Какое направление имеет электрический ток в цепи: Направление электрического тока в цепи и его движение

Содержание

Направление тока в проводнике, как, откуда и куда течет электрический ток в проводниках.

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале — в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно  заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с  реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

P.S. Направление тока в электрических схемах имеет важное значение. Во многих случаях если схема рассчитана на одно направление тока, а вы случайно его поменяете на противоположный или вместо постоянного тока подключите переменный, то скорее всего устройство просто выйдет из строя. Многие полупроводники, что работают в схемах, при обратном направлении тока могут пробиваться и сгорать. Так что при подключении электрического питания направление тока должно быть вами строго соблюдаться.

Проектируем электрику вместе: Направление электрического тока

Свободные электроны.. Электрический ток.. Измерение тока.. Амперметр.. Единица силы тока — Ампер.. Направление электрического тока.. Направление движения электронов..

Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.

Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.

В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).

Измерение тока

Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А) – в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).                                              
Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10-19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10-19 = 6,24 • 1018 электронов.
Следовательно, если 6,24 • 1018 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.

Для измерения силы тока существует измерительный прибор — амперметр.

                                                        Рис. 1

Амперметр включается в электрическую цепь (

рис. 1) последовательно с тем элементом цепи, силу тока в котором необходимо измерить. При подключении амперметра нужно соблюдать полярность: «плюс» амперметра подключается к «плюсу» источника тока, а «минус» амперметра — к «минусу» источника тока.

Направление электрического тока

Если в электрической цепи, показанной на рис. 1 замкнуть контакты выключателя, то по этой цепи потечет электрический ток. Возникает вопрос: «А в каком направлении?»

Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны). Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные — притягиваются), что хорошо иллюстрирует рис. 2.

Рис. 2                                                  
Учебник физики за 8 класс дает нам другой ответ: «За направление электрического тока в цепи принято направление движения положительных зарядов», — то есть от плюса источника энергии к минусу источника.

Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.

Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.
Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.
 
В своей работе «Опыты и наблюдения над электричеством» (1747 г.) Франклин  предпринял попытку теоретически объяснить электрические явления. Именно он первым высказал важнейшее предположение об атомарной, «зернистой» природе электричества: «

Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими».

Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее  электричество, заряжается отрицательно. При их соединении избыточный положительный заряд  перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).

Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.

После открытия электрона ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.

Истинное направление движения электронов используется только, когда это необходимо, чтобы объяснить некоторые физические эффекты в полупроводниковых устройствах (диоды, транзисторы, тиристоры и  др.).

Статьи по теме: 1. Что такое электрический ток?
                            2. Взаимодействие электрических зарядов. Закон Кулона
                            3. Постоянный и переменный ток
                            4. Проводники и изоляторы. Полупроводники
                            5. О скорости распространения электрического тока
                            6. Электрический ток в жидкостях 
                            7. Проводимость в газах
                            8.

Электрический ток в вакууме
                            9. О проводимости полупроводников


Внимание! Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Он посвящен основам электротехники и электричества с акцентом на домашние электрические установки и происходящие в них процессы.                                                                             

Направление электрического тока — Технарь

Наблюдая за действиями тока в растворе медного купороса, мы установили, что медь осаждается лишь на одном из электродов, на том, который соединен с отрицательным полюсом источника электрического тока.

Если в таком опыте поменять местами провода, присоединенные к полюсам источника тока, то медь станет выделяться на другом электроде, который будет теперь соединен с отрицательным полюсом источника тока. Стрелка гальванометра, если включить его в эту цепь, отклонится от нулевого деления в противоположную сторону.

Этот опыт показывает, что электрический ток в проводах имеет определенное направление, от которого зависят и некоторые его действия.

Мы знаем, что электрический ток есть упорядоченное движение заряженных частиц в проводнике. В металлических проводниках электрический ток представляет собой упорядоченное движение электронов — частичек, обладающих отрицательным зарядом. В растворах электролитов электрический ток обусловлен движением ионов обоих знаков. Движение, каких же заряженных частиц в электрическом поле следовало бы принять за направление тока?

Так как в большинстве случаев мы имеем дело, с электрическими токами в металлах, то за направление тока в цепи разумно было бы принять направление движения электронов в электрическом поле, т. е. считать, что ток направлен от отрицательного полюса источника к положительному.

Однако вопрос о направлении тока возник в науке тогда, когда об электронах и ионах еще ничего не было известно. В то время предполагали, что во всех проводниках могут перемещаться как положительные, так и отрицательные электрические заряды. И за направление тока условно приняли то направление, по которому движутся (или могли бы двигаться) в проводнике положительные заряды, т. е. направление от положительного полюса источника тока к отрицательному. Так принято считать и сейчас.

Вопросы. 1. На основании, каких явлений можно заключить, что электрический, ток в цепи имеет определенное направление? 2. Движение, каких заряженных частиц принято за направление тока в проводнике? 3. От какого полюса источника тока и к какому движутся в цепи электроны?

Сила тока в физике — что это такое?

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.

Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У одного из них напор сильнее, у другого слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

  • Электрический ток — это направленное движение заряженных частиц.

Сила тока

Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.

Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник.

Сила тока

I = q/t

I — сила тока [A]

q — заряд [Кл]

t — время [с]

Сила тока измеряется в Амперах. Единица измерения выбрана не просто так.

Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений. А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.


Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).

Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.


За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.

Задача

Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.

Решение:

Возьмем формулу силы тока

I = q/t

Подставим значения

I = 300 мКл / 2 с = 150 мА

Ответ: сила тока в цепи равна 150 мА

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

  • Проводники — это материалы, через которые электрический ток проходит. Самыми лучшими проводниками являются металлы.
  • Диэлектрики — материалы, через которые ток не проходит. Изи!

Проводники

Диэлектрики

Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам

Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Направление тока

Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.

Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.

Так и какая версия верна?

На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.

Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните — направляем ток от плюса к минусу.



Источник тока

Вода в шланге берется из водопровода, ключа с водой в земле — в общем, не из ниоткуда. Электрический ток тоже имеет свой источник.

В качестве источника может выступить, например, гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения. По сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Амперметр

Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.

Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.


Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.

Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.

Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).

Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.



Электрический ток в гальванической цепи. Электроды

    При измерении потенциала изучаемого электрода, например медного, медную пластину (с отходящим от нее проводником) опускают в раствор, содержащий ионы Си + с концентрацией (активностью) 1 моль/л, и эту систему соединяют электролитическим мостиком со стандартным водородным электродом. Электролитический мостик — это П-образная стеклянная трубка, заполненная проводящим электрический ток. раствором—обычно насыщенным раствором КС1. Полученное устройство называется гальванической цепью, или гальваническим элементом. [c.325]
    Работа электрического тока равна произведению числа молей перенесенных электронов п, постоянной Фарадея Р = =96 484 Кл/моль и напряжения в электрической цепи. Так как электродный потенциал — это ЭДС гальванической цепи с водородным электродом, то работу электродной реакции можно рассчитать относительно работы реакции стандартного водородного электрода  [c.331]

    Возникновение тока в гальванических цепях. Скачки потенциалов возникают и принимают равновесные значения через очень короткий промежуток времени после соприкосновения различных проводников до замыкания цепи. При замыкании цепи электроны от более отрицательного электрода потекут по соединительному проводу к электроду, обладающему более положительным потенциалом. Как только количество электронов на первом электроде начнет уменьшаться, нарушится равновесие в двойном электрическом слое и катионы с первого электрода станут переходить в раствор. Электроны, подойдя ко второму электроду, образуют с его катионами нейтральные атомы. Это нарушит равновесие двойного электрического слоя у второго электрода и катионы из раствора сейчас же начнут переходить на второй электрод. Таким образом, происходит непрерывное растворение одного электрода и выделение металла на другом электроде одновременно во внешней цепи текут электроны и гальванический элемент непрерывно дает ток. [c.289]

    Чтобы понять механизм переноса вещества к поверхности электрода, вернемся к гальванической цепи, через которую проходит электрический ток, но на этот раз с точки зрения изменения концентрации растворенных веществ. До включения тока концентрация вещества одинакова во всех точках раствора, и между электродами и раствором имеются некоторые скачки потенциала, которые называются равновесными и выражаются уравнением Нернста (стр. 18). После включения тока ионы или молекулы одного вида превращаются в ионы или молекулы другого вида. Концентрация растворенных веществ вблизи электрода изменяется и начинается ее выравнивание. Этот процесс носит название диффузии. Он имеет необычайно широкое распространение в природе и технике. Читатель сталкивается с ним на каждом шагу в своей повседневной жиз- [c.50]


    Устройство, содержащее два электрода и электролит, в котором самопроизвольно протекает химическая реакция, в результате чего генерируется электрический ток (когда электроды замкнуты через внешнюю цепь), называется гальваническим элементом. [c.119]

    Химические и концентрационные элементы. Химический источник тока, или гальванический элемент, состоит в основном из двух электродов, которые сочетаются таким образом, что при соединении их посредством какого-нибудь проводника, например металлической проволоки, в получившейся цепи возникает электрический ток. Каждый электрод состоит из соприкасающихся друг с другом электронного и ионного проводников (ср. стр. 17). На границе раздела между этими двумя фазами имеется разность потенциалов, называемая электродным потенциалом ъля электродным скачком потенциала. Если в элементе нет никаких других разностей потенциалов, то его э. д. с. принимается равной алгебраической сумме обои электродных потенциалов. Когда элемент работает, на каждом электроде происходит электрохимическая реакция энергия этих реакций является источником электрической энергии цепи. Во многих элементах происходит суммарное химическое превращение, которое можно определить, если учесть все процессы, идущие в этих цепях такие элементы называют химическими элементами в отличие от элементов, в которых суммарная химическая реакция не происходит. В элементах последнего типа реакция, идущая на одном из электродов, прямо противоположна реакции, которая идет на другом. Темпе менее из-за [c.256]

    Из рис. 144 видно, что как только гальванический элемент начнет работать и в цепи его появится электрический ток, потенциалы электродов сблизятся и, следовательно, э. д. с. элемента уменьшится. Действительно, теперь Е = ф — ф и величина работы, совершаемой элементом, так как при одинаковом количестве электричества zF (при одинаковом количестве вещества, прореагировавшего на электродах) работа определяется величиной э. д. с. Уменьшение э. . с., наблюдаемое при работе гальванического элемента, может быть названо поляризацией его. [c.556]

    Электродвижущая сила электрической цепи, как известно, определяется разностью потенциалов или, что то же, напряжением между полюсами (в случае электролитов—между электродами). Следовательно, если между электродами и раствором электролита возникают потенциалы Е и Е , то электродвижущая сила (э. д. с.) гальванической цепи без учета диффузионного потенциала (см. ниже), будет равна  [c.354]

    Значительная часть наших сведений о строении двойного электрического слоя на границе металл/раствор и множество различных работ по измерению скачков потенциала в гальванических цепях была получена при помощи капиллярного электрометра на ртутных электродах. Ранее считали, основываясь на работах с очень разбавленными амальгамами, что природа электрода слабо влияет на э. к. м. Фрумкин и Городецкая [57] убедительно опровергли эти представления путем простого наблюдения сдвига 1 э.к.м. ртути при добавлении к ней различных количеств таллия (вплоть до 41%). В некоторых более новых работах это было показано на амальгамах меди [58], а также и на других амальгамах [59, 60]. Образование амальгамы является, очевидно, причиной появления на некоторы х электрокапиллярных кривых двух максимумов [61, 62]. [c.206]

    Принцип работы ион-селективного электрода, устройство которого показано на рис. 1, основан на измерении ЭДС соответствующих гальванических цепей. Несмотря на сравнительно большое электрическое сопротивление известных в настоящее время ион-селективных электродов, выпускаемое нромышленностью стандартное потенциометрическое оборудование позволяет достаточно точно измерять величины мембранных потенциалов. По мере совершенствования электродов точность их измерения без особого труда может быть значительно повышена, так как измерение электрических величин является одной из наиболее освоенных областей приборостроения. [c.136]

    Последовательное расположение металлов по значению их стандартных потенциалов называется электрохимическим рядом напряжений. Более отрицательные значения потенциалов соответствуют большей способности металлов вступать в химические реакции. Чем дальше один от другого в ряду напряжений расположены металлы, тем большую ЭДС можно от них получить. При замыкании внешней цепи электродов возникает электрический ток. На этом основан принцип действия химических источников электрической энергии — гальванических элементов. [c.13]

    Гальванический элемент или гальваническая цепь — это устройство, с помощью которого химическая энергия преобразуется в электрическую. В случае так называемых термодинамически обратимых гальванических цепей в условиях электрохимического равновесия происходит полное превращение свободной химической энергии ОВ реакции в электрическую энергию. Если специально не будет оговорено, то ниже будут рассматриваться именно такие обратимые гальванические цепи и соответствующие им обратимые ОВ реакции, обратимые полуреакции, обратимая э. д. с., обратимые электроды и обратимые ОВ потенциалы, хотя слово обратимые будет опущено. [c.6]


    Возникновение гальванической цепи с обратным знаком носит название электрической поляризации. Величина э.д.с. поляризации Еп зависит главным образом от изменения при электролизе состояния поверхности электродов. Например, в случае электролиза раствора НС1 с платиновыми электродами (первоначально [c.236]

    Возникновение гальванической цепи с обратным знаком носит название электрической поляризации. Величина э. д. с. поляризации зависит главным образом от изменения при электролизе состояния поверхности электродов. Например, в случае электролиза раствора НС1 с платиновыми электродами (первоначально совершенно одинаковыми) образуется хлорно-водородная цепь (рис. 74), э. д. с. поляризации которой равна разность потенциалов хлорного и водородного электродов. [c.226]

    Электродвижущая сила. В физико-химическом анализе применяется измерение электродвижущей силы, возникающей в гальванических цепях. Отличительной особенностью гальванических ценей является протекание окислительных и восстановительных процессов на двух электродах, пространственно отделенных друг от друга. Вследствие раздельного проте сания окислительно-восстановительных реакций электроды приобретают разные электрические потенциалы. Электродвижущая си.ла цепей при проведении процессов в условиях обратимости равна разности электродных потенциалов. ЭДС численно измеряется в вольтах. С термодинамическим потенциалом она связана соотношением AZ = пРЕ, где п — заряд ионов Р — число Фарадея Е — ЭДС. [c.25]

    Разность электрических потенциалов Е двух электродов, находящихся в равновесии с контактирующими между собой растворами, называется электродвижущей силой (э. д. с.), а вся система в целом называется гальванической цепью. Следует обратить внимание на то, что все величины в правой части уравнения (2.21) могут быть определены экспериментально. Величины, требующие введения специальных допущений, как, например, внутренние электрические потенциалы отдельных фаз, здесь отсутствуют. [c.107]

    Концентрационная цепь. Можно получить электрическую энергию от элемента, оба электрода которого состоят из одного и того же металла, погруженного в растворы его ионов различной концентрации. Такие элементы получили название Концентрационных. Примером может служить элемент, составленный из цинковых электродов, погруженных в раствор цинкового купороса различной концентрации (рис. 44). Схема такой гальванической цепи следующая  [c.190]

    Химическая окислительно-восстановительная реакция вызывает возникновение э.д.с. и появление электрического тока между электродами гальванической цепи [c.216]

    Гальванические цепи, в которых источником электрической энергии является происходящий на электродах химический окислительно-восстановительный процесс, называются химическими цепями. Разобранный в предыдущем параграфе элемент Якоби относится к группе химических цепей. [c.113]

    Электродвижущей силой гальванического элемента Аё (вольт) называют предельное значение разности электрических потенциалов его электродов Аё = которых протекают окислительно-восстановительные полуреакции. Значение э.д.с. считают положительным, если электрический ток течет во внешней цепи от левого электрода к правому (рис. 40). В этом случае у левого электрода протекает реакция окисления (потеря электронов), а у правого — реакция восстановления (приобретение электронов). [c.132]

    В гальваническом элементе в результате протекания на электродах химических процессов возникает разность потенциалов, которая вызывает электрический ток в гальванической цепи. Это явление находится в обратном отношении к явлению электролиза, когда разность потенциалов, приложенная к электродам от внешнего источника, приводит к прохождению электрического тока через раствор электролита и вызывает на электродах химические процессы. [c.150]

    А. Н. Фрумкиным было показано, что образование двойного электрического слоя на границе металл/раствор обусловлено величиной и знаком разности потенциалов между металлом и раствором и, когда заряд электрода по отношению к раствору становится равным нулю, двойной ионный слой исчезает. Электродный потенциал такого электрода (с нулевым зарядом), отнесенный, как обычно, к нормальному водородному электроду, был назван потенциалом нулевого заряда. Он равен э. д. с. гальванической цепи из такого электрода (с нулевым зарядом) и нормального водородного электрода. Значения потенциала нулевого заряда для некоторых электродов приведены в табл. 45. Разность потенциалов нулевого заряда двух электродов связана с контактной разностью потенциалов между соответствующими металлами. [c.415]

    Гальваническим элементом называется любое устройство, дающее возможность получать электрический ток за счет проведения той или иной химической реакции. Разность потенциалов между электродами элемента несколько зависит от условий, в которых она определяется. Работа, получаемая при изотермическом проведении какой-нибудь данной химической реакции, является наибольшей в том случае, когда реакция проводится в условиях, наиболее близких к обратимым. Так и электрическая работа, получаемая с помощью гальванического элемента, будет наибольшей, когда элемент работает в условиях, наиболее близких к обратимым. В этих условиях разность потенциалов между электродами элемента максимальна. Наибольшая разность потенциалов данного элемента (т. е. разность потенциалов при обратимых условиях его работы) называется его электродвижущей силой и обозначается э. д. с. Гальванической цепью мы будем называть последовательную совокупность всех скачков потенциала на различных поверхностях раздела, отвечающих данному гальваническому элементу. [c.565]

    Гели обладают электрической проводимостью. И.ммобилизован-ный растворитель в геле образует, по существу, непрерывную среду, в которой более или менее свободно могут передвигаться ионы различных электролитов. На этом явлении основано применение гелей агар-агара, приготовленных на растворе КС1 для заполнения мостиков, с помощью которых соединяют отдельные электроды в гальваническую цепь. [c.395]

    Для более полного представления об э. д. с. гальванических цепей следует ввести понятие о потенциале нулевого заряда — о нулевой точке металла. Как было показано ранее, возникновение двон1юго слоя на границе металл — раствор связано с односторонним переходом ионов металла в раствор или же с обратным процессом разряда ионов металла на электроде. В первом случае наружную обкладку двойного слоя образуют катионы, адсорбированные на отрицательно заряженной поверхности металла. Во втором — поверхность электрода несет положительный заряд и на ней вследствие электростатического притяжения адсорбируются анионы из раствора. Наряду с этим вполне возможно, что после погружения металла в раствор ие будет наблюдаться ни перехода катионов в раствор, ни их разряда на электроде. Очевидно, при этом иа поверхности металла отсутствует электрический заряд. Вследствие этого отпадает причина образования ионного двойного слоя и, как полагали некоторое время, вообще возникновения скачка потенциала иа границе металл — раствор. В действительности отсутствие заряда иа поверхности металла не препятствует образованию скачка [ютенциала за счет адсорбции поверхностно-активных ионов из раствора или ориентации дипольных молекул растворителя. [c.58]

    Для более полного представления об э. д. с. гальванических цепей следует ввести понятие о потенциале нулевого заряда. Как было показано ранее, возникновение двойного слоя на границе > еталл—раствор связано с односторонним переходом ионов металла в раствор или с обратным процессом разряда ионов металла на электроде. Наряду с этим возможно, что после погружения металла в раствор не будет наблюдаться ни перехода катионов в раствор, ни их разряда на электроде. Оченадно, при этом на поверхности металла электрический заряд отсутствует и отпадает причина образования ионного двойного слоя. [c.26]

    В более раннее время оообенно важный шаг в пользу химичеаной теории был сделан Фарадеем. Изучая превращения, происходящие при пропускании электрического тока чарез растворы, он, как мы видели раньше, установил, что тюк в цепи не проходит, если у электродов не происходит соответствующий химический процесс. Следовательно, справедливо и обратное гальваническая цепь не может вообще работать без пропор щюиальиого химического процесса. Этим был нанесен удар по основному воззрению теории Вольта о том, что жидко сть в элементе играет лишь роль индифферентного проводника. [c.15]

    Если через гальваническую цепь пропускать электрический ток, то на одном электроде ток переходит из электрода в электролит ( входит в электролит), а на другом—из электролита в электрод ( выходит из электролита). Э.тектрод первого типа получил название анод (от греч. ана — верх), электрод второго типа — катод (от греч. ката — низ). Из этого определения следует, что названия анод и катод зависят от направления тока в гальванической цепи — при изменении направления прежний анод становится катодом и наоборот. Внутри электролита ток всегда течет от анода к катоду. Отсюда положительно заряженные ионы электролита,. мигрирующие в сторону катода, получили название катионов, а отрицател1>но заряженные ионы, мигрирующие в сторону анода, — анионов. Во внешних (по отношению к электролиту) участках замкнутой цепи ток течет от кятола к аноду. [c.23]

    Если реакция протекает между свободными ионами, то при известных условиях можно заставить ее итти таким образом, что ее химическая работа превращается не в теплоту, а в электрическую энергию. Последняя измеряется произведением заряда яа падение напряжения. Как и всюду до сих пор, будем расчеты вести по отнощению к одному реагирующему молю. Если в приспособлении, осуществляющем упомянутый переход химической энергии в электрическую, называемом гальванической цепью, реагируют молярные количества, то заряд, переносимый таким молем ионов, равен на основании закона Фарадея гР, гдегг—валентность иона и—константа Фарадея, т. е. заряд, переносимый одним молем одновалентных ионов ( = 96490 кулонов). При разности напряжений на обоих электродах в Е вольт (V) электрическая работа, сопровождающая в гальванической цепи реакцию одного моля, будет хрЕ. Если, с другой стороны, обозначить работу этой реакции, также отнесенную к одному молю, через А и рассматривать условия, в которых эта работа нацело превращается в электрическую энергию (обратимый элемент), то [c.346]

    Такое движение стрелки объясняется тем, что в результате пропускания постоянного электрического тока через сосуд 1 образовалась гальваническая цепь, э.д.с. которой имеет обратное направление э. д. с. внешнего источника тока. Выждав, когда стрелка гальванометра возвратится в нулевое положение (для ускорения можно электроды сосуда 1 замкнуть накоротко), приступают к непосредственным измерениям . Для этого с помопц>ю движка реостата производят отбор напряжения сначала интервалами в 0,2 вольта, а затем вблизи точки разложения и за ней интервалами в 0,05 вольта. После каждого отбора напряжения выжидают 2—3 мин., а затем записывают в таблицу показания вольтметра и гальванометра. [c.241]

    Из приведенного сопоставления видно, что процессы, протекающие при электролизе и в гальванических цепях, взаимно об-ратны. Отсюда следует, что в принципе каждый гальванический элемент может работать, как аккумулятор электрической энергии. Это можно также показать на примере описанного выше нормального элемента, в котором металлический электрод соприкасается с насыщенным раствором соли того же металла (С(1—Сс1504, Hg-Hg2S04). [c.216]

    Определение сродства при таких реакциях окислительно-восстановительных систем (редокссистемы) можно легко выполнить электрическим путем, измерением нормал1,ного потенциала в гальванической цепи, так как здесь речь идею принципмгльно обратимых процессах. Поэтому можно или измерять потенциал различных хинонов относительно водородного электрода в цепи Вольта  [c.605]


Урок 8. переменный электрический ток — Физика — 11 класс

Физика, 11 класс

Урок 8. Переменный электрический ток

Перечень вопросов, рассматриваемых на уроке:

1) Свойства переменного тока;

2) Понятия активного сопротивления, индуктивного и ёмкостного сопротивления;

3) Особенности переменного электрического тока на участке цепи с резистором;

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.

𝒾 — мгновенное значение силы тока;

m— амплитудное значение силы тока.

– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:

При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.

Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени — мгновенное значение (помечают строчными буквами — і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Um — амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

XL= ωL

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:

Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение.   В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

P=IU cosφ

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Найти: T.

Решение:

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону

Согласно данным нашей задачи:

Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:

Ответ: T = 0,08 c.

2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Дано:

ν=50 Гц,

R=1 кОм=1000 Ом,

C=1 мкФ=10-6 Ф,

U=220 В.

Найти: Im

Решение:

Напишем закон Ома для переменного тока:

I=U/Z

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:

Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:

то после вычислений получаем Im ≈0,09 Ом.

Ответ: Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

 Физические величины

    Физические приборы

Сила тока

Омметр

Напряжение

Вольтметр

Сопротивление

Амперметр

Мощность

Ваттметр

Правильный ответ:

 Физические величины

    Физические приборы

Сила тока

Амперметр

Напряжение

Вольтметр

Сопротивление

Омметр

Мощность

Ваттметр

Направление электрического тока

На предыдущих уроках, мы подчёркивали, что электрический ток — это упорядоченное движение заряженных частиц. Значит, у тока должно быть направление. Несмотря на то, что в растворах ток обусловлен движением как положительных, так и отрицательных ионов, в большинстве случаев, ток обусловлен движением электронов. Однако, за направление тока принято считать направление от положительного полюса к отрицательному.

Надо сказать, что это не совсем логично, поскольку как раз-таки отрицательные частицы двигаются к положительным в большинстве случаев.

Находясь в электрическом поле, в металлах начинают двигаться к положительному полюсу. Однако, само явление электрического тока было открыто раньше, чем делимость атома, поэтому об ионах и электронах, люди в то время не знали. Считалось, что как положительные заряды могут двигаться к отрицательному полюсу, так и отрицательные заряды могут двигаться к положительному полюсу.

В выдвижении гипотез о природе электрического поля принимал участие небезызвестный президент США Бенджамин Франклин, который выдвинул унитарную теорию электричества.

Он предположил, что электричество — это некая невесомая жидкость, способная перетекать из одного тела в другое. Электризацию тел Франклин объяснял тем, что в этой жидкости иногда был избыток электрического флюида, а иногда — недостаток. Так появилось понятие отрицательных и положительных зарядов. Как мы понимаем сейчас, под этими флюидами следует понимать электроны, о которых Франклин не знал.

Позднее, ученые Дюфе и Симмер проводя свои опыты, предположили, что существует два вида электричества, которые при соприкосновении нейтрализуют друг друга.

Опять же, сейчас мы понимаем, что тело просто становилось электрически нейтральным, получив одинаковое количество положительных и отрицательных частиц.

В итоге, французский ученый Андре Ампер, представляя свой труд в Парижской академии наук, решил принять одно из направлений токов за основное: «Так как мне пришлось бы постоянно говорить о двух противоположных направлениях, по которым текут оба электричества, то, во избежание излишних повторений, после слов «направление электрического тока», я буду всякий раз подразумевать направление положительного электричества».

Конечно, в наше время не существует понятия положительного электричества, есть только положительные заряды или полюса источника. Однако, Ампер внёс большой вклад в изучение электрических явлений, и в его честь была названа единица силы электрического тока. Об этом мы поговорим на следующем уроке.

Направление тока было принято и учтено во всех правилах и законах, связанных с электрическим током. Поэтому,  условное направление тока менять не стали, даже после открытия элементарных частиц.

Поэтому, на любых схемах следует помнить, что условно ток исходит от положительного полюса и распространяется по всем ответвлениям цепи в соответствии с рядом закономерностей и правил, о которых мы поговорим немного позже.

Учебное пособие по физике: электрический ток

Если два требования электрической цепи выполнены, заряд будет проходить через внешнюю цепь. Говорят, что есть ток — поток заряда. Использование слова current в этом контексте означает просто использовать его, чтобы сказать, что что-то происходит в проводах — заряд движется. Однако ток — это физическая величина, которую можно измерить и выразить численно. Как физическая величина, , ток — это скорость, с которой заряд проходит через точку в цепи.Как показано на диаграмме ниже, ток в цепи можно определить, если можно измерить количество заряда Q , проходящего через поперечное сечение провода за время t . Ток — это просто соотношение количества заряда и времени.

Текущее — это величина ставки. В физике есть несколько скоростных величин. Например, скорость — это величина скорости — скорость, с которой объект меняет свое положение. Математически скорость — это отношение изменения положения к времени.Ускорение — это величина скорости — скорость, с которой объект меняет свою скорость. Математически ускорение — это отношение изменения скорости к времени. А мощность — это величина скорости — скорость, с которой работа выполняется на объекте. Математически мощность — это отношение работы к времени. В каждом случае величины скорости математическое уравнение включает некоторую величину во времени. Таким образом, ток как величина скорости будет математически выражен как

Обратите внимание, что в приведенном выше уравнении для обозначения величины тока используется символ I .

Как обычно, когда количество вводится в Физическом классе, также вводится стандартная метрическая единица, используемая для выражения этой величины. Стандартная метрическая единица измерения тока — ампер . Ампер часто сокращается до Ампер и обозначается условным обозначением A . Ток в 1 ампер означает, что 1 кулон заряда проходит через поперечное сечение провода каждую 1 секунду.

1 ампер = 1 кулон / 1 секунда

Чтобы проверить свое понимание, определите ток для следующих двух ситуаций.Обратите внимание, что в каждой ситуации дается некоторая посторонняя информация. Нажмите кнопку Проверить ответ , чтобы убедиться, что вы правы.

Провод изолируют поперечным сечением 2 мм и определяют, что заряд 20 C может пройти через него за 40 с.

Сечение провода длиной 1 мм изолируется, и определяется, что заряд 2 Кл проходит через него за 0,5 с.

I = _____ Ампер

I = _____ Ампер

Обычное направление тока

Частицы, которые переносят заряд по проводам в цепи, являются подвижными электронами.Направление электрического поля в цепи по определению является направлением, в котором проталкиваются положительные испытательные заряды. Таким образом, эти отрицательно заряженные электроны движутся в направлении, противоположном электрическому полю. Но в то время как электроны являются носителями заряда в металлических проводах, носителями заряда в других цепях могут быть положительные заряды, отрицательные заряды или и то, и другое. Фактически, носители заряда в полупроводниках, уличных фонарях и люминесцентных лампах одновременно являются как положительными, так и отрицательными зарядами, движущимися в противоположных направлениях.

Бен Франклин, проводивший обширные научные исследования статического и токового электричества, считал положительные заряды носителями заряда. Таким образом, раннее соглашение о направлении электрического тока было установлено в том направлении, в котором будут двигаться положительные заряды. Это соглашение прижилось и используется до сих пор. Направление электрического тока условно является направлением движения положительного заряда. Таким образом, ток во внешней цепи направлен от положительной клеммы к отрицательной клемме батареи.Электроны действительно будут двигаться по проводам в противоположном направлении. Зная, что настоящими носителями заряда в проводах являются отрицательно заряженные электроны, это соглашение может показаться немного странным и устаревшим. Тем не менее, это соглашение, которое используется во всем мире, и к которому студент-физик может легко привыкнуть.

Зависимость тока от скорости дрейфа

Ток связан с количеством кулонов заряда, которые проходят точку в цепи за единицу времени.Из-за своего определения его часто путают со скоростью дрейфа количества. Скорость дрейфа означает среднее расстояние, пройденное носителем заряда за единицу времени. Как и скорость любого объекта, скорость дрейфа электрона, движущегося по проводу, представляет собой отношение расстояния ко времени. Путь типичного электрона через проволоку можно описать как довольно хаотический зигзагообразный путь, характеризующийся столкновениями с неподвижными атомами. Каждое столкновение приводит к изменению направления электрона.Однако из-за столкновений с атомами в твердой сети металлического проводника на каждые три шага вперед приходится два шага назад. С электрическим потенциалом, установленным на двух концах цепи, электрон продолжает движение до , перемещаясь вперед на . Прогресс всегда идет к положительной клемме. Однако общий эффект бесчисленных столкновений и высоких скоростей между столкновениями заключается в том, что общая скорость дрейфа электрона в цепи ненормально мала. Типичная скорость дрейфа может составлять 1 метр в час.Это медленно!

Тогда можно спросить: как может быть ток порядка 1 или 2 ампер в цепи, если скорость дрейфа составляет всего около 1 метра в час? Ответ таков: существует много-много носителей заряда, движущихся одновременно по всей длине цепи. Ток — это скорость, с которой заряд пересекает точку в цепи. Сильный ток является результатом нескольких кулонов заряда, пересекающих поперечное сечение провода в цепи. Если носители заряда плотно упакованы в провод, тогда не обязательно должна быть высокая скорость, чтобы иметь большой ток.То есть носителям заряда не нужно преодолевать большое расстояние за секунду, их просто должно быть много, проходящих через поперечное сечение. Ток не имеет отношения к тому, насколько далеко заряды перемещаются за секунду, а скорее к тому, сколько зарядов проходит через поперечное сечение провода в цепи.

Чтобы проиллюстрировать, насколько плотно упакованы носители заряда, мы рассмотрим типичный провод, который используется в цепях домашнего освещения — медный провод 14-го калибра. В срезе этой проволоки длиной 0,01 см (очень тонком) их будет целых 3.51 x 10 20 атом меди. Каждый атом меди имеет 29 электронов; маловероятно, что даже 11 валентных электронов одновременно будут двигаться как носители заряда. Если мы предположим, что каждый атом меди вносит только один электрон, то на тонком 0,01-сантиметровом проводе будет целых 56 кулонов заряда. При таком большом количестве подвижного заряда в таком маленьком пространстве малая скорость дрейфа может привести к очень большому току.

Чтобы проиллюстрировать это различие между скоростью заноса и течением, рассмотрим аналогию с гонками.Предположим, что была очень большая гонка черепах с миллионами и миллионами черепах на очень широкой гоночной трассе. Черепахи не очень быстро двигаются — у них очень низкая скорость дрейф . Предположим, что гонка была довольно короткой — скажем, длиной 1 метр — и что значительный процент черепах достиг финишной черты в одно и то же время — через 30 минут после начала гонки. В таком случае течение будет очень большим — миллионы черепах пересекают точку за короткий промежуток времени.В этой аналогии скорость связана с тем, насколько далеко черепахи перемещаются за определенный промежуток времени; а ток зависит от того, сколько черепах пересекли финишную черту за определенный промежуток времени.

Природа потока заряда

Как только было установлено, что средняя скорость дрейфа электрона очень и очень мала, вскоре возникает вопрос: почему свет в комнате или в фонарике загорается сразу после включения переключателя? Разве не будет заметной задержки перед тем, как носитель заряда перейдет от переключателя к нити накала лампочки? Ответ — нет! и объяснение того, почему раскрывает значительную информацию о природе потока заряда в цепи.

Как было сказано выше, носителями заряда в проводах электрических цепей являются электроны. Эти электроны просто поставляются атомами меди (или любого другого материала, из которого сделана проволока) внутри металлической проволоки. Как только переключатель переводится в положение на , цепь замыкается, и на двух концах внешней цепи устанавливается разность электрических потенциалов. Сигнал электрического поля распространяется почти со скоростью света ко всем мобильным электронам в цепи, приказывая им начать марш с маршем .По получении сигнала электроны начинают двигаться по зигзагообразной траектории в обычном направлении. Таким образом, щелчок переключателя вызывает немедленную реакцию во всех частях схемы, заставляя носители заряда повсюду двигаться в одном и том же направлении. В то время как фактическое движение носителей заряда происходит с низкой скоростью, сигнал, который информирует о начале движения, движется со скоростью, составляющей долю от скорости света.

Электроны, которые зажигают лампочку в фонарике, не должны сначала пройти от переключателя через 10 см провода к нити накала.Скорее, электроны, которые зажигают лампочку сразу после того, как переключатель переведен в положение на , являются электронами, которые присутствуют в самой нити накала. Когда переключатель повернут, все подвижные электроны повсюду начинают движение; и именно подвижные электроны, присутствующие в нити накала, непосредственно ответственны за зажигание ее колбы. Когда эти электроны покидают нить накала, в нее входят новые электроны, которые ответственны за зажигание лампы. Электроны движутся вместе, как вода в трубах дома.Когда кран поворачивается с на , вода в кране выходит из крана. Не нужно долго ждать, пока вода из точки входа в ваш дом переместится по трубам к крану. Трубы уже заполнены водой, и вода во всем водном контуре одновременно приводится в движение.

Развиваемая здесь картина потока заряда представляет собой картину, на которой носители заряда подобны солдатам, идущим вместе, повсюду с одинаковой скоростью.Их движение начинается немедленно в ответ на установление электрического потенциала на двух концах цепи. В электрической цепи нет места, где носители заряда расходуются или расходуются. Хотя энергия, которой обладает заряд, может быть израсходована (или лучше сказать, что электрическая энергия преобразуется в другие формы энергии), сами носители заряда не распадаются, не исчезают или иным образом не удаляются из схема. И нет места в цепи, где бы носители заряда начали скапливаться или накапливаться.Скорость, с которой заряд входит во внешнюю цепь на одном конце, такая же, как скорость, с которой заряд выходит из внешней цепи на другом конце. Ток — скорость потока заряда — везде одинакова. Поток заряда подобен движению солдат, идущих вместе, повсюду с одинаковой скоростью.

Проверьте свое понимание

1.Говорят, что ток существует всякий раз, когда _____.

а. провод заряжен

г. аккумулятор присутствует

г. электрические заряды несбалансированные

г. электрические заряды движутся по петле

2. У тока есть направление. По соглашению ток идет в направлении ___.

а. + заряды перемещаются

г.- электроны движутся

г. + движение электронов

3. Скорость дрейфа подвижных носителей заряда в электрических цепях ____.

а. очень быстро; меньше, но очень близко к скорости света

г. быстрый; быстрее, чем самая быстрая машина, но далеко не скорость света

г. медленный; медленнее Майкла Джексона пробегает 220-метровую

г.очень медленно; медленнее улитки

4. Если бы электрическую цепь можно было сравнить с водяной цепью в аквапарке, то ток был бы аналогичен ____.

Выбор:

A. давление воды

Б. галлонов воды, стекающей с горки в минуту

С.вода

D. нижняя часть ползуна

E. водяной насос

F. верх горки

5. На схеме справа изображен токопроводящий провод. Две площади поперечного сечения расположены на расстоянии 50 см друг от друга. Каждые 2,0 секунды через каждую из этих областей проходит заряд 10 ° C.Сила тока в этом проводе ____ А.

а. 0,10

г. 0,25

г. 0,50

г. 1.0

e. 5,0

ф. 20

г. 10

ч.40

и. ни один из этих

6. Используйте диаграмму справа, чтобы заполнить следующие утверждения:

а. Ток в один ампер — это поток заряда со скоростью _______ кулонов в секунду.

г. Когда заряд 8 Кл проходит через любую точку цепи за 2 секунды, ток составляет ________ А.

г. Если за 10 секунд поток заряда через точку A (диаграмма справа) проходит 5 ° C, то ток равен _________ A.

г. Если ток в точке D равен 2,0 А, то _______ C заряда проходит через точку D за 10 секунд.

e. Если 12 ° C заряда пройдет мимо точки A за 3 секунды, то 8 C заряда пройдут мимо точки E за ________ секунд.

ф. Верно или неверно:

Ток в точке E значительно меньше тока в точке A, поскольку в лампочках расходуется заряд.

Направление электрического тока

Направление электрического тока может немного сбивать с толку. Здесь мы ответили на ваш запрос. Надеюсь, эта статья поможет вам понять направление тока.

Электрический ток

Каждая частица в природе, кроме изоляторов *, имеет в себе большое количество свободных электронов.Эти электроны беспорядочно перемещаются во всех направлениях внутри материала при нормальных условиях. Если к этим материалам приложить определенное напряжение, все эти электроны начнут перемещаться из области с более высоким потенциалом в область с более низким потенциалом. Это движение электронов из области с более высоким потенциалом в область с более низким потенциалом под действием электрического поля составляет электрический ток.

* в изоляторе не будет свободных электронов при условии, что он поддерживается при нормальной или комнатной температуре.

Определение тока

Электрический ток обычно называют потоком зарядов через проводник. Его можно определить как — количество заряда , которое проходит через площадь поперечного сечения в проводнике. Другими словами, термин «ток» можно определить как скорость прохождения зарядов через проводник. Узнать больше о Electic Current

Математическое выражение электрического тока

Электрический ток измеряется количеством электронов, проходящих через определенную точку в проводнике или цепи за единицу времени.

I = Q / т

Где Q — заряд электронов, протекающих по проводнику. t — время истечения в секундах.

В каком направлении течет электрический ток?

Направление электрического тока немного сложно понять тем, кого учили, что ток течет от положительного к отрицательному. За этим явлением стоят две теории. Одна из них — это теория обычного тока, а другая — теория фактического протекания тока.Когда Бенджамин Франклин изучал заряды, структура атома и атомных частиц была неизвестна. Следовательно, он принял точку накопления заряда как положительную, а точку, в которой отсутствуют заряды, как отрицательную. Следовательно, говорят, что заряд перетекает с положительного на отрицательный. Это называется обычным током.

Но на самом деле электрический ток — это не что иное, как поток электронов. Электроны — это отрицательно заряженные частицы, которые притягиваются к положительному заряду.Кроме того, многие эксперименты показали, что в проводнике текут свободные электроны. Отрицательно заряженные электроны перемещаются от отрицательной клеммы к положительной. Это направление фактического тока.

Направление тока в анализе цепей

С точки зрения анализа схем, мы обычно рассматриваем направление электрического тока от положительного к отрицательному. Математически отрицательный заряд, текущий в одном направлении, эквивалентен положительному заряду, текущему в противоположном направлении.Следовательно, это не имеет значения. Во время анализа цепи можно рассматривать движение тока от положительного к отрицательному или наоборот. Фактически, положительно заряженные ионы могут притягиваться отрицательно заряженными электронами.

Единица тока

Единица измерения тока — ампер или А. Один ампер равен одному кулону в секунду, тогда как один кулон равен 6,25 x 10 18 электронов. Говоря, что через цепь проходит один ампер тока, это означает, что 6.25 x 10 18 электронов пересекают точку в цепи за секунду.

Что такое электрическая схема? Какое направление тока в цепи

Ответ:

An el ectric cir a закрыто путь 000 000 000 elec tric токов A circ uit is 000 000 000 000 000 000 сделано соединение электрическое 0003 0003 с piec es из

Когда we переключатель на ctric swi tch , 000 0005 и дает out lig 000 The Лампа светится we пресс 000 000 Elect ric cu rrent rom 0003 0003 0003 0003 batt ery в 0003 000 0003 000 к Bul b через ugh 000 000 металл полосы Я The conducti ng полос a cl osed путь f 0003 0003 0003 или у.

h ope it помогает you . .

Электрический ток

Единица электрического заряда — кулон (сокращенно C). Обычная материя состоит из атомов, которые имеют положительно заряженные ядра и окружающие их отрицательно заряженные электроны.Заряд квантуется как кратное заряду электрона или протона:


Влияние зарядов характеризуется силами между ними (закон Кулона) и создаваемым ими электрическим полем и напряжением. Один кулон заряда — это заряд, который будет проходить через лампочку мощностью 120 ватт (120 вольт переменного тока) за одну секунду. Два заряда одного кулона каждый, разделенный метром, будет отталкивать друг друга с силой около миллиона тонн!

Скорость прохождения электрического заряда называется электрическим током и измеряется в амперах.

Представляя одно из фундаментальных свойств материи, возможно, уместно указать, что мы используем упрощенные наброски и конструкции, чтобы представить концепции, и в этой истории неизбежно гораздо больше. Не имеет значения следует прикрепить к кружкам, представляющим протон и электрон, в чувство подразумевая относительный размер, или даже то, что они являются твердой сферой объекты, хотя это полезная первая конструкция. Самое важное начальная идея, электрически, это то, что у них есть свойство, называемое «заряд», который одинаковый размер, но противоположные по полярности для протона и электрона.В протон имеет 1836 раз больше массы электрона, но точно такого же размера стоимость только скорее положительный, чем отрицательный. Даже термины «положительный» и «отрицательные» произвольные, но хорошо укоренившиеся исторические ярлыки. Самое важное значение в том, что протон и электрон будут сильно притягивать друг друга. другое — исторический архетип клише «противоположности притягиваются». Два протоны или два электрона сильно отталкиваются друг от друга. Однажды ты имеют установил эти основные представления об электричестве, «как заряды отталкивать и в отличие от обвинений привлекают «, то у вас есть основание для электричество и можно строить оттуда.

Из точной электрической нейтральности объемного вещества, а также из детальных микроскопических экспериментов мы знаем, что протон и электрон имеют одинаковую величину заряда. Все заряды, наблюдаемые в природе, кратны этим фундаментальным зарядам. Хотя стандартная модель протона изображает его состоящим из дробно заряженных частиц, называемых кварками, эти дробные заряды не наблюдаются изолированно — всегда в комбинациях, которые производят +/- заряд электрона.

Изолированный одиночный заряд можно назвать «электрическим монополем». Равные положительный и отрицательный заряды, помещенные близко друг к другу, составляют электрический диполь. Два противоположно направленных диполя, расположенных близко друг к другу, называются электрическим квадруполем. Вы можете продолжить этот процесс для любого числа полюсов, но здесь упоминаются диполи и квадруполи, потому что они находят важное применение в физических явлениях.

Одна из фундаментальных симметрий природы — сохранение электрического заряда.Ни один из известных физических процессов не приводит к чистому изменению электрического заряда.

Правило правой руки для токоведущего провода

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или несколько ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее то информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в виде ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права. Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; и Ваше заявление: (а) вы добросовестно полагаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Что такое электрический ток? Определение, единица измерения и направление тока

Определение : Электрический ток определяется как скорость потока отрицательных зарядов проводника.Другими словами, непрерывный поток электронов в электрической цепи называется электрическим током. Проводящий материал состоит из большого количества свободных электронов, которые беспорядочно перемещаются от одного атома к другому.

Единица тока

Поскольку заряд измеряется в кулонах, а время — в секундах, единицей измерения электрического тока является кулон / сек ( C / s, ) или амперы ( A, ). Амперы — это единица измерения SI проводника. I — это символическое представление тока.

Таким образом, считается, что по проводу проходит ток в один ампер, когда по нему течет заряд со скоростью один кулон в секунду.

Когда к металлическому проводу прикладывается разность электрических потенциалов, свободно прикрепленные свободные электроны начинают двигаться к положительному выводу ячейки, показанной на рисунке ниже. Этот непрерывный поток электронов составляет электрический ток. Токи в проводе протекают от отрицательного вывода ячейки к положительному выводу через внешнюю цепь.

Условное направление потока тока

Согласно теории электронов, когда к проводнику прикладывается разность потенциалов, через цепь протекает какое-то вещество, составляющее электрический ток. Считалось, что это вещество течет от более высокого потенциала к более низкому потенциалу, то есть положительный вывод к отрицательному выводу ячейки через внешнюю цепь.

Это соглашение о протекании тока настолько твердо установлено, что оно все еще используется.Таким образом, обычное направление потока тока — от положительного вывода элемента к отрицательному выводу элемента через внешнюю цепь. Величина протекания тока на любом участке проводника — это скорость потока электронов, то есть заряда, протекающего в секунду.

Математически он представлен как

В зависимости от протекания электрического заряда ток в основном подразделяется на два типа: переменный ток и постоянный ток. При постоянном токе заряды протекают в одном направлении, тогда как при переменном токе заряды протекают в обоих направлениях.

Что такое электрический ток »Электроника

Электрический ток возникает при движении электрических зарядов — это могут быть отрицательно заряженные электроны или положительные носители заряда — положительные ионы.


Учебное пособие по электрическому току Включает:
Что такое электрический ток Единица измерения тока — Ампер ПЕРЕМЕННЫЙ ТОК


Электрический ток — одно из основных понятий, существующих в науке об электричестве и электронике. Электрический ток лежит в основе науки об электричестве.

Будь то электрический нагреватель, большая электрическая сеть, мобильный телефон, компьютер, удаленный сенсорный узел или что-то еще, понятие электрического тока является центральным для его работы.

Однако ток как таковой обычно нельзя увидеть, хотя его эффекты можно увидеть, услышать и почувствовать все время, и в результате иногда трудно получить представление о том, что это такое на самом деле.

Удар молнии — впечатляющее зрелище электрического тока
Фотография сделана с вершины башен Петронас в Куала-Лумпуре Малайзия

Определение электрического тока

Определение электрического тока:

Электрический ток — это поток электрического заряда в цепи.Более конкретно, электрический ток — это скорость прохождения заряда через заданную точку в электрической цепи. Заряд может быть отрицательно заряженными электронами или положительными носителями заряда, включая протоны, положительные ионы или дырки.

Величина электрического тока измеряется в кулонах в секунду, обычно единицей измерения является ампер или ампер, обозначаемый буквой «А».

Ампер или усилитель широко используются в электрических и электронных технологиях вместе с умножителями, такими как миллиампер (0.001A), микроампер (0,000001A) и т. Д.

Ток в цепи обычно обозначается буквой «I», и эта буква используется в уравнениях, таких как закон Ома, где V = I⋅R.

Что такое электрический ток: основы

Основная концепция тока состоит в том, что это движение электронов внутри вещества. Электроны — это мельчайшие частицы, которые существуют как часть молекулярной структуры материалов. Иногда эти электроны плотно удерживаются внутри молекул, а иногда они удерживаются свободно, и они могут относительно свободно перемещаться по структуре.

Одно очень важное замечание относительно электронов — это то, что они заряженные частицы — они несут отрицательный заряд. Если они перемещаются, то перемещается количество заряда, и это называется током.

Также стоит отметить, что количество электронов, которые могут двигаться, определяет способность определенного вещества проводить электричество. Некоторые материалы позволяют току двигаться лучше, чем другие.

Движение свободных электронов обычно очень случайное — оно случайное — столько электронов движется как в одном направлении, так и в другом, и в результате отсутствует общее движение заряда.

Случайное движение электронов в проводнике со свободными электронами

Если на электроны действует сила, заставляющая их двигаться в определенном направлении, то все они будут дрейфовать в одном и том же направлении, хотя и в некоторой степени случайным образом, но в целом движение происходит в одном направлении. Одно направление.

Сила, действующая на электроны, называется электродвижущей силой или ЭДС, а ее величина — это напряжение, измеряемое в вольтах.

Электронный поток под действием приложенной электродвижущей силы

Чтобы лучше понять, что такое ток и как он действует в проводнике, его можно сравнить с потоком воды в трубе.У этого сравнения есть ограничения, но оно служит очень простой иллюстрацией тока и протекания тока.

Ток можно рассматривать как воду, текущую по трубе. Когда давление оказывается на один конец, вода движется в одном направлении и течет по трубе. Количество воды пропорционально давлению на конце. Давление или силу, приложенную к концу, можно сравнить с электродвижущей силой.

Когда к трубе прикладывается давление или вода течет в результате открытия крана, вода течет практически мгновенно.То же самое и с электрическим током.

Чтобы получить представление о потоке электронов, требуется 6,24 миллиарда миллиардов электронов в секунду для тока в один ампер.

Обычный ток и поток электронов

Часто существует множество недоразумений относительно обычного потока тока и потока электронов. Сначала это может немного сбивать с толку, но на самом деле все довольно просто.

Частицы, переносящие заряд по проводникам, являются свободными электронами.Направление электрического поля в цепи по определению является направлением, в котором проталкиваются положительные испытательные заряды. Таким образом, эти отрицательно заряженные электроны движутся в направлении, противоположном электрическому полю.

Электронный и обычный ток

Это произошло потому, что первоначальные исследования статических и динамических электрических токов были основаны на том, что мы теперь назвали бы положительными носителями заряда. Это означало, что тогда раннее соглашение о направлении электрического тока было установлено как направление, в котором будут двигаться положительные заряды.Это соглашение сохранилось и используется до сих пор.

Итого:

  • Обычный ток: Обычный ток идет от положительного вывода к отрицательному и указывает направление, в котором будут протекать положительные заряды.
  • Электронный поток: Электронный поток идет от отрицательного полюса к положительному. Электроны заряжены отрицательно и поэтому притягиваются к положительному полюсу так же, как притягиваются разные заряды.

Это соглашение, которое используется во всем мире по сей день, даже если оно может показаться немного странным и устаревшим.

Скорость движения электрона или заряда

Скорость передачи электрического тока сильно отличается от скорости реального движения электронов. Сам электрон подпрыгивает в проводнике и, возможно, движется по проводнику только со скоростью несколько миллиметров в секунду. Это означает, что в случае переменного тока, когда ток меняет направление 50 или 60 раз в секунду, большая часть электронов никогда не выходит из провода.

Возьмем другой пример. В почти полном вакууме внутри электронно-лучевой трубки электроны движутся почти по прямым линиям со скоростью примерно в одну десятую скорости света.

Влияние тока

Когда электрический ток течет по проводнику, есть несколько признаков, указывающих на то, что ток течет.

  • Тепло рассеивается: Возможно, наиболее очевидным является то, что тепло выделяется. Если ток небольшой, то количество выделяемого тепла, вероятно, будет очень небольшим и его можно не заметить.Однако, если ток больше, возможно, выделяется заметное количество тепла. Электрический огонь — яркий пример того, как ток вызывает выделение тепла. Фактическое количество тепла зависит не только от тока, но также от напряжения и сопротивления проводника.
  • Магнитный эффект: Другой эффект, который можно заметить, заключается в том, что вокруг проводника создается магнитное поле. Если в проводнике течет ток, это можно обнаружить.Поместив компас близко к проводу, по которому проходит достаточно большой постоянный ток, можно увидеть, что стрелка компаса отклоняется. Обратите внимание, что это не будет работать с сетью, потому что поле слишком быстро меняется, и игла не может реагировать, а два провода (под напряжением и нейтраль), расположенные близко друг к другу в одном кабеле, нейтрализуют поле.

    Магнитное поле, создаваемое током, находит хорошее применение во многих областях. Намотав провод в катушку, можно усилить эффект и создать электромагнит.Реле и множество других предметов используют этот эффект. Громкоговорители также используют переменный ток в катушке, чтобы вызвать колебания в диафрагме, которые позволяют преобразовывать электронные токи в звуки.

Как измерить ток

Одним из важных аспектов тока является знание величины тока, который может протекать в проводнике. Поскольку электрический ток является таким ключевым фактором в электрических и электронных цепях, очень важно знать, какой ток течет.

Есть много разных способов измерения тока. Один из самых простых — использовать мультиметр.

Как измерить ток с помощью цифрового мультиметра:

Используя цифровой мультиметр, цифровой мультиметр, легко измерить ток, поместив цифровой мультиметр в цепь, по которой проходит ток. Цифровой мультиметр даст точные показания тока, протекающего в цепи

.

Узнайте, , как измерить ток с помощью цифрового мультиметра.

Хотя существуют и другие методы измерения тока, это наиболее распространенный.

Ток — один из самых важных и фундаментальных элементов в электрических и электронных технологиях. Ток, протекающий в цепи, можно использовать различными способами: от генерирования тепла до переключения схем или сохранения информации в интегральной схеме.

Другие основные концепции электроники:
Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность Радиочастотный шум
Вернуться в меню «Основные понятия электроники».

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *