P физика – Образование p-n-перехода (электронно-дырочный перехода) | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Содержание

Физика: уроки, тесты, задания.

Физика: уроки, тесты, задания.
    1. Введение. Макро- и микромир. Числа со степенью 10
    2. Наблюдения, опыты, измерения, гипотеза, эксперимент
    3. Физические величины. Международная система единиц
    1. Механическое движение. Траектория и путь
    2. Скорость. Неравномерное движение. Средняя скорость
    3. Инерция
    4. Взаимодействие тел. Масса тела. Единицы массы. Измерение массы тела на весах
    5. Плотность вещества. Расчёт массы и объёма тела по его плотности
    6. Сила. Сила тяжести
    7. Свободное падение. Вес тела
    8. Измерение силы с помощью динамометра
    9. Деформации тел. Сила упругости. Закон Гука
    10. Взаимодействие тел. Сила трения
    1. Механическая работа
    2. Мощность
    3. Рычаг. Простые механизмы
    4. Блок
    5. Коэффициент полезного действия
    6. Энергия
    1. Строение вещества. Молекулы и атомы
    2. Диффузия
    3. Притяжение и отталкивание молекул. Смачивание и капиллярность
    4. Агрегатные состояния вещества
    1. Давление и сила давления. Единицы измерения
    2. Давление твёрдых тел. Способы уменьшения и увеличения давления
    3. Давление газа. Применение сжатого воздуха
    4. Атмосферное давление и его измерение. Опыт Торричелли
    5. Давление в жидкости. Закон Паскаля
    6. Гидростатическое давление. Давление на дне морей и океанов
    7. Сообщающиеся сосуды. Водопровод. Шлюзы
    8. Гидравлический пресс. Насосы
    9. Закон Архимеда
    10. Действие жидкости на погружённое в неё тело. Плавание тел
    11. Выталкивающая сила в газах. Воздухоплавание
  1. Класс заполнен на 100%

    1. Тепловое движение. Термометр. Связь температуры тела со скоростью движения молекул
    2. Внутренняя энергия. Два способа изменения внутренней энергии: работа и теплопередача
    3. Виды теплопередачи
    4. Количество теплоты
    5. Удельная теплоёмкость вещества
    6. Удельная теплота сгорания топлива
    7. Закон сохранения энергии в механических и тепловых процессах
    1. Плавление и отвердевание тел. Температура плавления
    2. Удельная теплота плавления
    3. Испарение и конденсация
    4. Относительная влажность воздуха и её измерение
    5. Кипение. Температура кипения. Удельная теплота парообразования
    6. Объяснение изменений агрегатных состояний вещества
    7. Преобразования энергии в тепловых машинах
    8. Экологические проблемы использования тепловых машин
    1. Электризация тел. Два рода электрических зарядов
    2. Проводники, диэлектрики и полупроводники
    3. Взаимодействие заряженных тел. Электрическое поле
    4. Закон сохранения электрического заряда
    5. Дискретность электрического заряда. Электрон. Строение атомов
    6. Электрический ток. Электрическая цепь. Гальванические элементы. Аккумуляторы
    7. Электрический ток в металлах. Полупроводниковые приборы
    8. Сила тока. Амперметр
    9. Электрическое напряжение. Вольтметр
    10. Электрическое сопротивление. Закон Ома для участка электрической цепи
    11. Удельное сопротивление. Реостаты
    12. Последовательное и параллельное соединение проводников
    13. Работа и мощность тока
    14. Количество теплоты, выделяемое проводником с током
    15. Счётчик электрической энергии
    16. Лампа накаливания. Электронагревательные приборы
    17. Расчёт электроэнергии, потребляемой бытовыми электроприборами
    18. Короткое замыкание. Плавкие предохранители
    1. Магнитное поле тока
    2. Электромагниты и их применение
    3. Постоянные магниты. Магнитное поле Земли
    4. Действие магнитного поля на проводник с током. (Электродвигатель. Динамик и микрофон)
    1. Источники света. Прямолинейность распространения света
    2. Отражение света. Закон отражения. Плоское зеркало
    3. Преломление света
    4. Линза. Фокусное расстояние линзы. Построение изображений, даваемых тонкой линзой
    5. Оптическая сила линзы. Глаз как оптическая система. Оптические приборы
  1. Класс заполнен на 100%

    1. Материальная точка (Система отсчёта)
    2. Перемещение. Скорость прямолинейного равномерного движения
    3. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение
    4. Скорость прямолинейного равноускоренного движения. График скорости
    1. Относительность механического движения
    2. Первый закон Ньютона
    3. Второй закон Ньютона
    4. Третий закон Ньютона
    5. Свободное падение
    6. Закон всемирного тяготения
    1. Импульс тела
    2. Закон сохранения импульса
    3. Реактивное движение. Ракеты
    1. Колебательное движение. Свободные колебания. Амплитуда, частота, период колебаний
    2. Колебательная система. Колебания груза на пружине. Математический маятник
    3. Превращение энергии при колебательном движении
    4. Затухающие колебания. Вынужденные колебания. Резонанс
    5. Поперечные и продольные волны. Длина волны
    6. Звуковые волны. Скорость звука
    7. Высота, тембр и громкость звука. Звуковой резонанс
    1. Радиоактивность как доказательство сложного строения атома. Опыты Резерфорда. Ядерная модель
    2. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел
  1. В дальнейшем в этом классе появятся...

www.yaklass.ru

Образование p-n-перехода (электронно-дырочный перехода) | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Полупроводники мо­гут иметь собственную или примесную про­водимость. Примесную проводимость обоих типов можно создать в одном и том же полупроводниковом веществе. Если, напри­мер, к четырехвалентному силицию ввести пятивалентную примесь, то получим полу­проводник с проводимостью n-типа (основ­ными носителями заряда являются элект­роны). Если же ввести трехвалентную при­месь, то получим полупроводник с прово­димостью p-типа (основными носителями заряда являются дырки).

Чтобы получить электронно-дырочный переход (p-n-переход), нужно в одном и том же кристалле полупроводника образовать то­ненькую границу полупроводника с разными типами проводимости. Проще всего это можно сделать так называемым сплавным методом (рис. 8.16). Здесь показана струк­тура германиевого диода.

Рис. 8.16. Образование p-n-перехода

В качестве основы берут пластинку из монокристалла германия, который имеет про­водимость n-типа. Сверху кладут кусочек трехвалентной примеси, например индия, и нагревают до 450—500 °C.

При этом германий и индий сплавля­ются и после охлаждения получается p-n-переход. Тонкий слой германия обогащается индием, вследствие чего получается про­водимость p-типа. Этот слой в месте кон­такта с германием n-типа образует элект­ронно-дырочный переход (p-n-переход).

К индию и к германию оловом припаи­вают контакты, например из никеля, и диод помешают в металлический или стек­лянный корпус.

Рассмотрим полупроводник, который со­стоит из двух частей, одна из которых имеет проводимость p-типа, а другая — n-типа (рис. 8.17, а).

Рис. 8.17. Как образуется p-n-переход

В p-части основными носителями заряда являются дырки, а в n-части — свободные электроны. Обе части до образования кон­такта между ними были электрически нейт­ральными. При образовании контакта вслед­ствие диффузии небольшое количество сво­бодных электронов из n-части перейдет в p-часть, где есть дырки, и часть из них нейтрализует возле контакта. Дырки, в свою очередь, будут диффундировать из p-части в n-часть, где будут рекомбинировать со сво­бодными электронами.

Таким образом, концентрация свободных электронов и дырок в месте контакта очень уменьшается, поэтому сопротивление этой части полупроводника большое.

Кроме того, n-часть возле контакта с p-частью зарядится положительно, поскольку, во-первых, она утратила часть своих сво­бодных электронов, а во-вторых, к ней пе­решла часть дырок из p-части. В свою оче­редь, p-часть зарядится отрицательно. Элект­рическое поле, которое при этом возникает, препятствует дальнейшей диффузии элект­ронов и дырок (рис. 8.17, б). Материал с сайта http://worldofschool.ru

Рис. 8.18. Как p-n-переход проводит ток

Таким образом, на границе полупровод­ников с разными типами проводимости воз­никает p-n-переход (рис. 8.17, б). Этот пе­реход имеет большое сопротивление, так как очень обедненный на свободные но­сители заряда. И вдобавок в пределах кон­такта возникает электрическое поле, пре­пятствующее дальнейшей диффузии свобод­ных основных носителей заряда.

Если p-n-переход подключить в элект­рическую цепь так, как показано на рис. 8.18, а (p-часть соединить с положительным полюсом источника тока, а n-часть — с от­рицательной), то под действием внешнего электрического поля свободные носители за­ряда будут двигаться к p-n-переходу, концен­трация их на переходе будет возрастать и че­рез переход пойдет значительной силы ток.

Если полярность включения перехода из­менить (рис. 8.18, б), то ширина перехода возрастет, поскольку свободные носители заряда под действием внешнего электричес­кого поля будут двигаться от перехода. Сопро­тивление перехода значительно возрастает, и сила тока в цепи будет незначительной.

На этой странице материал по темам:
  • Физика p-n перехода

  • Как образуется p-n переход

  • Закон фарадея і формула

Вопросы по этому материалу:
  • Как получается электронно-дырочный p-n-переход?

  • Что про­исходит в p-n-переходе, если к нему приложить напряжение в определенном направлении? в противоположном?

worldofschool.ru

ФИЗИКА - это... Что такое ФИЗИКА?

  • ФИЗИКА. — ФИЗИКА. 1. Предмет и структура физики Ф. наука, изучающая простейшие и вместе с тем наиб. общие свойства и законы движения окружающих нас объектов материального мира. Вследствие этой общности не существует явлений природы, не имеющих физ. свойств …   Физическая энциклопедия

  • ФИЗИКА — наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, св ва и строение материи и законы её движения. Понятия Ф. и её законы лежат в основе всего естествознания. Ф. относится к точным наукам и изучает количеств …   Физическая энциклопедия

  • физика — и, ж. physique, нем. Physik < physike < physis природа. 1. устар. Физическое строение и состояние организма. БАС 1. Большую часть времени провожу теперь в деревне; однако ж здоровье мое худо. Со стороны физики я стал совсем другой. 26. 6.… …   Исторический словарь галлицизмов русского языка

  • ФИЗИКА — ФИЗИКА, наука, изучающая совместно с химией общие законы превращения энергии и материи. В основе обеих наук лежат два основных закона естествознания закон сохранения массы (закон Ломоносова, Лавуазье) и закон сохранения энергии (Р. Майер, Джауль… …   Большая медицинская энциклопедия

  • физика — личность, мордоплясия, сусалы, мордализация, мордофиля, харьковская область, мордасово, мордень, ряшка, рыло, физия, морда, мордуленция, лицо, мурло, рожа, харя, физиономия, фотография, хрюкало, моська, ряха, физиомордия, мордасы, свойство… …   Словарь синонимов

  • ФИЗИКА — (греч. ta physika от physis природа), наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира. По изучаемым объектам физика подразделяется на физику элементарных частиц, атомных ядер, атомов, молекул,… …   Большой Энциклопедический словарь

  • ФИЗИКА — (греч. τὰ φυσικά – наука о природе, от φύσις – природа) – комплекс науч. дисциплин, изучающих общие свойства структуры, взаимодействия и движения материи. В соответствии с этими задачами совр. Ф. весьма условно можно подразделить на три больших… …   Философская энциклопедия

  • ФИЗИКА — (греч., от. physis природа). Наука, имеющая своим предметом свойства тел и действия, которые они оказывают одно на другое, не изменяя своих составных частей. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ФИЗИКА… …   Словарь иностранных слов русского языка

  • Физика —  Физика  ♦ Physique    Все, что относится к природе (от греческого physis), в частности – наука, изучающая природу (ta physika).    Если природа – все, как я полагаю, значит, физика призвана вместить в себя все прочие науки. Впрочем, это… …   Философский словарь Спонвиля

  • ФИЗИКА — ФИЗИКА, наука, занимающаяся изучением ВЕЩЕСТВА и ЭНЕРГИИ. Физика стремится установить и объяснить их многочисленные формы и взаимосвязи. Современная физика считает, что в природе существует четыре основных силы: СИЛА ТЯЖЕСТИ, которая впервые была …   Научно-технический энциклопедический словарь

  • dic.academic.ru

    формулы физика

    Молярная масса

    M=m0NA(NA= 6*1023)

    M = Mr*10-3

    Относительная молекулярная масса

    Mr=,m0c= 10995*10-26

    Масса молекулы

    m0=

    Масса вещества

    m=m0N

    Количество вещества

     = , - моль

    Число молекул

    N=

    N=NA

    Концентрация молекул

    n=

    Уравнение состояния идеального

    газа

    pV=kT

    R=NAk= 8,31

    pV = RT

    pV = RT

    Давление идеального газа

    p=

    p=nkT=nEk

    k = 1.38*10-23

    p = v2

    p=kT,T=t+ 273

    Средняя кинетическая энергия

    Ek=kT=

    Средняя квадратичная скорость

    v2=

    Плотность

     =

    Молярная масса

    M=

    Объем

    V=

    I газовый закон (Б-М)

    m,T=const, изотермический

    обратная зависимость,

    II газовый закон(Шарля)

    m,V=const, изохорный

    прямая

    III газовый закон (Г-Л)

    m,p=const, изобарный

    прямая

    Внутренняя энергия и.г.

    U = NEk = RT = pV = RT = Аг

    Работа газа

    Aг=pV, Аг=Q1 – Q2

    при расширении Аг> 0, при сжатии Аг< 0.

    Работа внешних сил

    А = -Аг =p(V2–V1)

    при сжатии А > 0, при расширении А < 0.

    Количество теплоты

    Qнагр=cm(t2–t1),Qсгор=qm

    Qпар=rm,Qкон= -rm

    Qпл =m,Qкр= -m

    I закон термодинамики

    U=A+Q,Q=U+Aг

    I закон в изопроцессах

    1. изохорный V = 0 3. изобарный p = 0

    U=Q, т.к. А = 0Q=U+Aг

    при нагреванииUтепло идет на работу

    при охлажденииUгаза и изменение

    2. изотермический вн. энергии

    Т = 0, значит U= 04. адиабатныйQ= 0

    Q=Aг U=A

    Q> 0,Aг> 0, при сжатииU

    газ расширяется A> 0,Aг< 0.

    Q< 0,Aг< 0, при расширенииU

    газ сжимается A< 0,Aг> 0.

    КПД тепловой машины, цикла Карно

     = ,= 1 –

    Влажность

    абс=,отн=100%

    studfiles.net

    Физика, 7 класс: уроки, тесты, задания

  • Введение

    1. Введение. Макро- и микромир. Числа со степенью 10
    2. Наблюдения, опыты, измерения, гипотеза, эксперимент
    3. Физические величины. Международная система единиц
  • Движение и взаимодействие тел

    1. Механическое движение. Траектория и путь
    2. Скорость. Неравномерное движение. Средняя скорость
    3. Инерция
    4. Взаимодействие тел. Масса тела. Единицы массы. Измерение массы тела на весах
    5. Плотность вещества. Расчёт массы и объёма тела по его плотности
    6. Сила. Сила тяжести
    7. Свободное падение. Вес тела
    8. Измерение силы с помощью динамометра
    9. Деформации тел. Сила упругости. Закон Гука
    10. Взаимодействие тел. Сила трения
  • Работа и мощность. Энергия

    1. Механическая работа
    2. Мощность
    3. Рычаг. Простые механизмы
    4. Блок
    5. Коэффициент полезного действия
    6. Энергия
  • Строение вещества

    1. Строение вещества. Молекулы и атомы
    2. Диффузия
    3. Притяжение и отталкивание молекул. Смачивание и капиллярность
    4. Агрегатные состояния вещества
  • Давление твёрдых тел, жидкостей и газов

    1. Давление и сила давления. Единицы измерения
    2. Давление твёрдых тел. Способы уменьшения и увеличения давления
    3. Давление газа. Применение сжатого воздуха
    4. Атмосферное давление и его измерение. Опыт Торричелли
    5. Давление в жидкости. Закон Паскаля
    6. Гидростатическое давление. Давление на дне морей и океанов
    7. Сообщающиеся сосуды. Водопровод. Шлюзы
    8. Гидравлический пресс. Насосы
    9. Закон Архимеда
    10. Действие жидкости на погружённое в неё тело. Плавание тел
    11. Выталкивающая сила в газах. Воздухоплавание
  • Класс заполнен на 100%

  • www.yaklass.ru

    Физика — WiKi

    Физика — естественная наука. Источником знаний для неё является практическая деятельность: наблюдения, экспериментальное исследование явлений природы, производственная деятельность. Правильность физических знаний проверяется экспериментом, использованием научных знаний в производственной деятельности. Обобщением результатов научных наблюдений и эксперимента являются физические законы, которыми объясняются эти наблюдения и эксперименты[4]. Физика сосредоточена на изучении фундаментальных и простейших явлений и на ответах на простые вопросы: из чего состоит материя, каким образом частицы материи взаимодействуют между собой, по каким правилам и законам осуществляется движение частиц и т. д.

    В основе физических исследований лежит установление фактов путём наблюдения и эксперимента. Анализ данных совокупности экспериментов позволяет выявить и сформулировать закономерность. На первых этапах исследований закономерности носят преимущественно эмпирический, феноменологический характер, — то есть явление описывается количественно с помощью определённых параметров, характерных для исследуемых тел и веществ. Полученные факты подвергаются упрощению, идеализации путём введения идеальных объектов. На основе идеализации создаются модели исследуемых объектов и явлений. Физические объекты, модели и идеальные объекты описываются на языке физических величин. Затем устанавливаются связи между явлениями природы и выражаются в форме физических законов[5]. Физические законы проверяются с помощью продуманного эксперимента, в котором явление (феномен) проявлялось бы в как можно более чистом виде и не осложнялось бы другими явлениями (феноменами). Анализируя закономерности и параметры, физики строят физические теории, которые позволяют объяснить изучаемые явления на основе представлений о строении тел и веществ и взаимодействие между их составными частями. Физические теории, в свою очередь, создают предпосылки для постановки точных экспериментов, в ходе которых в основном определяются рамки их применимости. Общие физические теории позволяют формулировать физические законы, которые считаются общими истинами, пока накопления новых экспериментальных результатов не потребует их уточнения или пересмотра.

    Так, например, Стивен Грей заметил, что электричество можно передавать на довольно значительное расстояние с помощью увлажнённых нитей и начал исследовать это явление. Георг Ом сумел выявить для него количественную закономерность, — ток в проводнике прямо пропорционален напряжению и обратно пропорционален сопротивлению проводника току. Эта закономерность известна как закон Ома. При этом, конечно, эксперименты Ома опирались на новые источники питания и на новые способы измерять действие электрического тока, что позволило количественно охарактеризовать его. Результаты дальнейших исследований позволили абстрагироваться от формы и длины проводников тока и ввести такие феноменологические характеристики, как удельное сопротивление проводника и внутреннее сопротивление источника питания. Закон Ома и поныне основа электротехники, однако исследования также выявили и рамки его применимости, — открыты элементы электрической цепи с нелинейными вольт-амперными характеристиками, а также вещества, в определённых ситуациях не имеющие никакого электрического сопротивления — сверхпроводники. После открытия заряженных микрочастиц — электронов (позже протонов и других), была сформулирована микроскопическая теория электропроводности, объясняющая зависимости сопротивления от температуры посредством рассеяния электронов на колебаниях кристаллической решетки, примесях и т. д.

    Вместе с тем было бы неправильным считать, что только эмпирический подход определяет развитие физики. Многие важные открытия были совершены «на кончике пера», или экспериментальной проверкой теоретических гипотез. Например, принцип наименьшего действия Пьер Луи де Мопертюи сформулировал в 1744 году на основе общих соображений, и справедливость его невозможно установить экспериментальным путём в силу всеобщности принципа. В настоящее время классическая и квантовая механика, теория поля основаны на принципе наименьшего действия. В 1899 году Макс Планк ввёл понятия кванта электромагнитного поля, кванта действия, что также не было следствием наблюдений и экспериментов, а чисто теоретической гипотезой. В 1905 году Альберт Эйнштейн опубликовал работу по специальной теории относительности, построенную дедуктивным путём из самых общих физических и геометрических соображений. Анри Пуанкаре — математик, прекрасно разбиравшийся в научных методах физики, — писал, что ни феноменологический, ни умозрительный подход по отдельности не описывают и не могут описывать физическую науку[6].

    Физика — это наука о материи, её свойствах и движении. Она является одной из наиболее древних научных дисциплин. Люди пытались понять свойства материи из древнейших времен: почему тела падают на землю, почему разные вещества имеют различные свойства и т. д. Интересовали людей также вопрос о строении мира, о природе Солнца и Луны. Сначала ответы на эти вопросы пытались искать в философии. В основном философские теории, которые пытались дать ответы на такие вопросы, не проверялись на практике. Однако, несмотря на то, что нередко философские теории неправильно описывали наблюдения, ещё в древние времена человечество добилось значительных успехов в астрономии, а великий греческий учёный Архимед даже сумел дать точные количественные формулировки многих законов механики и гидростатики.

    Некоторые теории древних мыслителей, как, например, идеи об атомах, которые были сформулированы в древних Греции и Индии, опережали время. Постепенно от общей философии начало отделяться естествознание, важнейшей составной частью которого стала физика. Уже Аристотель использовал название «Физика» в заголовке одного из основных своих трактатов[7]. Несмотря на ряд неправильных утверждений, физика Аристотеля на протяжении веков оставалась основой знаний о природе.

    Период до научной революции

      Основной способ работы камеры обскура   Ибн ал-Хайсам (около 965 — около 1040), пионер оптики

    Свойство человечества сомневаться и пересматривать положения, которые раньше считались единственно истинными, в поисках ответов на новые вопросы в итоге привело к эпохе великих научных открытий, которую сегодня называют научной революцией, начавшейся в середине XVI века. Предпосылки к этим коренным изменениям сложились благодаря достоянию древних мыслителей, наследие которых можно проследить до Индии и Персии. Персидский учёный Насир ад-Дин ат-Туси указал на значительные недостатки птолемеевской системы.

    Средневековая Европа на какое-то время потеряла знания античных времен, но под влиянием Арабского халифата сохраненные арабами сочинения Аристотеля вернулись. В XII—XIII веках нашли свой путь в Европу также произведения индийских и персидских учёных. В Средние века начал складываться научный метод, в котором основная роль отводилась экспериментам и математическому описанию. Ибн ал-Хайсам (Альхазен) в своей «Книге о оптике», написанной в 1021 году, описывал эксперименты, подтверждающие его теорию зрения, согласно которой глаз воспринимает свет, излучаемый другими объектами, а не сам глаз излучает свет, как считали раньше Евклид и Птолемей. В экспериментах Ибн ал-Хайсама использовалась камера-обскура. С помощью этого прибора он проверял свои гипотезы относительно свойств света: или свет распространяется по прямой, или смешиваются в воздухе различные лучи света.

    Научная революция

    Период научной революции характеризуется утверждением научного метода исследований, вычленением физики из массы натурфилософии в отдельную область и развитием отдельных разделов физики: механики, оптики, термодинамики и т. д.

    Большинство историков придерживаются мнения о том, что научная революция началась в 1543 году, когда Николаю Копернику привезли из Нюрнберга впервые напечатанный экземпляр его книги «О вращении небесных сфер».

    После этого в течение примерно ста лет человечество обогатилось работами таких исследователей, как Галилео Галилей, Христиан Гюйгенс, Иоганн Кеплер, Блез Паскаль и др. Галилей первым начал последовательно применять научный метод, проводя эксперименты, чтобы подтвердить свои предположения и теории. Он сформулировал некоторые законы динамики и кинематики, в частности закон инерции, и проверил их опытным путём. В 1687 году Исаак Ньютон опубликовал книгу «Principia», в которой в подробностях описал две основополагающие физические теории: законы движения тел, известные как законы Ньютона, и законы тяготения. Обе теории прекрасно согласовывались с экспериментом. Книга также приводила теории движения жидкостей. Впоследствии классическая механика была переформулирована и расширена Леонардом Эйлером, Жозефом Луи Лагранжем, Уильямом Роуэном Гамильтоном и другими. Законы гравитации заложили основу тому, что позже стало астрофизикой, которая использует физические теории для описания и объяснения астрономических наблюдений.

    В России первым значительный вклад в развитие физической минералогии, математической физики, биофизики и астрономии в разделе изучения полярных сияний и физики «хвостов» комет внёс Михаил Ломоносов. Среди его наиболее значимых научных достижений в области физики — атомно-корпускулярная теория строения вещества и материи. Работы Ломоносова и его соратника Г. В. Рихмана внесли важный вклад в понимание электрической природы грозовых разрядов. Ломоносов не только провёл блестящее многолетнее исследование атмосферного электричества и установил ряд эмпирических закономерностей грозовых явлений, но и в работе «Слово о явлениях воздушных, от электрической силы происходящих» (1753) объяснил причину возникновения электричества в грозовых облаках конвекцией теплого воздуха (у поверхности Земли) и холодного воздуха (в верхних слоях атмосферы). Ломоносов разработал теорию света и выдвинул трёхкомпонентную теорию цвета, с помощью которой объяснил физиологические механизмы цветовых явлений. По мысли Ломоносова, цвета вызываются действием трёх родов эфира и трёх видов цветоощущающей материи, составляющей дно глаза. Теория цвета и цветового зрения, с которой Ломоносов выступил в 1756 году, выдержала проверку временем и заняла должное место в истории физической оптики.

    После установления законов механики Ньютоном, следующим исследовательским полем стало электричество. Основы создания теории электричества заложили наблюдения и опыты таких учёных XVII и XVIII веков, как Роберт Бойль, Стивен Грей, Бенджамин Франклин. Сложились основные понятия — электрический заряд и электрический ток. В 1831 году английский физик Майкл Фарадей показал связь электричества и магнетизма, продемонстрировав, что движущийся магнит индуцирует в электрической цепи ток. Опираясь на эту концепцию, Джеймс Клерк Максвелл построил теорию электромагнитного поля. Из системы уравнений Максвелла следовало существование электромагнитных волн, распространяющихся со скоростью света. Экспериментальное подтверждение этому нашел Генрих Герц, открыв радиоволны.

    С построением теории электромагнитного поля и электромагнитных волн, победой волновой теории света, основанной Гюйгенсом, над корпускулярной теорией Ньютона, завершилось построение классической оптики. На этом пути оптика обогатилась пониманием дифракции и интерференции света, достигнутым благодаря трудам Огюстена Френеля и Томаса Юнга.

    В XVIII и начале XIX века были открыты основные законы поведения газов, а работы Сади Карно по теории тепловых машин открыли новый этап в становлении термодинамики. В XIX веке Юлиус Майер и Джеймс Джоуль установил эквивалентность механической и тепловой энергий, что привело к расширенной формулировке закона сохранения энергии (первый закон термодинамики). Благодаря Рудольфу Клаузиусу был сформулирован второй закон термодинамики и введено понятие энтропии. Позже Джозайя Уиллард Гиббс заложил основы статистической физики, а Людвиг Больцман предложил статистическую интерпретацию понятия энтропии.

    К концу XIX века физики подошли к значительному открытию — экспериментальному подтверждению существования атома. В это время существенно изменилась и роль физики в обществе. Возникновение новой техники (электричества, радио, автомобиль и т. д.) требовало большого объёма прикладных исследований. Занятия наукой стало профессией. Фирма General Electric первой открыла собственные исследовательские лаборатории; такие же лаборатории стали появляться в других фирмах.

    Смена парадигм

    Конец девятнадцатого, начало двадцатого века был временем, когда под давлением новых экспериментальных данных физикам пришлось пересмотреть старые теории и заменить их новыми, заглядывая все глубже в строение материи. Эксперимент Майкельсона — Морли выбил основу из-под ног классического электромагнетизма, поставив под сомнение существование эфира. Были открыты новые явления, такие как рентгеновские лучи и радиоактивность. Не успели физики доказать существование атома, как появились доказательства существования электрона, эксперименты с фотоэффектом и изучение спектра теплового излучения давали результаты, которые невозможно было объяснить, исходя из принципов классической физики. В прессе этот период назывался кризисом физики, но одновременно он стал периодом триумфа физики, сумевшей выработать новые революционные теории, которые не только объяснили непонятные явления, но и многие другие, открыв путь к новому пониманию природы.

    В 1905 году Альберт Эйнштейн построил специальную теорию относительности, которая продемонстрировала, что понятие эфира не требуется при объяснении электромагнитных явлений. При этом пришлось изменить классическую механику Ньютона, дав ей новую формулировку, справедливую при больших скоростях. Коренным образом изменились также представления о природе пространства и времени. Эйнштейн развил свою теорию в общую теорию относительности, опубликованную в 1916 году. Новая теория включала в себя описание гравитационных явлений и открыла путь к становлению космологии — науки об эволюции Вселенной.

    Рассматривая задачу о тепловом излучении абсолютно чёрного тела, Макс Планк в 1900 году предложил невероятную идею, что электромагнитные волны излучаются порциями, энергия которых пропорциональна частоте. Эти порции получили название квантов, а сама идея начала построение новой физической теории — квантовой механики, которая ещё больше изменила классическую ньютоновскую механику, на этот раз при очень малых размерах физической системы. В том же 1905 году Альберт Эйнштейн применил идею Планка для успешного объяснения экспериментов с фотоэффектом, предположив, что электромагнитные волны не только излучаются, но и поглощаются квантами. Корпускулярная теория света, которая, казалось, потерпела сокрушительное поражение в борьбе с волновой теорией, вновь получила поддержку.

    Спор между корпускулярной и волновой теорией нашел своё решение в корпускулярно-волновом дуализме, гипотезе, сформулированной Луи де Бройлем. По этой гипотезе не только квант света, а любая другая частица проявляет одновременно свойства, присущие как корпускулам, так и волнам. Гипотеза Луи де Бройля подтвердилась в экспериментах с дифракцией электронов.

    В 1911 году Эрнест Резерфорд предложил планетарную теорию атома, а в 1913 году Нильс Бор построил модель атома, в которой постулировал квантовый характер движения электронов. Благодаря работам Вернера Гайзенберга, Эрвина Шрёдингера, Вольфганга Паули, Поля Дирака и многих других квантовая механика нашла свою точную математическую формулировку, подтверждённую многочисленными экспериментами. В 1927 году была создана копенгагенская интерпретация, которая открывала путь для понимания законов квантового движения на качественном уровне.

    Физика современности

      Зелёный (520 нм), синий (445 нм) и красный (635 нм) лазеры

    С открытием радиоактивности Анри Беккерелем началось развитие ядерной физики, которая привела к появлению новых источников энергии: атомной энергии и энергии ядерного синтеза. Открытые при исследованиях ядерных реакций новые частицы: нейтрон, протон, нейтрино, дали начало физике элементарных частиц. Эти новые открытия на субатомном уровне оказались очень важными для физики на уровне Вселенной и позволили сформулировать теорию её эволюции — теорию Большого взрыва.

    Сложилось окончательное разделение труда между физиками-теоретиками и физиками-экспериментаторами. Энрико Ферми был, пожалуй, последним выдающимся физиком, успешным как в теории, так и в экспериментальной работе.

    Передний край физики переместился в область исследования фундаментальных законов, ставя перед собой цель создать теорию, которая объясняла бы Вселенную, объединив теории фундаментальных взаимодействий. На этом пути физика получила частичные успехи в виде теории электрослабого взаимодействия и теории кварков, обобщённой в так называемой стандартной модели. Однако, квантовая теория гравитации до сих пор не построена. Определённые надежды связываются с теорией струн.

    Начиная с создания квантовой механики, быстрыми темпами развивается физика твердого тела, открытия которой привели к возникновению и развитию электроники, а с ней и информатики, которые внесли коренные изменения в культуру человеческого общества.

    ru-wiki.org

    Author: alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *