Химический состав клеточный центр – Клеточный центр — Википедия

Клеточный центр химический состав — Здоровье и лечение

Все живые организмы, обитающие на нашей планете, состоят из клеток. У растений, животных и человека клетки представляют собой микроскопические образования, обладающие всеми важнейшими жизненными свойствами: самовоспроизведением, саморегуляцией, единством структуры и функций, историческим развитием. Все процессы, происходящие в клетках на молекулярном уровне, сходны у всех живых организмов, начиная от простых одноклеточных и кончая многоклеточными высшими растениями и животными. Организм человека состоит из огромного количества клеток, отличающихся своими размерами, формой, величиной и функциями.

По форме клетки бывают круглые, дисковидные, кубические, звездчатые, веретенообразные и другие. Форма клеток зависит от выполняемой ими функции. Так, клетки покровной ткани удлиненные, плоские, плотно прилегающие друг к другу; нервные клетки звездчатой формы с длинными отростками; клетки лейкоцитов имеют амебообразную форму и т. д.

Вместе с тем, все клетки имеют общие черты строения. Основные части любой клетки — цитоплазма и ядро. В цитоплазме расположены органеллы, общего и специального назначения включения. В ядре расположены нитевидные образования — хромосомы (носители наследственной информации).

Цитоплазма — вязкое вещество, отграниченное от внешней среды наружной плазматической мембраной. Мембрана выполняет важные функции — регулирует обмен веществ между внешней и внутренней средой клетки; воспринимает различные раздражения с помощью специальных белковых образований — рецепторов.

К органеллам клетки относятся эндоплазматическая сеть, рибосомы, митохондрии, комплекс Гольджи, лизосомы, клеточный центр, мембрана. Органеллы, подобно органам тела, выполняют определенные функции, обеспечивая жизнедеятельность клетки.

Эндоплазматическая сеть (ЭПС) представлена системой мембран, образующих большое количество каналов, трубочек и полостей, пронизывающих всю цитоплазму. Эндоплазматическая сеть бывает двух типов: гранулированная (шероховатая) и гладкая. На мембранах гранулирован

phoenix-pharma.ru

Клеточный центр | Биология

Клеточный центр, или центросома, обычно состоит из пары центриолей и центросферы, образованной радиально отходящими тонкими фибриллами. Центриоли — немембранные органоиды эукариотических клеток, причем их нет в клетках высших растений, ряда грибов и некоторых животных.

Каждая центриоль состоит из девяти триплетов тубулиновых микротрубочек. Триплеты располагаются по окружности цилиндра длиной около 0,3 мкм и диаметром около 0,1 мкм.

В каждом триплете микротрубочки отличаются. Одна из них состоит из большего числа протофиламентов, а две другие представляют собой как бы полусферы, присоединенные вторая к первой, а третья ко второй.

В паре центриоли располагаются под прямым углом друг к другу. В интерфазе находятся в центре клетки и связаны либо с ядром, либо с комплексом Гольджи.

Клеточный центр является главным центром организации микротрубочек, инициирует их рост. Здесь же образуются жгутики и реснички.

Клеточный центр выполняет функцию организации веретена деления. Центриолей нет у растений, но веретено у них образуется. Поэтому считается, что веретено образует именно клеточный центр, а не входящие в его состав центриоли. Вероятная функция центриолей — ориентация веретена так, чтобы хромосомы расходились именно к полюсам. Перед делением каждая центриоль из пары отходит к своему полюсу.

От центриолей, находящихся на полюсах, вырастают микротрубочки. Они прикрепляются к центромерам хромосом и обеспечивают равноценное распределение наследственного материала между дочерними клетками.

В новых клетках возле каждой центриоли возникает новая – дочерняя. Однако бывают другие варианты: вторая центриоль пары может появляться раньше, или в клетке может быть несколько пар. Кроме того, центриоли образуют базальные тельца, представляющие собой их видоизменения, находящиеся у основания жгутиков и ресничек.

biology.su

Глава 23. Клеточный центр

Итак, в клетках животных, растений и одноклеточных микротрубочки поляризованы, так что большей частью их растущие (+)-концы направлены к периферии клетки. Это связано с тем, что МТ начинают свой рост от специальных участков в клетке, от центров организации микротрубочек (ЦОМТ). Некоторые из ЦОМТ имеют сложную морфологическую организацию, другие устроены иначе. Различные ЦОМТ можно разделить на несколько групп: центросомные клеточные центры, и центры организации микротрубочек, не имеющие четкой локализации.

Так например, в клетках высших растений полимеризация МТ происходит по периферии клеточного ядра, от которого МТ расходятся радиально. Сходная картина наблюдается при регенерации МТ в гигантских клетках слюнных желез двукрылых. В ряде случаев новообразование МТ, их закладка, нуклеация, может происходить в цитоплазме вне связи со специальными зонами или структурами.

Но в большинстве случаев в интерфазных клетках животных организмов образование и рост МТ происходит от клеточного центра, содержащего специальные образования –

центросомы, которые большей частью могут содержать сложно организованные центриоли, или же не иметь их.

Центросомы и центриоли

Центросомы были обнаружены и описаны сто лет назад (Флемминг, 1875; Бенеден, 1876) – это очень мелкие тельца, размер которых находится на границе разрешающей способности светового микроскопа, обычно располагающиеся в геометрическом центре клетки, откуда и их название. В некоторых объектах удавалось видеть, что мелкие плотные тельца (центриоли), обычно в паре (диплосома), окружены зоной более светлой цитоплазмы (собственно центросома), от которой отходят радиально тонкие фибриллы (центросфера) (рис. 277).

Центросомы характерны и обязательны для клеток животных, и нет у высших растений, у низших грибов и некоторых простейших. Было замечено, что центросомы в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В неделящихся клетках центросомы часть определяют полярность клеток эпителия и располагаются вблизи аппарата Гольджи. Такая связь центросом с аппаратом Гольджи характерна для многих клеток, в том числе для клеток крови и нервных клеток. Часто центросомы лежат рядом с ядром, располагаясь в зонах его впячивания. Например, в полиморфных лейкоцитах (нейрофилы) центросома лежит внутри подкововидного впячивания ядра (рис. 278).

Типичное строение клеточный центр имеет в клетках животных. Он представляет собой зону, состоящую из центриолей и окружающей их аморфной фибриллярной массы или матрикса. В ряде случаев в состав клеточного центра или центросомы входит только эта фибриллярная масса, от которой отходят микротрубочки (см. ниже).

Наиболее же часто кроме матрикса в состав клеточного центра входят центриоли, как мелкие тельца, с трудом наблюдаемые в световом микроскопе.

Тонкое строение центриолей удалось изучить только с помощью электронного микроскопа. Основу строения центриолей составляют расположенные по окружности девять триплетов микротрубочек, образующие таким образом полый цилиндр (рис. 279). Его ширина около 0, 15 мкм, а длина такого цилиндра 0,3-0,5 мкм (хотя встречаются центриоли, достигающие в длину несколько микрон) (рис. 280).

Первая микротрубочка триплета (А-микротрубочка) имеет диаметр около 25 нм и толщину стенки 5 нм, которая состоит из 13 глобулярных субъединиц. Длина каждого триплета равна длине центриоли. Вторая и третья (В и С) микротрубочки отличаются от А-микротрубочки тем, что они являются неполными, содержат 11 субъединиц и вплотную примыкают к своим соседям. Каждый триплет располагается к радиусу такого цилиндра под углом около 400. Кроме микротрубочек в состав центриоли входит ряд дополнительных структур. От А-микротрубочки отходят так называемые “ручки”, выросты, один из которых (внешний) направлен к С- микротрубочке соседнего триплета, а другой (внутренний) – к центру цилиндра.

Обычно в интерфазных клетках всегда присутствуют две центриоли, располагающиеся рядом друг с другом, образуя дуплет центриолей, или диплосому (рис. 281). В диплосоме центриоли располагаются под прямым углом по отношению друг к другу. Из двух центриолей различают “материнскую” и “дочернюю”, продольная ось последней перпендикулярна продольной оси материнской центриоли. Обе центриоли сближены своими концами так, что проксимальный конец дочерней центриоли как бы смотрит на поверхность материнской. В дистальном участке материнской центриоли располагается аморфный материал в виде выростов или шпор – это придатки. Их нет на дочерней центриоли (рис. ).

Дочерняя центриоль несколько отличается от материнской. Центральная часть цилиндра центриоли занята структурой, напоминающей тележное колесо; она имеет центральную “втулку” диаметром около 25 нм и 9 спиц, направленных по одной к А-микротрубочке каждого из триплетов. Такие структуры внутри центриоли расположены в одном из её концов, проксимальном, что делает строение цилиндра центриоли полярным. На дистальном конце центриоли внутри её нет таких структур. Объем, занимаемый внутри центриоли втулкой со спицами, может составлять у разных клеток от 3\4 до 1\5 длины центриоли. У некоторых видов втулка отсутствует или заменена скоплением аморфного материала. Торцы центриолярного цилиндра, кроме системы втулки и спиц на проксимальном конце, ничем не закрыты.

Систему микротрубочек центриоли обычно описывают формулой 9 + 0, или (9х3) + 0, подчеркивая отсутствие микротрубочек в её центральной части.

Вокруг каждой центриоли расположен бесструктурный, или тонковолокнистый матрикс. Сами микротрубочки триплетов погружены в аморфный материал т.н. муфты или оправы. Если выделенные центриоли обработать 0,6М раствором NaCl, то произойдет полная экстракция микротрубочек, но центриоль как таковая не растворится: вместо нее останется цилиндрическая структура, имеющая девять полых отверстий, некогда занимавшихся триплетами микротрубочек. Поэтому все схемы центриолей в этой книге, как и во многих других значительно упрощены и не включают материал муфты центриолярного цилиндра.

Часто около центриолей и в связи с ним можно обнаружить несколько дополнительных структур: сателлиты, фокусы схождения микротрубочек, исчерченные волокнистые корешки, дополнительные микротрубочки, образующие особую зону – центросферу вокруг центриоли (рис. 282).

При исследовании в электронном микроскопе интерфазных центриолей было найдено, что лучистое сияние центросферы, обнаруживаемое в световом микроскопе, представляет собой большое число микротрубочек, радиально расходящихся от зоны диплосомы. В диплосоме лишь одна из центриолей, материнская, содержит ряд дополнительных структур. Одни из них, перицентриолярные сателлиты, состоят из имеющей тонкое фибриллярное строение конусовидной ножки, расположенной на стенке центриоли, и головки, заканчивающейся на этой ножке. Ножки сателлитов часто имеют поперечную исчерченность (рис. 284). Количество таких перицентриолярных сателлитов непостоянно, они могут располагаться на разных уровнях по длине центриоли. Кроме этих структур рядом с диплосомой, но не связанные с ней структурно, могут располагаться плотные мелкие (20-40 нм) тельца, к которым подходят одна или несколько микротрубочек (фокусы схождения микротрубочек). Микротрубочки отходят и от головок сателлитов. Эти центросомные микротрубочки не отходят непосредственно от микротрубочек цилиндров центриолей, а связаны или с сателлитами, или с матриксом. Такие микротрубочки и образуют как бы лучистую сферу (центросферу) вокруг центриоли, где (-)-концы МТ связаны с ЦОМТ, а (+)-концы радиально расходятся на периферию клетки. При образовании центросферы в интерфазной клетке только специальные структуры центриоли, сателлиты и матрикс, каким-то образом связаны с образованием микротрубочек; микротрубочки самих центриолей в этом процессе не участвуют. Было найдено, что восстановление прицентриолярных микротрубочек после их деполимеризации на холоду происходит за счет появления новых микротрубочек, отходящих от головок сателлитов. Таким образом, можно считать, что эти дополнительные структуры являются центрами, на которых происходит сборка микротрубочек из тубулинов ( центры организации микротрубочек – ЦОМТ).

Химия центриолей изучена слабо, потому что еще не разработаны методы получения этой структуры в виде чистой фракции. Трудности биохимического изучения центриолей связаны с тем, что это одиночная клеточная структура, имеющая объем всего 0, 03 мкм3. Для сравнения, вспомним, что в клетке имеется: около тысячи штук митохондрий, около миллиона рибосом, около сотни хромосом, около 1 мм2 мембран.

Есть все основания говорить о том, что в состав микротрубочек центриолей входят тубулины. Это доказывается тем, что колхицин прекращает рост микротрубочек в процентриолях, возникающих вблизи материнской центриоли. Предположения о возможной химической природе остальных элементов центриоли основаны главным образом на данных, полученных из химии ресничек и жгутиков, имеющих много сходных черт строения с центриолями.

Данные о химическом строении центриолей получены главным образом с помощью иммунохимических методов. В изолированных базальных тельцах простейшего хламидомонады обнаружено более 200 различных белков, среди которых выявлены четыре вида тубулинов, в том числе - тубулин, центрин, перицентрин, белок р210 и многие другие.

В интерфазных клетках центриоли оказываются связаны с ядром и с ядерной мембраной. При выделении ядер практически все центриоли клеток печени и селезенки крыс оказываются в этой фракции. Связь центриолей с ядром осуществляется главным образом промежуточными филаментами. Если живые клетки подвергнуть ультрацентрифугированию, то центриоли опускаются к центробежному полюсу вместе с ядрами.

Центросомный цикл

Было обнаружено, что строение и активность центросом меняются в зависимости от периода клеточного цикла, в течение которого клеточный центр претерпевает тоже циклические изменения (рис. 283).

Целесообразнее начать рассмотрение циклических изменений в структуре центросом с митоза. Начиная с профазы и кончая телофазой, центросомы имеют сходное строение, несмотря на то, что за время митоза происходит ряд существенных клеточных перестроек: конденсация хромосом, разрушение ядерной оболочки, образование веретена деления, расхождение хромосом. В митозе в клеточных центрах (их два, по одному на каждый полюс клетки) находится по диплосоме. Как полагается, дочерняя центриоль своим концом направлена на материнскую. Материнская центриоль на всех стадиях митоза окружена довольно широкой (до 0,3 мкм) зоной тонких фибрилл – центриолярное фибриллярное гало (рис. 279). От этого гало радиально отходят микротрубочки. Важно подчеркнуть, что у дочерних центриолей ни гало, ни отходящих от центриолей микротрубочек нет. В это время происходит формирование веретена митотического аппарата, состоящего из микротрубочек. Эта структура действительно имеет форму веретена, где на концах его на полюсах клетки располагаются диплосомы, окруженные радиальными микротрубочками (центросфера). В данном случае можно говорить о том, что зоны диплосом, клеточные центры, являются центрами организации (полимеризации) микротрубочек. В пользу этого говорят следующие факты: после исчезновения микротрубочек веретена и центросферы, которые происходят при действии холода или колхицина, новые микротрубочки возникают главным образом в районе материнских центриолей, диплосом, в каждом из полюсов клетки. Интересно, что рост новых микротрубочек не связан с микротрубочками триплетов центриолярного цилиндра, они начинают отрастать от зоны гало, расположенной на материнской центриоли. Важно отметить, что в это время на материнских центриолях (как и на дочерних) нет сателлитов, и в это же время цитоплазма теряет микротрубочки: микротрубочки цитоплазмы разбираются, а пул освободившихся тубулиновых мономеров идет на образование микротрубочек веретена и центросферы, которые образуются на фибриллярном гало, как на ЦОМТ. Этот процесс полимеризации митотических микротрубочек отражает первую форму активности центриолярного аппарата (рис. ). Если в профазе облучить центриоль лазерным микролучем, то образование веретена останавливается.

Примерно сходное строение имеют клеточные центры на всех стадиях митоза, но к телофазе толщина фибриллярного гало уменьшается.

К концу телофазы, когда произошло разделение клетки надвое, а хромосомы начали деконденсироваться и образовывать новые интерфазные ядра, происходит разрушение веретена деления, его микротрубочки деполимеризуются. Клеточные центры при этом меняют свою структуру. Материнская и дочерняя центриоли теряют взаимно перпендикулярное расположение и отходят друг от друга на небольшие (0,5-2мкм) расстояния, но все же держатся в одном месте. Вокруг материнской центриоли гало и микротрубочки не выявляются. В это время микротрубочек в цитоплазме также практически нет.

В начале G1-периода на поверхности материнской центриоли возникают сателлиты, имеющие ножку и головку, от которой радиально отходят микротрубочки, которые начинают расти в длину и заполнять собой цитоплазму (рис. 284а). Следовательно, вторая форма активности клеточного центра – образование цитоплазматических микротрубочек в интерфазных клетках. Надо подчеркнуть, что активной здесь является только материнская центриоль, которую легко узнать по придаткам в ее дистальной части.

Если считать клеточные центры основными (если не единственными) местами образования цитоплазматических микротрубочек, то общее количество последних должно быть равно числу микротрубочек, отходящих от центриолей. При исследовании в электронном микроскопе оказалось, что от клеточных центров в интерфазе отходит всего лишь несколько десятков микротрубочек, а в цитоплазме их так много, что с помощью иммунофлуоресцентного метода их трудно подсчитать. Это дает основание предполагать, что по мере роста микротрубочек часть из них теряет связь с областью центриолей и может находиться в цитоплазме долгое время. Центросомы же индуцируют полимеризацию новых микротрубочек, которые приходят на смену постепенно деполимеризующимся старым. Вероятно, в цитоплазме есть несколько генераций микротрубочек: “старые”, не связанные с клеточным центром, и новые, растущие от центросом. Таким образом, в клетке происходит как бы конвейерная смена и репродукция цитоплазматических микротрубочек.

Если клеткам запретить переходить в S-период, они могут существовать в фазе клеточного покоя (Go-период) (рис. 285). В это время материнская центриоль продолжает функционировать, как центр образования микротрубочек цитоскелета. Но одновременно она может проявить еще одну форму активности – образовать ресничку, вырост плазматической мембраны, заполненный аксонемой (осевой нитью), состоящей из девяти дублетов микротрубочек. Эти микротрубочки отрастают, как от затравок, от А- и В-микротрубочек триплетов материнской центриоли в дистальной ее части. Это – третья форма активности центриолей как центров организации микротрубочек (см. ниже).

При наступлении S-периода (или в середине его) клеточный центр приступает к четвертой форме своей активности: происходит удвоение числа центриолей. В это время около каждой из разошедшихся еще в конце телофазы центриолей, материнской и дочерней, происходит закладка новых центриолярных цилиндров – процентриолей (рис. 284б). В районе проксимальных концов каждой центриоли перпендикулярно длинной оси закладывается сначала девять синглетов (одиночных) микротрубочек, затем они преобразуются в девять дуплетов, а потом – в девять триплетов растущих микротрубочек новых центриолярных цилиндров.

Закладка процентриолей происходит на проксимальных концах центриолей; в этом месте растут новые поколения центриолей, тоже с проксимального конца. Во время роста процентриолей здесь можно видеть центральную “втулку” со спицами.

Благодаря такому росту структур образуется сначала короткая дочерняя центриоль – процентриоль — которая затем дорастает до размера материнской. Этот способ увеличения числа центриолей был назван дупликацией. Важно отметить, что размножение центриолей не связано с их делением, почкованием или фрагментацией, а происходит путем образования зачатка, процентриоли, вблизи и перпендикулярно к исходной центриоли. Правда, последнее условие соблюдается не во всех объектах, у некоторых оомицетов при дупликации центриоли происходит сначала расхождение центриолей, рост втулки, затем рост микротрубочек вдоль продолжения оси исходной центриоли, и центриоли располагаются конец в конец. Интересно, что триплеты в таких новых центриолях имеют угол наклона, противоположный таковому в материнской центриоли.

Факт удвоения центриолей привел некоторых исследователей к предположению, что центриоли, так же как митохондрии и пластиды, принадлежат к саморедуплицирующимся компонентам цитоплазмы, хотя прямых данных о наличии ДНК в составе центриолей нет.

В S-периоде во время удвоения (дупликации) центриолей материнская продолжает проявлять вторую форму активности: она продолжает быть центром образования цитоплазматических микротрубочек.

В результате процесса дупликации около каждой центриоли вырастает новая дочерняя центриоль (первая материнская центриоль и дочерняя на бывшей дочерней центриоли могут считаться как бы бабушкой и внучкой). Поэтому в клетке после завершения S-периода находятся уже две диплосомы (а всего четыре центриолярных цилиндра) (рис. 286).

После этого наступает следующий период клеточного цикла, постсинтетический (G2-период), когда в клетке начинается подготовка к очередному делению. В это время исчезают сателлиты на материнской диплосоме (так можно назвать старую материнскую центриоль с новой дочерней), а обе материнские центриоли в обеих диплосомах покрываются фибриллярным гало, от которого в профазе начинают отрастать митотические микротрубочки. Параллельно этому в цитоплазме происходит исчезновение микротрубочек, и клетка стремится приобрести шаровидную форму. Вся такая последовательность событий повторяется от цикла к циклу у клеток, способных к длительному размножению. В большинстве случаев клетки организма находятся в G0-периоде, поэтому у них центриоль участвует в полимеризации цитоплазматических микротрубочек и в образовании реснички (или множества ресничек). В последнем случае она входит в состав так называемого базального тельца.

Обычно в клетку после деления попадают два центриолярных цилиндра в составе диплосомы. В различных экспериментальных условиях можно запретить разделение клетки надвое и получить клетки с удвоенным числом хромосом (полиплоидные клетки). Совершенно очевидно, что в таких клетках будет и удвоенное число центриолей. Клетки могут снова вступать в клеточный цикл, при этом будет удваиваться как количество ДНК, так и число центриолей. Было обнаружено, что у тетраплоидных (с четырехкратным набором хромосом) клеток печени в G0-периоде в цитоплазме видны не два, а четыре центриолярных цилиндра, а в полюсах при делении таких клеток было обнаружено по две диплосомы в каждом. Аналогичная ситуация замечена и у других полиплоидных клеток (мегакариоциты костного мозга, полиплоидные гибридные клетки и др.). В связи с этим предположили, что между числом плоидности клетки (числом хромосомных наборов) и числом центриолей существует прямая связь.

Нарушения центриолярного цикла могут вызвать ряд патологических изменений клеток, в первую очередь появление многополюсных митозов. Так, при действии β-меркаптоэтанола происходит блокада нормального митоза, при этом диплосомы расходятся на отдельные центриоли. При отмывании от этого вещества клетка снова приступает к делению, но в этом случае каждая центриоль активируется и образует полюс веретена. Таким образом, возникают трех- или четырехполюсные митозы, приводящие к неравномерному распределению хромосом между дочерними клетками. Это в свою очередь приводит к изменению числа хромосом (анэуплоидия), которое часто вызывает гибель клетки. Иногда при образовании многополюсных митозов в некоторых полюсах отсутствуют центриоли: в полюсе располагается только фибриллярный материал центросомы (бесцентриолярные полюса).

Итак, в подавляющем большинстве клеток млекопитающих центросомы участвуют в полимеризации тубулинов и являются структурами, играющими роль центров организации микротрубочек. Микротрубочки самих центриолей являются затравками для полимеризации тубулинов только в одном случае – при росте аксонемы реснички, когда центриоль становится базальным тельцем. Это временное состояние: при переходе клеток к делению реснички могут исчезать, а базальное тельце снова может выполнять роль центриоли, участвуя в организации цитоплазматических микротрубочек или микротрубочек митотического веретена. Только в этих случаях центрами организации микротрубочек являются не сами центриолярные цилиндры, а перицентриолярный материал (головка сателлитов, околоцентриолярный матрикс, гало и т.д.). Следовательно, центриоль как таковую нужно рассматривать как один из компонентов более сложной структуры – клеточного центра или центросомы. Эта оговорка связана с тем, что у всех высших растений ЦОМТ не содержит центриолей. Более того, в раннем эмбриогенезе позвоночных животных образуются веретена деления, не имеющие центриолей в полюсах. По всей вероятности в последних случаях центриоли возникают позже заново, а не образуются путем “репликации”. Вопрос о процессе образования центриолей далек от решения. Остается неясным процесс появления процентриолей. В процессе эмбриогенеза отмечены случаи возникновения центриолей de novo у морского ежа, у моллюсков, у мышей. Так, в эмбриогенезе мыши центриоли появляются только после 1-2 делений клеток бластулы, несмотря на то, что сами клеточные деления происходят нормально, за исключением того, что в полюсах деления в зоне бесструктурной центросомы центриоли отсутствуют. С другой стороны, если в соматических клетках культуры ткани уничтожить центросому с центриолью с помощью микрооблучения, то новые центриоли не возникают.

Базальные тельца. Строение и движение ресничек и жгутиков.

Как уже указывалось, у многих клеток животных, вышедших из клеточного цикла, в G0-стадии центриоли принимают участие в образовании аппарата движения – ресничек. Их две группы: кинетоцилии, характерные для специальных эпителиев (ресничные эпителии трахеи, яйцеводов) или свободно плавающих клеток (сперматозоиды, простейшие), и так называемые первичные реснички, встречающиеся во многих клетках, не обладающих способностью к движению.

Вначале рассмотрим строение кинетоцилей – подвижных ресничек и жгутиков. В световом микроскопе эти структуры видны как тонкие выросты клетки, в их основании в цитоплазме видны хорошо красящиеся мелкие гранулы – базальные тельца, аналоги центриолей (рис. 287). Клетки, имеющие реснички или жгутики, обладают способностью двигаться, будучи в свободном состоянии, или же перемещать жидкости в случае, если клетки неподвижны. Свободноживущие одноклеточные организмы, снабженные одним или несколькими жгутиками, обычно движутся тем концом вперед, который несет жгутики. Иной способ движения можно видеть у спермиев некоторых животных: жгутик, располагаясь сзади, толкает тело клетки вперед. Скорость движения клеток за счет работы жгутиков может достигать очень большой величины (до 5 мм / мин).

Множественные реснички также могут обеспечивать движение свободноживущих клеток, таких как инфузории или некоторые жгутиконосцы. Реснички эпителиальных клеток многих беспозвоночных и позвоночных животных обеспечивают поток жидкостей вдоль поверхности таких клеток. Число ресничек на клетку может достигать 300 в эпителии трахеи; у инфузории туфельки на клетку приходится 10-14 тыс. рядами расположенных ресничек.

При движении ресничек и жгутиков не происходит уменьшения их длины, поэтому неправильно называть это движение сокращением. Траектория движения ресничек очень разнообразна (рис. 288). В различных клетках это движение может быть маятникообразным, крючкообразным, воронкообразным или волнообразным.

У многоресничных клеток (инфузории, клетки ресничного эпителия) движение ресничек не хаотично, а строго упорядочено. В этом случае реснички расположены рядами. В продольном ряду отдельные реснички начинают движение и проходят отдельные его фазы по очереди, метахронно. В поперечном же ряду все реснички находятся в одной фазе движения (синхронны). Это создает движущую волну по поверхности клетки (рис. )289.

Общая архитектура реснички представлена на рис. 290, 291. Ресничка представляет собой тонкий цилиндрический вырост цитоплазмы с постоянным диаметром 300 нм. Этот вырост от основания до самой его верхушки покрыт плазматической мембраной. Внутри выроста расположена аксонема, сложная структура, состоящая в основном из микротрубочек. Нижняя, проксимальная часть реснички, базальное тельце, погружена в цитоплазму. Диаметры аксонемы и базального тельца одинаковы (около 200 нм).

На поперечном сечении реснички видна плазматическая мембрана, окружающая аксонему. Аксонема в своем составе имеет девять дублетов микротрубочек, образующих внешнюю стенку цилиндра аксонемы. Дублеты микротрубочек слегка повернуты (около 100) по отношению к радиусу аксонемы. Кроме периферических дублетов микротрубочек в центре аксонемы располагается пара центральных микротрубочек. В целом систему микротрубочек реснички описывают как (9х2)+2. В дублетах микротрубочек также различают А-микротрубочку, состоящую из 13 субъединиц, и В-микротрубочку, неполную, содержащую 11 субъединиц. А-микротрубочка несет на себе ручки, которые направлены к В-микротрубочке соседнего дуплета. От А-микротрубочки к центру аксонемы отходит радиальная связка, или спица, оканчивающаяся головкой, присоединяющейся к центральной муфте, имеющей диаметр около 70 нм, окружающей две центральные микротрубочки. Последние лежат отдельно друг от друга на расстоянии около 25 нм. Таким образом, в аксонеме располагается 20 продольных микротрубочек, в то время как в базальном тельце их 27 (рис. 291, 292).

Базальное тельце состоит из 9 триплетов микротрубочек (как и центриоль), имеет ручки, втулку и спицы, расположенные в проксимальной (нижней) ее части. На участке базального тельца, примыкающем к плазматической мембране, есть девять придатков, выступов, идущих от каждого триплета микротрубочек к плазматической мембране и связывающих его с клеточной поверхностью.

Базальное тельце и аксонема структурно связаны друг с другом и составляют единое целое: А- и В-микротрубочки триплетов базального тельца продолжаются в А- и В-микротрубочках дуплетов аксонемы. Однако внутренние части аксонемы и базального тельца значительно отличны друг от друга. Часто в зоне перехода базального тела в аксонему наблюдают аморфную поперечную пластинку, которая как бы отделяет эти две части. Центральные микротрубочки аксонемы начинаются от этой пластинки так же, как в этом месте начинается и центральная муфта (капсула) (рис. 290).

В основании ресничек и жгутиков часто встречаются исчерченные корешки, или кинетодесмы, представляющие собой пучки тонких (6 нм) фибрилл, обладающих поперечной исчерченностью (рис. 293). Часто такие исчерченные кинетодесмы простираются от базальных телец вглубь цитоплазмы по направлению к ядру. Роль этих структур не ясна. Они не изменяются при действии колхицина, могут встречаться и в составе центриолей интерфазных клеток, не принимающих участия в образовании ресничек.

При движении ресничек не происходит изменения их длины, они не “сокращаются”, а изгибаются, бьются. Оказалось, что механически отделенные реснички способны к биению в присутствии АТФ. При отделении ресничек базальные тельца остаются в теле клетки. Это означает, что для механической работы ресничек базальное тело не нужно, а только аксонема участвует в генерации движения. Удалось показать, что за движение ресничек отвечают “ручки”, сидящие на А-микротрубочках. При экстракции компонентов ручек реснички перестают биться в присутствии АТФ.

Было найдено, что в состав ручек входят белки динеины. Это большие белковые компоненты, состоящие из 9-12 полипептидных цепей, содержащие 2-3 глобулярные головки, связанные в общий корешок гибкими хвостами (рис. 294). Каждая головка динеина обладает АТФ-азной активностью, которая возрастает примерно в 6 раз при ассоциации с микротрубочками. В состав каждой ручки входит один белковый комплекс, одна молекула динеина. Так как экстракция ручек прекращает биение ресничек, то можно считать, что именно динеин ответственен за это движение, то есть динеин является мотором или двигателем при биении ресничек. Но каков механизм этого движения?

Этот вопрос был решен при использовании выделенных ресничек, лишенных плазматической мембраны, радиальных спиц и связок после частичной обработки аксонем протеазами. Оказалось, что такие аксонемы, содержащие динеиновые ручки, при добавлении к ним АТФ начинают увеличиваться в длину почти до девяти раз и одновременно утончаются. В электронном микроскопе видно, что такая аксонема увеличилась в длину за счет смещения пар микротрубочек одна относительно другой (рис. 295). Другими словами, произошло продольное скольжение дуплетов один относительно другого, аналогично тому, что происходит при сокращении саркомеров в мышце: скольжение миозиновых нитей относительно актиновых. В случае динеина повторные циклы ассоциации с субъединицами тубулина, изменения конформации при связывании АТФ и его гидролизе, вызывают перемещение головок вдоль микротрубочки от (+)-конца к (-)-концу. При этом соседний дуплет двигается к верхушке реснички. Когда ресничка содержит все компоненты, и дуплеты микротрубочек связаны друг с другом и с центральной парой микротрубочек, такие кооперативные смещения дуплетов микротрубочек приводят не к удлинению реснички, а к ее изгибу (рис. 296). Как регулируется последовательное перемещение дуплетов один относительно другого, еще не ясно.

Рост ресничек, удлинение микротрубочек их аксонем происходит на вершине реснички. Следовательно, там локализованы (+)-концы микротрубочек.

Образование аксонемы ресничек происходит за счет роста А- и В-микротрубочек центриолей, которые в этом случае становятся базальным тельцем. В простейшем случае при образовании одиночных ресничек или так называемых первичных ресничек материнская центриоль подходит к плазматической мембране своим дистальным торцом, связывается с ней своими придатками. В это время начинается рост микротрубочек на (+)- концах А- и В-микротрубочек триплетов. Возникают девять дублетов микротрубочек аксонемы, которые, наращиваясь с (+)-концов на верхушке аксонемы как бы вытягивают плазматическую мембрану, образуя вырост – ресничку. Две центральные микротрубочки возникают в связи с плотным веществом, лежащим на границе бывшей центриоли и выроста плазматической мембраны (рис. 290а).

При образовании многоресничных клеток происходит многочисленная репликация центриолей и образование многочисленных ресничек.

В ресничном эпителии позвоночных множественные базальные тельца возникают вокруг так называемых дейтеросом – аморфных электронноплотных структур размером от 60 до 700 нм, по периферии которых происходит закладка множественных зачатков базальных телец. Вокруг одной дейтеросомы образуются до десятка новых базальных телец. Они затем мигрируют к плазматической мембране и принимают участие в образовании аксонем (рис. 298).

Необходимо отметить, что клетки с множеством ресничек теряют способность к делению и не могут выходить из G0-стадии клеточного цикла. На смену им из эпителиального пласта приходят стволовые недифференцированные клетки, которые могут делиться и давать новые поколения многоресничных клеток.

Микротрубочки аксонемы устойчивы к действию колхицина, но при росте реснички колхицин полностью прекращает включение новых молекул тубулина, что приводит к торможению роста ресничек.

Вторая категория ресничных клеток – клетки с так называемыми первичными ресничками, не обладающими способностью к движению. Практически все типы клеток, за исключением клеток крови, мышц и кишечного эпителия, в G0-периоде образуют первичные реснички, которые отличаются от настоящих ресничек, или киноцилий, тем, что они не имеют пары центральных микротрубочек и не способны к движению. Они образуются в результате того, что диплосома подходит к плазматической мембране и от материнской центриоли начинается рост аксонемы, но без двух центральных микротрубочек. Если клетки культуры фибробластов, обладающих в G0-периоде такими ресничками, стимулировать к делению, то эти реснички исчезают, а базальное тельце-центриоль начинает свой цикл как обычная центриоль в клетках, способных к делению.

Функциональное значение этих первичных ресничек не ясно. Но интересно отметить, что при развитии сенсорных клеток сетчатки их наружные сегменты палочек и колбочек возникают сначала за счет образования первичных ресничек. Возможно, что у нерецепторных клеток, имеющих такие первичные реснички, последние выполняют функции внешних анализаторов, являются как бы «антеннами», на поверхности которых рецепторные молекулы плазматической мембраны могут регистрировать механические и химические сигналы, поступающие из внешней межклеточной среды.

studfiles.net

57. Клеточный центр.

(самый «туманный» органоид – Филинкова Т.Н.)(мт-микротрубочка)

Открыт в 1875г. У всех многокл. животных, простейщих и некоторых растений. Включает: 2 центриоли или не имеет их и центросферу-область гиалоплазмы, где находятся центриоли. Строение центриолей. Расположенные по окружности девять триплетов микротрубочек, обр. полый цилиндр Первая микротрубочка триплета (А-мт) имеет диаметр около 25 нм и толщину стенки 5 нм, которая состоит из 13 глобулярных субъединиц. Длина каждого триплета равна длине центриоли. Вторая и третья (В и С) мт являются неполными, содержат 11 субъединиц и вплотную примыкают к своим соседям. Кроме микротрубочек в состав центриоли входит ряд дополнительных структур. От А-микротрубочки отходят “динеиновые ручки”, выросты, один из которых (внешний) направлен к С- микротрубочке соседнего триплета, а другой (внутренний) – к центру цилиндра. Различают материнскую и дочернюю центриоль(угол 90градусов). Мат. Центр. имеет сателлиты (белковые образования), на них происходит сборка мт.

Цикл клеточного центра: В митозе в клеточных центрах (их два, по одному на каждый полюс клетки) находится по диплосоме. Дочерняя центриоль своим концом направлена на материнскую. Материнская центриоль на всех стадиях митоза окружена широкой зоной тонких фибрилл — фибриллярное гало От этого гало радиально отходят микротрубочки. У дочерних центриолей ни гало, ни отходящих от центриолей микротрубочек нет. В это время происходит формирование веретена митотического аппарата, состоящего из микротрубочек. Эта структура имеет форму веретена, на концах которого, на полюсах клетки, располагаются диплосомы, окруженные радиальными микротрубочками (центросфера). В веретене зоны диплосом, клеточные центры, являются центрами организации (полимеризации) микротрубочек. К концу телофазы, когда произошло разделение клетки надвое, а хромосомы начали деконденсироваться и образовывать новые интерфазные ядра, происходит разрушение веретена деления, его микротрубочки деполимеризуются. Клеточные центры при этом меняют свою структуру. По окончанию митоза Мат и доч отходят друг от друга. В Интерфазу на мат. восстанавливаются сателлиты. В синтетический период происходит удвоение центриолей.

Функции КЦ: — образование веретена деления. – сборка микротрубочек. – формирование базальных телец, ресничек и жгутиков.

58. Клеточные включения.

Непостоянные внутриклеточные структуры.

1) Трофические — жиры и липоиды (в виде капель), полисахариды (в форме глыбок, зерен), гликоген, крахмал, белковые гранулы.

2) Пигментные а) Эндогенного происхождения – гемоглобин, меланин, липофуцин.б) экзогенного (морковки поесть).

3)Секреторные включения. Накапливаются в клетке – гормоны, пищ. ферменты.

4)Экскреторные. Удаляются из клетки – желчные пигменты, мочевина.

5) Эфирные масла.

6) Кристаллические включения.

59. Строение растительной клетки.

Типичная растительная клетка содержит хлоропласты и вакуоли и окружена целлюлозной клеточной стенкой.

Плазматическая мембрана (плазмалемма), окружающая растительную клетку, состоит из двух слоев липидов и встроенных в них молекул белков. Молекулы липидов имеют полярные гидрофильные «головки» и неполярные гидрофобные «хвосты». Такое строение обеспечивает избирательное проникновение веществ в клетку и из нее. Клеточная стенка состоит из целлюлозы, ее молекулы собраны в пучки микрофибрилл, которые скручены в макро-фибриллы. Прочная клеточная стенка позволяет поддерживать внутреннее давление — тургор.

Возможны видоизменения клеточной оболочки – одревеснение (матрикс пропитывается лигнином), опробковение (пропитывается суберином), возможна минерализация кл. оболочек. Цитоплазма состоит из воды с растворенными в ней веществами и органоидов. Хлоропласты — это органеллы, в которых происходит фотосинтез; различают зеленые хлоропласты, содержащие хлорофилл, хромопласты, содержащие желтые и оранжевые пигменты, а также лейкопласты — бесцветные пластиды. Для растительных клеток характерно наличие вакуоли с клеточным соком, в котором растворены соли, сахара, органические кислоты. Вакуоль регулирует тургор клетки. Аппарат Гольджи — это комплекс плоских полых цистерн и пузырьков, где синтезируются полисахариды, входящие в состав клеточной стенки. Митохондрии — двухмембранные тельца, на складках их внутренней мембраны — кристах — происходит окисление органических веществ, а освободившаяся энергия используется для синтеза АТФ. Гладкий эндоплазматический ретикулум — место синтеза липидов. Шероховатый эндоплазматический ретикулум связан с рибосомами, осуществляет синтез белков. Лизосомы- мембранные тельца, содержащие ферменты внутриклеточного пищеварения. Переваривают вещества, избыточные органеллы (аутофагия) или целые клетки (аутолиз). Ядро — окружено ядерной оболочкой и содержит наследственный материал — ДНК со связанными с ней белками — гистонами (хроматин). Ядро контролирует жизнедеятельность клетки. Ядрышко — место синтеза молекул т-РНК, р-РНК и рибосомных субъединиц. Хроматин содержит кодированную информацию для синтеза белка в клетке. Во время деления наследственный материал представлен хромосомами. Плазмодесмы (поры) — мельчайшие цитоплазматические каналы, пронизывающие клеточные стенки и объединяющие соседние клетки. Микротрубочки состоят из белка тубулина и расположены около плазматической мембраны. Они участвуют в перемещении органелл в цитоплазме, во время деления клетки формируют веретено деления.

studfiles.net

Химический состав клетки

Поиск Лекций

Оси и плоскости тела человека

В анатомии применяется понятие об осях и плоскостях. Это нужно для того, чтобы понять описание положение органов в теле человека. Исходным принято считать такое положение тела, когда человек стоит, ноги вместе, ладони обращены вперёд.

Оси:

1) Вертикальная ось – направлена вдоль тела стоящего человека

2) Фронтальная ось –проходит параллельно лбу

3) Сагиттальная – делит тело на правую и левую часть.

Основные термины

Медиальный – лежащий ближе к середине тела.

Латеральный – лежащий дальше от середины тела.

Проксимальный – находящийся ближе к туловищу.

Дистальный – находящийся дальше от туловища.

Клетка – это элементарная живая система, состоящая из цитоплазмы и ядра.

Строение клетки

Клетки очень разнообразны по форме, величине, внутреннему устройству и функции. Каждая клетка содержит ядро, цитоплазму и органеллы. От внешней среды клетки отграничивается клеточной мембранной. Ядро располагается в центре клетки и отделено от цитоплазмы оболочкой. Ядро участвует в синтезе белка. В ядре храниться генетическая информация в виде ДНК (дезоксирибонуклеиновая кислота). Органеллы(органоиды) – постоянные части клетки, которые имеют определённое строение и биохимическую функцию. К ним относиться клеточный центр, митохондрии, комплекс Гольджи, эндоплазматическую сеть, лизосомы. Клеточный центр принимает участие в делении клетки. Расположен около ядра. Состоит из 2-ух полных образований – центриолей. Во время деления центриоли удаляться друг от друга и образуют веретено деления. Митохондрии вырабатывают энергию для клетки. Это «маленькие электростанции». Энергия вырабатывается в форме АТФ(аденозинтрифосфорная кислота).форма митохондрий овальная. Оболочка состоит из 2-ух мембран. От внутренней мембраны отходят перегородки, разгораживающие содержимое митохондрий на ряд полостей. Комплекс Гольджи выполняет функцию выделения. Т.е. Комплекс Гольджи выводит за пределы клетки продукты её жизнедеятельности. Этот органоид имеет вид пузырьков, трубочек. Расположен около ядра. Эндоплазматическая сеть нужна клетке для синтеза белков. Она представляет собой скопление различных канальцев и полостей, на стенках которых располагаются мелкие шарики – рибосомы. На рибосомах синтезируются белки. Лизосомы –выполняют функцию внутриклеточного переваривания. Лизосомы имеют форму круглых мешков, содержащих ферменты. Специфические и не специфические органоиды? Включения – скопление отдельных веществ в цитоплазме. Это могут быть белки, жиры, гликоген, витамины.

Химический состав клетки

Цитоплазма клетки содержит 90% воды. В этой воде растворены соли, сахара, аминокислоты, жирные кислоты, нуклеотиды, витамины и газы. Из солей наибольшее значение имеют соли калия, натрия, кальция, магния. Концентрация хлорида натрия в клетке равна 0,9%. Это изотонический раствор данной соли. При повышении концентрации солей в клетке вода выходит из клетки и клетка сжимается. При понижении – вода устремляется в клетку и происходит её набухание.

Обмен веществ и энергии в клетки

Клетка многоклеточного организма живёт в среде, которую называют «внутренней средой организма». К ней относится кровь, лимфа и межклеточная жидкость. Из внутренней среды в клетке поступают кислород и вещества, из которых строится тело клетки. Из клетки выводятся продукты её жизнедеятельности. Оба процесса осуществляются через клеточную мембрану.

В клетке образования идут двумя способами:

1. Окислительное фосфорилирование (протекает с участком хромосом)

2. Гликолиз (протекает без участия кислорода)

В результате окислительного фосфорилирования в организме на одну молекулу глюкозы образуется 36 молекул АТФ. А в результате гликолиза – всего 2 молекулы АТФ. Таким образом, образование энергии с участием кислорода более эффективно, чем без него.

АТФ АТФ – химическое вещество, которое является источником энергии для клетки. Это вещество в своей структуре имеет 3 фосфатные группы. Когда эти группы отщепляются от молекулы АТФ, то выделяется большое количество энергии. Больше всего АТФ содержится в мышцах. Нуклеиновые кислоты Нуклеиновые кислоты состоят из нуклеотидов. Существуют 2 вида нуклеиновых кислот – дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые (РНК). Эти вещества хранят и передают наследственную информацию.

  ДНК РНК
Место нахождения Находить в ядре – а именно в хромосомах Находиться в рибосомах
Строение Молекулы ДНК состоят из 2-ух нитей, которые спирально закручены друг в друга. РНК не имеет двойной спирали
Функции Хранение и передача наследственной информации. Синтез белка

Этапы биосинтеза белка Все белки способны синтезировать белки. В клетке содержится несколько тысяч разных белков. Информация о структуре каждого белка записано на молекуле ДНК. Поскольку ДНК расположена в ядре, а синтез белка будет происходить на рибосомах, то существуют специальные молекулы РНК, на которые переписывается информация с ДНК. Поскольку ДНК расположены в ядре, а синтез белка будет происходить на рибосомах, то существуют специальные молекулы РНК, на которые переписывается информация с ДНК и переноситься на рибосомы. На рибосомах будет синтезироваться белок. Жизненный цикл клетки Продолжительность жизни клетки для клеток из разных тканей различается. Клетки эпидермиса (верхнего слоя кожи) живут от 3-ёх до 7 дней. Эритроциты – 120 дней. Срок жизни мышечных и нервных клеток совпадают со сроками жизни всего организма. Клетки размножаются делением (митозом). Митоз проходит в 4 фазы: профазу, метафазу, анафазу, телофазу.

1. Профаза. В эту стадию ядро разбухает. Хромосомы утолщаются и становятся видны в световой микроскоп. Клеточный центр увеличивается в размерах. Центриоли клеточного центра удаляются друг от друга к противоположным полюсам клетки. Между центриолями образуются тонкие нити. Эти нити вместе с центриолями, от которых они отходят, получил название «веретена деления».

2. Метафаза. В эту фазу оболочка ядра исчезает и хромосомы оказываются в цитоплазме. Хромосомы выстраиваются по экватору клетки. Каждая хромосома прикрепляется к нитям веретена деления и расщепляется на 2 дочерни хромосомы.

3. Анафаза. В эту стадию дочерние хромосомы начинают расходится к полюсам клетки по нитям веретена деления.

4. Телофаза. На этой стадии на разных полюсах клетки формируется дочерние ядра и происходит деление клеточного тела на двое.

Возбудимые ткани Некоторые ткани в ответ на раздражение отвечают особой реакцией -возбуждением. К возбуждениям только способны нервная, мышечная и железистая ткани. Раздражимость – способность отвечать на действие раздражителей. Возбуждение – это процесс, характеризующийся изменением электрических потенциалов клеточной мембраны и изменением обмена веществ. Потенциал покоя. В состоянии покоя наружная поверхность клеточной мембраны заряжена положительно. Это с вязи с тем, что на ней скопились положительно заряженные ионы калия. Внутренняя же поверхность клеточной мембраны заряжена отрицательно. Таким образом, в покое между наружно и внутренней поверхностями клеточной мембраны наблюдается разность потенциалов. Эта разность потенциалов называется потенциалом покоя.Когда на клетку действует раздражитель, то ионы перемещаются через клеточную мембрану. В результате происходит перезарядка мембраны. Наружная поверхность приобретает отрицательный заряд, а внутренняя положительный. Эти электрические изменения мембраны в процессе возбуждения получили название потенциала действия.

 

 

Лекция № 2

Ткани

Ткань – это общность клеток и межклеточного вещество, объединённых единством происхождения, строения и функции. В организме человека 4 вида ткани:

1. Эпителиальная

2. Соединительная

3. Мышечная

4. Нервная

Эпителиальная ткань

Функции эпителия:

1. Защищает всё расположение под ним, ткани от механических, химических, температурных и инфекционных воздействий.

2. Обменная функция. Через клетки эпителия осуществляется обмен веществ между организмом и внешней средой (всасываются питательные вещества и выделяются продукты обмена)

3. Секреторная функция. Железистый эпителий образует и выделяет специфические вещества – секреты имеющие важное значение для организма.

Особенности эпителия

1. Между эпителиальными клетками нет межклеточного вещества

2. Эпителиальные клетки расположены на базальной мембране.

3. Эпителий не содержит кровеносных сосудов и способен к высокой регенерации (восстановлению, заживлению).

2 вида эпителия

1. Покровный – покрывает поверхность тела (кожу), выстилает изнутри слизистые оболочки внутренних органов, выстилает сосуды и полости тела.

2. Железистый – образует большинство желез.

Покровный эпителий Классификация покровного эпителия

Однослойный Многослойный однорядный многорядный ороговевающий неороговевающий нереходный плоский цилиндрический й цилиндрический кубический

1. Однослойный плоский эпителий Эндотелий – выстилает кровеносные и лимфатические сосуды и камеры сердца. Мезотелий – покрывает серозные оболочки (плеву, перикард, брюшину) Однослойный кубический эпителий Выстилает канальцы почек 2. Однослойный цилиндрический эпителий Выстилает изнутри желудок, тонкую и толстую кишку, желчный пузырь, протоки печени и поджелудочной железы. 3. Многорядный эпителий Называется мерцательным так, как клетки покрыты микроворсинками, которые совершают колебания. Такой эпителий выстилает дыхательный пути и маточные трубы. Мерцание микроворсинок в дыхательных путях способствует выталкиванию пылевых частиц по направлению в ротовую полость, а в маточных трубах – способствует продвижению яйцеклетки. 4. Многослойные полости ороговеющий эпителий. Покрывает кожу. В нём происходит процесс превращение эпителиальных клеток в роговые чешуйки – ороговения. Клетка из нижнего слоя постепенно перемещается в вышележащие слои эпителия. Цитоплазма их по мере приближения к поверхности тела, высыхает, ядро исчезает, и клетка гибнет. Соединяясь с соседними клетками, оно образует роговые чешуйки, которые отторгаются с поверхности кожи. 5. Многослойные полости неороговеющий эпителий. Покрывает роговицу глаза, выстилает полости рта и пищевод. 6. Переходный эпителий покрывает внутреннею поверхность органов, стенки которых подвергаются значительному растяжению: полевых чашек и лоханок, мочеточников и мочевого пузыря. При растянутом состоянии органов переходный эпителий становится почти плоским, при спавшем – превращается в цилиндрический.

Желудочный эпителий. Состоит из железных (секреторный) клеток. Из него образованы железы. 2 вида желёз: 1) Железы внутренней секреции (эндокринные) – вырабатывают особо активные вещества – гормоны ,поступающие в кровь. Не имеют выводных протоков. Например: Щитовидная железа. 2) Железы внешней секреции (экзокринные) – вырабатывают секреты, выделяющиеся во внешнюю среду. Состоят из секреторных отделов и выводных протоков. Например: слюнные железы. Соединительная ткань. Входит в состав каждого органа и образуют прослойки между органами. Разновидности этой ткани объединяют в одну группу в связи с общими функциями. Функции соединительной ткани 1) Питательная. Кровь разносит питательные вещества. 2) Защитная. Механическая защита – кости защищают органы. Защита от инфекций – клетки крови отвечают за иммунитет. 3) Опорная. Кости создают опоры для внутренних органов. 4) Пластическая – участвует в процессе регенерации. Классификация соединительной ткани

Соединительная ткань

Соед. тк. со спец свойствами скелетная собственная

Ретикулярная кровь и лимфа костная хрящевая плотные волокна

Жировая пигментная рыхлые волокна

1. Рыхлая волокнистая соединительная ткань состоит из клеток и волокон, расположенных в межклеточном веществе. Волокна 2-ух видов:

1) Коллагеновые – отличаются прочность и малой растяжимостью. Состоит из белка коллагена.

2) Эластические – по прочности уступают коллагеновым. Хорошо растяжимы. Состоят из белка эластина.

Рыхлая волокнистая соединительная ткань сопровождает кровеносные сосуды и нервы входит в состав органов.

2. Плотная волокнистая соединительная ткань. Состоит из таких же клеток и волокон, что и рыхлая, только в ней клеток меньше, волокон больше. Из неё состоят сухожилия, твёрдая мозговая оболочка, надхрящница и надкостница.

3. Хрящевая ткань. Состоит из клеток и плотного межклеточного вещества. 3 вида хряща:

1) Гиалиновый хрящ – полупрозрачный. Он покрывает суставные поверхности костей, образует хрящи трахеи и бронхов.

2) Волокнистый – содержит большое количество коллагеновых волокон. Он менее эластичен, но более прочен. Из него построены межпозвоночные диски.

3) Эластический – содержит большое количество эластических волокон. Очень эластичен. Из него построена ушная раковина, надгортанник.

4. Костная ткань. Состоит из клеток и очень плотного межклеточного вещества, в котором содержится много селей кальция.

5. Ретикулярная ткань. Имеет вид сетки. Эта ткань образует остов кроветворных органов и органов иммунной системы. В петлях ретикулярной ткани расположены кроветворные и иммунные клетки.

6. Жировая ткань. Состоит из клеток, у которых много жировых включений в цитоплазме.

7. Пигментная ткань – это ткань радужки.

8. Кровь и лимфа – см. следующую лекцию.

Мышечная тканьОсуществляет двигательные процессы в организме человека. Мышечная ткань обладает специальными сократительными структурами – миофибриллами. Т.к для сокращения требуется много энергии, в клетках мышечной ткани много митохондрий. 3 вида мышечной ткани

1. Гладкая

2. Поперечнополосатая сердечная

3. Поперечнополосатая скелетная

Гладкая мышечная ткань Участвует в образовании стенок сосудов, внутренних органов. Состоит из клеток веретенообразной формы – миоцитов. Эти клетки располагаются пластом. В цитоплазме находиться волокна – миофибриллы. Это тонкие нити, расположено параллельно длине клетки, состоящей из белка. Миофибриллы способны укорачиваться. Клетки этой ткани сокращаются не изолированно, а одновременно вместе с пластом. Сокращение гладкой мышечной ткани происходит не зависимо от нашего сознания, в связи с чем её называют непроизвольной. Сокращается она медленно, в состоянии сокращения может находится длительное время. Гладкая мышечная ткань отличается высокой способностью к регенерации.

Поперечнополосатая скелетная мышца Характерна для всех мышц, скелета, диафрагмы, языка, глотки т др. состоит не из клеток, а из мышечных волокон. Мышечное волокно представляет собой пласт цитоплазмы удлинённой цилиндрической формы, в котором заключены многочисленные ядра. Длина мышечных волокон от нескольких миллиметров до 12 сантиметров. Сократительным аппаратом мышечного волокна являются миофибриллы. Поперёк мышечного волокна расположены перегородки, которые обуславливают его поперечную исчерченность. Сокращение поперечнополосатых мышц происходит быстро. Однако они рано утомляются. Сокращение контролируется сознанием, в связи с чем поперечнополосатая скелетная ткань называется произвольной. Способность к регенерации низкая. Часто на месте повреждения мышечной ткани образуется рубец (соединительная ткань). Поперечнополосатая сердечная мышечная ткань. 2-х видов она обеспечивает сокращения сердца, другая – проведения нервных импульсов внутри сердца. Мышечная ткань по строению напоминает поперечнополосатую. Однако сокращается не произвольно. Мышечные клетки цилиндрической формы, одно ядро. Боковые поверхности клеток соединяются мостиками из других мышечных клеток. Клетки проводящей системы крупнее, богаче цитоплазмой, беднее миофибриллами. Эта ткань не регенерируется. Погибшее клетки не восстанавливаются.

Нервная ткань

Основные свойства нервной ткани – способность её клеток воспринимать раздражение, трансформировать в нервные импульсы и передавать. Нервная ткань состоит из нейронов и нейроглии.

1. Нейрон. У нейрона различают тело, дендриты и аксоны.

2. Нейроглия – разные по функциям клетки. Этих клеток в 10 раз больше, чем нейронов.

 

Рекомендуемые страницы:

poisk-ru.ru

Клеточный центр

Количество просмотров публикации Клеточный центр — 1005

В клетках животных, растений и одноклеточных микротрубочки поляризованы, так что большей частью их растущие (+)-концы направлены к периферии клетки. Это связано с тем, что МТ начинают свой рост от центров организации микротрубочек (ЦОМТ). Различные ЦОМТ подразделяют на несколько групп: центросомные клеточные центры, и центры организации микротрубочек, не имеющие четкой локализации.

К примеру, в клетках высших растений полимеризация МТ происходит по периферии клеточного ядра, от которого МТ расходятся радиально. Сходная картина наблюдается при регенерации МТ в гигантских клетках слюнных желœез двукрылых. В ряде случаев новообразование МТ, их закладка, нуклеация, может происходить в цитоплазме вне связи со специальными зонами или структурами.

Но в большинстве случаев в клетках животных организмов образование и рост МТ начинается от клеточного центра, содержащего специальные образования – центросомы, которые большей частью могут содержать сложно организованные центриоли, или же не иметь их.

Центросомы и центриоли. Центросомы (клеточный центр) были обнаружены и описаны сто лет назад (Флемминг, 1875; Бенеден, 1876), представляют из себяочень мелкие тельца, размер которых находится на границе разрешающей способности светового микроскопа. Обычно располагающиеся в геометрическом центре клетки, откуда и их название. В некоторых объектах можно видеть, что мелкие плотные тельца (центриоли), обычно в паре (диплосома), окружены зоной более светлой цитоплазмы (собственно центросома), от которой отходят радиально тонкие фибриллы (центросфера) (рис. 277).

Центросомы характерны и обязательны для клеток животных, и нет у высших растений, у низших грибов и некоторых простейших. Центросомы в делящихся клетках принимают участие в формировании веретена делœения и располагаются на его полюсах. В неделящихся клетках центросомы определяют полярность клеток эпителия и располагаются вблизи аппарата Гольджи. Такая связь центросом с аппаратом Гольджи характерна для многих клеток, в т.ч. для клеток крови и нервных клеток. Часто центросомы лежат рядом с ядром, располагаясь в зонах его впячивания. К примеру, в полиморфных лейкоцитах (нейрофилы) центросома лежит внутри подкововидного впячивания ядра (рис. 278).

Типичное строение клеточный центр имеет в клетках животных. Он представляет собой зону, состоящую из центриолей и окружающей их аморфной фибриллярной массы или матрикса. В ряде случаев в состав клеточного центра входит только эта фибриллярная масса, от которой отходят микротрубочки (см. ниже).

Основу строения центриолей составляют расположенные по окружности девять триплетов микротрубочек, образующие таким образом полый цилиндр (рис. 279), шириной около 0, 15 мкм и длиной 0,3-0,5 мкм (хотя встречаются центриоли, достигающие в длину несколько микрон) (рис. 280).

Первая микротрубочка триплета (А-микротрубочка) имеет диаметр около 25 нм и толщину стенки 5 нм, которая состоит из 13 глобулярных субъединиц. Длина каждого триплета равна длинœе центриоли. Вторая и третья (В и С) микротрубочки являются неполными, содержат 11 субъединиц и вплотную примыкают к своим сосœедям. Каждый триплет располагается к радиусу такого цилиндра под углом около 400. Кроме микротрубочек в состав центриоли входит ряд дополнительных структур.
Размещено на реф.рф
От А-микротрубочки отходят так называемые “ручки”, выросты, один из которых (внешний) направлен к С- микротрубочке сосœеднего триплета͵ а другой (внутренний) – к центру цилиндра.

В интерфазных клетках всœегда присутствуют две центриоли (дуплет центриолей) или диплосома (рис. 281). В диплосоме центриоли располагаются одна по отношению к другой под прямым углом. Из двух центриолей одну называют “материнской”, другую — “дочерней”, продольная ось последней перпендикулярна продольной оси материнской центриоли. Проксимальный конец дочерней центриоли как бы смотрит на поверхность материнской. В дистальном конце материнской центриоли располагаются придатки — аморфный материал в виде выростов или шпор.
Размещено на реф.рф
На дочерней центриоли придатки отсутствуют (рис. ).

В проксимальных концах центральная часть цилиндра центриоли занята структурой, напоминающей телœежное колесо; она имеет центральную “втулку” диаметром около 25 нм и 9 спиц, направленных по одной к А-микротрубочке каждого из триплетов. На дистальном конце центриоли внутри её нет таких структур.
Размещено на реф.рф
Объем, занимаемый внутри центриоли втулкой со спицами, может составлять у разных клеток от 3\4 до 1\5 длины центриоли. У некоторых видов втулка отсутствует или заменена скоплением аморфного материала. Торцы центриолярного цилиндра, кроме системы втулки и спиц на проксимальном конце, ничем не закрыты.

Вокруг каждой центриоли расположен бесструктурный, или тонковолокнистый матрикс. Сами микротрубочки триплетов погружены в аморфный материал т.н. муфты или оправы.

Около центриолей и в связи с ним обнаруживают дополнительные структуры: сателлиты, фокусы схождения микротрубочек, исчерченные волокнистые корешки, дополнительные микротрубочки, образующие особую зону – центросферу вокруг центриоли (рис. 282).

Лучистое сияние центросферы, видимое в световом микроскопе, представляет собой большое число микротрубочек, радиально расходящихся от зоны диплосомы. В диплосоме лишь одна из центриолей, материнская, содержит ряд дополнительных структур.
Размещено на реф.рф
Одни из них, перицентриолярные сателлиты, состоят из имеющей тонкое фибриллярное строение конусовидной ножки, расположенной на стенке центриоли, и головки, заканчивающейся на этой ножке. Ножки сателлитов часто имеют поперечную исчерченность (рис. 284). Количество таких перицентриолярных сателлитов непостоянно, они могут располагаться на разных уровнях по длинœе центриоли. Кроме этих структур рядом с диплосомой, но не связанные с ней структурно, могут располагаться плотные мелкие (20-40 нм) тельца, к которым подходят одна или несколько микротрубочек (фокусы схождения микротрубочек). Микротрубочки отходят и от головок сателлитов. Эти центросомные микротрубочки не отходят непосредственно от микротрубочек цилиндров центриолей, а связаны или с сателлитами, или с матриксом. Такие микротрубочки и образуют как бы лучистую сферу (центросферу) вокруг центриоли, где (-)-концы МТ связаны с ЦОМТ, а (+)-концы радиально расходятся на периферию клетки. При образовании центросферы в интерфазной клетке только специальные структуры центриоли, сателлиты и матрикс, участвуют в образовании микротрубочек, микротрубочки самих центриолей в данном процессе не участвуют.

В интерфазных клетках центриоли оказываются связаны с ядром и с ядерной мембраной. При выделœении ядер практически всœе центриоли клеток печени и селœезенки крыс оказываются в этой фракции. Связь центриолей с ядром осуществляется главным образом промежуточными филаментами. В случае если живые клетки подвергнуть ультрацентрифугированию, то центриоли опускаются к центробежному полюсу вместе с ядрами.

Центросомный цикл. Строение и активность центросом меняются исходя из периода клеточного цикла, в течение которого клеточный центр претерпевает тоже циклические изменения (рис. 283).

Во время митоза происходит ряд существенных клеточных перестроек: конденсация хромосом, разрушение ядерной оболочки, образование веретена делœения, расхождение хромосом. В митозе в клеточных центрах (их два, по одному на каждый полюс клетки) находится по диплосоме. Как полагается, дочерняя центриоль своим концом направлена на материнскую. Материнская центриоль на всœех стадиях митоза окружена широкой (до 0,3 мкм) зоной тонких фибрилл или центриолярное фибриллярное гало (рис. 279). От этого гало радиально отходят микротрубочки. У дочерних центриолей ни гало, ни отходящих от центриолей микротрубочек нет. В это время происходит формирование веретена митотического аппарата͵ состоящего из микротрубочек. Эта структура имеет форму веретена, на концах которого, на полюсах клетки, располагаются диплосомы, окруженные радиальными микротрубочками (центросфера). В веретене зоны диплосом, клеточные центры, являются центрами организации (полимеризации) микротрубочек.

К концу телофазы, когда произошло разделœение клетки надвое, а хромосомы начали деконденсироваться и образовывать новые интерфазные ядра, происходит разрушение веретена делœения, его микротрубочки деполимеризуются. Клеточные центры при этом меняют свою структуру. Материнская и дочерняя центриоли теряют взаимно перпендикулярное расположение и отходят друг от друга на небольшие (0,5-2мкм) расстояния, но всœе же держатся в одном месте. Вокруг материнской центриоли гало и микротрубочки не выявляются. В это время микротрубочек в цитоплазме также практически нет.

В начале G1-периода на поверхности материнской центриоли возникают сателлиты, имеющие ножку и головку, от которой радиально отходят микротрубочки, которые начинают расти в длину и заполнять собой цитоплазму (рис. 284а). Следовательно, вторая форма активности клеточного центра – образование цитоплазматических микротрубочек в интерфазных клетках.

В клетках центросомы индуцируют полимеризацию новых микротрубочек, которые приходят на смену постепенно деполимеризующимся старым. Вероятно, в цитоплазме есть несколько генераций микротрубочек: “старые”, не связанные с клеточным центром, и новые, растущие от центросом. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в клетке происходит как бы конвейерная смена и репродукция цитоплазматических микротрубочек.

В фазе клеточного покоя (Go-период) (рис. 285) материнская центриоль продолжает функционировать, как центр образования микротрубочек цитоскелœета. Ддновременно она может образовать ресничку, вырост плазматической мембраны, заполненный аксонемой (осœевой нитью), состоящей из девяти дублетов микротрубочек. Эти микротрубочки отрастают, как от затравок, от А- и В-микротрубочек триплетов материнской центриоли в дистальной ее части. Это – третья форма активности центриолей как центров организации микротрубочек (см. ниже).

В S-периоде (в серединœе его) происходит удвоение числа центриолей. В это время около каждой из разошедшихся еще в конце телофазы центриолей, материнской и дочерней, происходит закладка новых центриолярных цилиндров – процентриолей (рис. 284б). В районе проксимальных концов каждой центриоли перпендикулярно длинной оси закладывается сначала девять синглетов (одиночных) микротрубочек, затем они преобразуются в девять дуплетов, а потом – в девять триплетов растущих микротрубочек новых центриолярных цилиндров.

Закладка процентриолей происходит на проксимальных концах центриолей; в данном месте растут новые поколения центриолей, тоже с проксимального конца. Во время роста процентриолей здесь можно видеть центральную “втулку” со спицами.

Благодаря такому росту структур образуется сначала короткая дочерняя центриоль – процентриоль — которая затем дорастает до размера материнской. Этот способ увеличения числа центриолей был назван дупликацией.

В S-периоде во время удвоения (дупликации) центриолей материнская продолжает проявлять вторую форму активности: она продолжает быть центром образования цитоплазматических микротрубочек.

В результате процесса дупликации около каждой центриоли вырастает новая дочерняя центриоль (первая материнская центриоль и дочерняя на бывшей дочерней центриоли могут считаться как бы бабушкой и внучкой). По этой причине в клетке после завершения S-периода находятся уже две диплосомы (а всœего четыре центриолярных цилиндра) (рис. 286).

После S-периода наступает постсинтетический (G2-период), во время которого в клетке начинается подготовка к очередному делœению. В это время исчезают сателлиты на материнской диплосоме (так можно назвать старую материнскую центриоль с новой дочерней), а обе материнские центриоли в обеих диплосомах покрываются фибриллярным гало, от которого в профазе начинают отрастать митотические микротрубочки. Параллельно этому в цитоплазме происходит исчезновение микротрубочек, и клетка стремится приобрести шаровидную форму. Вся такая последовательность событий повторяется от цикла к циклу у клеток, способных к длительному размножению. В большинстве случаев клетки организма находятся в G0-периоде, в связи с этим у них центриоль участвует в полимеризации цитоплазматических микротрубочек и в образовании реснички (или множества ресничек). В последнем случае она входит в состав так называемого базального тельца.

Обычно в клетку после делœения попадают два центриолярных цилиндра в составе диплосомы.

Нарушения центриолярного цикла могут вызвать ряд патологических изменений клеток, в первую очередь появление многополюсных митозов.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в подавляющем большинстве клеток млекопитающих центросомы участвуют в полимеризации тубулинов и являются структурами, играющими роль центров организации микротрубочек. Микротрубочки самих центриолей являются затравками для полимеризации тубулинов только в одном случае – при росте аксонемы реснички, когда центриоль становится базальным тельцем. Это временное состояние: при переходе клеток к делœению реснички могут исчезать, а базальное тельце снова может выполнять роль центриоли, участвуя в организации цитоплазматических микротрубочек или микротрубочек митотического веретена. Только в этих случаях центрами организации микротрубочек являются не сами центриолярные цилиндры, а перицентриолярный материал (головка сателлитов, околоцентриолярный матрикс, гало и т.д.). Следовательно, центриоль как таковую нужно рассматривать как один из компонентов более сложной структуры – клеточного центра или центросомы. Эта оговорка связана с тем, что у всœех высших растений ЦОМТ не содержит центриолей. Более того, в раннем эмбриогенезе позвоночных животных образуются веретена делœения, не имеющие центриолей в полюсах. По всœей вероятности в последних случаях центриоли возникают позже заново, а не образуются путем “репликации”.

referatwork.ru

Клеточный центр. Новые сочинения по зарубежной литературе

Комплекс Гольджи. Комплекс Гольджи – это органоид клетки, получивший свое название по имени ученого К. Гольджи, который впервые увидел его в цитоплазме нейронов и назвал сетчатым аппаратом (1898). Во многих клетках этот органоид действительно имеет форму сложной сети, расположенной вокруг ядра. Иногда же его сетевидная структура приобретает вид шапочки, расположенной над ядром, или тяжа, опоясывающего ядро. В клетках многих беспозвоночных животных и растений комплекс Гольджи представлен в виде отдельных элементов, обладающих формой округлых, серповидных или палочковидных телец, носящих название диктиосом. Такая рассеянная форма аппарата Гольджи свойственна и некоторым клеткам позвоночных животных.

Исследование многочисленных клеток животных и растений с помощью электронного микроскопа показало, что, несмотря на многообразие формы и строения комплекса Гольджи, структура его элементов однотипна в разных клетках. По данным электронномикроскопического исследования, ультраструктура комплекса Гольджи включает три основных компонента.

Система плоских цистерн, ограниченных гладкими мембранами. Цистерны расположены пачками, по 5 – 8; причем они плотно прилегают друг к другу. Количество цистерн, их величина и расстояние между ними варьируют в разных клетках.

Система трубочек, которые отходят от цистерн. Трубочки анастомозируют друг с другом и образуют довольно сложную сеть, окружающую цистерны.

Крупные и мелкие пузырьки, замыкающие концевые отделы трубочек.

Все три компонента аппарата Гольджи взаимосвязаны друг с другом и могут возникать друг из друга.

Согласно электронномикроскопическим данным, мембранам всех трех компонентов свойственно такое же трехслойное строение, как и наружной цитоплазматической мембране и мембранам эндоплазматической сети.

В состав мембран аппарата Гольджи входят липиды, или, точнее, фосфолипиды и белки. Следовательно, в мембранах его содержится тот же белково-липидный комплекс, что и в мембранах других клеточных органоидов. В элементах комплекса Гольджи обнаружены ферменты и среди них ферменты, связанные с синтезом полисахаридов и липидов.

Структуры аппарата Гольджи накапливают либо уже готовые, либо почти готовые продукты деятельности клеток.

Формирование и накапливание секреторных гранул – это основная, очень важная, но не единственная функция аппарата Гольджи.

При делении клеток часть аппарата Гольджи из материнской клетки передается в дочернюю. Этот клеточный органоид представляет поэтому преемственную структуру, и при делении обычно материал его распределяется поровну между материнской и дочерней клетками. Возможность образования аппарата Гольджи заново не доказана.

Лизосомы. Лизосомы были открыты в 1955 году при исследовании клеток печени крысы биохимическими методами. Открытие лизосом связано с работами Де-Дюва.

Лизосомы представляют собой небольшие округлые частицы, располагающиеся в цитоплазме. Каждая лизосома ограничена плотной мембраной, внутри которой заключено свыше 12 гидролитических ферментов, имеющих наибольшую активность в кислой среде. Мембрана лизосомы имеет типичное трехслойное строение. Ферменты, содержащиеся в лизосомах, способны расщеплять важные в биологическом отношении соединения, т. е. белки, нуклеиновые кислоты, полисахариды. Эти вещества поступают в клетку в качестве пищи путем фагоцитоза и пиноцитоза, и лизосомы принимают активное участие в их расщеплении, или лизисе. Отсюда происходит и название самого органоида (греч. lysis – растворение и soma – тело). Совокупность лизосом можно назвать «пищеварительной системой» клетки, так как они участвуют в переваривании всех веществ, поступающих в клетку.

Кроме того, за счет ферментов лизосом могут перевариваться при отмирании отдельные структуры клетки, а также целые отмершие клетки, что обычно наблюдается в процессе жизнедеятельности любого многоклеточного организма. Ферменты лизосом способны переваривать и саму клетку, в которой они находятся, но предполагают, что клетку от «самопереваривания» предохраняет та мембрана, которая ограничивает каждую лизосому. Нарушение целостности мембраны лизосом приводит к повреждениям окружающей цитоплазмы и клеточных органоидов. Лизосомы обнаружены в клетках многих органов многоклеточных животных, у простейших, а в последнее время и в клетках растений. Лизосомы сейчас детально исследуются.

Клеточный центр. Клеточный центр – органоид, обнаруженный во всех клетках многоклеточных животных, простейших и в клетках некоторых растений. В состав клеточного центра входит 1 – 2 или иногда большее количество мелких гранул, называемых центриолями. Центриоли либо непосредственно расположены в цитоплазме, либо лежат в центре сферического слоя цитоплазмы, который называется центросомой или центросферой.

Центриоли – это плотные тельца. Центриоли имеют относительно постоянное место расположения в клетке: они занимают геометрический центр ее, но иногда в процессе развития могут перемещаться ближе к периферическим участкам. У многих видов простейших и в половых клетках некоторых многоклеточных организмов центриоли расположены не в цитоплазме, а в ядре, под его оболочкой.

Клеточный центр играет важную роль в процессах деления клетки.

Известно, что в центриолях содержатся углеводы, белки и совсем незначительное количество липидов, а также очень немного РНК и ДНК.

В объяснении процессов репродукции центриолей до сих пор имеется много дискуссионных вопросов, но сейчас уже определенно показано, что репродукция этих структур происходит путем почкования. От уже имеющейся в клетке родительской центриоли начинает расти маленький зачаток, представляющий собой дочернюю центриоль. Зачаток увеличивается в размерах и, вырастая, превращается в точно такую же центриоль, как родительская. Затем эта дочерняя центриоль отделяется от родительской. Такой путь формирования новой центриоли был детально изучен у простейших (жгутиконосцев). С помощью электронномикроскопических исследований Д. Мэзия (1961) и его сотрудники выяснили, что такой же способ репродукции центриолей путем почкования свойственен и клеткам позвоночных животных.

Органоиды движения. Многие клетки одноклеточных и многоклеточных организмов обладают способностью к движению. Под этим понимается движение клетки в пространстве и внутриклеточное движение ее органоидов. В жидкой среде перемещение клеток осуществляется движением жгутиков и ресничек; так передвигаются многие одноклеточные. Некоторые другие простейшие организмы, а также специализированные клетки многоклеточных передвигаются с помощью выростов, образующихся на поверхности клеток. Клетка находится в постоянном движении. Клеточное движение обеспечивается цитоскелетом, состоящем из микротрубочек, микронитей и клеточного центра. Микротрубочки — это длинные полые цилиндры, стенки которых состоят из белков. Микронити — очень тонкие структуры, состоящие из тысяч молекул белка, соединенных друг с другом.

Ядро. Ядро – обязательная часть всякой полноценной, способной делиться клетки высших животных и растений. От цитоплазмы ядра обычно отделяются четкой границей. На неокрашенных препаратах и при наблюдениях живых клеток ядро зачастую выглядит как гомогенный пузырек. Иногда видна более грубая или мелкая зернистая структура. Во всех случаях отчетливо выделяется имеющее округлую форму ядрышко, которое по показателю преломления света отличается от остальной части ядра. Бактерии и некоторые низшие водоросли (сине-зеленые) не имеют сформированного ядра: их ядра лишены ядрышка и не отделены от цитоплазмы отчетливо выраженной ядерной мембраной. Однако основной компонент ядра – носители наследственной информации клетки, хромосомы, присутствуют во всех без исключения ядрах. Форма ядер довольно разнообразна и в ряде случаев соответствует форме клетки. Количество ядер также может варьировать: типична одноядерная клетка, но встречаются клетки двуядерные (некоторые клетки печени и хрящевые клетки) и многоядерные (например, волокна поперечнополосатой мышцы и клетки сифонных водорослей содержат несколько сот ядер). Отношение объема ядра к объему цитоплазмы (ядерно-плазменное отношение) в клетках определенного типа в строго стандартных условиях в известной мере постоянно.

С конца прошлого века до настоящего времени ведутся интенсивные исследования строения и функций ядра. Различают ядро в состоянии интерфазы (обычное ядро функционирующей клетки) и ядро в процессе клеточного деления. Однако не все интерфазные ядра одинаковы. По их дальнейшим возможностям можно различить: 1) ядра размножающихся клеток между двумя делениями; 2) ядра уже не делящихся, но способных к делению клеток; 3) ядра клеток, утративших способность делиться совсем. Обнаружить различия в строении интерфазных ядер двух последних типов не удается.

Основными компонентами ядра являются:

Ядерная оболочка.

Ядерный сок – кариоплазма – относительно прозрачная и однородная масса. Ядерный сок в виде неструктурированной массы окружает хромосомы и ядрышки.

Одно или два обычно округлых ядрышка. Ядрышко – постоянная часть типичного интерфазного ядра. По физическим свойствам ядрышко является наиболее плотной частью ядра. По химическому составу ядрышко отличается относительно высокой концентрацией РНК. Основные компоненты, из которых состоят ядрышки, — это кислые белки типа фосфопротеинов и РНК. Кроме того, в нем обнаруживаются свободные или связанные фосфаты кальция, калия, магния, железа, цинка. Наличие ДНК в ядрышке не доказано. Функция ядрышка состоит в образовании или сборке рибосом, которыми снабжается цитоплазма.

Хромосомы, спирализованные участки которых видны в световой микроскоп как хлопья или закрученные, переплетенные нити; деспирализованные участки нитей видны только в электронный микроскоп. Хромосомы – та, основная функциональная авторепродуцирующая структура ядра, в которой концентрируется ДНК и с которой связана функция ядра. ДНК хромосом содержит наследственную информацию обо всех признаках и свойствах данной клетки, о процессах, которые должны протекать в ней (например, синтез белка). Хромосомы содержат хроматин, окрашивающийся основными красителями; иногда хроматин образует большей или меньшей величины тельца, напоминающие ядрышки.

Больше сочинений по этой теме
Больше рефератов этого автора

www.uznaem-kak.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *