Задачи на проценты с решением легкие – Задачи по банковскому делу с решением (простые и сложные проценты)

Задачи на проценты | Математика

Удобнее всего решать задачи на проценты в 6 классе с помощью пропорций.  Для составления пропорции нет необходимости выяснять вид задачи на проценты.  Нахождение числа по его процентам, процентов от числа и процентного отношения чисел  в этом случае  проходит по одинаковой схеме, что существенно упрощает решение.

Задачи на проценты относятся к задачам на прямую пропорциональную зависимость, но при составления условия стрелки обычно не рисуют. Условие оформляется максимально просто: в первом столбце — единицы измерения, во втором — проценты.

Рассмотрим примеры задач на проценты,  решаемые с помощью пропорции.

1)  Сколько килограммов соли содержится в 40 кг 3-процентного раствора?

Решение:

Пусть х кг соли содержится в растворе.  Составляем пропорцию: 

   

(Здесь пропорцию составили по строкам. Можно также составлять ее по столбцам, например, в направлении от большой величины —  к меньшей: 40:х=100:3).

   

   

Значит, в растворе содержится 1,2 кг соли.

Ответ: 1,2 кг.

2) В саду растет 64 вишневых дерева, что составляет 16% всех деревьев. Сколько всего деревьев в саду?

 

Решение:

Пусть х деревьев всего в саду.  Составляем пропорцию:

   

   

   

Значит, всего в саду 400 деревьев.

Ответ: 400 деревьев.

3) В книге 130 страниц. Саша прочитал 104 страницы. Сколько процентов книги прочитал Саша?

Решение:

Пусть х% книги составляют прочитанные страницы. Составим и решим пропорцию:

   

   

130 и 100 сокращаем на 10, затем 13 и 104 сокращаем на 13:

   

Значит, Саша прочитал 80% книги.

Ответ: 80%.

В некоторых случаях задачи на проценты можно легко решать устно. Как это делается, я расскажу позже.

www.for6cl.uznateshe.ru

Задачи на проценты для 5 класса

Задача 1. Первое число составляет 80% от второго. А сколько процентов второе число составляет от первого?

Решение. Обозначим второе число через х. Тогда первое число по равно 0,8х. Найдем, сколько второе число составляет от первого. Для этого разделим второе число на первое, и результат умножим на 100%.

Ответ: второе число составляет 125% от первого.

Задача 2. На сколько процентов увеличится площадь квадрата, если его сторону увеличить на 30%?

Решение. Если сторона квадрата равна а, то площадь квадрата S=а2. После увеличения стороны на 30% ее длина составит 130% от а. Это 1,3а. Новая площадь S1=(1,3a)2=1,69a2. Разница составила 0,69а2

. Обращаем десятичную дробь 0,69 в проценты и получаем 69%. Ответ: Если сторону квадрата увеличить на 30%, то площадь квадрата увеличится на 69%.

Задача 3. Яблоки, содержащие 70% воды, потеряли при сушке 60% своей массы. Сколько процентов воды содержат сушеные яблоки?

Решение. Пусть было х яблок по массе. В них содержится 70% воды, значит, 30% сухого концентрата. 30% от х – это 0,3х. После сушки яблок это количество 0,3х сухого вещества так и остается. Известно, что при сушке яблоки потеряли 60% своей массы. Следовательно, осталось 40% от х, Это 0,4х. То, что осталось, примем за 100%. В этой массе 0,3х сухого вещества. Узнаем, сколько это процентов.

В сушеных яблоках 75% сухого вещества, значит, воды в сушеных яблоках 100%-75%=25%. Ответ: в сушеных яблоках 25% воды.

Задача 4. Свежие грибы содержат 90% влаги, сушеные – 12%. Сколько сушеных грибов получится из 13,2 кг свежих?

Решение. Пусть из 13,2 кг свежих грибов получится х кг сушеных грибов. Тогда сухого вещества в х кг будет содержаться 100%-12%=88%. Получается 0,88х кг. В 13,2 кг свежих грибов сухого вещества содержится 100%-90%=10%. В килограммах получается 0,1∙13,2=1,32 кг. Имеем равенство: 0,88х=1,32, отсюда х=1,32 : 0,88;

х=1,5 кг. Ответ: из 13,2 кг свежих грибов получается 1,5 кг сушеных грибов.

Задача 5. Сколько литров воды нужно разбавить с 300 г соли для получения раствора с концентрацией 15%?

Решение. Пусть нужно х граммов воды разбавить с 300 г соли для получения раствора с концентрацией 15%. Выразим количество соли в х г воды 15%-го раствора. Это 15% от х. Получаем 0,15х г. По условию соли 300 г. Получаем равенство:

0,15х=300, отсюда х=300:0,15=30000:15=2000 г = 2 л воды.

Ответ: нужно разбавить 2 л воды.

Задача 6. В раствор сахарной воды массой 200 г с концентрацией 30% налили 100 г чистой воды. Сколько процентов составляет концентрация сахара в последнем растворе?

Решение. В 200 г сахарной воды с концентрацией 30% содержится 0,3∙200=60 г сахара. После того, как в раствор налили 100 г чистой воды, масса раствора стала равной 300 г, а сахара в нем по-прежнему 60 г. Найдем процентное отношение массы сахара к массе раствора.

Ответ: концентрация сахара в последнем растворе составляет 20%.

Задача 7. В раствор соленой воды массой 600 г с концентрацией 15% добавили раствор соленой воды массой 240 г с концентрацией 50%. Сколько процентов соли в полученной смеси?

Решение. В 600 г соленой воды с концентрацией 15% содержится 15% от 600 г соли. Это 0,15∙600=90 г соли. В 240 г соленой воды с концентрацией 50% содержится 50% от 240 г соли. Это 0,5∙240=120 г соли. Масса полученной смеси равна 600+240=840 г. Соли в этой массе 90+120=210 г. Найдем процент соли в полученной смеси.

Ответ: в полученной смеси содержится 25% соли.

Задача 8. Цену товара сначала снизили на 20%, затем новую цену снизили еще на 25%. На сколько процентов снизили первоначальную цену товара?

Решение. Обозначив первоначальную стоимость товара через х, выразим окончательную стоимость товара и найдем, сколько процентов последняя цена товара будет составлять от первоначальной. После первого снижения на 20%  товар стал стоить 80% от первоначальной цены. Это 80% от х или 0,8х Эту цену снизили еще на 25%, стоимость стала составлять 75% от последней цены, равной 0,8х. Тогда последняя цена составит 75% от 0,8х или 0,75∙0,8х=0,6х. Находим, сколько процентов 0,6х (последняя цена товара) составляет от х (первоначальной цены товара).

Получается, что новая цена составляет 60% от первоначальной цены. Это означает, что цена товара после двух снижений уменьшилась на 40%. Ответ: цену товара снизили на 40%.

Задача 9. Число увеличили на 25%. На сколько процентов нужно уменьшить полученное число, чтобы вновь получилось заданное?

Решение. Пусть заданное число было равно х. После увеличения оно составит 1,25х (это 125% от х). Выясним, сколько процентов от  числа 1,25х нужно взять, чтобы опять получить х. Получается, что:

Так как х составляет от 1,25х только 80%, то это означает, что, для того, чтобы получить заданное число, нужно полученное число уменьшить на 100%-80%=20%.   Ответ: на 20%.

Если вы хотите научиться решать задачи на проценты, то полезной будет эта книга: перейдите по ссылке.

 

www.mathematics-repetition.com

Задачи на проценты с решением и ответами

Предприятие выпускало каждый месяц по 8000 изделий. Было решено увеличивать число изделий ежемесячно на 5%. Сколько изделий должно выпустить предприятие через: месяц; два месяца; три месяца?

Вкладчик положил в банк 250 000 р. при 8% годовых. Какова будет
величина вклада через три года?

Зарплата некоторой категории служащих повышалась дважды, причем повышение во второй раз было вдвое больше, чем в первый.
Определить, на сколько процентов повышалась зарплата каждый раз, если до первого повышения она составляла 7000 р., а после второго повышения—9240 р.

Вкладчику на его сбережения банк через год начислил 6000 р. процентных денег. Добавив 44 000 р., вкладчик оставил деньги еще на год.
По истечении года вновь были начислены проценты, и тогда вклад вместе с процентами составил 257 500 р. Какая сумма была первоначально положена в банк?

Автомобиль двигался по магистрали с определенной скоростью.
Выехав на проселочную дорогу, он снизил скорость на 20%, а затем на участке крутого подъема уменьшил скорость еще на 30%. На сколько процентов эта новая скорость меньше первоначальной?
З а м е ч а н и е. Некоторые учащиеся на поставленный вопрос отвечают сразу: на 50%. Проверим, так ли это.

При нагревании вода испаряется. Предположим, что за день испаряется 2% воды. Сколько литров воды останется от 100 л через три дня?

Цена некоторого товара снижается ежегодно на 10%. На сколько процентов по сравнению с первоначальной снизится стоимость товара через четыре года?

Цену товара сначала снизили на 20%, затем новую цену снизили еще на 15% и, наконец, после перерасчета произвели снижение еще на 10%. На сколько процентов всего снизили первоначальную цену товара?


1. Эту задачу проще решить чисто арифметически, не составляя уравнения.

За первую поездку автомобиль израсходовал 20% бензина, имевшегося в баке, а за вторую—25% оставшегося в баке бензина. После этого в баке осталось на 11 л больше, чем было израсходовано за обе поездки. Сколько литров бензина находилось первоначально в баке?

Цена 60 экземпляров первого тома и 75 экземпляров второго тома составляет 4050 р. Однако при 15%-й скидке на первый том и 10%-й скидке на второй том пришлось заплатить всего 3555 р. Определить цену одного экземпляра первого и второго томов.

referat5vip.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *