Логарифмические уравнения калькулятор: Решение логарифмических уравнений онлайн

Содержание

Калькулятор логарифмов и антилогарифмов онлайн

Логарифмирование — это операция, обратная возведению в степень. Если вы задаетесь вопросом, в какую степень нужно возвести 2, чтобы получить 10, то вам на помощь придет логарифм.

Обратная операция для возведения в степень

Возведение в степень — это повторяющееся умножение. Для возведения двойки в третью степень нам потребуется вычислить выражение 2 × 2 × 2. Обратная операция для умножения — это деление. Если верно выражение, что a × b = c, то обратное выражение b = a / c так же верно. Но как обратить возведение в степень? Задача обращения умножения имеет элегантное решение благодаря простому свойству, что a × b = b × a. Однако ab не равно ba, за исключением единственного случая, когда 22 = 42. В выражении ab = с, мы можем выразить a как корень b-ой степени из c, но как выразить b? Вот тут на сцене и появляются логарифмы.

Понятие логарифма

Давайте попробуем решить простое уравнение вида 2x = 16. Это показательное уравнение, так как нам требуется отыскать показатель степени. Для более простого понимания поставим задачу так: сколько раз нужно умножить двойку на саму себя, чтобы в результате получить 16? Очевидно, что 4, поэтому корень данного уравнения x = 4.

Теперь попробуем решить 2x = 20. Сколько раз нужно умножить двойку на саму себя, что бы получить 20? Это сложно, ведь 24 = 16, а 25 = 32. Рассуждая логически, корень этого уравнения располагается между 4 и 5, причем ближе к 4, возможно 4,3? Математики не терпят приблизительных вычислений и хотят знать точный ответ. Для этого они и используют логарифмы, а корнем этого уравнения будет x = log2 20.

Выражение log2 20 читается как логарифм 20 по основанию 2. Это и есть ответ, которого строгим математикам достаточно. Если вы хотите выразить это число точно, то вычислите его при помощи инженерного калькулятора. В этом случае log2 20 = 4,32192809489. Это иррациональное бесконечное число, а log2 20 — его компактная запись.

Таким элегантным способом вы можете решить любое простое показательное уравнение. Например, для уравнений:

  • 4x = 125, x = log4 125;
  • 12x = 432, x = log12 432;
  • 5x = 25, x = log5 25.

Последний ответ x = log5 25 математикам не понравится. Все потому, что log5 25 легко вычисляется и является целым числом, поэтому вы обязаны его определить. Сколько раз требуется умножить 5 на само себя, чтобы получить 25? Элементарно, два раза. 5 × 5 = 52 = 25. Поэтому для уравнения вида 5x = 25, x = 2.

Десятичный логарифм

Десятичный логарифм — это функция по основанию 10. Это популярный математический инструмент, поэтому он записывается иначе. К примеру, в какую степень нужно возвести 10, чтобы получить 30? Ответом был бы log10 30, однако математики сокращают запись десятичных логарифмов и записывают его как lg30. Точно также log10 50 и log10 360 записываются как lg50 и lg360 соответственно.

Натуральный логарифм

Натуральный логарифм — это функция по основанию e. В нем нет ничего натурального, и многих неофитов такая функция попросту пугает. Число e = 2,718281828 представляет собой константу, которая естественным образом возникает при описании процессов непрерывного роста. Как важно число Пи для геометрии, число e играет важную роль в моделировании временных процессов.

В какую степень нужно возвести число e, чтобы получить 10? Ответом был бы loge 10, но математики обозначают натуральный логарифм как ln, поэтому ответ будет записан как ln10. Тоже самое с выражениями loge 35 и loge 40, верная форма записи которых – ln34 и ln40.

Антилогарифм

Антилогарифм — это число, которому соответствует значение выбранного логарифма. Простыми словами, в выражении loga b антилогарифмом считается число ba. Для десятичного логарифма lga, антилогарифм равен 10a, а для натурального lna антилогарифм равняется ea. По сути, это тоже возведение в степень и обратная операция для логарифмирования.

Физический смысл логарифма

Нахождение степеней — чисто математическая задача, но для чего нужны логарифмы в реальной жизни? В начале развития идеи логарифмирования данный математический инструмент использовался для сокращения объемных вычислений. Великий физик и астроном Пьер-Симон Лаплас говорил, что «изобретение логарифмов сократило труд астронома и удвоило его жизнь». С развитием математического инструмента были созданы целые логарифмические таблицы, при помощи которых ученые могли оперировать огромными числами, а свойства функций позволяют преобразовать выражения, оперирующие иррациональным числами в целочисленные выражения. Также логарифмическая запись позволяет представить слишком маленькие и слишком большие числа в компактном виде.

Логарифмы нашли применение и в сфере изображения графических процессов. Если требуется нарисовать график функции, которая принимает значения 1, 10, 1 000 и 100 000, то маленькие значения будут невидны и визуально они сольются в точку около нуля. Для решения подобной проблемы используются десятичный логарифм, которой позволяет построить график функции, адекватно отображающий все ее значения.

Физический же смысл логарифмирования — это описание временных процессов и изменений. Так, логарифм по основанию 2 позволяет определить, сколько требуется удвоений начального значения для достижения определенного результата. Десятичная функция используется для поиска количества необходимых удесятирений, а натуральная представляет собой время, которое необходимо для достижения заданного уровня.

Наша программа представляет собой сборник из четырех онлайн-калькуляторов, которые позволяют вычислить логарифм по любому основанию, десятичную и натуральную логарифмическую функцию, а также десятичный антилогарифм. Для проведения вычислений вам потребуется ввести основание и число, или только число для десятичного и натурального логарифма.

Примеры из реальной жизни

Школьная задача

Как было сказано выше, иррациональные значения по типу log2 345 не требуют дополнительных преобразований, и такой ответ полностью удовлетворит учителя математики. Однако если логарифм вычисляется, вы обязаны представить его в виде целого числа. Пусть вы решили 5 примеров по алгебре, и вам требуется проверить результаты на возможность целочисленного представления. Давайте проверим их при помощи калькулятора логарифма по любому основанию:

  • log7 65 — иррациональное число;
  • log3 243 — целое число 5;
  • log5 95 — иррациональное;
  • log8 512 — целое число 3;
  • log2 2046 — иррациональное.

Таким образом, значения log3 243 и log8 512 вам потребуется переписать как 5 и 3 соответственно.

Потенцирование

Потенцирование — это нахождение антилогарифма числа. Наш калькулятор позволяет найти антилогарифмы по десятичному основанию, что по смыслу означает возведение десятки в степень n. Давайте вычислим антилогарифмы для следующих значений n:

  • для n = 1 antlog = 10;
  • для n = 1,5 antlog = 31,623;
  • для n = 2,71 antlog = 512,861.

Непрерывный рост

Натуральный логарифм позволяет описывать процессы непрерывного роста. Представим, что ВВП страны Кракожия увеличилось с 5,5 миллиардов долларов до 7,8 за 10 лет. Давайте определим ежегодный прирост ВВП в процентах при помощи калькулятора натурального логарифма. Для этого нам надо подсчитать натуральный логарифм ln(7,8/5,5), что равнозначно ln(1,418). Введем это значение в ячейку калькулятора и получим результат 0,882 или 88,2% за все время. Так как ВВП рос в течение 10 лет, то ежегодный его прирост составит 88,2 / 10 = 8,82%.

Поиск количества удесятирений

Допустим, за 30 лет количество персональных компьютеров увеличилось с 250 000 до 1 миллиарда. Сколько раз количество ПК увеличивалось в 10 раз за все это время? Для подсчета такого интересного параметра нам потребуется вычислить десятичный логарифм lg(1 000 000 000 / 250 000) или lg(4 000). Выберем калькулятор десятичного логарифма и посчитаем его значение lg(4 000) = 3,60. Получается, что с течением времени количество персональных компьютеров возрастало в 10 раз каждые 8 лет и 4 месяца.

Заключение

Несмотря на сложность логарифмов и нелюбовь детей к ним в школьные годы, этот математический инструмент находит широкое применение в науке и статистике. Используйте наш сборник онлайн-калькуляторов для решения школьных заданий, а также задач из разных научных сфер.

Логарифмические уравнения, формулы и онлайн калькуляторы

Определение

Логарифмическое уравнение — это такое уравнение, в котором неизвестная стоит под знаком логарифма.

При решении логарифмических уравнений часто приходится логарифмировать или потенцировать обе части уравнения, что не всегда может привести к равносильным уравнениям.

Логарифмировать алгебраическое выражение — значит выразить его логарифм через логарифмы отдельных чисел, входящих в это выражение.

Пример

Задание. Прологарифмировать выражение $x=3 b c$

Решение. В левой и правой части допишем логарифм по основанию $a$:

$\log _{a} x=\log _{a}(3 b c)$

По свойствам логарифмов логарифм произведения, стоящий в правой части, представим как сумму логарифмов от каждого из сомножителей, то есть:

$\log _{a} x=\log _{a} 3+\log _{a} b+\log _{a} c$

Больше примеров решений

Определение

Если по данному результату логарифмирования находят выражение, от которого получен этот результат, то такая операция называется потенцированием.

Слишком сложно?

Логарифмические уравнения не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. {2}-x-2=0 \Rightarrow x_{1}=2, x_{2}=-1$

Второй корень не принадлежит ОДЗ, а значит решение $x=2$

Ответ. $x=2$

3. Логарифмическое уравнение вида $\log _{a} f(x)=\log _{a} g(x)$

Здесь $a$ — отличное от единицы положительное число; $f(x)$ и $g(x)$ — элементарные алгебраические функции.

Решение логарифмических уравнений такого типа сводится к решению уравнения $f(x)=g(x)$. Поэтому для решения рассматриваемого типа уравнений $\log _{a} f(x)=\log _{a} g(x)$ достаточно найти все решения уравнения $f(x)=g(x)$ и среди полученных выбрать те, которые относятся к ОДЗ уравнения $\log _{a} f(x)=\log _{a} g(x)$. Если уравнение $f(x)=g(x)$ решений не имеет, то их не имеет и исходное логарифмическое уравнение.

Пример

Задание. Решить уравнение $\ln (x+1)=\ln (2 x-3)$

Решение. Находим ОДЗ: $\left\{\begin{array}{l}x+1>0 \\ 2 x-3>0\end{array} \Rightarrow\left\{\begin{array}{l}x>-1 \\ 2 x>3\end{array} \Rightarrow\left\{\begin{array}{l}x>-1 \\ x>\frac{3}{2}\end{array} \Rightarrow\left(\frac{3}{2} ;+\infty\right)\right. \right.\right.$

Решаем уравнение $x+1=2 x-3$ : $x=4 \in$ ОДЗ.

Итак, решением исходного логарифмического уравнения также является это значение.

Ответ.

$x=4$

Больше примеров решений

Читать дальше: логарифмические неравенства.

Калькулятор логарифмов. Решение логарифмов онлайн

Данная страница рассматривает калькулятор логарифмов — ещё одну функцию в богатом арсенале, которым располагает бесплатный калькулятор на нашем сайте. Калькулятор, считающий логарифмы онлайн, станет незаменимым помощником для тех, кому нужно простое решение математических выражений. В нашем калькуляторе любой может легко и быстро посчитать логарифм, не зная логарифмических формул, и даже не представляя суть логарифма.

Буквально 20-30 лет назад решение логарифмов требовало серьезных знаний в математике и как минимум умения пользоваться таблицей логарифмов или логарифмической линейкой. Чтобы привести к табличному виду исходное выражение, часто приходилось осуществлять сложные преобразования, учитывая свойства логарифмов и их функций.

Сегодня же достаточно иметь доступ в интернет, чтобы без труда вычислять всевозможные логарифмические уравнения и неравенства любой сложности. Размещенный на нашем сайте калькулятор онлайн может любой логарифм вычислить за одно мгновение! Используйте этот простой способ решения — вычисление логарифмов онлайн! Лучше добавить калькулятор в закладки и в социальные сети, наверняка найдётся причина открыть его ещё раз.

Решение логарифма logyx сводится к нахождению ответа на вопрос, в какую степень требуется возвести основание логарифма y, чтобы получилось значение равное x. Онлайн калькулятор логарифмов поможет рассчитать все виды логарифмов: двоичные, десятичные и натуральные логарифмы, а также логарифм комплексного числа и логарифм отрицательного числа и др.

Вычисление логарифмов в online калькуляторе записывается как log и выполняется с помощью четырёх кнопок: нахождение двоичного логарифма, решение десятичных логарифмов, с произвольным основанием и вычисление натурального логарифма.

Кнопки, позволяющие вычислить логарифм онлайн

И десятичный логарифм калькулятор посчитает, и натуральный логарифм калькулятор найдёт!

Некоторые кнопки могут использоваться для записи одного и того же действия. Возьмём, к примеру, расчёт логарифмов с произвольным основанием. Понятно что, если указать основание 10, то рассчитается десятичный логарифм, а если 2, то двоичный. Учитывая, что математическое выражение можно и вручную набрать, тогда тот же самый десятичный логарифм посчитать можно тремя способами (точнее записать эту операцию в калькуляторе):

  • 1. используя кнопку log, тогда нужно указать только число
  • 2. с помощью кнопки logyx, через запятую указываются число и основание логарифма
  • 3. внести обозначение логарифма вручную

Подробная информация о том, как работать с клавиатурой калькулятора, а также обзор всех его возможностей, можно найти на странице Функции калькулятора.

Логарифмы примеры решения в калькуляторе

Логарифм по основанию 2

Используйте эту кнопку, чтобы рассчитать логарифм, основание которого равно двум (его также называют двоичный логарифм).

В строке ввода отобразится запись log2(x) , соответственно, вам остаётся внести число, без указания основания, и произвести расчёт. В примере найден ответ, чему равен логарифм 8 по основанию 2.

Логарифм по основанию 2

Десятичный логарифм 10

Эта кнопка поможет найти логарифм числа по основанию 10.

Логарифм десятичный онлайн калькулятор обозначает записью log(x x,y). На рисунке рассчитано, чему равен десятичный логарифм числа 10000.

Логарифм по основанию 10

Натуральный логарифм

Клавишей ln выполняется решение натуральных логарифмов, основанием которых является число е. Основание натурального логарифма е — число Эйлера — равно 2.71828182845905.

Онлайн калькулятор можно определить, чему равен натуральный логарифм любого числа. На рисунках в качестве примера найдены значения натурального логарифма: слева — ln логарифм числа 8, справа — натуральный логарифм от числа 50.

Натуральные логарифмы примеры решения

Как решать логарифмы с произвольным основанием

Конечно, калькулятор, позволяет решить логарифм онлайн не только по определенному, но по любому основанию. Чтобы найти значение логарифмов с произвольным основанием для любого числа, используйте предназначенную для этого кнопочку logyx, она подставляет в строке ввода запись log(x x,y).

Определение логарифма числа

Калькулятор Инструкция — обзор основых и дополнительных функций калькулятора и общая информация о том, как пользоваться калькулятором.

manatel решение логарифмических уравнений калькулятор

Ссылка:

http://iminime.sabemo.ru/1/63/reshenie-logarifmicheskih-uravneniy-kalkulyator

решение логарифмических уравнений калькулятор Решение логарифмических уравнений.
2(x)-4log_3(x)+3=0 Пример 2. Решения . Калькулятор для пошагового решения логарифмических уравнений онлайн (бесплатно). Данный калькулятор полностью заменит вам репетитора по математике. 15 ноя 2012 . Решение рациональных, дробно-рациональных уравнений любой степени, показательных, логарифмических, тригонометрических . уравнений. Онлайн калькулятор логарифмов . Web 2.0 scientific calculator . Наверняка в повседневной жизни вы сталкивались с такой ситуацией, что вам требовалось вычислить логарифм или выполнить несколько иных математических действий, чтобы произвести. На нашем сайте собраны примеры решения дифференциальных уравнений разных функций. Каждое уравнение содержит подробное решение и . калькулятор последнего поколения для пошагового решения логарифмических уравнений. Пользоваться калькулятором совсем не сложно. Этот математический калькулятор онлайн поможет вам решить логарифмическое уравнение. Вы можете посмотреть теорию о логарифмической функции и логарифмах и общие методы решения логарифмических уравнений. Решение квадратных, кубических, тригонометрических, логарифмических уравнений онлайн. . (если данное уравнение калькулятор способен решить ) . 12 мар 2017 . Online решение уравнений, домашки, задачей, Решебник и калькулятор с решениями примеров и уравнений онлайн. Онлайн калькулятор вычисляет логарифмы. На нашем сайте вы также найдёте соответствующие формулы и графики. Мы поможем сделать . Решение тригонометрических, показательных, логарифмических уравнений. Выберите задачу для решения. Решение тригонометрических уравнений. Калькулятор , считающий логарифмы онлайн, станет незаменимым помощником для тех, кому нужно простое решение математических выражений. Сегодня же достаточно иметь доступ в интернет, чтобы без труда вычислять всевозможные логарифмические уравнения и. Вышеиспользованный метод опускания логарифмов является одним из основных способов решения логарифмических уравнений и неравенств. Онлайн калькулятор калькулятор последнего поколения для пошагового решения логарифмических уравнений. Пользоваться калькулятором совсем не сложно. Решение рациональных, дробно-рациональных уравнений любой степени, показательных, логарифмических, тригонометрических уравнений. Пример . Дополнительные материалы по теме: Логарифм . Основные способы решения логарифмических уравнений. Решения , подсказки и учебник линейной алгебры онлайн (все калькуляторы по алгебре).

Решение логарифмических уравнений. Как решать, на примерах.

Логарифмическим уравнением называется уравнение, в котором неизвестное (х) и выражения с ним находятся под знаком логарифмической функции. Решение логарифмических уравнений подразумевает, что вы уже знакомы с понятием и видами логарифмов и основными формулами.
Как решать логарифмические уравнения?

Самое простое уравнение имеет вид logax = b, где a и b -некоторые числа,x — неизвестное.
Решением логарифмическое уравнения является x = a b при условии: a > 0, a 1.

Следует отметить, что если х будет находиться где-нибудь вне логарифма, например log2х = х-2, то такое уравнение уже называется смешанным и для его решения нужен особый подход.

Идеальным случаем является ситуация, когда Вам попадется уравнение, в котором под знаком логарифма находятся только числа, например х+2 = log22. Здесь достаточно знать свойства логарифмов для его решения. Но такая удача случается не часто, поэтому приготовьтесь к более сложным вещам.

Но сначала, все-таки, начнём с простых уравнений. Для их решения желательно иметь самое общее представление о логарифме.

Решение простейших логарифмических уравнений

К таковым относятся уравнения типа log2х = log216. Невооруженным глазом видно, что опустив знак логарифма получим х = 16.

Для того, чтобы решить более сложное логарифмическое уравнение, его обычно приводят к решению обычного алгебраического уравнения или к решению простейшего логарифмического уравнения logax = b. В простейших уравнениях это происходит в одно движение, поэтому они и носят название простейших.

Вышеиспользованный метод опускания логарифмов является одним из основных способов решения логарифмических уравнений и неравенств. В математике эта операция носит название потенцирования. Существуют определенные правила или ограничения для подобного рода операций:

  • одинаковые числовые основания у логарифмов
  • логарифмы в обоих частях уравнения находятся свободно, т.е. без каких бы то ни было коэффициентов и других разного рода выражений.

Скажем в уравнении log2х = 2log2 (1- х) потенцирование неприменимо — коэффициент 2 справа не позволяет. В следующем примере log2х+log2 (1 — х) = log2 (1+х) также не выполняется одно из ограничений — слева логарифма два. Вот был бы один – совсем другое дело!

Вообщем, убирать логарифмы можно только при условии, что уравнение имеет вид:

loga (. ..) = loga (…)

В скобках могут находится совершенно любые выражения, на операцию потенцирования это абсолютно никак не влияет. И уже после ликвидации логарифмов останется более простое уравнение – линейное, квадратное, показательное и т.п., которое Вы уже, надеюсь, умеете решать.

Возьмем другой пример:

log3 (2х-5) = log3х

Применяем потенцирование, получаем:

2х-5 = х

х=5

Пойдем дальше. Решим следующий пример:

log3 (2х-1) = 2

Исходя из определения логарифма, а именно, что логарифм — это число, в которое надо возвести основание, чтобы получить выражение, которое находится под знаком логарифма, т.е. (4х-1), получаем:

3 2 = 2х-1

Дальше уже дело техники:

2х-1 = 9

х =5

Опять получили красивый ответ. Здесь мы обошлись без ликвидации логарифмов, но потенцирование применимо и здесь, потому как логарифм можно сделать из любого числа, причем именно такой, который нам надо. Этот способ очень помогает при решении логарифмических уравнений и особенно неравенств.

Решим наше логарифмическое уравнение log3 (2х-1) = 2 с помощью потенцирования:

Представим число 2 в виде логарифма, например, такого log39, ведь 3 2=9.

Тогда log3 (2х-1) = log39 и опять получаем все то же уравнение 2х-1 = 9. Надеюсь, все понятно.

Вот мы и рассмотрели как решать простейшие логарифмические уравнения, которые на самом деле очень важны, ведь решение логарифмических уравнений, даже самых страшных и закрученных, в итоге всегда сводится к решению простейших уравнений.

Во всем, что мы делали выше, мы упускали из виду один очень важный момент, который в последующем будет иметь решающую роль. Дело в том, что решение любого логарифмического уравнения, даже самого элементарного, состоит из двух равноценных частей. Первая – это само решение уравнения, вторая — работа с областью допустимых значений (ОДЗ). Вот как раз первую часть мы и освоили. В вышеприведенных примерах ОДЗ на ответ никак не влияет, поэтому мы ее и не рассматривали.

А вот возьмем другой пример:

log3 2-3) = log3 (2х)

Внешне это уравнение ничем не отличается от элементарного, которое весьма успешно решается. Но это не совсем так. Нет, мы конечно же его решим, но скорее всего неправильно, потому что в нем кроется небольшая засада, в которую сходу попадаются и троечники, и отличники. Давайте рассмотрим его поближе.

Допустим необходимо найти корень уравнения или сумму корней, если их несколько:

log3 2-3) = log3 (2х)

Применяем потенцирование, здесь оно допустимо. В итоге получаем обычное квадратное уравнение.

х 2-3 = 2х

х 2-2х-3 = 0

Находим корни уравнения:

х1= 3

х2= -1

Получилось два корня.

Ответ: 3 и -1

С первого взгляда все правильно. Но давайте проверим результат и подставим его в исходное уравнение.

Начнем с х1= 3:

log36 = log36

Проверка прошла успешно, теперь очередь х2= -1:

log3 (-2) = log3 (-2)

Так, стоп! Внешне всё идеально. Один момент — логарифмов от отрицательных чисел не бывает! А это значит, что корень х = -1 не подходит для решения нашего уравнения. И поэтому правильный ответ будет 3, а не 2, как мы написали.

Вот тут-то и сыграла свою роковую роль ОДЗ, о которой мы позабыли.

Напомню, что под областью допустимых значений принимаются такие значения х, которые разрешены или имеют смысл для исходного примера.

Без ОДЗ любое решение, даже абсолютно правильное, любого уравнения превращается в лотерею — 50/50.

Как же мы смогли попасться при решении, казалось бы, элементарного примера? А вот именно в момент потенцирования. Логарифмы пропали, а с ними и все ограничения.

Что же в таком случае делать? Отказываться от ликвидации логарифмов? И напрочь отказаться от решения этого уравнения?

Нет, мы просто, как настоящие герои из одной известной песни, пойдем в обход!

Перед тем, как приступать к решению любого логарифмического уравнения, будем записывать ОДЗ. А вот уж после этого можно делать с нашим уравнением все, что душа пожелает. Получив ответ, мы просто выбрасываем те корни, которые не входят в нашу ОДЗ, и записываем окончательный вариант.

Теперь определимся, как же записывать ОДЗ. Для этого внимательно осматриваем исходное уравнение и ищем в нем подозрительные места, вроде деления на х, корня четной степени и т.п. Пока мы не решили уравнение, мы не знаем – чему равно х, но твердо знаем, что такие х, которые при подстановке дадут деление на 0 или извлечение квадратного корня из отрицательного числа, заведомо в ответ не годятся. Поэтому такие х неприемлемы, остальные же и будут составлять ОДЗ.

Воспользуемся опять тем же уравнением:

log3 2-3) = log3 (2х)

log3 2-3) = log3 (2х)

Как видим, деления на 0 нет, квадратных корней также нет, но есть выражения с х в теле логарифма. Тут же вспоминаем, что выражение, находящееся внутри логарифма, всегда должно быть >0. Это условие и записываем в виде ОДЗ:

Т.е. мы еще ничего не решали, но уже записали обязательное условие на всё подлогарифменное выражение. Фигурная скобка означает, что эти условия должны выполняться одновременно.

ОДЗ записано, но необходимо еще и решить полученную систему неравенств, чем и займемся. Получаем ответ х > v3. Теперь точно известно – какие х нам не подойдут. А дальше уже приступаем к решению самого логарифмического уравнения, что мы и сделали выше.

Получив ответы х1= 3 и х2= -1, легко увидеть, что нам подходит лишь х1= 3, его и записываем, как окончательный ответ.

На будущее очень важно запомнить следующее: решение любого логарифмического уравнения делаем в 2 этапа. Первый — решаем само уравнение, второй – решаем условие ОДЗ. Оба этапа выполняются независимо друг от друга и только лишь при написании ответа сопоставляются, т.е. отбрасываем все лишнее и записываем правильный ответ.

Для закрепления материала настоятельно рекомендуем посмотреть видео: