Хромосомы человека x y – X-хромосома — Википедия

Содержание

19. Характеристика х и у хромосом человека

X-хромосома — одна из самых больших во всём наборе 23-х хромосом человека, Y — самая маленькая. Х-хромосома – средняя субметацентрическая , У-хромосома – мелкая акроцентрическая, имеет вторичнуб перетяжку qh.

Феномен инактивации хромосомы Х в клетках женского организма на самом деле является тонким фактором регуляции соотношения доз определенных генов, требуемого для воспроизведения нормального фенотипа

Характкристика х- и у-хроматина. Происхождение полового хроматина, и методы его определения, значение в диагностике наследственных заболеваний

Х— хроматин (тельце Барра) – это инактивированная и конденсированная одна из двух Х- хромосом соматических интерфазных клеток женщины. В клетках женского эмбриона она инактивируется примерно на 16-20 день развития. Y- хроматин представляет собой блок гетерохроматина в длинном плече Y — хромосомы и выявляется в интерфазных ядрах соматических леток мужчин. В результате в генотипе особей гетерогаметного пола XY гены, расположенные в негомологичных участках Х- и Y-хромосом, встречаются в одной дозе.

Препараты полового хроматина можно приготовить, используя клетки слизистой ротовой полости, лейкоцитов, фибробластов кожи и клетки волосяной луковицы, окрашивая их ацетоорсеином или флуоресцентными красителями.

У женщин Х-хроматин выявляется с внутренней стороны ядра в виде плотной хорошо окрашенной глыбки, имеющей форму треугольника или овала. Клетки мужчины, как правило, без этой глыбки. женщин половой хроматин (тельце Барра) имеет вид темного тельца, располагающегося у оболочки ядра.

20. Воспроизведение на клеточном уровне. Понятие о жизненном цикле клеток

Жизненный (клеточный) цикл клетки (ЖЦК)— период жизни клетки от момента ее рождения (в результате деления материнской клетки) до собственного деления или естественной гибели. Клеточный цикл может включать периоды: Период выполнения клеткой специфических функцийМитотический цикл – процесс подготовки клетки к делению и само деление. Период покоя – ближайшая судьба клетки не определена (стволовые клетки), она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении.

Основные периоды жцк, утративших способность к делению

Гетерокаталетическая интерфаза (транскрибируются гены, контролирующие синтез белков, необходимых для осуществления функции данной клетки) -> смерть

Основные периоды жцк клеток, способных к делению

Гетерокаталитическая интерфаза(ГКИ) – период жизни клетки, когда она выполняет свои функции -> Митотический цикл (М фаза) -> Автокаталитическая интерфаза (А.К.И.) – период подготовки клетки к делении ->Митоз (<1 часа). В интерфазный период (А.К.И. и Г.К.И.): интерфазные хромосомы при световой микроскопии не выявляются; видны лишь глыбки хроматина (гетерохроматиновые участки хромосом), в том числе Х- и У-хроматин.

АВТОКАТАЛИТИЧЕСКАЯ ИНТЕРФАЗА (G1-период) – начальный период интерфазы: транскрибируются гены, контролирующие в основном синтез белков, необходимых для митоза, происходит накопление РНК и белков, в том числе и белков, необходимых для синтеза ДНК, увеличивается количество митохондрий, период длится 12-24 часа.

АВТОКАТАЛИТИЧЕСКАЯ ИНТЕРФАЗА (S-период): происходит репликация ДНК, хромосома становится двунитчатой, деконденсированной ДНП (в каждой хромосоме 2 хроматиды) – 2n4c, продолжается также синтез РНК и белков. Длительность S-периода составляет около 5 часов.

АВТОКАТАЛИТИЧЕСКАЯ ИНТЕРФАЗА (G2-период): В хромосомы – двунитчатые, деконденсированные ДНП (2n1c), функция ДНП – транскрипция, характеризуется остановкой синтеза ДНК и накоплением энергии, продолжается синтез РНК и белков, формирующий нити веретена деления. Длительность G2-периода составляет 3—6 часов.

Митотический цикл — совокупность процессов, происходящих в клетке от одного деления до другого.

studfiles.net

Что нужно знать про хромосомы человека

Интересные факты из мира медицины порой преподносят нам удивительные сюрпризы. Например, знаете ли вы, что такое хромосомы, и как они влияют на человека?

Предлагаем разобраться в этом вопросе, чтобы раз и навсегда расставить все точки над «i».

Рассматривая семейные фотографии, вы наверняка могли заметить, что члены одного родства похожи друг на друга: дети – на родителей, родители – на бабушек и дедушек. Это сходство передается от поколения к поколению с помощью удивительных механизмов генетической наследственности.

У всех живых организмов, от одноклеточных водорослей до африканских слонов, в ядре клетки находятся хромосомы – тонкие длинные нити, которые можно рассмотреть только в электронный микроскоп.

Хромосо́мы (др.-греч. χρῶμα — цвет и σῶμα — тело) — это нуклеопротеидные структуры в ядре клетки, в которых сосредоточена бо́льшая часть наследственной информации (генов). Они предназначены для хранения этой информации, ее реализации и передачи.

Сколько хромосом у человека

Еще в конце XIX века ученые выяснили, что число хромосом у разных видов не одинаково.

Например, у гороха 14 хромосом, у крысы – 42, а у человека – 46 (то есть 23 пары). Отсюда возникает соблазн сделать вывод, что чем их больше – тем сложнее существо, обладающее ими. Однако на самом деле это совершенно не так.

Из 23 пар человеческих хромосом 22 пары — аутосомы и одна пара — гоносомы (половые хромосомы). Половые имеют морфологические и структурные (состав генов) различия.

У женского организма пара гоносом содержит две Х-хромосомы (ХХ-пара), а у мужского – по одной Х- и Y-хромосоме (XY-пара).

Именно от того, каков будет состав хромосом двадцать третьей пары (ХХ или XY), зависит пол будущего ребенка. Определяется это при оплодотворении и слиянии женской и мужской половой клетки.

Данный факт может показаться странным, но по числу хромосом человек уступает многим животным. Например, у какой-то несчастной козы 60 хромосом, а у улитки – 80.

Хромосомы состоят из белка и молекулы ДНК (дезоксирибонуклеиновой кислоты), похожей на двойную спираль. В каждой клетке находится около 2 метров ДНК, а всего в клетках нашего организма около 100 млрд. км ДНК.

Интересен факт, что при наличии лишней хромосомы или при отсутствии хотя бы одной из 46, — у человека наблюдается мутация и серьезные отклонения в развитии (болезнь Дауна и т.п.).

Именно в связи с этим научным фактом в народе распространилось «интеллигентное» оскорбление: «У тебя что, лишняя хромосома?».

Теперь вы знаете общую информацию о принципах наследственности. Вообще эта тема очень интересная, хоть и чрезвычайно сложна.

Кстати, вас также может заинтересовать статья о том, почему близнецы похожи друг на друга.

Если вам нравятся интересные факты – подписывайтесь на InteresnyeFakty.org в любой социальной сети. С нами всегда интересно!

Понравился пост? Нажми любую кнопку:

Интересные факты:

interesnyefakty.org

Хромосомы – их значение, свойства, история открытия

Содержание:

  • Что такое хромосомы

  • История открытия хромосом

  • Хромосомная теория наследственности

  • Строение хромосом

  • Формы и виды хромосом

  • Функции хромосом

  • Набор хромосом

  • Хромосомный набор человека

  • Генетические болезни, связанные с хромосомами

  • Хромосомы, видео
  • Что такое хромосомы

    Хромосомы представляют собой нуклеопротеидные структуры эукариотической клетки, в которых хранится большая часть наследственной информации. Благодаря своей способности к самовоспроизведению, именно хромосомы обеспечивают генетическую связь поколений. Хромосомы образуются из длинной молекулы ДНК, в которой содержится линейная группа множества генов, и вся генетическая информация будь-то о человеке, животном, растении или любом другом живом существе.

    Морфология хромосом связана с уровнем их спирализации. Так, если во время стадии интерфазы хромосомы максимально развернуты, то с началом деления хромосомы активно спирализуются и укорачиваются. Своего максимального укорочения и спирализации они достигают во время стадии метафазы, когда происходит формирование новых структур. Эта фаза наиболее удобна для изучения свойств хромосом, их морфологических характеристик.

    История открытия хромосом

    Еще в середине позапрошлого XIX века многие биологи изучая в микроскопе строение клеток растений и животных, обратили внимание на тонкие нити и мельчайшие кольцевидные структуры в ядре некоторых клеток. И вот немецкий ученый Вальтер Флеминг применив анилиновые красители для обработки ядерных структур клетки, что называется «официально» открывает хромосомы. Точнее обнаруженное вещество было им названо «хроматид» за его способность к окрашиванию, а термин «хромосомы» в обиход чуть позже (в 1888 году) ввел еще один немецкий ученый – Генрих Вайлдер. Слово «хромосома» происходит от греческих слов «chroma» — окраска и «somo» — тело.

    Хромосомная теория наследственности

    Разумеется, история изучения хромосом не закончилась на их открытии, так в 1901-1902 годах американские ученые Уилсон и Сатон, причем независимо друг от друга, обратили внимание на сходство в поведении хромосом и менделеевских факторов наследственности — генов. В результате ученые пришли к заключению, что гены находятся в хромосомах и именно посредством их из поколения в поколения, от родителей к детям передается генетическая информация.

    В 1915-1920 годам участие хромосом в передаче генов было доказано на практике в целой серии опытов, сделанных американским ученым Морганом и сотрудниками его лаборатории. Им удалось локализировать в хромосомах мухи-дрозофилы несколько сот наследственных генов и создать генетические карты хромосом. На основе этих данных была создана хромосомная теория наследственности.

    Строение хромосом

    Строение хромосом разнится в зависимости от вида, так метафазная хромосома (образующаяся в стадии метафазе при митозном делении клетки) состоит из двух продольных нитей – хроматид, которые соединяются в точке, именуемой центромерой. Центромера – это участок хромосомы, который отвечает за расхождение сестринских хроматид в дочерние клетки. Она же делит хромосому на две части, названные коротким и долгим плечом, она же отвечает за деление хромосомы, так как именно в ней содержится специальное вещество – кинетохор, к которому крепятся структуры веретена деления.

    Тут на картинке показано наглядное строение хромосомы: 1. хроматиды, 2. центромера, 3. короткое плечо хроматид, 4. длинное плечо хроматид. На концах хроматид располагаются теломеры, специальные элементы, которые защищают хромосому от повреждений и препятствуют слипанию фрагментов.

    Формы и виды хромосом

    Размеры хромосом растений и животных значительно различаются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в диапазоне от 1,5 до 10 микрон. В зависимости от вида хромосомы отличаются и ее способности к окрашиванию. В зависимости от расположения центромеры различают такие формы хромосом:

    • Метацентрические хромосомы, для которых характерно срединное расположение центромеры.
    • Субметацентрические, для них характерно неравномерное расположение хроматид, когда одно плечо более длинное, а второе более короткое.
    • Акроцентрические или палочковидные. У них центромера расположена практически в самом конце хромосомы.

    Функции хромосом

    Основные функции хромосом, как для животных, так и для растений и вообще всех живых существ – передача наследственной, генетической информации от родителей к детям.

    Набор хромосом

    Значение хромосом столь велико, что их количество в клетках, а также особенности каждой хромосомы определяют характерный признак того или иного биологического вида. Так, например, у мухи-дрозофилы в наличии 8 хромосом, у обезьян – 48, а хромосомный набор человека составляет 46 хромосом.

    В природе существует два основных типа набора хромосом: одиночный или гаплоидный (содержится в половых клетках) и двойной или диплоидный. Диплоидный набор хромосом имеет парную структуру, то есть вся совокупность хромосом состоит из хромосомных пар.

    Хромосомный набор человека

    Как мы уже написали выше, клетки человеческого организма содержат 46 хромосом, которые объединены в 23 пары. Все вместе они и составляют хромосомный набор человека. Первые 22 пары человеческих хромосом (их называют аутосомами) являются общими как для мужчин, так и для женщин, и лишь 23 пара — половых хромосом — разнится у разных полов, она же определяет половую принадлежность человека. Совокупность всех пар хромосом также называется кариотипом.

    Такой вид имеет хромосомный набор человека, 22 пары двойных диплоидных хромосом содержат всю нашу наследственную информацию, и последняя пара различается, у мужчин она состоит из пары условных X и Y половых хромосом, в то время как у женщин в наличии две хромосомы Х.

    Аналогичную структуру хромосомного набора имеют и все животные, только количество неполовых хромосом у каждого из них свое.

    Генетические болезни, связанные с хромосомами

    Нарушение в работе хромосом, или даже само их неправильно количество является причиной многих генетических заболеваний. Например, синдрома Дауна появляется из-за наличия лишней хромосомы в хромосомном наборе человека. А такие генетические болезни как дальтонизм, гемофилия вызваны сбоями в работе имеющихся хромосом.

    Хромосомы, видео

    И в завершение интересно образовательное видео про хромосомы.


    www.poznavayka.org

    Хромосома — Википедия

    Материал из Википедии — свободной энциклопедии

    Митотические хромосомы человека, окраска DAPI Хромосомы саранчи в мейозе Разные стадии деления клеток эпителия саламандры. Рисунок из книги В. Флемминга Zellsubstanz, Kern und Zelltheilung (1882)

    Хромосо́мы (др.-греч. χρῶμα «цвет» + σῶμα «тело») — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Набор всех хромосом клетки, называемый кариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости[1].

    Хромосома эукариот образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит линейную группу множества генов. Необходимыми функциональным

    ru.wikipedia.org

    Хромосомы дают первые сведения о структуре генома

    Хромосомы дают первые сведения о структуре генома

    Выше уже говорилось, что в ядре клетки молекулы ДНК расположены в особых структурах, получивших название хромосомы. Их исследование началось еще свыше 100 лет назад с помощью обычного светового микроскопа. Уже к концу XIX века выяснилось кое-что о поведении хромосом в процессе деления клеток и высказывалась мысль об их участии в передаче наследственности.

    Хромосомы становятся видимыми в микроскопе при делении клетки на определенной стадии клеточного цикла, называемой митозом. Хромосомы в этом состоянии представляют собой компактные палочковидные структуры разной длины с довольно постоянной толщиной, у большей части хромосом имеется перетяжка, которая делит хромосому на два плеча. В области перетяжки расположена важная для удвоения хромосом структура, называемая центромерой. При делении клетки в ходе митоза происходит удвоение числа хромосом, в результате которого обе вновь образующиеся клетки в конечном итоге обеспечиваются одним и тем же стандартным набором хромосом.

    Лишь в 1956 г. впервые Ю. Тио и A. Леван описали хромосомный набор человека, определили количественный состав хромосом и дали их общую морфологическую характеристику. По сути дела эти работы и положили начало изучению структуры генома человека. У человека в каждой клетке тела содержится 46 хромосом, физические длины которых находятся в пределах от 1,5 до 10 мкм (рис. 7).

    Рис. 7. Вид под микроскопом полного набора хромосом, содержащихся в ядре каждой отдельной клетки человека

    Напомним читателю, что набор хромосом во всех клетках человека (за исключением половых) называют диплоидным (двойным), поскольку каждая из хромосом представлена двумя копиями (всего 23 пары). Каждая соматическая клетка человека (кроме красных кровяных клеток крови) содержит по 2 полных набора хромосом. В каждом единичном (гаплоидном) наборе присутствует 23 хромосомы — 22 обычные хромосомы (аутосомы) и по одной половой хромосоме — X или Y. Таким образом, геном каждого конкретного человека состоит из 23 пар гигантских молекул ДНК, распределенных в разных хромосомах, а если говорить о геноме человека вообще (мужчин и женщин), то общее число таких молекул равно 24. Это первое базовое сведение, которое было получено о геноме человека при анализе хромосом.

    Изучение строения (размера и формы) хромосом человека показало, что большинство из них по внешнему виду напоминают кегли, состоящие из двух толстых частей (хроматид) и тонкой перетяжки (центромеры) между ними. Сходство с кеглями, а не с гантелями заключается в том, что центромера чаще всего расположена не в центре хромосомы, а смещена к одному из ее концов. Размеры хромосом сильно варьируют, самая короткая хромосома примерно в десять раз меньше, чем самая длинная. Это второе принципиально важное сведение о структуре генома человека — составляющие его 24 молекулы ДНК имеют разный размер.

    Если сравнивать число и размер хромосом у человека и у других видов организмов, то можно увидеть огромные отличия. Например, у коровы, размер генома которой примерно равен геному человека, имеется 60 пар хромосом. У шпорцевой лягушки содержится всего 18 хромосом, но даже самые маленькие из них больше, чем самые крупные хромосомы человека. У птиц, наоборот, число хромосом достигает 40 и более и все они очень небольшие по размерам. Таким образом, разнообразие хромосом в природе весьма велико.

    С помощью световой микроскопии были определены размеры всех хромосом человека. Затем все неполовые хромосомы были пронумерованы по уменьшению размера — от 1 до 22. Половым хромосомам не присвоили номер, а назвали X и Y. Как показали более точные последующие исследования, хромосома 21 реально оказалась чуть меньше 22, однако нумерацию хромосом не изменили (чтобы не вносить путаницу). Различие в хромосомных наборах между мужчинами и женщинами состоит в том, что у женщин имеются две половые X-хромосомы (т. е. хромосомы во всех 23-х парах одинаковы), а у мужчин пару с X-хромосомой образует мужская половая хромосома — Y. Каждую хромосому можно рассматривать как отдельный том большого двадцатичетырехтомного собрания сочинений под названием Энциклопедия человека.

    Половые клетки человека, в отличие от клеток тела взрослого организма (соматических клеток), содержат не 2 набора томов ДНКового текста, а всего лишь один. Перед зачатием каждая отдельная хромосома (отдельный том в Энциклопедии человека) сперматозоида отца и яйцеклетки матери состоят из смешанных в разном сочетании различных глав ДНКового текста их родителей. Любая из хромосом, полученная нами от отца, образовалась в его семенниках незадолго до того, как мы были зачаты. Ранее, за всю историю человечества, точно такая хромосома никогда не существовала. Она была сформирована в процессе случайного перемешивания, происходящего при делении, постепенно образуясь из объединяющихся друг с другом участков хромосом предков со стороны отца. Также обстоит дело и с хромосомами яйцеклеток, за исключением того, что они формируются в организме нашей матери задолго до нашего рождения (почти сразу после рождения самой матери).

    В зиготе, образующейся в результате слияния сперматозоида и яйцеклетки, материнские и отцовские гены смешиваются и перетасовываются в разных сочетаниях. Это происходит в результате того, что хромосомы не остаются неизменными в поколениях — они вступают во взаимодействие со своей случайно встреченной парой, обмениваясь с ней материалом. Такой постоянно идущий процесс получил название рекомбинации. И следующему поколению часто достается уже гибридная хромосома — часть от дедушки и часть от бабушки. Далее в ряду поколений пути генов постоянно пересекаются и расходятся. В результате слияния уникальной яйцеклетки с уникальным сперматозоидом и возникает уникальный во всех отношениях геном. И в этом смысле все мы уникумы. Каждый человеческий индивид хранит уникальную генетическую информацию, состоящую из случайной комбинации разных вариантов генов.

    Отдельный ген можно рассматривать как единицу, продолжающую существовать в ряду многочисленных поколений. И в этом смысле ген бессмертен! Существует даже такая оригинальная точка зрения, что не сами люди, а их гены правят миром, а каждый конкретный живой организм служит лишь временным прибежищем для них. Эта не бесспорная мысль принадлежит Ричарду Докинзу, автору книги «Эгоистичный ген». По его мнению, гены практически бессмертны в отличие от живых организмов, в которых они существуют. Некоторым генам десятки и даже сотни миллионов лет. Гены, пользуясь терминологией Докинза, делают все возможное, чтобы выжить. Приспосабливаются к жаре и холоду, выбирая себе местечко получше, мигрируют с помощью человека и вступают в новые комбинации. Человек оказался довольно непоседливым хозяином. За тысячи лет он сильно исколесил мир, распространяя свое присутствие, влияние и свою начинку — гены. (Подробнее с идеями и аргументацией Р. Докинза любознательный читатель может познакомиться в Приложении 1). Такая точка зрения далеко не бесспорна, и из дальнейшего изложения нам станет понятно, что гены — это в первую очередь не эгоисты, а трудоголики. Имеются гены — «сторожа» генома, гены — «дворники», гены — «повара» и гены — «домоуправители». Обеспечивая свое существование, они обеспечивают и существование нас.

    Сразу после зачатия будущий человек представляет собой всего одну клетку (зиготу), наделенную одной исходной ДНКовой библиотекой, содержащей 46 томов. Среди 46 томов всегда 23 получены от отца, а другие 23 — от матери. Тексты 23 отцовских и 23 материнских томов хотя и очень сходны в целом, тем не менее отличаются в деталях. Например, в отцовском томе № 18 на странице 253 существует предложение-предписание (в виде гена), в котором сказано, что глаза у ребенка должны быть карими, а в этом же материнском томе на той же странице тоже написано о цвете глаз, но согласно этому тексту цвет должен быть голубыми. Первое указание более строгое (доминирующее), чем второе, и в результате у ребенка глаза будут иметь карий цвет. Ген, который диктует свои права, называют доминирующим, а тот, который уступает свои права, — рецессивным. Голубой цвет глаз имеют только те люди, у которых и в материнском, и в отцовском тексте содержатся рецессивные гены, в которых есть указание на голубоглазость. Затем зигота делится на две клетки, каждая из них вновь делится и так до появления миллиардов клеток. Схематически процесс деления клеток изображен на рис. 8.

    При каждом делении клетки содержащиеся в библиотеках тома ДНКового текста точно копируются, причем практически без ошибок. Организм взрослого человека состоит в среднем из 1014 клеток. Например, в головном мозге и печени насчитывается примерно по 10 млрд. клеток, в иммунной системе — 300 млрд. клеток. В течение всей жизни человека в его организме происходит около 1016 клеточных делений. Клеточный состав многих органов за 70 лет жизни обновляется несколько раз. И каждая из этих клеток содержит одни и те же 46 томов ДНКового текста.

    В конце 60-х годов XX века был осуществлен важный прорыв в исследовании хромосом. Обусловлен он был всего лишь тем, что для их окраски стали использовать специальное контрастное вещество — акрихин-иприт, а затем и другие сходные с ним соединения. Такая окраска позволила выявить внутри хромосом большое число разных субструктур, которые не обнаруживались под микроскопом без окрашивания. После окрашивания хромосом специфическим красителем Гимза-Романовского они выглядят как зебры: вдоль всей длины видны поперечные светлые и темные полосы, имеющие окраску разной интенсивности.

    Рис. 8. Основные стадии клеточного цикла, приводящего к делению клетки

    Эти полосы получили название хромосомных G-сегментов или полос (рис. 9). Картина сегментации сильно отличается у разных хромосом, но расположение хромосомных сегментов постоянно у каждой из хромосом во всех типах клеток человека.

    Природа полос, выявляемых при окраске, до конца еще не ясна. Сейчас установлено только, что участки хромосом, соответствующие темным полосам (названные R-полосами), реплицируются раньше, чем светлые участки (названные G-полосами). Таким образом, полосатость хромосом скорее всего все же имеет некий до конца еще не понятый смысл.

    Окрашивание хромосом очень облегчило их идентификацию, а в дальнейшем способствовало определению расположения на них генов (картированию генов).

    Рис. 9. Специфические хромосомные G-сегменты, выявляемые при окраске хромосом человека, и система их обозначения согласно решению международной конференции в Париже в 1971 году. Цифрами под хромосомами указаны их номера. X и Y — половые хромосомы, p — короткое плечо, q — длинное плечо хромосом

    Хотя детальные процессы, происходящие при окрашивании, еще не до конца ясны, очевидно, что картина окраски зависит от такого параметра, как увеличенное или уменьшенное содержание в отдельных полосах хромосом АТ или ГЦ-пар. И это еще одно общее сведение о геноме — он не однороден, в нем есть районы, обогащенные определенными парами нуклеотидов.

    Это, в частности, может быть связано с повторяемостью некоторых типов нуклеотидных последовательностей ДНК в определенных районах.

    Дифференциальная окраска хромосом нашла широкое применение для выявления и идентификации небольших индивидуальных изменений генома конкретного человека (полиморфизма), в частности, приводящих к различным патологиям. Примером этому может служить обнаружение так называемой филадельфийской хромосомы, встречающейся у больных с хроническим миелоидным лейкозом. С помощью окраски хромосом установлено, что у пациентов с этим заболеванием определенный фрагмент исчезает на хромосоме 21 и появляется на конце длинного плеча хромосомы 9 (перенос фрагмента или транслокация, сокращенно t). Генетики обозначают такое событие как t (9; 21). Таким образом, хромосомный анализ свидетельствует о том, что разные молекулы ДНК могут обмениваться между собой отдельными участками, в результате чего в геноме образуются «гибриды», состоящие из молекул ДНК разных хромосом. Анализ уже изученных свойств хромосом позволил сформировать представление о полиморфизме генома человека.

    Для выяснения локализации отдельных генов на хромосомах (то есть картирования генов) используют целый арсенал специальных зачастую весьма сложных по замыслу и исполнению методов. Один из основных — молекулярная гибридизация (образование гибрида) гена или его фрагмента с фиксированными на твердой подложке препаратами хромосом, выделенными из клеток в чистом виде (это называют гибридизацией in situ). Суть метода гибридизации in situ заключается во взаимодействии (гибридизации) между денатурированными (расплетенными) нитями ДНК в хромосомах и комплементарными нуклеотидными последовательностями добавленных к препарату хромосом, индивидуальных однонитевых ДНК или РНК (их называют зондами). При наличии комплементарности между одной из нитей хромосомной ДНК и зондом между ними образуются довольно стабильные молекулярные гибриды. Зонды маркируют предварительно с помощью разных меток (радиоактивных, флуоресцентных или др.). Места образования гибридов на хромосомах выявляют по положению этих меток на препаратах хромосом. Так, еще до появления методов генной инженерии и секвенирования ДНК выяснили, например, расположение в геноме человека генов, кодирующих большие и малые рибосомные РНК (рРНК). Гены первых оказались локализованными в пяти разных хромосомах человека (13, 14, 15, 21 и 22), тогда как основная масса генов малой рРНК (5S РНК) сконцентрирована в одном месте на длинном плече хромосомы 1.

    Пример картины, получаемой при гибридизации меченых флюоресцентным красителем генов-зондов, приведен на рис. 10 на цветной вклейке.

    Рис. 10. Гибридизация хромосом человека с генами-зондами, мечеными красным и зеленым флюоресцентными красителями. Стрелками указано расположение соответствующих генов на концах двух разных хромосом (справа вверху дано увеличение картины гибридизующихся хромосом).

    Гены, расположенные на одной хромосоме, определяют как сцепленные (связанные) гены. Если гены расположены на разных хромосомах, они наследуются независимо (независимая сегрегация). Когда же гены находятся на одной и той же хромосоме (т. е. сцеплены), они неспособны к независимой сегрегации. Изредка в половых клетках могут происходить различные изменения хромосом в результате рекомбинационных процессов между гомологичными хромосомами. Один из таких процессов получил название кроссинговера. Из-за кроссинговера сцепление между генами одной группы никогда не бывает полным. Чем ближе расположены друг к другу сцепленные гены, тем меньше вероятность изменения расположения таких генов у детей по сравнению с родителями. Измерение частоты рекомбинаций (кроссинговера) используется для установления линейного порядка генов на хромосоме внутри группы сцепления. Таким образом, при картировании хромосом первоначально устанавливают, находятся ли данные гены в одной и той же хромосоме, без уточнения, в какой именно. После того, как хотя бы один из генов данной группы сцепления локализуют в определенной хромосоме (например, с помощью гибридизации in situ), становится ясным, что все другие гены этой группы сцепления находятся в той же самой хромосоме.

    Первым примером связи генов с определенными хромосомами может служить обнаружение сцепления определенных наследуемых признаков с половыми хромосомами. Чтобы доказать локализацию гена в мужской половой Y-хромосоме, достаточно показать, что данный признак всегда встречается только у мужчин и никогда не обнаруживается у женщин. Группа сцепления женской X-хромосомы однозначно характеризуется отсутствием наследуемых признаков, передающихся от отца к сыну, и наследованием признаков матери.

    Особенно важным для изучения генома человека на первых этапах его исследования стал метод, называемый гибридизацией соматических клеток. При смешивании соматических (неполовых) клеток человека с клетками других видов животных (чаще всего для этой цели использовали клетки мышей или китайских хомячков) в присутствии определенных агентов может происходить слияние их ядер (гибридизация). При размножении таких гибридных клеток происходят потери некоторых хромосом. По счастливой для экспериментаторов случайности в гибридных клетках человек-мышь происходит потеря большей части хромосом человека. Далее отбираются гибриды, в которых остается только какая-нибудь одна человеческая хромосома. Исследования таких гибридов позволили связать некоторые биохимические признаки, свойственные клеткам человека, с определенными хромосомами человека. Постепенно благодаря использованию селективных сред научились добиваться сохранения или потери отдельных хромосом человека, несущих определенные гены. Схема отбора, хотя и не очень проста на первый взгляд, довольно хорошо показала себя в эксперименте. Так, придумали специальную селективную среду, на которой могут выживать только те клетки, в которых синтезируется фермент тимидинкиназа. Если для гибридизации с клетками человека взять в качестве партнера мутантные клетки мыши, не синтезирующие тимидинкиназу, то будут выживать только те гибриды, которые содержат хромосомы человека с геном тимидинкиназы. Таким путем впервые удалось установить локализацию гена тимидинкиназы на хромосоме 17 человека.

    Несмотря на то, что изучение генома человека на уровне хромосом дало ряд важных его характеристик, они были самыми общими и дали относительно мало для полного понимания устройства и функционирования генетического аппарата человеческих клеток.

    Поделитесь на страничке

    Следующая глава >

    bio.wikireading.ru

    Факты о хромосомах человека — Это должен знать каждый

    Хромосома – это содержащая ДНК нитевидная структура в клеточном ядре, которая несет в себе гены, единицы наследственности, расположенные в линейном порядке. У человека имеется 22 пары обычных хромосом и одна пара половых хромосом. Помимо генов хромосомы также содержат регуляторные элементы и нуклеотидные последовательности. Они вмещают ДНК-связывающие белки, которые контролируют функции ДНК. Интересно, что слово «хромосома» происходит от греческого слова «chrome», означающего «цвет». Хромосомы получили такое название из-за того, что имеют особенность окрашиваться в различные тона. Структура и природа хромосом разнятся от организма к организму. Человеческие хромосомы всегда были предметом постоянного интереса исследователей, работающих в области генетики. Широкий круг факторов, которые определяются человеческими хромосомами, аномалии, за которые они ответственны, и их сложная природа всегда привлекали внимание многих ученых.

    Интересные факты о человеческих хромосомах

    В человеческих клетках содержится 23 пары ядерных хромосом. Хромосомы состоят из молекул ДНК, которые содержат гены. Хромосомная молекула ДНК содержит три нуклеотидных последовательности, требующихся для репликации. При окрашивании хромосом становится очевидной полосчатая структура митотических хромосом. Каждая полоска содержит многочисленные нуклеотидные пары ДНК.

    Человек – это биологический вид, размножающийся половым путем и имеющий диплоидные соматические клетки, содержащие два набора хромосом. Один набор наследуется от матери, тогда как другой – от отца. Репродуктивные клети, в отличие от клеток тела, имеют один набор хромосом. Кроссинговер (перекрёст) между хромосомами приводит к созданию новых хромосом. Новые хромосомы не наследуются от кого-то одного из родителей. Это служит причиной того факта, что не у всех у нас проявляются черты, получаемые нами непосредственно от одного из наших родителей.

    Аутосомным хромосомам присвоены номера от 1 до 22 в порядке убывания по мере уменьшения их размера. У каждого человека имеется два набора из 22-х хромосом, X-хромосома от матери и X- или Y-хромосома от отца.

    Аномалия в содержимом хромосом клетки может вызывать у людей определенные генетические нарушения. Хромосомные аномалии у людей часто оказываются ответственными за появление генетических заболеваний у их детей. Те у кого, имеются хромосомные аномалии, зачастую являются только носителями заболевания, тогда как у их детей это заболевание проявляется.

    Хромосомные аберрации (структурные изменения хромосом) бывают вызваны различными факторами, а именно делецией или дупликацией части хромосомы, инверсией, представляющей собой изменение направления хромосомы на противоположное, или транслокацией, при которой происходит отрыв части хромосомы и присоединение ее к другой хромосоме.

    Лишняя копия хромосомы 21 ответственна за очень хорошо известное генетическое заболевание под названием синдром Дауна.

    Трисомия хромосомы 18 приводит к синдрому Эдвардса, который может вызывать смерть в младенческом возрасте.

    Делеция части пятой хромосомы приводит к генетическому нарушению известному как синдром кошачьего крика. У людей, пораженных этим заболеванием, зачастую наблюдается задержка в умственном развитии, а их плач в детском возрасте напоминает кошачий крик.

    Нарушения, обусловленные аномалиями половых хромосом, включают синдром Тернера, при котором женские половые признаки присутствуют, но характеризуются недоразвитостью, а также синдром XXX у девочек и синдром XXY у мальчиков, которые вызывают дислексию у пораженных ими индивидуумов.

    Впервые хромосомы были обнаружены в клетках растений. Монография Ван Бенедена, посвященная оплодотворенным яйцам аскарид привела к дальнейшим исследованиям. Позже Август Вайсман показал, что зародышевая линия отличается от сомы, и обнаружил, что клеточные ядра содержат наследственный материал. Он также предположил, что фертилизация приводит к формированию новой комбинации хромосом.

    Эти открытия стали краеугольными камнями в области генетики. Исследователи уже накопили достаточно значительное количество знаний о человеческих хромосомах и генах, однако многое еще только предстоит обнаружить.

    Видео

    Ссылка по теме: Сердечно-сосудистая система человека


    Источник: buzzle.com

    Фото: ck12.org


    www.vitaminov.net

    Человек половые хромосомы — Справочник химика 21


        Такого же типа сцепленное с полом наследование было обнаружено у многих других животных, двудомных растений, а также у человека. Среди 23 различных пар хромосом человека лучше всего изучены в отношении содержащихся в них генов половые хромосомы. У самцов дрозофилы между X- и -хромосомами перекреста не бывает, а следовательно, и обмена между находящимися в них генами не происходит. У человека же, по-видимому, возможен обмен некоторыми генами, [c.147]

        Моносомия всего организма описана для Х-хромосомы. Это синдром Шерешевского — Тернера, первое клиническое описание которого в 1925 г. дал советский ученый Н. А. Шерешевский, а затем в 1938 г. — Дж. Тернер. Примеры анеуплоидии у человека представлены в табл. 20.7. Поскольку у человека У -хромосома играет определяющую пол роль (см. гл. 16), индивидуумы ХО — женщины, однако с нарушениями в развитии первичных и вторичных половых признаков (рис. 20.11). Вторая Х-хромосома необходима для нормальной дифференцировки гонад по женскому типу. У больных не обнаруживается половой хроматин. [c.516]

        Каждая молекула ДНК упакована в отдельную хромосому, а вся генетическая информация, хранящаяся в хромосомах организма, называется геномом. Геном бактерии E. oli содержит 4,7 х 10 нуклеотидных пар, составляющих единственную молекулу ДНК (одна хромосома). Геном человека представлен 6 х 10 парами нуклеотидов, распределенных в 46 хромосомах (22 пары аутосом и 2 отличающиеся друг от друга половые хромосомы), и, следовательно состоит из 24 типов молекул ДНК. У диплоидных организмов, таких как мы с вами, имеется по две копии каждого типа хромосом, одна из этих копий наследуется от матери, а другая от отца (за исключением половых хромосом самцов, которым Y-хромосома всегда достается от отца, а Х-хромосома-от матери). Итак, типичная клетка человека содержит 46 хромосом и около 6 х 10 нуклеотидных пар ДНК. Другие млекопитающие имеют геном примерно такого же размера. Теоретически это количество ДНК можно упаковать в куб со стороной 1,9 мкм. Для сравнения, 6 х 10 букв в такой книге заняли бы более миллиона страниц, и ее объем оказался бы в 10 раз больше. [c.95]

        Из 46 хромосом (23 пары) в кариотипе человека 22 пары одинаковы у мужчин и женщин (аутосомы), а одна пара, называемая половой, у разных полов отличается у женщин — XX, у мужчин — XV (см. главу 3). Половые хромосомы представлены в каждой соматической клетке индивида. При образовании гамет во время мейоза гомологичные половые хромосомы расходятся в разные половые клетки. Следовательно, каждая яйцеклетка помимо 22 аутосом несет одну половую хромосому X (гаплоидный набор хромосом равен 23). Все сперматозоиды также имеют гаплоидный набор хромосом, из которых 22 — аутосомы, а одна — половая. Половина сперматозоидов содержит X, другая половина — V хромосому. [c.114]

    Рис. 24.17. Половые хромосомы человека в метафазе мейоза.
        Хромосомные аберрации обсуждались в разд. 24.9.2. Обычно они приводят к гибели эмбриона на ранней стадии развития и являются причиной 50—60% всех самопроизвольных абортов. В следующих разделах мы рассмотрим три хорощо известных примера хромосомных мутаций у человека. Одно из заболеваний затрагивает аутосомы (неполовые хромосомы) и называется синдромом Дауна. Два других затрагивают половые хромосомы (синдром Клайнфельтера и синдром Тернера). При рассмотрении последующих разделов нам очень поможет знание механизмов мейоза (разд. 23.4) и умение разбираться в кариограммах (разд. 23.1.1). [c.252]

        Диплоидные клетки человека содержат 46 хромосом две половые хромосомы и 44 аутосомы, образующие 22 пары гомологов. Во время мейоза при формировании гап- [c.151]

        В отличие от нерасхождения потеря хромосом, вызванная облучением матерей за несколько недель до или через несколько часов после зачатия,-хорошо установленный факт. Сильный эффект мощности дозы свидетельствует, что опасность сопряжена главным образом с острым облучением высокими дозами, тогда как хроническое облучение при очень низких мощностях дозы, возможно, не увеличивает частоты мутаций. Количественный эффект для человека предсказать трудно, так как большинство спонтанно возникающих зигот ХО у людей абортируется. Исследования на пациентах с кариотипом ХО ясно показывают, что большинство из них обязаны своим происхождением потере одной половой хромосомы в результате задержки анафазы или митотическому нерасхождению во время раннего деления дробления. Заманчиво предположить, что абортированные зиготы ХО являются результатом нерасхождения в мейозе, поскольку мы уверены, что нерасхождение Х-хромосом действительно происходит (об этом свидетельствует существование генотипов XXY и XXX). Неизвестно, приводит ли потеря хромосом в период после зачатия до первого деления дробления к жизнеспособным зиготам ХО у человека, однако появление зигот с таким генотипом даже в отсутствие радиации свидетельствует о повышенном общем риске потери хромосом в ходе первых делений. Вот почему необходимо считать недели, к которым приурочено оплодотворение, периодом особой чувствительности к повреждениям. В это время и в течение нескольких недель после облучения высокими дозами радиации при высоких дозовых мощностях следует избегать зачатия. [c.252]

        Итак, если линейную информационную макромолекулу ДНК сравнить с длинными полосами лент, которые использовали в первых компьютерах, то ДНК хромосом можно представить как последовательность миллионов букв (оснований). В этих последовательностях закодирован весь набор инструкций, представляющих генетический материал всех живых клеток на Земле. Проект Геном человека поставил целью определить порядок этих букв во всех 22 парах аутосом и в двух половых хромосомах человека. Этой работой занимается целый ряд специализированных лабораторий мира, владеющих методами клонирования и секвенирования генов. В общедоступных базах данных и в персональных компьютерах молекулярных биологов хранятся сотни файлов, содержащих информацию о тысячах (может быть, миллионах) последовательностей ДНК. Достижения компьютерных технологий дают возможность биологам манипулировать последовательностями (например, искать определенную последовательность, разрезать ее или вставлять дополнительную информацию). Можно смело утверждать, что для появления ряда новых открытий молекулярной биологии было необходимо развитие современных компьютерных технологий (табл. 2.1). [c.50]

        Наследование заболеваний, сцепленных с полом, определяется тем, что мутантный ген расположен в X или V-хромосоме. Известно, что у женщин имеются две Х-половые хромосомы, а у мужчин — одна X- и одна У-хромосома. У человека в Х-хромосоме локализовано более 200 генов. Гены, расположенные в хромосоме X, могут быть рецессивными или доминантными. [c.15]

        Необходимо иметь в виду, что, в оттшчие от половой гибридизации, соматическая гибридизация эукариотических клеток завершается объединением под одной мембраной не только ядерных геномов двух (или более) особей, но и генов цитоплазмы (митохондриальных, хлоропластных, емкостью в 1000—2000 генов), что может отразиться на функциональной активности гибрида У межвидовых гибридов часть хромосом может затрачиваться за счет элиминации, которая оказывается видоспецифичной Так в гибридах протопластов клеток «мышь х человек» и «человек х комар» элиминируются хромосомы человека и комара соответственно При морфологическом различии хромосом такие гибриды удобны для картирования генов Напомним, что в соматических клетках мыши содержится 20 пар хромосом, в клетках человека 23 пары хромосом и три пары — в диплоидных клетках комара [c.183]

        Рис. 3.13. 22 пары аутосом и половые хромосомы человека, составляющие его кариотип [c.50]

        Пол человека определяется в момент оплодотворения. Женщина имеет один тип гамет — X, мужчина — два типа гамет X и V, причем, согласно законам мейоза, образуются они в равной пропорции. При оплодотворении хромосомные наборы гамет объединяются. Напо.мним, что зигота содержит 22 пары аутосом и одну пару половых хромосом. Если яйцеклетку оплодотворил сперматозоид с Х-хромосомой, то в зиготе пара половых хромосом будет XX, из нее разовьется девочка. Если же оплодотворение произвел сперматозоид с У-хромосомой, то набор половых хромосом в зиготе — XV. Такая зигота даст начало мужскому организму. Таким образом, пол будущего ребенка определяет гетерогаметный по половым хромосомам мужчина. Соот-нощение полов при рождении, по данным статистики, соответствует примерно 1 1. [c.115]

        Нормальный кариотип человека. XX — полоЬые хромосомы женского набора XV — половые хромосомы мужского набора. Способны ли хромосомы человека, подобно хромосомам животных клеток, включать в себя геном онкогенного вируса В какие хромосомы он включается В какой период  [c.68]

        Половые хромосомы — хромосомы, определяющие пол индивида (у человека — X- и У-хромосомы). [c.209]

        Хромосомные болезни -О- 185 Таблица 5.7. Типы полисомий по половым хромосомам у человека [c.185]

        Ген — это последовательность нуклеотидов, представляющая собой единицу активности для образования молекулы РНК. Хромосома состоит из одной-единственной невероятно длинной молекулы ДНК, содержащей множество генов В молекуле хромосомной ДНК имеются и другие типы нуклеотидных последовательностей, необходимых для ее функционирования сайт инициации репликации и теломера (они обеспечивают репликацию молекулы ДНК), а также центромера (она служит для прикрепления ДНК к митотическому веретену). Гаплоидный геном человека содержит 3 х l(f нуклеотидных пар, которые распределены между 22 различающимися аутосомами и 2 половыми хромосомами. По-видимому, лишь несколько процентов этой ДНК кодируют белки. [c.118]

        Как отмечалось в гл. XIII, пол у человека определяется обычным механизмом XX-XY, распространенным и у других двуполых организмов. Это в свою очередь позволяет объяснить наличие сцепленных с полом признаков, которые обусловлены генами, локализованными в X- или У-хромосоме. Подробное изучение таких признаков привело к предварительным выводам о расположении сцепленных с полом генов в половых хромосомах человека (см. гл. XIV). В отношении остальных 22 пар хромосом человека наши сведения пока еще очень отрывочны. Данные о сцеплении генов относятся преимущественно к случаям сцепленного с полом наследования. Известно также несколько примеров множественного аллелизма, например в отношении групп крови, принадлежащих к системе А, В, О (см. гл. XV). [c.433]

        Выпуск бесплодных насекомых не должен вызывать чрезмерных потерь урожая, а также приносить вред человеку и полезным животным. Исходя нз этих соображений, а также ради снижения затрат желательно производить выпуск только стерильных самцов. Для этого необходимо разработать удовлетворительный способ отделения куколок самок от куколок самцов на основании физических (величина, вес, осмотическое давление), генетических (маркировка половой хромосомы геном, изменяющим окраску насекомых) признаков или реакции на по.повой феромон [37, 230]. У многих насекомых самцы и их куколки меньше, чем самки и их куколки. Для разделения таких куколок по полу могут быть использованы специальные сепараторы с точно подобранными диаметром щелей или ячеек так разделяют в США куколок самцов и самок кровососущих комаров [2]. Представляется возможным использовать отделенных самок иным путем [230] а) выпускать куколки самок, зараженные паразитами б) выпускать стерильных самцов в одни, а стерильных самок в другие районы (как это проводится теперь в Австралии с зеленой мясной мухой, Lu ilia uprina)-, нехватка самцов при избыточной численности самок приводит к тому, что часть нестерилизованных самок остается неоплодотворениой [146, 149, 230]. [c.20]

        Половые клетки растения или животного содержат п хромосом. Это число широко варьирует у разных видов — от одной хромосомы до нескольких сотен, но оно постоянно для каждого вида, например у человека п 24. Когда при оплодотворении сперматозоид сливается с яйцеклеткой, образуется клетка, содержащая 2п хромосом так, для человека 2п 48 . Хромосомы половой клетки, как правило, все разные и в благоприятных случаях их можно различить по величине и форме под микроскопом. Каждая хромосома, внесенная мужской половой клеткой (за одним исключением), в основном идентична гомологична) соответствующей хромосоме, внесенной женской половой клеткой. Одна пара хромосом — половые хромосомы у многих животных, включая человека и плодовую мушку дрозофилу, — является исключением в том отношении, что в оплодотворенном яйце (или зиготе), которое разовьется в мужской организм, две хромосомы, составляющие пару, различны можно отличить Х-хромосому, внесенную яйцеклеткой, и У-хромосому, внесенную спермием. С другой стороны, зигота, которая должна дать женский организм, имеет две Х-хромосомы. Имеются спермин двух типов одни несут Х-хромосому и дают начало зиготам, развивающимся в самок, другие несут У-хромосому и образуют зиготы, дающие самцов. У птиц и бабочек гетерогаметная самка имеет хромосомы XY. Семенные растения и многие низшие животные не всегда имеют механизм определения пола типа XV. [c.105]

        Известна у человека и анеуплоидия по половой хромосоме. При наличии в клетках одной Х-хромосомы в отсутствие -хромосомы возникает синдром Тернера (это единственный известный у человека случай моносомии). Страдающие синдромом Тернера стерильны. Фенотипически это женщины с почти атрофированными яичниками и слабо развитыми вторичными половыми признаками. В число других характерных признаков синдрома Тернера входят низкий рост, деформация грудной клетки, крыловидная шея. Синдром Тернера обычно не сопровождается умственной неполноценностью. Встречается это заболевание с частотой примерно 1 на 5000 живых новорожденных. Более часто, а именно у одной из 700 женщин, количество Х-хромосом превышает две. Как правило, это особи, имеющие генотип XXX, однако выявлены женщины с четырьмя и большим числом Х-хромосом (см. табл. 21.3). Для женщин с трисомией по Х-хромосоме характерны пониженная плодовитость и, как правило, умственная отсталость. [c.65]

        Половые хромосомы определяют пол данной особи. У некоторых видов особи одного пола несут две половые хромосомы (XX), а особи другого пола — одну (ХО), как у клопа-ромбовика Anasa tristis. У многих видов, в том числе у человека и у дрозофилы, особи мужского пола имеют хромосому (Y), которой нет у особей женского пола и которая образует пару (конъюгирует) с хромосомой X, представленной у особей женского пола в двух экземплярах (XX). [c.58]

        Пол, имеющий обе одинаковые половые хромосомы (XX и ZZX, называется гомогаметным, так как он дает все гаметы одинаковые, а пол с различными половыми хромосомами (ХУ или 2 Л/), образующий лва типа гамет, называется гетерогаметным. У человека, млеко- [c.128]

        Генетика человека опирается на общие принципы, полученные первоначально в исследованиях на растениях и животных. Как и у них, у человека имеются менделирующие, т.е. наследуемые по законам, установленным Г Менделем, признаки. Для человека, как и для других эукариот, характерны все типы наследования аутосомно-доминант-ный, аутосомно-рецессивный, наследование признаков, сцепленных с половыми хромосомами, и за счет взаимодействия неаллельных генов. Разработал Г.Мендель и основной метод генетики — гибридологический. Он основан на скрещивании особей одного вида, обладающих альтернативными признаками, и количественном анализе полученных фенотипических классов. Естественно, этот метод не может использоваться в генетике человека. [c.104]

        Предрасполагающий к преступности эффект лишней Y-хромосомы впервые обнаружился при обследовании преступников с трудным поведением среди них оказалась повышенной в 10 раз против средней частота хроматин-положительных (т. е. мужчин, имеющих вместо нормальной одной — две Х-хромосомы). Самым неожиданным было то, что цитогенетическое исследование установило наличие у некоторых из них еще и второй Y-хромосомы, т. е. 48 хромосом с половыми хромосомами XXYY вместо 46 хромосом с половыми хромосомами XY. Эта находка побудила одну из основоположниц цитогенетики человека П. Джекобе со своими сотрудниками обследовать психических больных, которых приходилось содержать в условиях особо строгого надзора. Из 197 обследованных не менее 7 оказались имеющими комплекс половых хромосом XYY, среди нормального населения очень редкий (Ja obs Р., 1977). [c.185]

        Путем последовательных митотических делений из одной оплодотворенной яйцеклетки формируется взрослый организм. Для формирования организма человека достаточно всего 40—50 последовательных митозов. Однако образование гамет (половых клеток), имеющих гаплоидный набор хромосом, осуществляется путем мейоза — специального процесса, в ходе которого число хромосом делится надвое. При мейозе одна хромосома из каждой гомологичной пары, содержащейся в диплоидной клетке, переходит в одну из образующихся гамет. В организме, подобном As aris, который содержит единственную пару хромосом, гамета получает хромосому либо от отцовского организма, либо от материнского, но не от обоих сразу. В организмах, имеющих несколько пар хромосом, хромосомы при мейозе распределяются случайным образом, так что в каждой гамете имеются как материнские, так и отцовские хромосомы. [c.40]

        Аутосома (Autosome) Любая хромосома, не являющаяся половой. В соматических клетках человека присутствуют 22 пары аутосом и одна пара половых хромосом. [c.544]

        У человека изменение в наборе половых хромосом также приводит к отклонениям от нормальной половой дифференци-ровки. Совсем недавно обнаружены различные случаи таких аномалий у индивидуумов, имевших конституции ХХУ и ХО (см. стр. 443). Индивидуумы с набором половых хромосом ХХУ проявляли определенную степень интерсексуальности. Это указывает на то, что у человека в отличие от дрозофилы У-хромосома играет активную роль в определении мужского пола. [c.129]

        В гл. XIII мы уже указывали, что некоторые патологические отклонения от нормальной дифференциации пола связаны с отклонениями в числе половых хромосом. Так, нормальное число хромосом 46 в случае половых хромосом типа ХО будет равно 45, в случае XXX и ХХ — 47 и, наконец, в случае XXXV — 48. Что же касается аутосом человека, то в течение двух последних лет было обнаружено несколько различных типов трисомиков. Так, разные исследователи выяснили, что при болезни Дауна 2п = 47, причем лишняя хромосома— одна из самых маленьких аутосом (22-я). Недавно были описаны трисомики по 17-й хромосоме и по одной из хромосом группы 13—15 (см. фиг. 49,5). В каждом из этих случаев трисомия была связана с характерным спектром нарушений развития и умственной отсталостью. Надо еще выяснить, являются ли лишние хромосомы нормальными или же они несут хромосомные перестройки это удастся установить лишь в том случае, когда станет возможным анализ мейоза у подобных людей. Кажется вероятным, что люди с болезнью Дауна и с другими отклонениями от нормы представляют собой подлинных трисомиков и что их аномальные признаки обусловлены наличием лишних хромосом (см. стр. 346—348). [c.443]


    chem21.info

    Author: alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *