Атф мономер – . , .

Нуклеиновые кислоты. АТФ » mozok.click

Из курса биологии растений и животных вспомните, где в клетках хранится наследственная информация. Какие вещества отвечают за хранение и воспроизведение наследственной информации? Одинаковы ли эти вещества у растений и животных?

Нуклеиновые кислоты и нуклеотиды

Молекулы нуклеиновых кислот являются крупными органическими молекулами — биополимерами, мономерами которых являются нуклеотиды. Каждый нуклеотид состоит из трех компонентов — азотистого основания, моносахарида (рибозы или дезоксирибозы) и остатка ортофосфатной кислоты (рис. 8.1).

В состав нуклеиновых кислот входят пять видов азотистых оснований (рис. 8.2). Различают, собственно, пять видов нуклеотидов: тимидиловый (основание — тимин), цитидиловый (основание — цитозин), уридиловый (основание — урацил), адениловый (основание — аденин), гуаниловый (основание — гуанин).

В клетках живых организмов отдельные нуклеотиды используются также в различных процессах обмена веществ как самостоятельные соединения.

При образовании молекул нуклеиновой кислоты между остатком ортофосфатной кислоты одного нуклеотида и моносахаридом другого

образуется прочная ковалентная связь. Поэтому нуклеиновые кислоты, образующиеся таким образом, имеют вид цепи, в которой нуклеотиды последовательно расположены друг за другом. Их число в одной молекуле биополимера может достигать нескольких миллионов.

ДНК и РНК

В клетках живых организмов присутствует два типа нуклеиновых кислот — РНК (рибонуклеиновая кислота) и ДНК (дезоксирибонуклеиновая кислота). Они различаются между собой по составу и особенностями строения.

Главной функцией ДНК и РНК является хранение и воспроизведение наследственной информации, чему способствует строение их молекул.

РНК хранит наследственную информацию менее надежно, чем ДНК, поэтому данный способ хранения использует только часть вирусов.

Строение молекул нуклеиновых кислот

В состав нуклеотидов ДНК входят моносахарид дезоксирибоза и четыре азотистых основания — аденин, тимин, цитозин и гуанин. А сами молекулы ДНК обычно состоят из двух нуклеотидных цепочек, которые соединены между собой водородными связями (рис. 8.3).

В нуклеотидах РНК вместо дезоксирибозы содержится моносахарид рибоза, а вместо тимина — урацил. Молекула РНК обычно состоит из одной нуклеотидной цепочки, различные фрагменты которой образуют между собой водородные связи. Между гуанином и цитозином образуются три такие связи, а между аденином и тимином или аденином и урацилом — две.

Молекула ДНК состоит из двух нуклеотидных цепочек, соединенных по принципу комплементарности (дополнения): напротив каждого нуклеотида одной цепи размещается тот нуклеотид второй цепи, который ему соответствует. Так, напротив аденилового нуклеотида размещается тимидиловый, а напротив цитидилового — гуаниловый (рис. 8.4). Поэтому в молекулах ДНК количество адениловых нуклеотидов всегда равно количеству тимидиловых нуклеотидов, а количество гуаниловых — количеству цитидиловых.



АТФ и ее роль в жизнедеятельности клеток

В жизнедеятельности клетки активное участие принимают не только РНК и ДНК, но и отдельные нуклеотиды. Особенно важными являются соединения нуклеотидов с остатками ортофосфатной кислоты. Таких остатков к нуклеотиду может присоединяться от одного до трех. Соответственно, и называют их по числу этих остатков: АТФ — аденозинтриортофосфат (аденозинтриортофосфорная кислота), ГТФ — гуанозинтриортофосфат, АДФ — аденозиндиортофосфат, АМФ — аденозинмоноортофосфат. все нуклеотиды, которые входят в состав нуклеиновых кислот, являются монофосфатами. Три- и дифосфаты также играют важную роль в биохимических процессах клеток.

Наиболее распространенным в клетках живых организмов является АТФ. Он играет роль универсального источника энергии для биохимических реакций, а также участвует в процессах роста, движения и размножения клеток. Большое количество молекул АТФ образуется в процессах клеточного дыхания и фотосинтеза.

Преобразование энергии и реакции синтеза в биологических системах

АТФ обеспечивает энергией большинство процессов, происходящих в клетках. в первую очередь, это процессы синтеза органических веществ, которые осуществляются с помощью ферментов.

Для того чтобы ферменты могли осуществить биохимическую реакцию, им в большинстве случаев требуется энергия.

Молекулы АТФ при взаимодействии с ферментами распадаются на две молекулы — ортофосфатную кислоту и АДФ. При этом выделяется энергия:

Эту энергию и используют ферменты для работы. А почему именно АТФ? Потому что связь остатков ортофосфатной кислоты в этой молекуле является не обычной, а макроэргической (высокоэнергетической) (рис. 8.5). Для образования этой связи требуется много энергии, но и во время ее разрушения энергия выделяется в больших количествах.


Когда молекулы углеводов, белков, липидов в клетках расщепляются, то происходит выделение энергии. Эту энергию клетка запасает. Для этого к нуклеотидам моноортофосфатам (например, АМФ) присоединяется один или два остатка ортофосфатной кислоты и образуются молекулы ди- или триортофосфатов (соответственно, АДФ или АТФ). Образующиеся связи являются макроэргическими. Таким образом,

АДФ содержит одну макроэргическую связь, а АТФ — две. во время синтеза новых органических соединений макроэргические связи разрушаются и обеспечивают соответствующие процессы энергией.

Все клеточные формы жизни на нашей планете содержат в своих клетках и РНК, и ДНК. А вот в вирусах присутствует только один тип нуклеиновой кислоты. в их вирионах под белковой оболочкой содержится или РНК, или ДНК. Только когда вирус попадает в клетку-хозяина, он обычно начинает синтезировать и ДНК, и РНК.

Нуклеиновые кислоты являются биополимерами, которые представлены в живых организмах в виде ДНК и РНК. Их мономерами являются нуклеотиды. ДНК обычно имеет форму двойной спирали, состоящей из двух цепей. РНК чаще всего имеет вид одинарной цепи. Основной функцией нуклеиновых кислот является хранение и воспроизводство генетической информации. Нуклеотиды также участвуют в биохимических процессах клетки, а АТФ играет роль универсального источника энергии для биохимических реакций.

Проверьте свои знания

1. Чем ДНК отличается от РНК? 2. Зачем живым организмам нужны нуклеиновые кислоты? 3. Какие функции выполняет в клетках АТФ? 4. Достройте вторую цепочку ДНК по принципу комплементарности, если первая цепочка такая: АГГТТАТАЦГЦЦТАГААТЦГГГАА. 5*. ДНК не способна быть катализатором биохимических реакций. А вот некоторые молекулы РНК (их называют рибозимами) могут быть катализаторами. С какими особенностями строения этих молекул это может быть связано? 6*. Почему макроэргические связи удобны для использования в биохимических процессах клетки?

Обобщающие задания к теме «Химический состав клетки и биологические молекулы»

В заданиях 1-9 выберите один правильный ответ.

1 Изображенная на рис. 1 структура выполняет функцию:

а) хранит и воспроизводит наследственную информацию

б) транспортирует вещества

В) создает запас питательных веществ

г) катализирует реакции

2) Из тех же мономеров, что и вещество на рис. 1, состоит:

а) коллаген б) крахмал в) РНК  г) эстроген

3) вещество на рис. 1 может накапливаться:

а) на внешней мембране митохондрий

б) в клеточной стенке дрожжей

В) в клетках печени человека

г) в хлоропластах кукурузы

4 Изображенная на рис. 2 структура является компонентом:

а) клеточной стенки растений

б) белков

В) РНК

г) внутреннего слоя клеточной мембраны

5) Цифрой 3 на рис. 2 обозначили:

а) карбонильную группу в) карбоксильную группу

б) гидроксильную группу г) радикал

6) Аминогруппа на рис. 2 обозначена цифрой:

а) 1  б) 2  в) 3  г) 4

7) Структура на рис. 2 является мономером:

а) нуклеиновой кислоты  в)  липида

б) белка  г)  полисахарида

8) Моносахарид на рис. 3 обозначен цифрой:

а) 1 б) 2  в) 3  г) 4

9) Структура на рис. 3 является мономером:

а) нуклеиновой кислоты  в)  белка

б) липида  г)  полисахарида

10 Напишите названия групп органических веществ, к которым относятся молекулы, изображенные на рисунках:

11 Рассмотрите структурную формулу молекулы, изображенной на рисунке. Объясните, каким образом строение этой молекулы позволяет ей эффективно выполнять свои функции.

12 Достройте комплементарную цепь ДНК: АТТГАЦЦЦГАТТАГЦ.

13 Установите соответствие между группами органических веществ и веществами, которые к ним относятся.

Группы вещества

1 белки  а) прогестерон

2 углеводы  б) гемоглобин

3 липиды  в) крахмал

г) инсулин

д) фруктоза

е) тестостерон

Проверьте свои знания по теме «Химический состав клетки и биологические молекулы».


Мини-справочник

Сведения об органических веществах

Структура органической молекулы на примере аланина

Типы связей в молекуле белка

Ковалентные связи

Образуются между атомами элементов в молекуле вещества за счет общих электронных пар. в молекулах белков имеются пептидные и дисульфидные связи. Обеспечивают прочное химическое взаимодействие.

Пептидная связь

Пептидные связи возникают между карбоксильной группой (-COOH) одной аминокислоты и аминогруппой (-NH2) другой аминокислоты.

Дисульфидная связь

Цистеин

Дисульфидная связь может возникать между различными участками одной и той же полипептидной цепи, при этом она удерживает эту цепь в изогнутом состоянии. Если дисульфидная связь образуется между двумя полипептидами, то она объединяет их в одну молекулу.

Нековалентные связи

В молекулах белков имеются водородные, ионные связи и гидрофобные взаимодействия. Обеспечивают слабые химические взаимодействия.

Водородная связь

Образуется между положительно заряженными атомами H одной функциональной группы и отрицательно заряженным атомом O или N, имеющим неподеленную электронную пару, другой функциональной группы.

Ионная связь

Образуется между положительно и отрицательно заряженными функциональными группами (дополнительными карбоксильными и аминогруппами), которые находятся в радикалах лизина, аргинина, гистидина, аспарагиновой и глутаминовой кислот.

Гидрофобное

Взаимодействие

Образуется между радикалами гидрофобных аминокислот.

 

Это материал учебника Биология 9 класс Задорожный

 

mozok.click

Блок 2. Клетка как биологическая система. Раздел 2.3

2.3 Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения ифункций неорганических и органических веществ (белков, нуклеиновыхкислот, углеводов, липидов, АТФ), входящих в состав клетки. Роль химическихвеществ в клетке и организме человека.
 

Основные термины и понятия, проверяемые в экзаменационной работе: азотистые основания, активный центр фермента, гидрофильность, гидрофобность, аминокислоты, АТФ, белки, биополимеры, денатурация, ДНК, дезоксирибоза, комплементарность, липиды, мономер, нуклеотид, пептидная связь, полимер, углеводы, рибоза, РНК, ферменты, фосфолипиды.
Неорганические вещества клетки

В состав клетки входит около 70 элементов периодической системы элементов Менделеева, а 24 из них присутствуют во всех типах клеток. Все присутствующие в клетке элементы делятся, в зависимости от их содержания в клетке, на группы:

макроэлементы – H, O, N, C, Mg, Na, Ca, Fe, K, P, Cl, S;

микроэлементы – В, Ni, Cu, Co, Zn, Mb и др.;

ультрамикроэлементы – U, Ra, Au, Pb, Hg, Se и др.

В состав клетки входят молекулы неорганических и органических соединений.

Неорганические соединения клетки – вода и неорганические ионы.

Вода – важнейшее неорганическое вещество клетки. Все биохимические реакции происходят в водных растворах. Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами воды образуются водородные связи, определяющие физические и химические свойства воды.

Физические свойства воды: так как молекулы воды полярны, то вода обладает свойством растворять полярные молекулы других веществ. Вещества, растворимые в воде, называются гидрофильными. Вещества, нерастворимые в воде называются гидрофобными.

Вода обладает высокой удельной теплоемкостью. Чтобы разорвать многочисленные водородные связи, имеющиеся между молекулами воды, требуется поглотить большое количество энергии. Вспомните, как долго нагревается до кипения чайник. Это свойство воды обеспечивает поддержание теплового баланса в организме.

Для испарения воды необходима достаточно большая энергия. Температура кипения воды выше, чем у многих других веществ. Это свойство воды предохраняет организм от перегрева.

Вода может находиться в трех агрегатных состояниях – жидком, твердом и газообразном.

Водородные связи обуславливают вязкость воды и сцепление ее молекул с молекулами других веществ. Благодаря силам сцепления молекул на поверхности воды создается пленка, обладающая такой характеристикой, как поверхностное натяжение.

При охлаждении движение молекул воды замедляется. Количество водородных связей между молекулами становится максимальным. Наибольшей плотности вода достигает при 4 Сº. При замерзании вода расширяется (необходимо место для образования водородных связей) и ее плотность уменьшается. Поэтому лед плавает.

Биологические функции воды. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почвы и к водоемам.

Вода – активный участник реакций обмена веществ.

Вода участвует в образовании смазывающих жидкостей и слизей, секретов и соков в организме. Эти жидкости находятся в суставах позвоночных животных, в плевральной полости, в околосердечной сумке.

Вода входит в состав слизей, которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей. Водную основу имеют и секреты, выделяемые некоторыми железами и органами: слюна, слезы, желчь, сперма и т. д.

Неорганические ионы. К неорганическим ионам клетки относятся: катионы K+, Na+, Ca2+, Mg2+, NH3+ и анионы Cl, NO3, Н2PO4, NCO3, НPO42-.

Разность между количеством катионов и анионов (Nа+, Ка+, Сl) на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6–9.

Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 7–4.

Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот. Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих. Ионы кальция входят в состав вещества костей; они также необходимы для осуществления мышечного сокращения, свертывания крови.

  

Органические вещества клетки. Углеводы, липиды

Углеводы. Общая формула Сn (H2O)n. Следовательно, углеводы содержат в своем составе только три химических элемента.

Растворимые в воде углеводы.

Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.

Моносахариды: глюкоза – основной источник энергии для клеточного дыхания. Фруктоза – составная часть нектара цветов и фруктовых соков. Рибоза и дезоксирибоза – структурные элементы нуклеотидов, являющихся мономерами РНК и ДНК.

Дисахариды: сахароза (глюкоза + фруктоза) – основной продукт фотосинтеза, транспортируемый в растениях. Лактоза (глюкоза + галактоза) – входит в состав молока млекопитающих. Мальтоза (глюкоза + глюкоза) – источник энергии в прорастающих семенах.

Полимерные углеводы: крахмал, гликоген, целлюлоза, хитин. Они не растворимы в воде.

Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.

Крахмал состоит из разветвленных спирализованных молекул, образующих запасные вещества в тканях растений.

Целлюлоза – полимер, образованный остатками глюкозы, состоящими из нескольких прямых параллельных цепей, соединенных водородными связями. Такая структура препятствует проникновению воды и обеспечивает устойчивость целлюлозных оболочек растительных клеток.

Хитин состоит из аминопроизводных глюкозы. Основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Гликоген – запасное вещество животной клетки. Гликоген еще более ветвистый, чем крахмал и хорошо растворимы в воде.

Липиды – сложные эфиры жирных кислот и глицерина. Нерастворимы в воде, но растворимы в неполярных растворителях. Присутствуют во всех клетках. Липиды состоят из атомов водорода, кислорода и углерода. Виды липидов: жиры, воска, фосфолипиды. 

Функции липидов: запасающая – жиры, откладываются в запас в тканях позвоночных животных. Энергетическая – половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров. Жиры используются и как источник воды. Энергетический эффект от расщепления 1 г жира – 39 кДж, что в два раза больше энергетического эффекта от расщепления 1 г глюкозы или белка. Защитная – подкожный жировой слой защищает организм от механических повреждений. Структурная – фосфолипиды входят в состав клеточных мембран. Теплоизоляционная – подкожный жир помогает сохранить тепло. Электроизоляционная – миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов. Питательная – некоторые липидоподобные вещества способствуют наращиванию мышечной массы, поддержанию тонуса организма. Смазывающая – воски покрывают кожу, шерсть, перья и предохраняют их от воды. Восковым налетом покрыты листья многих растений, воск используется в строительстве пчелиных сот. Гормональная – гормон надпочечников – кортизон и половые гормоны имеют липидную природу.

Белки, их строение и функции

Белки – это биологические гетерополимеры, мономерами которых являются аминокислоты. Белки синтезируются в живых организмах и выполняют в них определенные функции.

В состав белков входят атомы углерода, кислорода, водорода, азота и иногда серы. Мономерами белков являются аминокислоты – вещества, имеющие в своем составе неизменяемые части аминогруппу NH2 и карбоксильную группу СООН и изменяемую часть – радикал. Именно радикалами аминокислоты отличаются друг от друга. Аминокислоты обладают свойствами кислоты и основания (они амфотерны), поэтому могут соединяться друг с другом. Их количество в одной молекуле может достигать нескольких сотен. Чередование разных аминокислот в разной последовательности позволяет получать огромное количество различных по структуре и функциям белков.

В белках встречается 20 видов различных аминокислот, некоторые из которых животные синтезировать не могут. Они получают их от растений, которые могут синтезировать все аминокислоты. Именно до аминокислот расщепляются белки в пищеварительных трактах животных. Из этих аминокислот, поступающих в клетки организма, строятся его новые белки.

Структура белковой молекулы. Под структурой белковой молекулы понимают ее аминокислотный состав, последовательность мономеров и степень скрученности молекулы, которая должна умещаться в различных отделах и органоидах клетки, причем не одна, а вместе с огромным количеством других молекул.

Последовательность аминокислот в молекуле белка образует его первичную структуру. Она зависит от последовательности нуклеотидов в участке молекулы ДНК (гене), кодирующем данный белок. Соседние аминокислоты связаны пептидными связями, возникающими между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты.

Длинная молекула белка сворачивается и приобретает сначала вид спирали. Так возникает вторичная структура белковой молекулы. Между СО и NH – группами аминокислотных остатков, соседних витков спирали, возникают водородные связи, удерживающие цепь.

Молекула белка сложной конфигурации в виде глобулы (шарика), приобретает третичную структуру. Прочность этой структуры обеспечивается гидрофобными, водородными, ионными и дисульфидными S-S связями.

Некоторые белки имеют четвертичную структуру, образованную несколькими полипептидными цепями (третичными структурами). Четвертичная структура так же удерживается слабыми нековалентными связями – ионными, водородными, гидрофобными. Однако прочность этих связей невелика и структура может быть легко нарушена. При нагревании или обработке некоторыми химическими веществами белок подвергается денатурации и теряет свою биологическую активность. Нарушение четвертичной, третичной и вторичной структур обратимо. Разрушение первичной структуры необратимо.

В любой клетке есть сотни белковых молекул, выполняющих различные функции. Кроме того, белки имеют видовую специфичность. Это означает, что каждый вид организмов обладает белками, не встречающимися у других видов. Это создает серьезные трудности при пересадке органов и тканей от одного человека к другому, при прививках одного вида растений на другой и т. д.

Функции белков.

Каталитическая (ферментативная) – белки ускоряют все биохимические процессы, идущие в клетке: расщепление питательных веществ в пищеварительном тракте, участвуют в реакциях матричного синтеза. Каждый фермент ускоряет одну и только одну реакцию (как в прямом, так и в обратном направлении). Скорость ферментативных реакций зависит от температуры среды, уровня ее рН, а также от концентраций реагирующих веществ и концентрации фермента.

Транспортная – белки обеспечивают активный транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа, транспорт жирных кислот.

Защитная – антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь.

Структурная – одна из основных функций белков. Белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия.

Сократительная – обеспечивается сократительными белками – актином и миозином.

Сигнальная – белковые молекулы могут принимать сигналы и служить их переносчиками в организме (гормонами). Следует помнить, что не все гормоны являются белками.

Энергетическая – при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры.

Нуклеиновые кислоты

Нуклеиновые кислоты были открыты в 1868 г. швейцарским ученым Ф. Мишером. В организмах существует несколько видов нуклеиновых кислот, которые встречаются в различных органоидах клетки – ядре, митохондриях, пластидах. К нуклеиновым кислотам относятся ДНК, и-РНК, т-РНк, р-РНК.

Дезоксирибонуклеиновая кислота (ДНК) – линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных (соответствующих друг другу по конфигурации) цепей. Пространственная структура молекулы ДНК была смоделирована американскими учеными Джеймсом Уотсоном и Френсисом Криком в 1953 г.

Мономерами ДНК являются нуклеотиды. Каждый нуклеотид ДНК состоит из пуринового (А – аденин или Г – гуанин) или пиримидинового (Т – тимин или Ц – цитозин) азотистого основания, пятиуглеродного сахара – дезоксирибозы и фосфатной группы.

Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина – цитозин. Пара А – Т соединена двумя водородными связями, а пара Г – Ц – тремя. При репликации (удвоении) молекулы ДНК водородные связи рвутся и цепи расходятся и на каждой из них синтезируется новая цепь ДНК. Остов цепей ДНК образован сахарофосфатными остатками.

Последовательность нуклеотидов в молекуле ДНК определяет ее специфичность, а также специфичность белков организма, которые кодируются этой последовательностью. Эти последовательности индивидуальны и для каждого вида организмов, и для отдельных особей.

Пример: дана последовательность нуклеотидов ДНК: ЦГА – ТТА – ЦАА.

На информационной РНК (и-РНК) будет синтезирована цепь ГЦУ – ААУ – ГУУ, в результате чего выстроится цепочка аминокислот: аланин – аспарагин – валин.

При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а следовательно изменится и белок, кодируемый данным геном. (Воспользовавшись школьным учебником, попытайтесь убедиться в этом.) Изменения в составе нуклеотидов или их последовательности называются мутацией.

Рибонуклеиновая кислота (РНК) – линейный полимер, состоящий из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар – рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.

Виды РНК. Матричная, или информационная, РНК. Синтезируется в ядре при участии фермента РНК-полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Ее функция – снятие информации с ДНК и передача ее к месту синтеза белка – на рибосомы. Составляет 5 % РНК клетки. Рибосомная РНК – синтезируется в ядрышке и входит в состав рибосом. Составляет 85 % РНК клетки. Транспортная РНК (более 40 видов). Транспортирует аминокислоты к месту синтеза белка. Имеет форму клеверного листа и состоит из 70–90 нуклеотидов.

Аденозинтрифосфорная кислота – АТФ. АТФ представляет собой нуклеотид, состоящий из азотистого основания – аденина, углевода рибозы и трех остатков фосфорной кислоты, в двух из которых запасается большое количество энергии. При отщеплении одного остатка фосфорной кислоты освобождается 40 кДж/моль энергии. Сравните эту цифру с цифрой, обозначающей количество выделенной энергии 1 г глюкозы или жира. Способность запасать такое количество энергии делает АТФ ее универсальным источником. Синтез АТФ происходит в основном в митохондриях.

rus66.blogspot.com

Строение АТФ и биологическая роль. Функции АТФ

В любой клетке нашего организма протекают миллионы биохимических реакций. Они катализируются множеством ферментов, которые зачастую требуют затрат энергии. Где же клетка ее берет? На этот вопрос можно ответить, если рассмотреть строение молекулы АТФ – одного из основных источников энергии.

АТФ – универсальный источник энергии

АТФ расшифровывается как аденозинтрифосфат, или аденозинтрифосфорная кислота. Вещество является одним из двух наиболее важных источников энергии в любой клетке. Строение АТФ и биологическая роль тесно связаны. Большинство биохимических реакций может протекать только при участии молекул вещества, особенно это касается пластического обмена. Однако АТФ редко непосредственно участвует в реакции: для протекания любого процесса нужна энергия, заключенная именно в химических связях аденозинтрифосфата.

Строение молекул вещества таково, что образующиеся связи между фосфатными группами несут огромное количество энергии. Поэтому такие связи также называются макроэргическими, или макроэнергетическими (макро=много, большое количество). Термин макроэргические связи впервые ввел ученый Ф. Липман, и он же предложил использовать значок ̴ для их обозначения.

Очень важно для клетки поддерживать постоянный уровень содержания аденозинтрифосфата. Особенно это характерно для клеток мышечной ткани и нервных волокон, потому что они наиболее энергозависимы и для выполнения своих функций нуждаются в высоком содержании аденозинтрифосфата.

Строение молекулы АТФ

Аденозинтрифосфат состоит из трех элементов: рибозы, аденина и остатков фосфорной кислоты.

Рибоза – углевод, который относится к группе пентоз. Это значит, что в составе рибозы 5 атомов углерода, которые заключены в цикл. Рибоза соединяется с аденином β-N-гликозидной связь на 1-ом атоме углерода. Также к пентозе присоединяются остатки фосфорной кислоты на 5-ом атоме углерода.

Аденин – азотистое основание. В зависимости от того, какое азотистое основание присоединяется к рибозе, выделяют также ГТФ (гуанозинтрифосфат), ТТФ (тимидинтрифосфат), ЦТФ (цитидинтрифосфат) и УТФ (уридинтрифосфат). Все эти вещества схожи по строению с аденозинтрифосфатом и выполняют примерно такие же функции, однако они встречаются в клетке намного реже.

Остатки фосфорной кислоты. К рибозе может присоединиться максимально три остатка фосфорной кислоты. Если их два или только один, то соответственно вещество называется АДФ (дифосфат) или АМФ (монофосфат). Именно между фосфорными остатками заключены макроэнергетические связи, после разрыва которых высвобождается от 40 до 60 кДж энергии. Если разрываются две связи, выделяется 80, реже – 120 кДж энергии. При разрыве связи между рибозой и фосфорным остатком выделяется всего лишь 13,8 кДж, поэтому в молекуле трифосфата только две макроэргические связи (Р ̴ Р ̴ Р), а в молекуле АДФ — одна (Р ̴ Р).

Вот каковы особенности строения АТФ. По причине того, что между остатками фосфорной кислоты образуется макроэнергетическая связь, строение и функции АТФ связаны между собой.

Строение АТФ и биологическая роль молекулы. Дополнительные функции аденозинтрифосфата

Кроме энергетической, АТФ может выполнять множество других функций в клетке. Наряду с другими нуклеотидтрифосфатами трифосфат участвует в построении нуклеиновый кислот. В этом случае АТФ, ГТФ, ТТФ, ЦТФ и УТФ являются поставщиками азотистых оснований. Это свойство используется в процессах репликации ДНК и транскрипции.

Также АТФ необходим для работы ионных каналов. Например, Na-K канал выкачивает 3 молекулы натрия из клетки и вкачивает 2 молекулы калия в клетку. Такой ток ионов нужен для поддержания положительного заряда на наружной поверхности мембраны, и только с помощью аденозинтрифосфата канал может функционировать. То же касается протонных и кальциевых каналов.

АТФ является предшественником вторичного мессенжера цАМФ (циклический аденозинмонофосфат) — цАМФ не только передает сигнал, полученный рецепторами мембраны клетки, но и является аллостерическим эффектором. Аллостерические эффекторы – это вещества, которые ускоряют или замедляют ферментативные реакции. Так, циклический аденозинтрифосфат ингибирует синтез фермента, который катализирует расщепление лактозы в клетках бактерии.

Сама молекула аденозинтрифосфата также может быть аллостерическим эффектором. Причем в подобных процессах антагонистом АТФ выступает АДФ: если трифосфат ускоряет реакцию, то дифосфат затормаживает, и наоборот. Таковы функции и строение АТФ.

Как образуется АТФ в клетке

Функции и строение АТФ таковы, что молекулы вещества быстро используются и разрушаются. Поэтому синтез трифосфата – это важный процесс образования энергии в клетке.

Выделяют три наиболее важных способа синтеза аденозинтрифосфата:

1. Субстратное фосфорилирование.

2. Окислительное фосфорилирование.

3. Фотофосфорилирование.

Субстратное фосфорилирование основано на множественных реакциях, протекающих в цитоплазме клетки. Эти реакции получили название гликолиза – анаэробный этап аэробного дыхания. В результате 1 цикла гликолиза из 1 молекулы глюкозы синтезируется две молекулы пировиноградной кислоты, которые дальше используются для получения энергии, и также синтезируются два АТФ.

  • С6Н12О6 + 2АДФ + 2Фн ––> 2С3Н4O3 + 2АТФ + 4Н.

Окислительное фосфорилирование – это образование аденозинтрифосфата путем передачи электронов по электронно-транспортной цепи мембраны. В результате такой передачи формируется градиент протонов на одной из сторон мембраны и с помощью белкового интегрального комплекта АТФ-синтазы идет построение молекул. Процесс протекает на мембране митохондрий.

Последовательность стадий гликолиза и окислительного фосфорилирования в митохондриях составляет общий процесс под названием дыхание. После полного цикла из 1 молекулы глюкозы в клетке образуется 36 молекул АТФ.

Фотофосфорилирование

Процесс фотофосфорилирования — это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света. АТФ образуется во время световой стадии фотосинтеза – основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

В процессе фотосинтеза все по той же электронно-транспортной цепи проходят электроны, в результате чего формируется протонный градиент. Концентрация протонов на одной из сторон мембраны является источником синтеза АТФ. Сборка молекул осуществляется посредством фермента АТФ-синтазы.

Интересные факты об АТФ

— В среднестатистической клетке содержится 0,04% аденозинтрифосфата от всей массы. Однако самое большое значение наблюдается в мышечных клетках: 0,2-0,5%.

— В клетке около 1 млрд молекул АТФ.

— Каждая молекула живет не больше 1 минуты.

— Одна молекула аденозинтрифосфата обновляется в день 2000-3000 раз.

— В сумме за сутки организм человека синтезирует 40 кг аденозинтрифосфата, и в каждый момент времени запас АТФ составляет 250 г.

Заключение

Строение АТФ и биологическая роль его молекул тесно связаны. Вещество играет ключевую роль в процессах жизнедеятельности, ведь в макроэргических связях между фосфатными остатками содержится огромное количество энергии. Аденозинтрифосфат выполняет множество функций в клетке, и поэтому важно поддерживать постоянную концентрацию вещества. Распад и синтез идут с большой скоростью, т. к. энергия связей постоянно используется в биохимических реакциях. Это незаменимое вещество любой клетки организма. Вот, пожалуй, и все, что можно сказать о том, какое строение имеет АТФ.

fb.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *