Эндоплазматическая сеть строение и функции таблица – Эндоплазматическая сеть. Органоиды и другие составляющие клетки :: SYL.ru

Эндоплазматическая сеть — строение и функции

Ученых давно заинтересовала эндоплазматическая сеть — строение и функции этого органоида. Еще в 1945 году ее открыл американский ученый К. Портер, рассмотрев ЭПС через электронный микроскоп.

Эндоплазматическая сеть — это сложнейшая система полостей и каналов в цитоплазме эукариотических клеток. Особенно много таких каналов и полостей содержится в клетках, имеющих интенсивный обмен веществ. Эндоплазматическая сеть занимает от 30 до 50 процентов полости эукариотической клетки. Данная органелла бывает двух видов: агранулярная и гранулярная сеть.

Читайте также: Клеточный центр .

Строение эндоплазматической сети

Система полостей и каналов окружена мембраной, которая обеспечивает активную транспортировку элементов против градиента концентрации. Нити, которые образуют эндоплазматическую сеть, имеют ширину в разрезе от 0,05 до 0,1 микрометров, в редких случаях до 0,03. Толщина двухслойной мембраны, составляющей стенку канальцев, равна 50 ангстрем. Эндоплазматическая сеть содержит ненасыщенные фосфолипиды, холестерин, белки и сфинголипиды. Диаметр полостей может быть разный — от 0,1 до 0,3 микрометров. Полость заполнена гомогенным содержимым, осуществляющим коммуникацию между ядром, внешней средой и содержимым пузырьков эндоплазматической сети.

Функции агранулярной эндоплазматической сети

Агранулярная эндоплазматическая сеть учавствует во всех процессах метаболизма, играет важнейшую роль в запасании кальция, углеводном обмене, а также нейтрализации ядов. В гладкой ЭПС образуются половые гормоны позвоночных животных и стероиды надпочечников. Один из ферментов гладкой ЭПС способствует повышению уровня сахара в крови, помогая глюкозе покинуть клетку. Ферменты способствуют повышению растворимости токсичных веществ в моче и крови, присоединяя гидрофильные радикалы к вредным веществам. В клетках мышц имеется специальная разновидность ЭПС — саркоплазматический ретикулум. Он регулирует процессы покоя и активности клеток.

Функции гранулярной эндоплазматической сети

Гранулярная (шероховатая) эндоплазматическая сеть обеспечивает синтез белков. Это основная ее функция. Белки синтезируются на рибосомах, которые находятся на поверхности ЭПС. В большинстве случаев создаются молекулы, которые потом перемещаются в комплекс Гольджи. Там происходит модификация и распределение белков. Также в полости ЭПС происходит присоединение к молекулам белка углеводного компонента.

← Вымирающие животные Красной книги — читаем здесь
Эндоплазматическая сеть в растительных клетках организмов →

biologylife.ru

Эндоплазматическая сеть

Строение эндоплазматической сети

Определение 1

Эндоплазматическая сеть (ЭПС, эндоплазматический ретикулум) – сложная ультрамикроскопическая, очень разветвлённая, взаимосвязанная система мембран, которая более или менее равномерно пронизывает массу цитоплазмы всех эукариотических клеток.

ЭПС – мембранная органелла, состоящая из плоских мембранных мешочков – цистерн, каналов и трубочек. Благодаря такому строению эндоплазматическая сеть значительно увеличивает площадь внутренней поверхности клетки и делит клетку на секции. Внутри она заполнена матриксом (умеренно плотный рыхлый материал (продукт синтеза)). Содержание различных химических веществ в секциях неодинаково, потому в клетке как одновременно, так и в определённой последовательности могут происходить различные химические реакции в незначительном объёме клетки. Эндоплазматическая сеть открывается в перинуклеарное пространство (полость между двумя мембранами кариолемы).

Мембрана эндоплазматической сети состоит из белков и липидов (в основном фосфолипидов), а так же ферментов: аденозинтрифосфатазы и ферментов синтеза мембранных липидов.

Различают два вида эндоплазматической сети:

  • Гладкую (агранулярную, аЭС), представленную трубочками, которые анастамозируют между собой и не имеют на поверхности рибосом;
  • Шероховатую (гранулярную, грЭС), состоящую так же из соединённых между собой цистерн, но они покрыты рибосомами.

Замечание 1

Иногда выделяют ещё переходящую, или транзиторную (тЭС) эндоплазматическую сеть, которая находится в участке перехода одной разновидности ЭС в другую.

Гранулярная ЭС свойственна всем клеткам (кроме сперматозоидов), но степень её развития разная и зависит от специализации клетки.

Сильно развита грЭС эпителиальных железистых клеток (поджелудочной железы, вырабатывающих пищеварительные ферменты, печени – синтезирующих альбумины сыворотки крови), фибробластов (клеток соединительной ткани, продуцирующих белок коллаген), плазматических клеток (продуцирование иммуноглобулинов).

Агранулярная ЭС преобладает в клетках надпочечников (синтез стероидных гормонов), в клетках мышц (обмен кальция), в клетках фундальных желез желудка (выделение ионов хлора).

Другим видом мембран ЭПС являются разветвлённые мембранные трубочки, содержащие внутри большое количество специфических ферментов, и везикулы – маленькие, окружённые мембраной пузырьки, в основном находящиеся рядом с трубочками и цистернами. Они обеспечивают перенесение тех веществ, которые синтезируются.

Функции ЭПС

Эндоплазматическая сеть – это аппарат синтеза и, частично, транспорта веществ цитоплазмы, благодаря которому клетка выполняет сложные функции.

Замечание 2

Функции обоих типов ЭПС связаны с синтезом и транспортом веществ. Эндоплазматическая сеть является универсальной транспортной системой.

Гладкая и шероховатая эндоплазматические сети своими мембранами и содержимым (матриксом) выполняют общие функции:

  • разделительную (структурирующую), благодаря чему цитоплазма упорядоченно распределяется и не смешивается, а так же предотвращает попадание в органеллу случайных веществ;
  • трансмембранное транспорт, благодаря которому осуществляется перенесение сквозь стенку мембраны необходимых веществ;
  • синтез липидов мембраны с участием ферментов, содержащихся в самой мембране и обеспечивающих репродукцию эндоплазматической сети;
  • благодаря разнице потенциалов, возникающая между двумя поверхностями мембран ЭС возможно обеспечение проведения импульсов возбуждения.

Кроме того, каждой из разновидностей сети свойственны свои специфические функции.

Функции гладкой (агранулярной) эндоплазматической сети

Агранулярная эндоплазматическая сеть, кроме названных функций, общих для обоих видов ЭС, выполняет ещё и свойственные только для неё функции:

  • депо кальция. Во многих клетках (в скелетных мышцах, в сердце, яйцеклетках, нейронах) существуют механизмы, способные изменять концентрацию ионов кальция. Поперечнополосатая мышечная ткань содержит специализированную эндоплазматическую сеть, называемую саркоплазматическим ретикулумом. Это резервуар кальций-ионов, а мембраны этой сети содержат мощные кальциевые помпы, способные выбрасывать в цитоплазму большое количество кальция или транспортировать его в полости каналов сети за сотые доли секунды;
  • синтез липидов, веществ типа холестерина и стероидных гормонов. Стероидные гормоны синтезируются в основном в эндокринных клетках половых желез и надпочечников, в клетках почек и печени. Клетки кишечника синтезируют липиды, которые выводятся в лимфу, а потом в кровь;
  • детоксикационная функция – обезвреживание єкзогенных и эндогенных токсинов;

    Пример 1

    В почечных клетках (гепатоцитах) содержатся ферменты оксидазы, способные разрушать фенобарбитал.

  • ферменты органеллы берут участие в синтезе гликогена (в клетках печени).

Функции шероховатой (гранулярной) эндоплазматической сети

Для гранулярной эндоплазматической сети, кроме перечисленных общих функций, свойственны ещё и специальные:

  • синтез белков на грЭС имеет некоторые особенности. Начинается он на свободных полисомах, которые в дальнейшем связываются с мебранами ЭС.
  • Гранулярная эндоплазматическая сеть синтезирует: все белки клеточной мембраны (кроме некоторых гидрофобных белков, белков внутренних мембран митохондрий и хлоропластов), специфические белки внутренней фазы мембранных органелл, а так же секреторные белки, которые транспортируются по клетке и поступают во внеклеточное пространство.
  • пострансляционная модификация белков: гидроксилирование, сульфатирование, фосфориллирование. Важным процессом является гликозилирование, которое происходит под действием связанного с мембраной фермента гликозилтранферазы. Гликозилирование происходит перед секрецией или транспортом веществ к некоторым участкам клетки ( комплексу Гольджи, лизосомам или плазмолемме).
  • транспорт веществ по внутримембранной части сети. Синтезированные белки по промежуткам ЭС перемещаются к комплексу Гольджи, который выводит вещества из клетки.
  • благодаря участию гранулярной эндоплазматической сети образуется комплекс Гольджи.

Функции зернистой эндоплазматической сети связаны с транспортом белков, которые синтезируются в рибосомах и расположены на её поверхности. Синтезированные белки поступают внутрь ЭПС, скручиваются и приобретают третичную структуру.

Белок, который транспортируется к цистернам, значительно изменяется на своём пути. Он может, например, фосфорилироваться или превращаться в гликопротеид. Обычный путь для белка – это путь через зернистую ЭПС в аппарат Гольджи, откуда он или выходит наружу клетки, или поступает к другим органеллам той же клетки, например, к лизосомам), или откладывается в виде запасных гранул.

В клетках печени как зернистая, так и незернистая эндоплазматическая сетка берут участие в процессах детоксикации ядовитых веществ, которые потом выводятся из клетки.

Как и внешняя плазматическая мембрана, эндоплазматическая сетка имеет избирательную проницаемость, вследствие чего концентрация веществ внутри и снаружи каналов сетки неодинакова. Это имеет значение для функции клетки.

Пример 2

В эндоплазматической сетке мышечных клеток больше ионов кальция, чем в её цитоплазме. Выходя из каналов эндоплазматической сетки, ионы кальция запускают процесс сокращения мышечных волокон.

Образование эндоплазматической сети

Липидные компоненты мембран эндоплазматической сети синтезируются ферментами самой сети, белковый – поступает из рибосом, расположенных на её мембранах. В гладкой (агранулярной) эндоплазматической сети нет собственных факторов синтеза белка, потому считается, что эта органелла образуется в результате потери рибосом гранулярной эндоплазматической сетью.

spravochnick.ru

7. Эндоплазматическая сеть, строение, виды эпс. Строен и функц рибосом.

Впервые
эндоплазматический ретикулум был
обнаружен американским учёным К.
Портером
в 1945
году
посредством электронной микроскопии.

Эндоплазматический
ретикулум

(ЭПР) (лат. reticulum —
сеточка) или эндоплазматическая
сеть
(ЭПС) —
внутриклеточный органоид
эукариотической
клетки, представляющий собой разветвленную
систему соединённых между собой каналов
и полостей, ограниченных одинарной
мембраной, поверхность которой составляет
более 50% площади всех клеточных мембран.
Мембрана ЭПС тоньше чем плазмалемма и
содержит более высокую концентрации.
белка. Непосредственным продолжение
ЭПС является наружная ядерная мембрана.

На поверхности
мембран ЭПС происходит большая часть
реакций метаболизма, протекающих в
клетке. ЭПС разделяет цитоплазму на
отдельные отсеки. по каналам ЭПС
происходит упорядоченный обмен веществами
и энергией между различными компонентами
клетки.

ЭПС – генератор
мембран для плазмолеммы, ап гольджи и
лизосом.

Гранулярная или
шероховатая эпс.

наружная обращеная
к цитоплазме, сторона грЭПС покрыта
рибосомами (котор имеют вид мелк гранул;
поступают из ядра благодаря связи
мембраны с наруж мембр ядра).

грЭПС – образ
уплощенными мембранными цистернами и
трубочками на наружной поверхности
которых располог рибосомы и полисомы,
придающие мембране зернист вид.

Мембраны содерж
белки (которые обеспеч связывание
рибосом, уплощение цистерн).

Полость грЭПС
сообщ с перенуклеарн пространство.
Благодаря грЭПС происход отделение
вновь синтезированных белковых молекул
от гиалоплазмы.

грЭПС хорошо
развита в клетках, специализирующихся
на белковом синтезе.

ФУНКЦИИ:
1)биосинтез всех мембранных белков,
предназначенных для экспорта из клетки.

2) в грЭПС происход
посттрансляционный процессинг белков.
(созревание белка). белки приобрет
характер для них третичную или четвертичную
структуру. потом транспортир в комплекс
гольджи — > потом в другие органойды.

3) гЭПС выполняет
ф-ю пространственного разделения
ферментных систем. резделени клетки с
помощью мембран на отдел отсеки –
компарменты.

4) обеспеч транспорт
синтезируемых веществ в аппарат гольджи.

Гладкая или
агранулярная ЭПС.

не имеет рибосом.
Сост из сильно ветвящихся канальцев и
мелких вакуолей диаметром 20-100 нм. гЭПС
— трёхмерная замкнутая сеть мембранных
анастамозирующих турбочек, канальцев,
цистерн и пузырьков диаметром 20-100 нм,
на поверхности которых рибосомы отсутсвт.

На цитоплазмотической
поверхности гЭПС синтезируется большая
часть липидов клетки, которые вход в
состав всех её мембран. Часть синтезир
на гЭПС белков и липидов встраивается
в неё, но увеличения общей площади
мембраны при этом не происход. на гЭПС
соверш синтез и распад многих углеводов,
включ полисахариды, образ стеройдные
гормоны.

В Гэпс накаплив
многие ядовит в-ва, подлежащ удален из
клетки.

гЭПС наиболее
развита в клетках с интенсивным жировыми
углеводным обменом.

ФУНКЦИИ: 1) синтез
липидов; (на мембранах) 2) синтез гликогена
(в клетках печени)

3) синтез холестерина
и других стеройдов 4) детоксикация
эндогенных и экзогенных в-в. (в клетках
печени) 5) накопление ионов Са. гЭПС в
Миш клетках играет роль депо ионов
кальция, необходимых для мыш сокращ.
6) компартментализация (эпс раздел
клетку на отдел отсеки) 7) транспорт
синтезируемых веществ 8) в мегакариоцитах
элементы гЭПС образуют демаркационные
каналы, разделяющие формирующие
тромбоциты. 9) восстановление кариолеммы
в телофазе митоза.

РИБОСОМЫ

Рибосомы впервые
были описаны как уплотненные частицы,
или гранулы, клеточным биологом румынского
происхождения Джорджем Паладе в середине
1950-х годов [1].
В 1974 г. Паладе, Клод и Кристиан Де Дюв
получили Нобелевскую премию по физиологии
и медицине «за открытия, касающиеся
структурной и функциональной организации
клетки». Термин «рибосома» был
предложен Ричардом Робертсом в 1958 вместо
«рибонуклеобелковая частица
микросомальной фракции» [

Рибосома
— важнейший органоид
живой клетки
сферической или слегка овальной формы,
диаметром 100-200. В эукариотических
клетках рибосомы располагаются на
мембранах эндоплазматического
ретикулума,
хотя могут быть локализованы и в
неприкрепленной форме в цитоплазме.
Синтез рибосом у эукариот
происходит в специальной внутриядерной
структуре — ядрышке.
Рибосомы представляют собой нуклеопротеид.
Рибосомная
РНК
составляет около 70 % всей РНК клетки.

Рибосома- место
синтеза белка. Каждая рибосома сост из
2х частей (субъединиц) – большой и малой.
Построены они из равных частей (по массе)
белка ирнк. РНК входящ в сост рибосом
наз рибосомальной. рРНК синтез в ядрышке.

Основным методом
выделения рибосом является осаждение
центрифугированием. Этот метод позволяет
выделить два основных типа рибосом,
которые называются 70S-рибосомами
и 8OS-рибосомами.
(S
сведбсрг
— единица,
характеризующая скорость осаждения в
центрифуге; чем больше число S.
тем выше скорость осаждения). 70S
— рибосомы обнаруживаются у прокариот
и в хлоропластах и митохондриях эукариот.
8OS-рибосомы,
несколько более крупные, находятся в
цитоплазме эукариот. В процессе синтеза
белка рибосомы дви­жутся вдоль мРНК.
Процесс идет более эффективно, если
вдоль мРНК движется не одна, а несколько
рибосом. Такие цепи рибосом на мРНК
называют полирибосомами,
или полисомами.

studfiles.net

Эндоплазматическая сеть | Биология

Эндоплазматическую сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), удалось обнаружить только с появлением электронного микроскопа. ЭПС есть только в эукариотических клетках и представляет собой сложную систему мембран, образующих уплощенные полости и трубочки. Все вместе это выглядит как сеть. ЭПС относится к одномембранным органоидам клетки.

Мембраны ЭПС отходят от внешней мембраны ядра и по строению сходны с ней.

Эндоплазматическая сеть делится на гладкую (агранулярную) и шероховатую (гранулярную). Последняя усеяна прикрепленными к ней рибосомами (из-за этого и возникает «шероховатость»). Основная функция обоих типов связана с синтезом и транспортом веществ. Только шероховатая отвечает за белок, а гладкая — за углеводы и жиры.

По своему строению ЭПС представляет собой множество парных параллельных мембран, пронизывающих почти всю цитоплазму. Пара мембран образует пластинку (полость внутри имеет разную ширину и высоту), однако гладкая эндоплазматическая сеть в большей степени имеет трубчатое строение. Такие уплощенные мембранные мешочки называют цистернами ЭПС.

Рибосомы, расположенные на шероховатой ЭПС, синтезируют белки, которые поступают в каналы ЭПС, созревают (приобретают третичную структуру) там и транспортируются. У таких белков сначала синтезируется сигнальная последовательность (состоящая преимущественно из неполярных аминокислот), конфигурация которой соответствует специфическому рецептору ЭПС. В результате рибосома и эндоплазматическая сеть связываются. При этом рецептор образует канал для перехода синтезируемого белка в цистерны ЭПС.

После того, как белок оказывается в канале эндоплазматического ретикулума сигнальная последовательность от него отделяется. После этого он свертывается в свою третичную структуру. При транспортировке по ЭПС белок приобретает ряд других изменений (фосфорилирование, образование связи с углеводом, т. е. превращение в гликопротеин).

Большинство белков, оказавшихся в шероховатой ЭПС, далее попадают в аппарат (комплекс) Гольджи. Оттуда белки либо секретируются из клетки, либо поступают в другие органоиды (обычно лизосомы), либо откладываются как гранулы запасных веществ.

Следует иметь в виду, что не все белки клетки синтезируются на шероховатой ЭПС. Часть (обычно меньшая) синтезируется свободными рибосомами в гиалоплазме, такие белки используются самой клеткой. У них сигнальная последовательность не синтезируется за ненужностью.

Основной функцией гладкой эндоплазматической сети является синтез липидов (жиров). Например, ЭПС эпителия кишечника синтезирует их из жирных кислот и глицерола, всасывающихся из кишечника. Затем липиды попадают в комплекс Гольджи. Кроме клеток кишечника, гладкая ЭПС хорошо развита в клетках, секретирующих стероидные гормоны (стероиды относятся к липидам). Например, в клетках надпочечников, интерстициальных клетках семенников.

Синтез и транспорт белков, жиров и углеводов не единственные функции ЭПС. В печение эндоплазматический ретикулум участвует в процессах детоксикации. Особая форма гладкой ЭПС — саркоплазматический ретикулум – присутствует в мышечных клетках и обеспечивает сокращение за счет перекачки ионов кальция.

Структура, объем и функциональность эндоплазматической сети клетки не является постоянной на протяжении клеточного цикла, а подвержены тем или иным изменениям.

biology.su

Строение и функции эпс

Эндоплазматический ретикулум один из важнейших органоидов в эукариотической клетке. Его второе название эндоплазматическая сеть. ЭПС бывает двух разновидностей: гладкая (агранулярная) и шероховатая (гранулярная). Чем более активный обмен веществ в клетке, тем большее там количество ЭПС.

Строение

Это обширный лабиринт из каналов, полостей, везикул, «цистерн», которые тесно связаны и сообщаются друг с другом. Этот органоид покрыт мембраной, которая сообщается как с цитоплазмой, так и с клеточной наружной мембраной. Объем полостей различный, но все они содержат гомогенную жидкость, которая позволяет осуществлять взаимодействие между ядром клетки и внешней средой. Иногда имеются ответвления от основной сети в виде одиночных пузырьков. Шероховатая ЭПС отличается от гладкой наличием на внешней поверхности мембраны большого количества рибосом. 

Функции

  • Функции агранулярной ЭПС. Она принимает участие в образовании стероидных гормонов (например, в клетках коры надпочечников). ЭПС, содержащаяся в клетках печени, участвует в разрушении некоторых гормонов, лекарственных препаратов и вредных веществ, и в процессах преобразования глюкозы, которая образуется из гликогена. Также агранулярная сеть производит фосфолипиды, необходимые для строительства мембран всех типов клеток. А в ретикулуме клеток мышечной ткани происходит депонирование ионов кальция, необходимых для сокращения мышц. Такой вид гладкой эндоплазматической сети по-другому называют саркоплазматическим ретикулумом.
  • Функции гранулярной ЭПС. Прежде всего в гранулярном ретикулуме происходит производство белков, которые впоследствии будут выведены из клетки (например, синтез продуктов секреции железистых клеток). А также в шероховатой ЭПС проходит синтез и сборка фосфолипидов и многоцепочечных белков, которые затем транспортируются в аппарат Гольджи.
  • Общими функциями, как для гладкого эндоплазматического ретикулума, так и для шероховатого является разграничительная функция. За счет этих органоидов клетка делится на компартменты (отсеки). И дополнительно эти органеллы являются транспортерами веществ из одной части клетки в другую. 

vashurok.ru

Строение и функции эндоплазматической сети, комплекса Гольджи — Студопедия.Нет

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС) — система сообщающихся или отдельных трубчатых каналов и уплощенных цистерн, расположенных по всей цитоплазме клетки. Они отграничены мембранами (мембранными органеллами). Иногда цистерны имеют расширения в виде пузырьков. Каналы ЭПС могут соединяться с поверхностной или ядерной мембранами, контактировать с комплексом Гольджи.

В данной системе можно выделить гладкую и шероховатую (гранулярную) ЭПС.

Шероховатая ЭПС

На каналах шероховатой ЭПС в виде полисом расположены рибосомы. Здесь протекает синтез белков, преимущественно продуцируемых клеткой на экспорт (удаление из клетки), например, секретов железистых клеток. Здесь же происходят образование липидов и белков цитоплазматической мембраны и их сборка.

Гладкая ЭПС

На мембранах гладкой ЭПС рибосом нет. Здесь протекает в основном синтез жиров и подобных им веществ (например, стероидных гормонов), а также углеводов. По каналам гладкой ЭПС также происходит перемещение готового материала к месту его упаковки в гранулы (в зону комплекса Гольджи).

Комплекс Гольджи

Пластинчатый комплекс Гольджи — это упаковочный центр клетки. Представляет собой совокупность диктиосом (от нескольких десятков до сотен и тысяч на одну клетку). Диктиосома— стопка из 3—12 уплощенных цистерн овальной формы, по краям которых расположены мелкие пузырьки (везикулы). Более крупные расширения цистерн дают вакуоли, содержащие резерв воды в клетке и отвечающие за поддержание тургора. Пластинчатый комплекс дает начало секреторным вакуолям, в которых содержатся вещества, предназначенные для вывода из клетки. При этом просекрет, поступающий в вакуоль из зоны синтеза, (ЭПС, митохондрии, рибосомы), подвергается здесь некоторым химическим превращениям.


Комплекс Гольджи дает начало первичным лизосомам. В диктиосомах также синтезируются полисахариды, гликопротеиды и гликолипиды, которые затем идут на построение цитоплазматических мембран.

Строение и функции немембранных структур клетки

В эту группу органоидов входят рибосомы, микротрубочки и микрофиламенты, клеточный центр.

Рибосома

Рибосомы (рис. 1) присутствуют в клетках как эукариот, так и прокариот, поскольку выполняют важную функцию вбиосинтезе белков. В каждой клетке имеются десятки, сотни тысяч (до нескольких миллионов) этих мелких округлых органоидов. Это округлая рибонуклеопротеиновая частица. Диаметр ее составляет 20—30 нм. Состоит рибосома из большой и малой субъединиц, которые объединяются в присутствии нити м-РНК (матричной, или информационной, РНК). Комплекс из группы рибосом, объединенных одной молекулой м-РНК наподобие нитки бус, называетсяполисомой. Эти структуры либо свободно расположены в цитоплазме, либо прикреплены к мембранам гранулярной ЭПС (в обоих случаях на них активно протекает синтез белка).

Рис.1. Схема строения рибосомы, сидяшей на мембране эндоплазматической сети: 1 — малая субъединииа; 2 иРНК; 3 — аминоацил-тРНК; 4 — аминокислота; 5 — большая субъединица; 6 — — мембрана эндоплазматической сети; 7 — синтезируемая полипептидная цепь



Полисомы гранулярной ЭПС образуют белки, выводимые из клетки и используемые для нужд всего организма (например, пищеварительные ферменты, белки женского грудного молока). Кроме этого, рибосомы присутствуют на внутренней поверхности мембран митохондрий, где также принимают активное участие в синтезе белковых молекул.

Микротрубочки

Это трубчатые полые образования, лишенные мембраны. Внешний диаметр составляет 24 нм, ширина просвета — 15 нм, толщина стенки — около 5 нм. В свободном состоянии представлены в цитоплазме, также являются структурными элементами жгутиков, центриолей, веретена деления, ресничек. Микротрубочки построены из стереотипных белковых субъединиц путем их полимеризации. В любой клетке процессы полимеризации идут параллельно процессам деполимеризации. Причем соотношение их определяется количеством микротрубочек. Микротрубочки имеют различную устойчивость к разрушающим их факторам, например, к колхицину (это химическое вещество, вызывающее деполимеризацию). Функции микротрубочек:

1) являются опорным аппаратом клетки;

2) определяют формы и размеры клетки;

3) являются факторами направленного перемещения внутриклеточных структур.

Микрофиламенты

Это тонкие и длинные образования, которые обнаруживаются по всей цитоплазме. Иногда образуют пучки. Виды микро-филаментов:

1) актиновые. Содержат сократительные белки (актин), обеспечивают клеточные формы движения (например, амебоидные), играют роль клеточного каркаса, участвуют в организации перемещений органелл и участков цитоплазмы внутри клетки;

2) промежуточные (толщиной 10 нм). Их пучки обнаруживаются по периферии клетки под плазмалеммой и по окружности ядра. Выполняют опорную (каркасную) роль. В разных клетках (эпителиальных, мышечных, нервных, фибробластах) построены из разных белков.

Микрофиламенты, как и микротрубочки, построены из субъединиц, поэтому их количество определяется соотношением процессов полимеризации и деполимеризации.

Клетки всех животных, некоторых грибов, водорослей, высших растений характеризуются наличием клеточного центра.

Клеточный центробычно располагается рядом с ядром.

Он состоит из двух центриолей, каждая из которых представляет собой полый цилиндр диаметром около 150 нм, длиной 300—500 нм.

Центриоли расположены взаимоперпендикулярно. Стенка каждой центриоли образована 27 микротрубочками, состоящими из белка тубулина. Микротрубочки сгруппированы в 9 триплетов.

Из центриолей клеточного центра во время деления клетки образуются нити веретена деления.

Центриоли поляризуют процесс деления клетки, чем достигается равномерное расхождение сестринских хромосом (хроматид) в анафазе митоза.

Клеточные включения. Так называются непостоянные компоненты в клетке, присутствующие в основном веществе цитоплазмы в виде зерен, гранул или капелек. Включения могут быть окружены мембраной или же не окружаются ею.

В функциональном отношении выделяют три вида включений: запасные питательные вещества (крахмал, гликоген, жиры, белки), секреторные включения (вещества, характерные для железистых клеток, продуцируемые ими, — гормоны желез внутренней секреции и т. п.) и включения специального назначения (в узкоспециализированных клетках, например гемоглобин в эритроцитах).

studopedia.net

Строение клетки. Комплекс Гольджи. Эндоплазматическая сеть. Лизосомы. Клеточные включения

Тема: Основы цитологии

Урок: Строение клетки. Эндоплазматическая сеть. Комплекс Гольджи.

Лизосомы. Клеточные включения

Мы продолжаем изучать органоиды клетки.

Все органоиды делятся на мембранные и немембранные.

Немембранные органоиды мы рассмотрели на предыдущем занятии, напомним, что к ним относятся рибосомы, клеточный центр и органоиды движения.

Среди мембранных органоидов различают одномембранные и двумембранные.

В этой части курса мы рассмотрим одномембранные органоиды: эндоплазматическую сеть, аппарат Гольджи и лизосомы.

Кроме этого, мы рассмотрим включения – непостоянные образования клетки, которые возникают и исчезают в процессе жизнедеятельности клетки.

Эндоплазматическая сеть

Одним из самых важных открытий, сделанных с помощью электронного микроскопа, было обнаружение сложной системы мембран, пронизывающей цитоплазму всех эукариотических клеток. Эта сеть мембран в дальнейшем получила название ЭПС (эндоплазматической сети) (рис. 1) или ЭПР (эндоплазматического ретикулума). ЭПС представляет систему трубочек и полостей, пронизывающей цитоплазму клетки.

Рис. 1. Эндоплазматическая сеть

Слева – среди других органоидов клетки. Справа – отдельно выделенная

Мембраны ЭПС (рис. 2) имеют такое же строение, как и клеточная или плазматическая мембрана (плазмалемма). ЭПС занимает до 50% объема клетки. Она нигде не обрывается и не открывается в цитоплазму.

Различают гладкую ЭПС и шероховатую, или гранулярную ЭПС (рис. 2). На внутренних мембранах шероховатой ЭПС располагаются рибосомы – здесь идет синтез белков.

Рис. 2. Виды ЭПС

Шероховатая ЭПС (слева) несет на мембранах рибосомы и отвечает за синтез белка в клетке. Гладкая ЭПС (справа) не содержит рибосом и отвечает за синтез углеводов и липидов.

На поверхности гладкой ЭПС (рис. 2) идет синтез углеводов и липидов. Вещества, синтезированные на мембранах ЭПС, переносятся в трубочки и затем транспортируются к местам назначения, где депонируются или используются в биохимических процессах.

Шероховатая ЭПС лучше развита в клетках, которые синтезируют белки для нужд организма, например, белковые гормоны эндокринной системы человека. А гладкая ЭПС – в тех клетках, которые синтезируют сахара и липиды.

В гладкой ЭПС накапливаются ионы кальция (важные для регуляции всей функций клеток и целого организма).

Структуру, известную сегодня как комплекс или аппарат Гольджи (АГ) (рис. 3), впервые обнаружил в 1898 году итальянский ученый Камилло Гольджи (Источник).

Подробно изучить строение комплекса Гольджи удалось значительно позже с помощью электронного микроскопа. Эта структура содержится практически во всех эукариотических клетках, и представляет собой стопку уплощенных мембранных мешочков, т. н. цистерн, и связанную с ними систему пузырьков, называемых пузырьками Гольджи.

Рис. 3. Комплекс Гольджи

Слева – в клетке, среди других органоидов.

Справа – комплекс Гольджи с отделяющимися от него мембранными пузырьками

Во внутриклеточных цистернах накапливаются вещества, синтезированные клеткой, т. е. белки, углеводы, липиды.

В этих же цистернах вещества, поступившие из ЭПС, претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и доставляются к тем местам клетки, где они необходимы. Они участвуют в достройке клеточной мембраны или выделяются наружу (секретируются) из клетки.

Комплекс Гольджи построен из мембран и расположен рядом с ЭПС, но не сообщается с её каналами.

Все вещества, синтезированные на мембранах ЭПС (рис. 2), переносятся в комплекс Гольджи в мембранных пузырьках, которые отпочковываются от ЭПС и сливаются затем с комплексом Гольджи, где они претерпевают дальнейшие изменения.

Одна из функций комплекса Гольджи – сборка мембран. Вещества, из которых состоят мембраны – белки и липиды, как вы уже знаете, – поступают в комплекс Гольджи из ЭПС.

В полостях комплекса собираются участки мембран, из которых образуются особые мембранные пузырьки (рис. 4), они передвигаются по цитоплазме в те места, где необходима достройка мембраны.

Рис. 4. Синтез мембран в клетке комплексом Гольджи (см. видео)

В комплексе Гольджи синтезируются практически все полисахариды, необходимые для построения клеточной стенки клеток растений и грибов. Здесь они упаковываются в мембранные пузырьки, доставляются к клеточной стенке и сливаются с ней.

Таким образом, основные функция комплекса (аппарата) Гольджи – химическое превращение синтезированных в ЭПС веществ, синтез полисахаридов, упаковка и транспорт органических веществ в клетке, формирование лизосомы.

Лизосомы (рис. 5) обнаружены у большинства эукариотических организмов, но особенно много их в клетках, которые способны к фагоцитозу. Они представляют собой одномембранные мешочки, наполненные гидролитическими или пищеварительными ферментами, такими как липазы, протеазы и нуклеазы, т. е. ферменты, которые расщепляют жиры, белки и нуклеиновые кислоты.

Рис. 5. Лизосома – мембранный пузырек, содержащий гидролитические ферменты

Содержимое лизосом имеет кислую реакцию – для их ферментов характерен низкий оптимум pH. Мембраны лизосомы изолируют гидролитические ферменты, не давая им разрушать другие компоненты клетки. В клетках животных лизосомы имеют округлую форму, их диаметр – от 0,2 до 0,4 микрон.

В растительных клетках функцию лизосом выполняют крупные вакуоли. В некоторых растительных клетках, особенно погибающих, можно заметить небольшие тельца, напоминающие лизосомы.

Скопление веществ, которые клетка депонирует, использует для своих нужд, или хранит для выделения вовне, называют клеточными включениями.

Среди них зерна крахмала (запасной углевод растительного происхождения) или гликогена (запасной углевод животного происхождения), капли жира, а также гранулы белков.

Эти запасные питательные вещества располагаются в цитоплазме свободно и не отделены от неё мембраной.

Функции ЭПС

Одна из самых важных функций ЭПС – синтез липидов. Поэтому ЭПС обычно представлена в тех клетках, где интенсивно происходит этот процесс.

Как происходит синтез липидов? В клетках животных липиды синтезируются из жирных кислот и глицерина, которые поступают с пищей (в клетках растений они синтезируются из глюкозы). Синтезированные в ЭПС липиды передаются в комплекс Гольджи, где «дозревают».

ЭПС представлена в клетках коры надпочечников и в половых железах, поскольку здесь синтезируются стероиды, а стероиды – гормоны липидной природы. К стероидам относится мужской гормон тестостерон, и женский гормон эстрадиол.

Ещё одна функция ЭПС – участие в процессах детоксикации. В клетках печени шероховатая и гладкая ЭПС участвуют в процессах обезвреживания вредных веществ, поступающих в организм. ЭПС удаляет яды из нашего организма.

В мышечных клетках присутствуют особые формы ЭПС – саркоплазматический ретикулум. Саркоплазматический ретикулум – один из видов эндоплазматической сети, который присутствует в поперечнополосатой мышечной ткани. Его основной функцией является хранение ионов кальция, и введение их в саркоплазму – среду миофибрилл.

Секреторная функция комплекса Гольджи

Функцией комплекса Гольджи является транспорт и химическая модификация веществ. Особенно хорошо это видно в секреторных клетках.

В качестве примера можно привести клетки поджелудочной железы, синтезирующие ферменты панкреатического сока, который затем выходит в проток железы, открывающийся в двенадцатиперстную железу.

Исходным субстратом для ферментов служат белки, поступающие в комплекс Гольджи из ЭПС. Здесь с ними происходят биохимические превращения, они концентрируются, упаковываются в мембранные пузырьки и перемещаются к плазматической мембране секреторной клетки. Затем они выделяются наружу посредством экзоцитоза.

Ферменты поджелудочной железы секретируются в неактивной форме, чтобы они не разрушали клетку, в которой образуются. Неактивная форма фермента называется проферментом или энзимогеном. Например, фермент трипсин, образуется в неактивной форме в виде трипсиногена в поджелудочной железе и переходит в свою активную форму – трипсин в кишечнике.

Комплексом Гольджи синтезируется также важный гликопротеин – муцин. Муцин синтезируется бокаловидными клетками эпителия, слизистой оболочки желудочно-кишечного тракта и дыхательных путей. Муцин служит барьером, защищающим расположенные под ним эпителиальные клетки от разных повреждений, в первую очередь, механических.

В желудочно-кишечном тракте эта слизь защищает нежную поверхность эпителиальных клеток от действия грубого комка пищи. В дыхательных путях и желудочно-кишечном тракте муцин защищает наш организм от проникновения патогенов – бактерий и вирусов.

В клетках кончика корня растений комплекс Гольджи секретирует мукополисахаридную слизь, которая облегчает продвижение корня в почве.

В железах на листьях насекомоядных растений, росянки и жирянки (рис. 6), аппарат Гольджи производит клейкую слизь и ферменты, с помощью которых эти растения ловят и переваривают добычу.

Рис. 6. Клейкие листья насекомоядных растений

В клетках растений комплекс Гольджи также участвует в образовании смол, камедей и восков.

Автолиз

Автолиз – это саморазрушение клеток, возникающее вследствие высвобождения содержимого лизосом внутри клетки.

Благодаря этому лизосомы в шутку называют «орудиями самоубийства». Автолиз представляет собой нормальное явление онтогенеза, он может распространяться как на отдельные клетки, так и на всю ткань или орган, как это происходит при резорбции хвоста головастика во время метаморфоза, т. е. при превращении головастика в лягушку (рис. 7).

Рис. 7. Резорбция хвоста лягушки благодаря автолизу в ходе онтогенеза

Автолиз происходит в мышечной ткани, остающейся долго без работы.

Кроме этого, автолиз наблюдается у клеток после гибели, поэтому вы могли наблюдать, как продукты питания сами портятся, если они не были заморожены.

Таким образом, мы рассмотрели основные одномембранные органоиды клетки: ЭПС, комплекс Гольджи и лизосомы, выяснили их функции в процессах жизнедеятельности отдельной клетки и организма в целом. Установили связь между синтезом веществ в ЭПС, транспортом их в мембранных пузырьках в комплекс Гольджи, «дозреванием» веществ в комплексе Гольджи и выделением их из клетки при помощи мембранных пузырьков, в том числе лизосом. Также мы говорили о включениях – непостоянных структурах клетки, которые представляют собой скопления органических веществ (крахмала, гликогена, капель масла или гранул белка). Из прив

interneturok.ru

Author: alexxlab

Отправить ответ

avatar
  Подписаться  
Уведомление о