Как писать алгоритмы по информатике – Алгоритмы. Способы записи алгоритмов

Содержание

Алгоритм. способы записи алгоритмов — Информатика, информационные технологии

Для того чтобы ЭВМ {без участия человека} выполнила некоторые действия необходимо задать последовательность инструкций (команд) на понятном компьютеру языке.

Опр. Под алгоритмом понимают предписание, инструкцию, составленную из отдельных шагов, с помощью которых некоторый субъект может решить некоторую задачу. Данный субъект называется исполнителем.

Алгоритм {как система правил, определяющая процесс преобразования исходных данных в желаемый результат за конечное число шагов,} имеет ряд обязательных свойств:

1. Дискретность – возможность разбиения процесса обработки информации на более простые этапы;

2. Определенность – однозначность выполнения каждого отдельного шага преобразования информации;

3. Массовость – алгоритм должен быть применим для целого класса однотипных задач;

4. Конечность – алгоритм должен состоять из конечного числа шагов, каждый из которых выполняется за конечный промежуток времени.

5. Результативность – по окончании работы алгоритма должен быть получен некоторый результат.

6. Однозначность – применение алгоритма к одним и тем же исходным данным всегда должно давать один и тот же результат.

В алгоритме отражаются логика и способ формирования результатов решения с указанием необходимых расчетных формул, логических условий, соотношений для контроля достоверности выходных результатов. В алгоритме обязательно должны быть предусмотрены все ситуации, которые могут возникнуть в процессе решения задачи.

Существуют 3 формы записи алгоритмов:

1) Текстовая;

2) Табличная;

3) Графическая.

Вопрос № 17 {Алгоритм, как правило, изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий (операторов). Такое} графическое представление называется схемой алгоритма или блок-схемой. {Помимо графической существуют еще менее удобные и наглядные табличная и текстовая формы представления алгоритма.}

В блок-схеме каждому типу действий соответствует геометрическая фигура. Эти фигуры соединяются линиями переходов, определяющими очередность выполнения действий.

Таблица 3. Основные структурные элементы блок-схем

{С понятием алгоритма человек встречается на каждом шагу своей деятельности, однако часто не отдает себе в этом отчета.} Рассмотрим в качестве примера задачу о выборе наибольшего из трех заданных чисел X, Y и Z (5, 10, 20). Для решения этой задачи достаточно беглого взгляда, но в основе всего этого лежит некоторая заранее предписанная последовательность достаточно простых действий:

1. Сравнить X и Y. Если X?Y то перейти к пункту 2, в противном случае перейти к пункту 3.

2. Сравнить Z и X. Если Z?X, то M=Z, в противном случае M=X. Перейти к пункту 4.

3. Сравнить Z и Y. Если Z?Y, то M=Z, в противном случае M=Y. Перейти к пункту 4.

4. M – наибольшее число. Остановить вычислительный процесс.

Блок-схема данного алгоритма имеет вид:

Примером невычислительного алгоритма может служить, например, объяснение ребенку, незнакомому с правилами уличного движения, правил перехода улицы (для простоты будем считать светофор двухцветным):

{1. Если горит красный свет, то улицу не переходи.

2. Если горит зеленый свет, то улицу переходи до середины, смотря на транспорт слева.

3. Если по достижении середины улицы продолжает гореть зеленый свет, то переходи улицу до конца, смотря на транспорт справа.

Руководствуясь таким алгоритмом, ребенок будет правильно вести себя при переходе улицы. Но в данном алгоритме можно обнаружить неточность. Буквальное выполнение инструкции привело бы к нелепости. В случае, когда при достижении середины улицы загорелся красный цвет, ребенок так и остался бы навсегда стоять посередине дороги, т.к. в алгоритме не сказано, что делать в таком случае.

Правильный вариант алгоритм перехода улицы имеет следующий вид.

1. Посмотреть на светофор. Если горит зеленый свет – перейти к действию 3, в противном случае – перейти к действию 2.

2. Стоять и ждать зеленого света. Если загорится зеленый свет перейти к действию 3.

3. Переходить улицу до середины, смотря на транспорт слева. Перейти к действию 4.

4. Посмотреть на светофор. Если горит зеленый свет – перейти к действию 6, в противном случае – перейти к действию 5.

5. Стоять и ждать зеленого света. Если загорится зеленый свет перейти к действию 6.

6. Завершить переход улицы до конца, смотря на транспорт справа.

Блок-схема данного алгоритма имеет вид:}

Вопрос № 18

Алгоритмы делятся на 3 типа: линейные, условные и циклические.

Опр.Линейным называется алгоритм, являющийся последовательностью операторов (команд), которые выполняются один за другим в порядке их написания. Порядок выполнения не зависит от исходных данных.

Пример 12.Построить блок-схему алгоритма вычисления значения функции f(x)=5×2+6x-1.

Вопрос № 19

Опр.Условным (или разветвляющимся) называется алгоритм, в котором порядок выполнения команд зависит от некоторых условий.

Пример 13.Построить блок-схему алгоритма вычисления значения функции f(x)=|x|.

Пример 14.Построить блок-схему алгоритма вычисления значения функции

Пример 15.Построить блок-схему алгоритма решения квадратного уравнения ax2+bx+c=0, a?0.

Статьи к прочтению:

Способы записи алгоритмов


Похожие статьи:

csaa.ru

Алгоритм. основные принципы составления алгоритмов. примеры.

Алгоритм-система точных и понятных предписаний, опр-ая последовательность элементарных операций над исходными данными, выполнение кот-ых обеспечивает решение задач данного типа.

Свойства алгоритма:

-дискретность-последовательность решения (процесс) задач должен быть разбит на последовательность отдельных шагов.

-понятность-алгоритм обязательно должен быть понятен исполнителю. В связи с этим алгоритм нужно разрабатывать с ориентацией на опр-ого исполнителя, т.е. в алгоритм можно включать команды из систем команд данного исполнителя.

-детерминированность — будучи понятным, алгоритм не должен содержать команды, смысл кот-ых может восприниматься неоднозначно. Нарушение составителями алгоритмов этих требований приводит к тому, что одна и та же программа после выполнения разными исполнителями дает не одинаковые результаты.

-результативность –состоит в том, что при точном исполнении всех команд алгоритма, процесс решения задач должен прекратиться за конечное число шагов и при этом должен быть получен опред-ый при постановке задач результат.

-массовость- пригодность алгоритма для решения задач некоторого класса.

Способы записи алгоритма:

-словесный – способ на естественном языке.

-графический-описания алгоритма с помощью схем.

Процесс выполнения операций или групп операций

ввод исходных данных, вывод результата

Решение-выбор направления выполнения

Модификация-выполнение операций , меняющих команды или группы команд, изменяющих программ.

Соединители линий на одной странице.

Межстраничные соединители.

-язык программирования –удобен для ввода в комп-р.

-псевдокод-это язык, к-ый использует структуру и синтексис достаточно формализованного языка и одновременно допускает конструкции естеств. Языка.

Виды алгоритмов и основные принципы составления алгоритмов.

-Линейный – алгоритм, в кот-ом команды выполняются последовательно друг за другом в порядке их естественного следования независимо от каких-либо условий. S1, s2 , S3…Sn

-ветвящийся ( разветвящийся) — это процесс, в кот-ом его реализация происходит по одному из нескольких заранее предусмотренных направлений, в зависимости от исходных данных или промежуточных результатов.

  • Полная условная конструкция (полное ветвление)
  • Неполное условная конструкция
  • Выбор из нескольких

-циклический – алгоритм, в кот-ом последовательность может выполняться более 1 раза.

  • Цикл с параметром
  • Цикл с предусловием. Может не выполниться ни разу. В теле цикла обязательно нах-ся оператор, к-ый изменяет значение переменной, входящей в блок Q.
  • Цикл с постусловием. Выполняется хоть один раз.

Основные принципы алгоритмизации:

1. Выявить исходные данные, результаты и назначить им имена.

2. Метод решения задач.

3. Разбить метод решения задач на этапы.

4. При граф-ом представлении алгоритма каждый этап в виде соответствующего блока –схемы алгоритма и указать линиями связи порядок их выполнения.

5. В полученной схеме при любом варианте вычислений.

— предусмотреть выдачу результатов или сообщений об их отсутствии.

-обеспечить возможности после выполнение любой операции так или иначе перейти к блоку конец.

40.Основные алгоритмические структуры

Мы уже рассмотрели основные понятия программирования и переходим немного ближе к делу (но только ближе, программировать будем позже).

Рассмотрим основные структуры алгоритмов, а их шесть:

  • Следование. Это последовательность блоков (или групп блоков) алгоритма. В программе следование представлено в виде последовательного выполнения операций

  • Разветвление. Данная алгоритмическая структура применяется в том случае, когда в зависимости от условия необходимо выполнить одно или другое действие
  • Обход. Эта структура является частным случаем разветвения, когда в одной из ветвей нет никаких действий.
  • Множественный выбор. Эта структура является обобщением раветвления, когда необходимо выполнить одно из нескольких действий в зависимости от значения переменной A.
  • Цикл До. Эта алгоритмическая структура применяется в том случае, когда нужно какие-либо операции исполнить несколько раз до того, как будет истинным определенное условие. Бло к выполняемый многократно называется телом цикла. Особенностью данного цикла является его обязательное исполнение хотя бы один раз.

  • Цикл Пока. Это цикл отличается от цикла До тем, что проверка условия осуществляется перед самым первым исполнением операторов тела цикла.
Статьи к прочтению:

Основы программирования. Алгоритмы и блок-схемы. Урок 6 [GeekBrains]


Похожие статьи:

csaa.ru

Разрабатываем алгоритм действий. Создаем блок схемы. Копилка эффективных советов

Разрабатываем алгоритмы действий и создаем блок-схемы

В жизни нам часто приходится встречаться с различными ситуациями, в которых мы совершаем одни и те же определенные действия. Для того, чтобы вовремя проснуться, нам нужно не забыть включить будильник. Для того, чтобы утолить свой голод, нам необходимо выполнить одни и те же действия по приготовлению вкусной пищи. Для того, чтобы выполнить знакомую нам работу, мы тоже часто делаем одно и то же.

Такое поведение можно называть по-разному, смотря в каком контексте оно рассматривается. Если рассмотреть с позиции эффективности деятельности, то эти действия можно назвать привычками или навыками. Если рассматривать с точки зрения отображения процесса, то описание последовательности действий, строгое исполнение которых приводит к решению поставленных задач за определенное количество шагов, называют алгоритмом действий.

Как создаются алгоритмы действий?

Мы постоянно сталкиваемся с этим в обычной жизни. Какие действия мы совершаем, чтобы пополнить счет своего мобильного телефона? Каждый из нас — разные. Так как способов пополнения счета несколько, следовательно мы все по-разному это делаем. Результат, правда всегда один получается — появление средств на телефоне.

Или еще пример: чтобы скопировать картинку или текст, нажимаем правой кнопкой мыши на картинку, затем выбираем «Копировать», помещаем  в нужное место, нажимаем правой кнопкой » Вставить», и результат достигнут.

Все это — определенная последовательность действий, в результате которых различными средствами решается поставленная задача. Но пока это только наши знания, которые перерастают в навыки и умения, а если этот процесс описать, то мы сможем наглядно увидеть алгоритм наших действий, и передать его другим людям. На словах не все и не всегда понятно бывает.

Опишите последовательность действий — это запоминается

Создать алгоритм действий можно, описав или изобразив его последовательность. Знают ли все, что надо сделать, чтобы посадить дерево? Возможно, основные шаги понятны всем, но вот когда деревце поливать, перед посадкой или после, помнит не каждый. Созданный алгоритм позволит все действия выполнить в правильной последовательности.

Чтобы описать последовательность действий посложнее, придется постараться и подробно их все записать. Пример можно взять с всевозможных правил и инструкций — там очень четко прописываются по шагам действия, которые нам надо сделать. Но бывают ситуации, в которых за определенным действие следует не один шаг, а несколько, в зависимости от предыдущего результата. В таком случае, предположительные действия тоже записывают, чтобы человек мог легко сориентироваться в разных ситуациях, и знал, что нужно предпринять.

Алгоритм действий в графике — это блок-схема

Если изобразить алгоритмы действий в графическом варианте, с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения действия, то мы получим блок-схему. Блок-схема намного превосходит правила, инструкции, и записанные по порядку алгоритмы действий, по своей наглядности и читаемости.

Представьте, что вам нужно чему-то научить другого человека. Вы отлично знаете все действия в определенной последовательности. Ваша задача — показать, как это нужно делать и передать свои знания так, чтобы другой человек их запомнил и знал так же, как и вы. Устная передача знаний допускает импровизации и некоторый произвол. Самым лучшим способом будет блок-схема, в которой объясняется последовательность и возможные варианты действий. В качестве примера — веселое руководство по изучению блог-схем:

Лучшим условием для получения результата будет повторяемость действий. Это однозначно влияет на скорость достижения результата в будущем. Чем чаще вам придется повторять одни и те же действия, тем быстрее вы научитесь выполнять последовательность действий, а значит в каждый последующий раз, вам потребуется меньше времени на выполнение.

Блок-схемы применяются в продажах

В продажах такое обучение с помощью разработки алгоритмов и изображения их в виде блок-схем имеет большое распространение. Чаще всего их используют в телефонных сценариях разговоров в call-центрах и для «холодных» звонков. Корпоративная культура набирает обороты, поэтому многие компании уже не позволяют сотрудникам нести «отсебятину», даже талантливую, а предлагают действовать им по заранее разработанному сценарию, представляя «лицо фирмы» на различных этапах. Эффект появляется буквально после нескольких дней действий «по бумажке». Со временем, многое из описанных алгоритмов запоминается сотрудником, и в дальнейшем  он свободно может общаться, не опасаясь того, в какую сторону может уйти разговор.

Алгоритмы действий и блог-схемы разрабатываются не только в продажах. Большое распространение они имеют в обучении и практике врачей, программистов, «компьютерщиков», у многих технических специальностей.

Стоит попробовать научиться действовать по подобным блок-схемам. Ведь впервые встречаясь с непонятным поначалу обилием действий и задач, думаешь о том, как тебе не хватает разработанной блок-схемы. После долгих мучений не выдерживаешь, и начинаешь разрабатывать и создавать самостоятельно. Эффективные люди не любят простоев в делах. А блок-схемы значительно упрощают жизнь и позволяют разобраться в решении сложных задач.

Сервисы для разработки блок-схем

В интернете есть сервисы, которые могут помочь вам создавать такие блок-схемы. Один из них — [urlspan]Сacoo[/urlspan]. С его помощью вам легко удастся превращать ваши алгоритмы в различные диаграммы, блок-схемы и графики. Вы увидите, что это очень приятное и радостное занятие — преобразовывать то, что вам известно, в науку для других людей.

На этом онлайн-сервисе — хорошее настроение вам обеспечено. На первоначальном этапе можно воспользоваться возможностями бесплатной учетной записи, а в будущем за доступ нужно будет платить. Естественно, что бесплатный доступ имеет ограничения по сравнению с платными. Но для изучения и первых шагов, функционала вполне достаточно.

Разработав алгоритмы действий и преобразовав их в блок-схемы с помощью Cacoo, вы сможете надолго создать хорошее настроение не только себе, но и другим людям, постигающим азы.

Создавайте игровые блок-схемы для своих детей

Подводя итог вышесказанному отмечу, что теперь вы сможете использовать алгоритмы действий и блок-схемы в различных жизненных ситуациях. Даже ваши дети с огромным удовольствием станут выполнять не самые интересные обязанности, следуя понятным подсказкам. Если будут идеи, где и как можно применять алгоритм действий, поделитесь в комментариях, уважаемые читатели. Очень хотелось бы узнать про ваши алгоритмы.

Моя блок-схема

Вот какая блок-схема у меня получилась в первый раз. Для того, чтобы увеличить изображение, нажмите на него. После перехода на Cacoo, под записью «просмотр фигуры», нажимайте на картинку. Она откроется в большом окне. Удачи!

Успевайте больше за меньшее время вместе с «Копилкой эффективных советов». Копилка эффективных советов
В этой же рубрике:
Я согласен на обработку моих персональных данных в соответствии с Пользовательским соглашением

kopilkasovetov.com

Ответы Mail.ru: как научиться создавать алгоритмы?

Здесь чаще задают вопросы «Какой язык учить первый, а какой второй» (третий, четвертый… )

Как будто от того, что человек выучит все краски,
он автоматически станет непревзойденным художником,
или выучив все ноты (до, ре, ми, фа, соль.. ) станет сразу сочинять музыку.

Сколько раз сталкивался:

— Я выучил весь Pascal (QBASIC и проч… ) и теперь хочу написать игрушку!
— Ну, раз «выучил», давай сделаем солнышко с играющими лучиками.. .
Нарисуем окружность, вокруг нарисуем лучики, дальше делаем анимацию
— Ммммм.. . А как это?

Т. е. человек не может в уме предствить КАК ЭТО.. .
Не может сообразить, что для анимации движения, один лучик надо стереть (нарисовать поверх такой же, но цветом фона) ,
а затем нарисовать лучик, но другой длины. И так по кругу (цикл)

Если оглянуться вокруг, то любой процесс можно выразить алгоритмически.
Ведь что такое Алгоритм? Это точный набор инструкций, описывающих порядок действий
исполнителя для достижения результата решения задачи за конечное время.

Это не я сказал — это в википедии так написано. :))))
Попробуй самостоятельно писать алгоритмы.
Например, стиральная машина. Скажешь сложно? Ничего подобного.. .

1. Включить питание (начало)
2. Открыть клапан воды
3. Наполнять бак смывая порошок из отсека
4. По достижении уровня воды XXX, закрыть клапан
5. Повернуть бак на 3 оборота (размешать порошок)
6. Включить нагрев воды
7.
8.

Думаю, что дальше ты сможешь написать сам ( потом сверь с реальной машиной на сколько пунктов ошибся) 🙂
В принципе, так программу для микроконтроллера стиралки и пишут.

Ничего сложного нет, алгоритм ЛЮБОЙ СЛОЖНОСТИ можно реализовать, используя только ТРИ конструкции:

СЛЕДОВАНИЕ (оператор за оператором, команда за командой)
ПОВТОРЕНИЕ (цикл) и
ВЫБОР (альтернатива, выбор по условию) .

Опять же, это не я придумал, а Э. Дейкстра (теорема структурного программирования) .

Поэтому, читай книги по информатике, занимайся самостоятельно, и алгоритмизируй все вокруг.
Ну и начинай учить какой нибудь язык программирования. Только не бери сложный, возьми простой.. .
Удачи!

otvet.mail.ru

Алгоритм

Алгоритм — последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи. ( Каймин, 1985)

Основная цель алгоритмизации — составления алгоритмов для ЭВМ — решение задач на ЭВМ.

Виды Алгоритмов

Прикладные алгоритмы — алгоритмы решения прикладных задач. Решение задачи правильное, если оно соответствует требованиям поставленных задач.

Структурированные алгоритмы — алгоритмы, для которых используются принципы структурной записи и структурного проектирования (на русскоязычном структурном псевдокоде).

Структурированные алгоритмы — это наиболее удобная форма описания алгоритмов и документирования программ и программного обеспечения для ЭВМ.

Структурированные алгоритмы в структурированной записи на русском языке отличает простота чтения, понимания, исправления и анализа правильности при поиске и исправлении ошибок.

Свойства Алгоритмов

Свойства алгоритмов — однозначность, результативность, массовость, правильность.

Алгоритм — результативный, если его выполнение приводит к получению результатов.

Прикладной Алгоритм — правильный, если он дает правильные результаты для любых допустимых исходных данных.

Прикладной Алгоритм содержит ошибки, если для он дает неправильные результаты либо не дает результатов вообще для некоторых допустимых исходных данных.

Программа содержит ошибки, если ее выполнение на ЭВМ приводит к получению сбоев, отказов или получению не правильных результатов.

Алгоритмизация

Алгоритмизация — методы составления алгоритмов с целью решения прикладных задач на ЭВМ.

Программирование — разработка программ для ЭВМ в целях решения (комплекса) определенных задач.

Отладка программ — процесс поиска и исправления ошибок в программах на ЭВМ.

Алгоритмизация в информатике и программировании

В ЕГЭ по информатике алгоритмизация одним из основных требований ЕГЭ к выпускным и вступительным экзаменам по информатике.

В информатике алгоритмизация широко используется для обучения основам программирования на базе самых различных языков программирования — Бейсик, Паскаль, Си и т.д.

В профессиональном программировании алгоритмы используются для документирования ПО при профессиональных разработках для инспекции текстов программ и выявления в них ошибок.

Для описания алгоритмов наиболее эффективно использование русскоязычного структурного псевдокода с ключевыми словами если-то-иначе и пока-цикл.

В профессиональном программировании известно, что использование псевдокода в десять раз уменьшает число ошибок в программах с 2-3 ошибок на 100 операторов до 2-3 ошибок на 1000 операторов.

В информатике статистика показывает, что использование псевдокода студентами и шкоьниками с объемами программ до 100 операторов за два три пуска на ЭВМ выявить и устранить все ошибки в программах.

Ошибки в алгоритмах и программах

Ошибки в алгоритмах программах — одна из самых серьезных проблем в информатике и профессиональном программировании.

Программа содержит ошибки, если при ее выполнении ЭВМ дает сбои, отказы или неправильные результаты.

Аксиомы программирования (Каймин-Дейкстра):

1) Число ошибок в программах — неизвестно.

2) Продолжительность отладки программ — неизвестна.

3) Отсутствие ошибок гарантируют доказательства правильности.

Отсутствие ошибок в программах проверяется их тестированием на ЭВМ. Тестирование может выявить ошибки, но не может гарантировать отсутствие ошибок в программах. (Дейкстра)

Отсутствие ошибок в алгоритмах означает, что алгоритм дает правильные результаты для любых допустимых данных.

Правильность результатов определяется постановками решаемых задач и техническими заданиями на разработку программ для ЭВМ.

Доказательства правильности — это доказательства правильности результатов решения поставленых задач — результатов работы алгоритмов и программ для любых допустимых исходных данных.

Примеры алгоритмов и программ с доказательствами правильности см. в учебниках информатики Каймина и в книгах Дейкстры.

Доказательное Программирование

Доказательное программирование — разработка программ без ошибок с доказательствами правильности алгоритмов.

Написание доказательств проводится после тщательного тестирования программ на ЭВМ.

Аксиомы Программирования (Каймин):

1. Число ошибок в программах заранее неизвестно: нашел ошибку, ищу другую, третью и т.д.

2. Продолжительность отладки программ заранее неизвестна: после отладки — ищи ошибки.

3. Отсутствие ошибок в программах гарантируют доказательства правильности алгоритмов.

Обучение алгоритмизации

Опыт обучения программированию

Эффективное обучение программированию требует обязательного изучения алгоритмизации — основ составления структурированных алгоритмов и программ на языках Бейсик, Паскаль, Javascript и т.д. и т.п.

Обучение алгоритмизации и программированию успешно проводилось и проводится с 1980 года на всех факультетах и специальностях МИЭМ, МАТИ и многих других вузах по учебникам и методике Каймина, Нечаева, Питеркина.

В основе обучения программированию лежит описание алгоритмов решения задач на ЭВМ на русскоязычном псевдокоде, понятном всем русскоязычным студентам, школьникам, учителям и преподавателям.

Нет и не было ни одного студента или школьника, преподавателя или учителя, который не смог научиться читать, понимать и писать алгоритмы решения задач на ЭВМ с проверкой программ на ЭВМ и помощи учителя.

Практикум программирования

При надлежащем практикуме на ЭВМ и хороших учебниках информатики все студенты и школьники успешно осваивали технику составления алгоритмов и решения задач на ЭВм с языками Бейсик, Паскаль, Фортран и т.п.

Оценки студентов и школьников на зачетах и экзаменах по программированию и информатике всегда были «хорошо» и «отлично» по завершении отладки программ и получения результатов решения задач на ЭВМ.

Для этого использовались и используются задачи на составление и программирование картинок на экранах ЭВМ, а также задачи на обработку информации в массивах и базах данных, не требующих особой математики.

такие задачи на программирование картинок и рисунков вполне по силам даже самым слабым студентам и школьниками с отклонениями в интеллектуальном развитии.

Попробуйте и я гарантирую у вас и всех ваших коллег и друзей все получится с составлением алгоритмов и программ для отображения картинок на экранах ЭВМ.

См. также

информатика

логика в информатике

структурный псевдокод

программирование

решение задач на ЭВМ

методология программирования

технология программирования

Доказательное Программирование

Литература

  1. Каймин В.А. Информатика. Учебник для студентов вузов. М.: ИНФРА-М., 1998-2009.
  2. Каймин В.А. Информатика. Учебник для школьников. М.: Проспект, 2009.
  3. Каймин В.А. Информатика. Пособие к экзаменам. М.: РИОР, 2008.
  4. Каймин В.А. Основы доказательного программирования. М.: МИЭМ, 1987.
  5. Каймин В.А., Питеркин В.М. Основы информатики и ВТ. М.: МИЭМ, 1985.
  6. Каймин В.А. Методы разработки программ на языках высокого уровня. М.: МИЭМ, 1985.

Интернет-ссылки

www.tadviser.ru

Как составить блок-схему 🚩 как составить алгоритм блок схему 🚩 Образование 🚩 Другое

Автор КакПросто!

Блок-схема — тип схемы, который описывает процессы и алгоритмы, изображая их в виде блоков, имеющих различную форму и соединенных стрелками. Она используется для того, чтобы показать последовательность этапов выполнения работы, а также то, какие группы в ней участвуют. Чтобы составить блок-схему, используются геометрические фигуры, каждая из которых подразумевает свой тип действия и представлена в виде блочного символа. Вот основные из них.

Статьи по теме:

Инструкция

Пуск-остановка (терминатор) – элемент, отображающий вход или выход из внешней среды. Чаще всего используется в начале и конце программы.

Процесс – символ, отображающий выполнение операции (одной или нескольких), которая приводит: а) к изменению формы, значения или размещения информации; б) к определению, по какому направлению потока нужно двигаться.

Решение – элемент, показывающий функцию или решение переключательного типа, которая имеет один вход и два (или более) альтернативных выхода. После вычисления условий, которые определены внутри этого символа, может быть выбран только один из выходов.

Предопределенный процесс – символ, отображающий выполнение процесса, определенного в другом месте схемы. Может состоять из одной или нескольких операций.

Данные (ввод-вывод) – элемент, показывающий преобразование данных в определенную форму, которая пригодна для обработки (ввод) или для описания итогов обработки (вывод).

Граница цикла — символ, состоящий из двух элементов. Операции, которые выполняются внутри цикла (его начало и конец), размещаются между этими элементами.

Соединитель – символ для отображения входа в часть схемы и входа из другой части этой же схемы. Применяется, когда необходимо оборвать линию, а затем начать составление блок-схемы в другом месте.

Комментарий – элемент, используемый для более объемного описания какого-либо шага, процесса или ряда процессов.

Источники:

  • ГОСТ 19.701-90 «Схемы алгоритмов, программ данных и систем. Условные обозначения и правила выполнения»
  • как составить блок алгоритм

Совет полезен?

Статьи по теме:

Не получили ответ на свой вопрос?
Спросите нашего эксперта:

www.kakprosto.ru

Что такое алгоритм — Викиучебник

Материал из Викиучебника — открытых книг для открытого мира

Исходная версия статьи (Ворожцов А. В., «Что такое алгоритм?») была опубликована в журнале «Потенциал»

Геометрия развивает геометрическое мышление, математика — абстрактное математическое, логика — логическое, физика — физическое… А какое мышление развивает информатика? Информатика есть наука, служащая информационным технологиям. Но фундаментальными достижениями этой науки оказались не сами технологии, а общие методы построения систем и решения сложных задач. Базисом этих методов являются алгоритмы и системный подход к решению задач. Поэтому информатика развивает алгоритмическое мышление и учит системному подходу к решению задач.

Сегодня мы познакомимся с понятиями алгоритма и исполнителя. Оказывается, не так-то просто понять, чем определяется сущность алгоритма.

Понятие алгоритма[править]

Понятие алгоритма — одно из основных в программировании и информатике[1]. Это последовательность команд, предназначенная исполнителю, в результате выполнения которой он должен решить поставленную задачу. Алгоритм должен описываться на формальном языке, исключающем неоднозначность толкования. Исполнитель может быть человеком или машиной. Исполнитель должен уметь выполнять все команды, составляющие алгоритм. Множество возможных команд конечно и изначально строго задано. Действия, выполняемые по этим командам, называются элементарными.

Запись алгоритма на формальном языке называется программой. Иногда само понятие алгоритма отождествляется с его записью, так что слова «алгоритм» и «программа» — почти синонимы. Небольшое различие заключается в том, что под алгоритмом, как правило, понимают основную идею его построения. Программа же всегда связана с записью алгоритма на конкретном формальном языке.

Приведём для примера простой алгоритм действия пешехода, который позволит ему безопасно перейти улицу:

  1. Подойти к дороге.
  2. Дождаться зелёного сигнала светофора.
  3. Перейти дорогу.
  4. Если впереди есть ещё одна дорога, то перейти к шагу 1.

Алгоритмы обладают свойством детерминированности (определённости): каждый шаг и переход от шага к шагу должны быть точно определены так, чтобы его мог выполнить любой другой человек или механическое устройство.

Кроме детерминированности, алгоритмы также должны обладать свойством конечности и массовости:

Конечность
Алгоритм всегда должен заканчиваться за конечное число шагов, но это число не ограничено сверху.
Массовость
Алгоритм применяе

ru.wikibooks.org

Author: alexxlab

Отправить ответ

avatar
  Подписаться  
Уведомление о