сигнал только при условии, что все диоды будут закрыты, то есть на всех входах будет сигнал. Рассчитаем уровень сигнала на выходе устройства:
Рис.2на рис. 2 б – обозначение на схеме, в – таблица истинности.
Логический элемент «НЕ»
В логическом элементе «НЕ» используют транзистор (рис.3 а). при наличии положительного напряжения на входе х=1 транзистор открывается и напряжение его коллектора стремится к нулю. Если х=0 то положительного сигнала на базе нет, транзистор закрыт, ток не проходит через коллектор и на резисторе R нет падения напряжения, соответственно на коллекторе появится сигнал Е. условное обозначение и таблица истинности приведены на рис. 3 б,в.
Рис.3Логический элемент «ИЛИ-НЕ»
При создании различных схем на логических элементах часто применяют элементы комбинированные. В таких элементах совмещены несколько функций. Принципиальная схема показана на рис. 4 а.
Рис.4Здесь диоды Д1 и Д2 выполняют роль элемента «ИЛИ», а транзистор играет роль инвертора. Обозначение элемента на схеме и его таблица истинности рис. 4б и в соответственно.
Логический элемент «И-НЕ»
Показана схема на рис. 5 а. Здесь диод Д3 выполняет роль так сказать фильтра во избежание искажения сигнала. Если на вход х1 или х2 не подан сигнал (х1=0 или х2=0), то через диод Д1 или Д2 будет протекать ток. Падение на нем не равно нулю и может оказаться достаточным для открытия транзистора. Последствием чего может стать ложное срабатывание и на выходе вместо единицы мы получим ноль. А если в цепь включить Д3, то на нем упадет значительная часть напряжения открытого на входе диода, и на базу транзистора практически ничего не приходит. Поэтому он будет закрыт, а на выходе будет единица, что и требуется при наличии нуля на каком либо из входов. На рис. 5б и в показаны таблица истинности и схемное обозначение данного устройства.
Рис.5Логические элементы получили широчайшее применение в электронике и микропроцессорной технике. Многие системы управления строятся с использованием именно этих устройств.
elenergi.ru