Таблица процесс фотосинтеза – заполните таблицу. Фотосинтез. фазы процессы, результаты фотосинтеза происходящиев этой фазе процессов 1.световая

Содержание

Фазы фотосинтеза – описание и таблица

Как понятно из названия, фотосинтез по своей сути являет собой природный синтез органических веществ, превращая СО2 из атмосферы и воду в глюкозу и свободный кислород.

При этом необходимо наличие энергии солнечного света.

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

Фотосинтез имеет две фазы: темную и световую. Химические реакции темной фазы фотосинтеза существенно отличаются от реакций световой фазы, однако темная и световая фаза фотосинтеза зависят друг от друга.

Световая фаза может происходить в листьях растений исключительно при солнечном свете. Для темной же необходимо наличие углекислого газа, именно поэтому растение все время должно поглощать его из атмосферы. Все сравнительные характеристики темной и световой фаз фотосинтеза будут предоставлены ниже. Для этого была создана сравнительная таблица «Фазы фотосинтеза».

Световая фаза фотосинтеза

Основные процессы в световой фазе фотосинтеза происходят в мембранах тилакоидов. В ней участвуют хлорофилл, белки-переносчики электронов, АТФ-синтетаза (фермент, ускоряющий реацию) и солнечный свет.

Далее механизм реакции можно описать так: когда солнечный свет попадает на зеленые листья растений, в их структуре возбуждаются электроны хлорофилла (заряд отрицательный), которые перейдя в активное состояние, покидают молекулу пигмента и оказываются на внешней стороне тилакоида, мембрана которого заряжена также отрицательно. В то же время молекулы хлорофилла окисляются и уже окисленные они восстанавливаются, отбирая таким образом электроны у воды, которая находится в структуре листа.

Этот процесс приводит к тому, что молекулы воды распадаются, а созданные в результате фотолиза воды ионы, отдают свои электроны и превращаются в такие радикалы ОН, которые способны проводить дальнейшие реакции. Далее эти реакционноспособные радикалы ОН объединяются, создавая полноценные молекулы воды и кислород. При этом свободный кислород выходит во внешнюю среду.

В результате всех этих реакций и превращений, мембрана тилакоида листа с одной стороны заряжается положительно (за счет иона Н+), а с другой — отрицательно (за счет электронов). Когда разность между этими зарядами в двух сторонах мембраны достигает больше 200 мВ, протоны проходят через специальные каналы фермента АТФ-синтетазы и за счет этого происходит превращение АДФ до АТФ (в результате процесса фосфорилизации). А атомный водород, который освобождается из воды, восстанавливает специфический переносчик НАДФ+ до НАДФ·Н2. Как видим, в результате световой фазы фотосинтеза происходит три основных процесса:

  1. синтез АТФ;
  2. создание НАДФ·Н2;
  3. образование свободного кислорода.

Последний освобождается в атмосферу, а НАДФ·Н2 и АТФ берут участие в темной фазе фотосинтеза.

Темная фаза фотосинтеза

Темная и световая фазы фотосинтеза характеризуются большими затратами энергии со стороны растения, однако темная фаза протекает быстрее и требует меньше энергии. Для реакций темной фазы не нужен солнечный свет, поэтому они могут происходить и днем и ночью.

Все основные процессы этой фазы протекают в строме хлоропласта растения и являют собой своеобразную цепочку последовательных превращений углекислого газа из атмосферы. Первая реакция в такой цепи – фиксация углекислого газа. Чтобы она проходила более плавно и быстрее, природой был предусмотрен фермент РиБФ-карбоксилаза, который катализирует фиксацию СО2.

Далее происходит целый цикл реакций, завершением которого является преобразование фосфоглицериновой кислоты в глюкозу (природный сахар). Все эти реакции используют энергию АТФ и НАДФ•Н2, которые были созданы в световой фазе фотосинтеза. Помимо глюкозы в результате фотосинтеза образуются также и другие вещества. Среди них разные аминокислоты, жирные кислоты, глицерин, а также нуклеотиды.

Фазы фотосинтеза: таблица сравнений

  Критерии сравнения
  Световая фаза Темная фаза  
Солнечный свет  Обязателен  Необязателен
Место протекание реакций  Граны хлоропласта  Строма хлоропласта
Зависимость от источника энергииЗависит от солнечного света  Зависит от АТФ и НАДФ•Н2, образованных в световой фазе и от количества СО2 из атмосферы
Исходные веществаХлорофилл, белки-переносчики электронов, АТФ-синтетаза  Углекислый газ
Суть фазы и что образуется  Выделяется свободный О2, образуется АТФ и НАДФ•Н2  Образование природного сахара (глюкозы) и поглощение СО2 из атмосферы

Фотосинтез — видео

life-students.ru

сущность и формула, схема и подробное объяснение

Фотосинтез является очень сложным биологическим процессом. Его изучает наука биология на протяжении многих лет, но, как показывает история изучения фотосинтеза, некоторые этапы до сих пор непонятны. В научных справочниках последовательное описание этого процесса занимает несколько страниц. Цель этой статьи — описать такое явление, как фотосинтез, кратко и понятно для детей, в виде схем и объяснения.

Научное определение



Для начала важно узнать, что такое фотосинтез. В биологии определение звучит так: это процесс образования органических веществ (пищи) из неорганических (из углекислого газа и воды) в хлоропластах с помощью энергии света.

Чтобы понять это определение, можно представить совершенную фабрику — это любое зеленое растение, которое является фотосинтетиком. «Топливом» для этой фабрики служит солнечный свет, растения используют воду, углекислый газ и минералы, чтобы производить пищу почти для всех форм жизни на земле. Эта «фабрика» совершенная, потому что она, в отличие от других заводов, не приносит вред, а, наоборот, по ходу производства выделяет в атмосферу кислород и поглощает углекислый газ. Как видно, для фотосинтеза необходимы определенные условия.

Этот уникальный процесс можно представить в виде формулы или уравнения:

солнце +вода+углекислый газ = глюкоза+вода+кислород

Строение листа растения


Для того чтобы охарактеризовать сущность процесса фотосинтеза, необходимо рассмотреть строение листа. Если рассмотреть под микроскопом, можно увидеть прозрачные клетки, в которых находятся от 50 до 100 зеленых пятнышек. Это хлоропласты, где находится хлорофилл — основной фотосинтетический пигмент, и в которых осуществляется фотосинтез.

Хлоропласт похож на маленькую сумочку, а внутри него — сумочки еще меньше. Они называются тилакоидами. Молекулы хлорофилла находятся на поверхности тилакоидов и расположены по группам, которые называются фотосистемами. У большинства растений существует два вида фотосистем (ФС): фотосистемаI и фотосистемаII. К фотосинтезу способны только клетки, имеющие хлоропласт.

Описание световой фазы



Какие реакции происходят во время световой фазы фотосинтеза? В группе ФСII энергия солнечного света предается электронам молекулы хлорофилла, вследствие чего электрон заряжается, то есть «возбуждается настолько», что выпрыгивает из группы фотосистемы и «подхватывается» молекулой-переносчиком в мембране тилакоида. Этот электрон переходит от переносчика к переносчику, пока не разрядится. После этого он может использоваться в другой группе ФСI для замены электрона.

В группе фотосистемы II недостает электрона, и теперь она положительно заряженная и требует новый электрон. Но где взять такой электрон? Область в группе, известная как комплекс выделения кислорода, поджидает беззаботно «прогуливающуюся» молекулу воды.

В молекулу воды входит один атом кислорода и два атома водорода. Комплекс выделения кислорода в ФСII имеет марганца четыре иона, которые забирают электроны у атомов водорода. В результате происходит расщепление молекулы воды на два положительных иона водорода, два электрона и один атом кислорода. Молекулы воды расщепляются

, и атомы кислорода распределяются по парам, образуя при этом молекулы газа кислорода, который возвращает растение в воздух. Ионы водорода начинают собираться в сумочке тилакоида, отсюда растение сможет их использовать, а с помощью электронов решается проблема потери в комплексе ФС II, который готов повторить этот цикл много раз в секунду.

В тилакоидном мешочке происходит скопление ионов водорода, и они начинают искать выход. Два иона водорода, образующиеся всегда при распаде молекулы воды, это далеко не всё: проходя путь из комплекса ФС II в комплекс ФС I, электроны притягивают в мешочек и другие ионы водорода. Затем эти ионы скапливаются в тилакоиде. Как им оттуда выбраться?

Оказывается, у них имеется «турникет» с одним выходом — фермент, который используется при выработке клеточного «топлива», называемого АТФ (аденозинтрифосфат). Проходя через этот «турникет», ионы водорода предоставляют энергию, которая необходима для перезарядки уже используемых молекул АТФ. Молекулы АТФ — это клеточные «батареи». Они отдают энергию для реакций внутри клетки.

При сборе сахара нужна еще одна молекула. Она называется НАДФ (никотинамидадениндинуклеотидфосфат). Молекулы НАДФ — это «грузовики», каждый из них доставляет по атому водорода к ферменту молекулы сахара. Образование НАДФ происходит в комплексе ФС I. Пока фотосистема (ФС II) расщепляет молекулы воды и создает из них АТФ, фотосистема (ФС I) поглощает свет и выдает электроны, которые потом будут нужны при образовании НАДФ. Молекулы АТФ и НАДФ находятся на хранении в строме и потом будут использованы для образования сахара.

Продукты световой фазы фотосинтеза:

  • кислород
  • АТФ
  • НАДФ*Н 2

Схема ночной фазы

После световой фазы протекает темновая стадия фотосинтеза. Впервые эту фазу открыл Кальвин. Впоследствии это открытие было названо с3 — фотосинтезом. У некоторых видов растений наблюдается вид фотосинтеза — с4.

В процессе фотосинтеза световой фазы сахар не производится. При свете образуется только АТФ и НАДФ. Ферменты используются в строме (пространстве вне тилакоида) для производства сахара. Хлоропласт можно сравнить с фабрикой, на которой бригады (ФС I и ФС II) внутри тилакоида производят грузовики и батареи (НАДФ и АТФ) для работы третьей бригады (особых ферментов) стромы.

Эта бригада образовывает сахар путем присоединения атомов водорода и молекулы углекислого газа благодаря химическим реакциям, используя при этом ферменты, находящиесяся в строме. Все три бригады работают днем, а «сахарная» и днем, и ночью, до того пока не израсходуется АТФ и НАДФ, которые остались после дневной смены.

В строме много атомов и молекул соединяются с помощью ферментов. Некоторые ферменты — это молекулы белка, имеющие особую форму, и это позволяет им брать те атомы или молекулы, которые нужны для определенной реакции. После того как произойдет соединение, фермент отпускает новообразованную молекулу, и такой процесс повторяется постоянно. В строме ферменты пускают по цепочке молекулы сахара, которые собрали, перестраивают их, заряжают с помощью АТФ, присоединяют углекислоту, добавляют водород, затем отправляют трехуглеродный сахар в другую часть клетки, где его преобразуют в глюкозу и множество других веществ.

Итак, темновая фаза характеризуется образованием молекул глюкозы. А из глюкозы синтезируются углеводы.

Фотосинтез световая и темновая фазы (таблица)

фаза световаяфаза темновая
место осуществления процесса (органеллы клеток)мембрана тилакоидовстром
источник энергиисолнцеАТФ
исходные вещества, необходимые для реакции
  1. хлорофилл
  2. молекулы белка переносчики электронов
  3. АТФ
углекислый газ
вещества, которые продуцируются в конечном результате процесса
  1. свободный кислород
  2. АТФ
  3. НАДФ
глюкоза

Роль в природе

Каково же значение фотосинтеза в природе? Можно смело сказать, что жизнь на Земле зависит от фотосинтеза.

  • С его помощью растения вырабатывают кислород, который так необходим для дыхания.
  • В процессе дыхания выделяется углекислый газ. Если бы его не поглощали растения, то в атмосфере бы возник парниковый эффект. С появлением парникового эффекта может меняться климат, таять ледники, в результате может затопить много земельных участков.
  • Процесс фотосинтеза помогает питать все живые существа, а также осуществляет снабжение человечества топливом.
  • Благодаря выделяемому с помощью фотосинтеза кислороду в виде кислородно-озонового экрана атмосферы происходит защита всего живого от ультрафиолетового излучения.

1001student.ru

Фотосинтез | Биология

Фотосинтез — это преобразование энергии света в энергию химических связей органических соединений.

Фотосинтез характерен для растений, в том числе всех водорослей, ряда прокариот, в том числе цианобактерий, некоторых одноклеточных эукариот.

В большинстве случаев при фотосинтезе в качестве побочного продукта образуется кислород (O2). Однако это не всегда так, поскольку существует несколько разных путей фотосинтеза. В случае выделения кислорода его источником является вода, от которой на нужды фотосинтеза отщепляются атомы водорода.

Фотосинтез состоит из множества реакций, в которых участвуют различные пигменты, ферменты, коферменты и др. Основными пигментами являются хлорофиллы, кроме них — каротиноиды и фикобилины.

В природе распространены два пути фотосинтеза растений: C3 и С4. У других организмов есть своя специфика реакций. Все, что объединяет эти разные процессы под термином «фотосинтез», – во всех них в общей сложности происходит преобразование энергии фотонов в химическую связь. Для сравнения: при хемосинтезе происходит преобразование энергии химической связи одних соединений (неорганических) в другие — органические.

Выделяют две фазы фотосинтеза — световую и темновую. Первая зависит от светового излучения (hν), которое необходимо для протекания реакций. Темновая фаза является светонезависимой.

У растений фотосинтез протекает в хлоропластах. В результате всех реакций образуются первичные органические вещества, из которых потом синтезируются углеводы, аминокислоты, жирные кислоты и др. Обычно суммарную реакцию фотосинтеза пишут в отношении глюкозы — наиболее распространенного продукта фотосинтеза:

6CO2 + 6H2O → C6H12O6 + 6O2

Атомы кислорода, входящие в молекулу O2, берутся не из углекислого газа, а из воды. Углекислый газ – источник углерода, что более важно. Благодаря его связыванию у растений появляется возможность синтеза органики.

Представленная выше химическая реакция есть обобщенная и суммарная. Она далека от сути процесса. Так глюкоза не образуется из шести отдельных молекул углекислоты. Связывание CO2 происходит по одной молекуле, которая сначала присоединяется к уже существующему пятиуглеродному сахару.

Для прокариот характерны свои особенности фотосинтеза. Так у бактерий главный пигмент — бактериохлорофилл, и не выделяется кислород, так как водород берется не из воды, а часто из сероводорода или других веществ. У сине-зеленых водорослей основным пигментом является хлорофилл, и при фотосинтезе выделяется кислород.

Световая фаза фотосинтеза

В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов, где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.

Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H2. Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.

Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.

На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.

Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.

Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.

Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды. Фотолиз также происходит при участии света и заключается в разложении H2O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.

Примерное суммарное уравнение световой фазы фотосинтеза:

H2O + НАДФ + 2АДФ + 2Ф → ½O2 + НАДФ · H2 + 2АТФ

 

Циклический транспорт электронов

Выше описана так называемый нецикличная световая фаза фотосинтеза. Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит. При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.

Фотофосфорилирование и окислительное фосфорилирование

Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания — окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием, а не окислительным фосфорилированием.

Темновая фаза фотосинтеза

Впервые темновую фазу фотосинтеза подробно изучили Кальвин, Бенсон, Бэссем. Открытый ими цикл реакций в последствии был назван циклом Кальвина, или C3-фотосинтезом. У определенных групп растений наблюдается видоизмененный путь фотосинтеза – C4, также называемый циклом Хэтча-Слэка.

В темновых реакциях фотосинтеза происходит фиксация CO2. Темновая фаза протекает в строме хлоропласта.

Восстановление CO2 происходит за счет энергии АТФ и восстановительной силы НАДФ·H2, образующихся в световых реакциях. Без них фиксации углерода не происходит. Поэтому хотя темновая фаза напрямую не зависит от света, но обычно также протекает на свету.

Цикл Кальвина

Первая реакция темновой фазы – присоединение CO2 (карбоксилирование) к 1,5-рибулезобифосфату (рибулезо-1,5-дифосфат) – РиБФ. Последний представляет собой дважды фосфорилированную рибозу. Данную реакцию катализирует фермент рибулезо-1,5-дифосфаткарбоксилаза, также называемый рубиско.

В результате карбоксилирования образуется неустойчивое шестиуглеродное соединение, которое в результате гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК) – первый продукт фотосинтеза. ФГК также называют фосфоглицератом.

РиБФ + CO2 + H2O → 2ФГК

ФГК содержит три атома углерода, один из которых входит в состав кислотной карбоксильной группы (-COOH):

Из ФГК образуется трехуглеродный сахар (глицеральдегидфосфат) триозофосфат (ТФ), включающий уже альдегидную группу (-CHO):

ФГК (3-кислота) → ТФ (3-сахар)

На данную реакцию затрачивается энергия АТФ и восстановительная сила НАДФ · H2. ТФ — первый углевод фотосинтеза.

После этого большая часть триозофосфата затрачивается на регенерацию рибулозобифосфата (РиБФ), который снова используется для связывания CO2. Регенерация включает в себя ряд идущих с затратой АТФ реакций, в которых участвуют сахарофосфаты с количеством атомов углерода от 3 до 7.

В таком круговороте РиБФ и заключается цикл Кальвина.

Из цикла Кальвина выходит меньшая часть образовавшегося в нем ТФ. В перерасчете на 6 связанных молекул углекислого газа выход составляет 2 молекулы триозофосфата. Суммарная реакция цикла с входными и выходными продуктами:

6CO2 + 6H2O → 2ТФ

При этом в связывании участвую 6 молекул РиБФ и образуется 12 молекул ФГК, которые превращаются в 12 ТФ, из которых 10 молекул остаются в цикле и преобразуются в 6 молекул РиБФ. Поскольку ТФ — это трехуглеродный сахар, а РиБФ — пятиуглеродный, то в отношении атомов углерода имеем: 10 * 3 = 6 * 5. Количество атомов углерода, обеспечивающих цикл не изменяется, весь необходимый РиБФ регенерируется. А шесть вошедших в цикл молекул углекислоты затрачиваются на образование двух выходящих из цикла молекул триозофосфата.

На цикл Кальвина в расчете на 6 связанных молекул CO2 затрачивается 18 молекул АТФ и 12 молекул НАДФ · H2, которые были синтезированы в реакциях световой фазы фотосинтеза.

Расчет ведется на две выходящие из цикла молекулы триозофосфата, так как образующаяся в последствии молекула глюкозы, включает 6 атомов углерода.

Триозофосфат (ТФ) — конечный продукт цикла Кальвина, но его сложно назвать конечным продуктом фотосинтеза, так как он почти не накапливается, а, вступая в реакции с другими веществами, превращается в глюкозу, сахарозу, крахмал, жиры, жирные кислоты, аминокислоты. Кроме ТФ важную роль играет ФГК. Однако подобные реакции происходят не только у фотосинтезирующих организмов. В этом смысле темновая фаза фотосинтеза – это то же самое, что цикл Кальвина.

Из ФГК путем ступенчатого ферментативного катализа образуется шестиуглеродный сахар фруктозо-6-фосфат, который превращается в глюкозу. В растениях глюкоза может полимеризоваться в крахмал и целлюлозу. Синтез углеводов похож на процесс обратный гликолизу.

Фотодыхание

Кислород подавляет фотосинтез. Чем больше O2 в окружающей среде, тем менее эффективен процесс связывания CO2. Дело в том, что фермент рибулозобифосфат-карбоксилаза (рубиско) может реагировать не только с углекислым газом, но и кислородом. В этом случае темновые реакции несколько иные.

Содержащая пять атомов углерода молекула рибулозобифосфата реагирует уже не с CO2, а с O2. В результате чего образуются по одной молекуле фосфогликолата (C2) и фосфоглицериновой кислоты (C3), а не две ФГК как обычно.

Фосфогликолат — это фосфогликолевая кислота. От нее сразу отщепляется фосфатная группа, и она превращается в гликолевую кислоту (гликолат). Для его «утилизации» снова нужен кислород. Поэтому чем больше в атмосфере кислорода, тем больше он будет стимулировать фотодыхание и тем больше растению будет требоваться кислорода, чтобы избавиться от продуктов реакции.

Фотодыхание — это зависимое от света потребление кислорода и выделение углекислого газа. То есть обмен газов происходит как при дыхании, но протекает в хлоропластах и зависит от светового излучения. От света фотодыхание зависит лишь потому, что рибулозобифосфат образуется только при фотосинтезе.

При фотодыхании происходит возврат атомов углерода из гликолата в цикл Кальвина в виде фосфоглицериновой кислоты (фосфоглицерата).

2 Гликолат (С2) → 2 Глиоксилат (С2) →2 Глицин (C2) — CO2 → Серин (C3) →Гидроксипируват (C3) → Глицерат (C3) → ФГК (C3)

Как видно, возврат происходит не полный, так как один атом углерода теряется при превращении двух молекул глицина в одну молекулу аминокислоты серина, при этом выделяется углекислый газ.

Кислород необходим на стадиях превращения гликолата в глиоксилат и глицина в серин.

Превращения гликолата в глиоксилат, а затем в глицин происходят в пероксисомах, синтез серина в митохондриях. Серин снова поступает в пероксисомы, где из него сначала получается гидрооксипируват, а затем глицерат. Глицерат уже поступает в хлоропласты, где из него синтезируется ФГК.

Фотодыхание характерно в основном для растений с C3-типом фотосинтеза. Его можно считать вредным, так как энергия бесполезно тратится на превращения гликолата в ФГК. Видимо фотодыхание возникло из-за того, что древние растения были не готовы к большому количеству кислорода в атмосфере. Изначально их эволюция шла в атмосфере богатой углекислым газом, и именно он в основном захватывал реакционный центр фермента рубиско.

C4-фотосинтез, или цикл Хэтча-Слэка

Если при C3-фотосинтезе первым продуктом темновой фазы является фосфоглицериновая кислота, включающая три атома углерода, то при C4-пути первыми продуктами являются кислоты, содержащие четыре атома углерода: яблочная, щавелевоуксусная, аспарагиновая.

С4-фотосинтез наблюдается у многих тропических растений, например, сахарного тростника, кукурузы.

С4-растения эффективнее поглощают оксид углерода, у них почти не выражено фотодыхание.

Растения, в которых темновая фаза фотосинтеза протекает по C4-пути, имеют особое строение листа. В нем проводящие пучки окружены двойным слоем клеток. Внутренний слой — обкладка проводящего пучка. Наружный слой — клетки мезофилла. Хлоропласты клеток слоев отличаются друг от друга.

Для мезофильных хлоропласт характерны крупные граны, высокая активность фотосистем, отсутствие фермента РиБФ-карбоксилазы (рубиско) и крахмала. То есть хлоропласты этих клеток адаптированы преимущественно для световой фазы фотосинтеза.

В хлоропластах клеток проводящего пучка граны почти не развиты, зато высока концентрация РиБФ-карбоксилазы. Эти хлоропласты адаптированы для темновой фазы фотосинтеза.

Углекислый газ сначала попадает в клетки мезофилла, связывается с органическими кислотами, в таком виде транспортируется в клетки обкладки, освобождается и далее связывается также, как у C3-растений. То есть C4-путь дополняет, а не заменяет C3.

В мезофилле CO2 присоединяется к фосфоенолпирувату (ФЕП) с образованием оксалоацетата (кислота), включающего четыре атома углерода:

Реакция происходит при участии фермента ФЕП-карбоксилазы, обладающего более высоким сродством к CO2, чем рубиско. К тому же ФЕП-карбоксилаза не взаимодействует с кислородом, а значит не затрачивается на фотодыхание. Таким образом, преимущество C4-фотосинтеза заключается в более эффективной фиксации углекислоты, увеличению ее концентрации в клетках обкладки и следовательно более эффективной работе РиБФ-карбоксилазы, которая почти не расходуется на фотодыхание.

Оксалоацетат превращается в 4-х углеродную дикарбоновую кислоту (малат или аспартат), которая транспортируется в хлоропласты клеток обкладки проводящих пучков. Здесь кислота декарбоксилируется (отнятие CO2), окисляется (отнятие водорода) и превращается в пируват. Водород восстанавливает НАДФ. Пируват возвращается в мезофилл, где из него регенерируется ФЕП с затратой АТФ.

Оторванный CO2 в хлоропластах клеток обкладки уходит на обычный C3-путь темновой фазы фотосинтеза, т. е. в цикл Кальвина.

Фотосинтез по пути Хэтча-Слэка требует больше энергозатрат.

Считается, что C4-путь возник в эволюции позже C3 и во многом является приспособлением против фотодыхания.

biology.su

Что такое фотосинтез в биологии: как происходит процесс и что при этом образуется

В природе под воздействием солнечного света протекает жизненно важный процесс, без которого не может обойтись ни одно живое существо на планете Земля. В результате реакции в воздух выделяется кислород, которым мы дышим. Этот процесс получила название фотосинтеза. Что такое фотосинтез с научной точки зрения, и что происходит в хлоропластах клеток растений рассмотрим ниже.

Содержание статьи

Основа жизни на земле

Фотосинтез в биологии – это преобразование органических веществ и кислорода из неорганических соединений под воздействием солнечной энергии. Он характерен для всех фотоавтотрофов, которые способны сами вырабатывать органические соединения.

К таким организмам относятся растения, зеленые, пурпурные бактерии, цианобактерии (сине-зеленые водоросли).

Растения — фотоавтотрофы впитывают из грунта воду, а из воздуха – углекислый газ. Под воздействием энергии Солнца образуется глюкоза, которая впоследствии превращается на полисахарид – крахмал, необходимый растительным организмам для питания, образования энергии. В окружающую среду выделяется кислород – важное вещество, используемое всеми живыми организмами для дыхания.

Как происходит фотосинтез. Химическую реакцию можно изобразить с помощью следующего уравнения:

6СО2 + 6Н2О + Е = С6Н12О6 + 6О2

Фотосинтетические реакции происходят в растениях на клеточном уровне, а именно – в хлоропластах, содержащих основной пигмент хлорофилл. Это соединение не только придает растениям зеленую окраску, но и принимает активное участие в самом процессе.

Чтобы лучше разобраться в процессе, нужно ознакомиться со строением зеленых органелл — хлоропластов.

Строение хлоропластов

Хлоропласты – это органоиды клетки, которые содержатся только в организмах растений, цианобактерий. Каждый хлоропласт покрыт двойной мембраной: внешней и внутренней. Внутреннюю часть хлоропласта заполняет строма – основное вещество, по консистенции напоминающее цитоплазму клетки.

Строение хролопласта

Строма хлоропласта состоит из:

  • тилакоидов – структур, напоминающих плоские мешочки, содержащие пигмент хлорофилл;
  • гран – группы тилакоидов;
  • ламел – канальцев, которые соединяют между собой граны тилакоидов.

Каждая грана имеет вид стопки с монетами, где каждая монетка – это тилакоид, а ламела – полка, на которой выложены граны. Помимо этого хлоропласты имеют собственную генетическую информацию, представленную двуспиральными нитями ДНК, а также рибосомы, которые принимают участие при синтезе белка, капли масла, зерна крахмала.

Полезное видео: фотосинтез

Основные фазы

Фотосинтез имеет две чередующиеся фазы: световую и темновую. Каждая имеет свои особенности протекания и продукты, образующиеся при определенных реакциях. Две фотосистемы, образованные из вспомогательных светособирающих пигментов хлорофилла и каротиноида, передают энергию главному пигменту. В результате происходит преобразование световой энергии в химическую – АТФ (аденозинтрифосфорную кислоту). Что же происходит в процессах фотосинтеза.

Световая

Световая фаза происходит при попадании фотонов света на растение. В хлоропласте она протекает на мембранах тилакоидов.

Основные процессы:

  1. Пигменты фотосистемы І начинают «впитывать» фотоны солнечной энергии, которые передаются на реакционный центр.
  2. Под действием фотонов света происходит «возбуждение» электронов в молекуле пигмента (хлорофилла).
  3. «Возбужденный» электрон с помощью транспортных белков переносится на наружную мембрану тилакоида.
  4. Этот же электрон взаимодействует со сложным соединением НАДФ (никотинамидадениндинуклеотидфосфат), восстанавливая его до НАДФ*Н2 (это соединение участвует при темновой фазе).

Подобные процессы происходят и в фотосистеме ІІ. «Возбужденные» электроны покидают реакционный центр и переносятся на внешнюю мембрану тилакоидов, где связываются с акцептором электронов, возвращаются на фотосистему І и восстанавливают ее.

Световая фаза фотосинтеза

А как же восстанавливается фотосистема ІІ? Это происходит за счет фотолиза воды – реакции расщепления Н2О. Вначале молекула воды отдает электроны реакционному центру фотосистемы ІІ, благодаря чему происходит его восстановление. После этого происходит полное расщепление воды на водород и кислород. Последний через устьица эпидермиса листка проникает в окружающую среду.

Изобразить фотолиз воды можно с помощью уравнения:

2Н2О = 4Н + 4е + О2

Помимо этого, при световой фазе происходит синтез молекул АТФ – химической энергии, которая идет на образование глюкозы. В оболочке тилакоидов содержится ферментативная система, принимающая участие в образовании АТФ. Этот процесс происходит в результате того, что ион водорода переносится через канал специального фермента из внутренней оболочки на внешнюю. После чего высвобождается энергия.

Важно знать! При световой фазе фотосинтеза образуется кислород, а также энергия АТФ, которая используется для синтеза моносахаридов в темновой фазе.

Темновая

Реакции темновой фазы протекают круглосуточно, даже без наличия солнечного света. Фотосинтетические реакции происходят в строме (внутренней среде) хлоропласта. Более детально данный предмет изучал Мелвин Кальвин, в честь которого реакции темновой фазы носят название цикл Кальвина, или С3 — путь.

Этот цикл протекает в 3 этапа:

  1. Карбоксилирование.
  2. Восстановление.
  3. Регенерация акцепторов.

При карбоксилировании вещество под названием рибулозобисфосфат соединяется с частичками углекислого газа. Для этого используется специальный фермент – карбоксилаза. Образуется неустойчивое шестиуглеродное соединение, которое практически сразу же расщепляется на 2 молекулы ФГК (фосфоглицериновой кислоты).

Для восстановления ФГК используется энергия АТФ и НАДФ*Н2, образованных при световой фазе. При последовательных реакциях образуется триуглеродный сахар с фосфатной группой.

Во время регенерации акцепторов часть молекул ФГК используется для восстановления молекул рибулозобисфосфата, который является акцептором СО2. Далее при последовательных реакциях образуется моносахарид – глюкоза. Для всех этих процессов используется энергия АТФ, образованная в световой фазе, а также НАДФ*Н2.

Процессы преобразования 6 молекул углекислоты в 1 молекулу глюкозы требуют расщепления 18 молекул АТФ и 12 молекул НАДФ*Н2. Изобразить эти процессы можно с помощью следующего уравнения:

6СО2 + 24Н = С6Н12О6 + 6Н2О

Впоследствии из образованной глюкозы синтезируются более сложные углеводы – полисахариды: крахмал, целлюлоза.

Обратите внимание! При фотосинтезе темновой фазы образуется глюкоза – органическое вещество, необходимое для питания растения, образования энергии.

Нижеприведенная таблица фотосинтеза, поможет лучше усвоить основную суть этого процесса.

Сравнительная таблица фаз фотосинтеза

Особенности протеканияСветовая фазаТемновая фаза
Время протеканиеДнем, при наличии светаКруглосуточно
Место локализацииМембрана тилакоидовСтрома – внутренняя среда хлоропласта
Реакции фотосинтезаФотолиз воды. Восстановление НАДФ до НАДФ*Н2.Карбоксилирование рибулозобисфосфата. Восстановление. Регенерация.
Продукты фотосинтезаО2 (кислород), АТФ (энергия), НАДФ*Н2Моносахарид – глюкоза

Хотя цикл Кальвина является наиболее характерным для темновой фазы фотосинтеза, однако для некоторых тропических растений характерен цикл Хэтча-Слэка (С4-путь), который имеет свои особенности протекания. Во время карбоксилирования в цикле Хэтча-Слэка образуется не фосфоглицериновая кислота, а другие, такие как: щавелевоуксусная, яблочная, аспарагиновая. Также при этих реакциях углекислый газ накапливается в клетках растений, а не выводится при газообмене, как у большинства.

Впоследствии этот газ участвует при фотосинтетических реакциях и образовании глюкозы. Также стоит отметить, что С4-путь фотосинтеза требует больших затрат энергии, чем цикл Кальвина. Основные реакции, продукты образования в цикле Хэтча-Слэка не отличаются от цикла Кальвина.

Благодаря реакциям цикла Хэтча-Слэка у растений практически не происходит фотодыхание, так как устьица эпидермиса находятся в закрытом состоянии. Это позволяет им приспособится к специфическим условиям обитания:

  • сильной жаре;
  • сухому климату;
  • повышенной засоленности мест обитания;
  • недостатку СО2.

Сравнение световой и темновой фаз

Значение в природе

Благодаря фотосинтезу происходит образование кислорода – жизненно важного вещества для процессов дыхания и накопления внутри клеток энергии, которая дает возможность живым организмам расти, развиваться, размножаться, принимает непосредственное участие в работе всех физиологических систем организма человека, животных.

Важно! Из кислорода в атмосфере образуется озоновый шар, который защищает все организмы от пагубного влияния опасного ультрафиолетового облучения.

Полезное видео: подготовка к ЕГЭ по Биологии — фотосинтез

Вывод

Благодаря умению синтезировать кислород и энергию растения формируют первое звено во всех пищевых цепях, являясь продуцентами. Потребляя зеленые растения, все гетеротрофы (животные, люди) вместе с пищей получают жизненно важные ресурсы. Благодаря процессу, протекающему в зеленых растениях и цианобактериях, поддерживается постоянный газовый состав атмосферы и жизнь на земле.

Вконтакте

Facebook

Twitter

Google+

znaniya.guru

Фотосинтез и его фазы (световая и темновая)

Фотосинтез — уникальная система процессов создания с помощью хлоро­филла и энергии света органических веществ из неорганических и выделения кислорода в атмосферу, реализуемая в огромных масштабах на суше и в воде.

Фотосинтез происходит в клетках зелёных растений с помо­щью пигментов, главным образом хлорофилла, находящегося в хлоропластах клетки. Его продуктами являются мономеры углеводов (моносахариды: глюко­за, фруктоза и др.).

В основе фотосинтеза лежит окислительно-восстановительный процесс, в котором электроны переносятся от донора-восстановителя (вода, водород и др.) к акцептору (CO2 , ацетат и др.) с образованием восстановлен­ных соединений (углевода) и выделением кислорода, если окисляется вода. Фотосинтезирующие бактерии часто используют другие доноры, а не воду, кислород при этом они не выделяют.

В системе процессов фотосинтеза различают два цикла реакций, как две фазы, последовательно и непрерывно идущие друг за другом — световую и темновую (рис. 62).

Световая фаза фотосинтеза характеризуется тем, что здесь все процес­сы происходят только при участии энергии света, поэтому её и называют све­товой. Связывание солнечной (электромагнитной) энергии происходит пре­имущественно на мембранах тилакоидов хлоропласта. Размещающийся здесь хлорофилл и другие пигменты собраны в функциональные единицы-комплексы — пигментные системы, получившие название фотосистемы.

Рис. 62. Схема фотосинтеза

Таким образом, светособирающие и пигментно-белковые комплексы фотосистемы I и фотосистемы II обеспечивают процесс фотосинтеза необходимой энергией в ви­де макроэнергетических соединений НАДФ•Н и АТФ. В этом заключается ос­новная функция световой фазы фотосинтеза. Она реализуется только при участии света и с помощью пигментов, размещённых в тилакоидной мембра­не хлоропластов.

Темновая фаза фотосинтеза проходит в строме хлоропласта без непо­средственного поглощения света, в любое время суток. В процессе световой фа­зы фотосинтеза накапливается достаточно высокий уровень АТФ и НАДФ•Н. Однако сами по себе эти высокоэнергетические соединения не способны синте­зировать углеводы из CO2. Поэтому становится очевидным, что и темновая фа­за фотосинтеза — сложный процесс, включающий большое количество реакций. Материал с сайта http://doklad-referat.ru

Все процессы темновой фазы фотосинтеза идут без непосредственного потребления света, но в них большую роль играют высокоэнергетические ве­щества (АТФ и НАДФ•Н), образующиеся с участием энергии света, во время световой фазы фотосинтеза. В процессе темновой фазы энергия макроэнергетических связей АТФ преобразуется в химическую энергию органических соединений молекул углеводов. Это значит, что энергия солнечного света как бы консервируется в химических связях между атомами органических ве­ществ, что имеет огромное значение в энергетике биосферы и конкретно для жизнедеятельности всего живого населения нашей планеты.

Фотосинтез происходит в хлоропластах клетки и представляет собой синтез углеводов в хлорофиллоносных клетках, идущий с потреблением энергии сол­нечного света. Различают световую и темповую фазы фотосинтеза. Световая фаза при непосредственном потреблении квантов света обеспечивает про­цесс синтеза необходимой энергией в виде НАДН и АТФ. Темновая фаза — без участия света, но путем многочисленного ряда химических реакций (цикл Кальвина) обеспечивает образование углеводов, главным образом глюкозы. Значение фотосинтеза в биосфере огромно.

На этой странице материал по темам:
  • Какое время суток происходит темновая фаза

  • Фотосинтез в кратце

  • Лекции по ботанике фотосинтез

  • Темновая фаза в эо реакции

  • Доклад на тему фотосинтез фазы

Вопросы по этому материалу:
  • Где происходит фотосинтез в растительной клетке?

  • Какие превращения происходят во время световой фазы фото­синтеза?

  • Что является результатом световой фазы фото­синтеза?

  • Где протекают темновые реакции фотосинтеза?

doklad-referat.ru

Фотосинтез

Фотосинтез — синтез органических соединений из неорганических за счет энергии света (hv). Суммарное уравнение фотосинтеза:

6CO2 + 6H2O → C6H12O6 + 6O2

Фотосинтез протекает при участии фотосинтезирующих пигментов, обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Фотосинтезирующие пигменты представляют собой белковоподобные вещества. Наиболее важный из них — пигмент хлорофилл. У эукариот фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид, у прокариот — во впячивания цитоплазматической мембраны.

Строение хлоропласта очень похоже на строение митохондрии. Во внутренней мембране тилакоидов граны содержатся фотосинтетические пигменты, а также белки цепи переноса электронов и молекулы фермента АТФ-синтетазы.

Процесс фотосинтеза состоит из двух фаз: световой и темновой.

Световая фаза фотосинтеза протекает только на свету в мембране тилакоидов граны. В этой фазе происходит поглощение хлорофиллом квантов света, образование молекулы АТФ и фотолиз воды.

Под действием кванта света (hv) хлорофилл теряет электроны, переходя в возбужденное состояние:

Хл → Хл + e

Эти электроны передаются переносчиками на наружную, т.е. обращенную к матриксу поверхность мембраны тилакоидов, где накапливаются.

Одновременно внутри тилакоидов происходит фотолиз воды, т.е. ее разложение под действием света

2H2O → O2 +4H+ + 4e

Образующиеся электроны передаются переносчиками к молекулам хлорофилла и восстанавливают их: молекулы хлорофилла возвращаются в стабильное состояние.

Протоны водорода, образовавшиеся при фотолизе воды, накапливаются внутри тилакоида, создавая Н+-резервуар. В результате внутренняя поверхность мембраны тилакоида заряжается положительно (за счет Н+), а наружная — отрицательно (за счет e). По мере накопления по обе стороны мембраны противоположно заряженных частиц нарастает разность потенциалов. При достижении критической величины разности потенциалов сила электрического поля начинает проталкивать протоны через канал АТФ-синтетазы. Выделяющаяся при этом энергия используется для фосфорилирования молекул АДФ:

АДФ + Ф → АТФ

Образование АТФ в процессе фотосинтеза под действием энергии света называются фотофосфорилированием.

Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами и образуют атомарный водород, который связывается с молекулой-переносчиком водорода НАДФ (никотинамидадениндинуклеотидфосфат):

2H+ + 4e + НАДФ+ → НАДФ • H2

Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ, образование атомов водорода в форме НАДФ • H2. Кислород диффундирует в атмосферу, АТФ и НАДФ • H2 участвуют в процессах темновой фазы.

Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований CO2, поступающего из воздуха, в цикле Кальвина. Осуществляются реакции темновой фазы за счет энергии АТФ. В цикле Кальвина CO2 связывается с водородом из НАДФ • H2 с образованием глюкозы.

В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соединений — аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и все живое на Земле необходимыми органическими веществами и кислородом.

Сравнительная характеристика фотосинтеза и дыхания эукариот приведена в таблице:

Сравнительная характеристика фотосинтеза и дыхания эукариот
ПризнакФотосинтезДыхание
Уравнение реакции6CO2 + 6H2O + Энергия света → C6H12O6 + 6O2C6H12O6 + 6O2 → 6H2O + Энергия (АТФ)
Исходные веществаУглекислый газ, водаОрганические вещества, кислород
Продукты реакцииОрганические вещества, кислородУглекислый газ, вода
Значение в круговороте веществСинтез органических веществ из неорганическихРазложение органических веществ до неорганических
Превращение энергииПревращение энергии света в энергию химических связей органических веществПревращение энергии химических связей органических веществ в энергию макроэргических связей АТФ
Важнейшие этапыСветовая и темновая фаза (включая цикл Кальвина)Неполное окисление (гликолиз) и полное окисление (включая цикл Кребса)
Место протекания процессаХлоропластаГиалоплазма (неполное окисление) и митохондрии (полное окисление)

jbio.ru

Фотосинтез растений. Фотосинтез, как основа питания растений

История открытия удивительного и такого жизненного важного явления, как фотосинтез уходит корнями глубоко в прошлое. Более четырех веков назад в 1600 году бельгийский ученый Ян Ван – Гельмонт поставил простейший эксперимент. Он поместил веточку ивы в мешок, где находилось 80 кг земли. Ученый зафиксировал первоначальный вес ивы, и затем на протяжении пяти лет поливал растение исключительно дождевой водой. Каково же было удивление Яна Ван – Гельмонта, когда он повторно взвесил иву. Вес растения увеличился на 65 кг, причем масса земли уменьшился всего на 50 гр! Откуда растение взяло 64 кг 950 гр питательных веществ для ученого осталось загадкой!

Следующий значимый эксперимент на пути открытия фотосинтеза принадлежал английскому химику Джозефу Пристли. Ученый посадил под колпак мышь, и через пять часов грызун умер. Когда же Пристли поместил с мышью веточку мяты и также накрыл грызуна колпаком, мышь осталась живой. Этот эксперимент навел ученого на мысль о том, что существует процесс, противоположный дыханию. Ян Ингенхауз в 1779 году установил тот факт, что только зеленые части растений способны выделять кислород. Через три года швейцарский ученый Жан Сенебье доказал, что углекислый газ, под воздействием солнечных лучей, разлагается в зеленых органоидах растений. Спустя всего пять лет французский ученый Жак Буссенго, проводя лабораторные исследования, обнаружил тот факт, что поглощение растениями воды также происходит и при синтезе органических веществ. Эпохальное открытие в 1864 году совершил немецкий ботаник Юлиус Сакс. Ему удалось доказать, что объем потребляемого углекислого газа и выделяемого кислорода происходит в пропорции1:1.

Фотосинтез – один из самых значимых биологических процессов

Говоря научным языком, фотосинтез (от др.-греч. φῶς — свет и σύνθεσις — соединение, связывание) — это процесс, при котором из углекислого газа и воды на свету образуются органические вещества. Заглавная роль в этом процессе принадлежит фотосинтетическим сегментам.

Если говорить образно, то лист растения можно сравнить лабораторией, окна которой выходят на солнечную сторону. Именно в ней происходит образование органических веществ. Этот процесс является основой существования всего живого на Земле.

Многие резонно зададут вопрос: чем дышат люди, живущие в городе, где не то что дерева, и травинки днем с огнем не сыщешь. Ответ очень прост. Дело в том, что на долю наземных растений приходится всего 20% выделяемого растениями кислорода. Главенствующую роль в выработке кислорода в атмосферу играют морские водоросли. На их долю приходится 80% от вырабатываемого кислорода. Говоря языком цифр, и растения, и водоросли ежегодно выделяют в атмосферу 145 млрд. тонн (!) кислорода! Недаром мировой океан называют «легкими планеты».

Общая формула фотосинтеза выглядит следующим образом:

Вода + Углекислый газ + Свет → Углеводы + Кислород

Для чего нужен фотосинтез растениям?

Как мы уяснили, фотосинтез – это необходимое условие существования человека на Земле. Однако это не единственная причина, по которой фотосинтезирующие организмы производят активную выработку кислорода в атмосферу. Дело в том, что и водоросли, и растения ежегодно образуют более 100 млрд. органических веществ (!), которые составляют основу их жизнедеятельности. Вспоминая эксперимент Яна Ван-Гельмонта мы понимаем, что фотосинтез – это основа питания растений. Научно доказано, что 95% урожая определяют органические вещества, полученные растением в процессе фотосинтеза, и 5% – те минеральные удобрения, которые садовод вносит в почву.

Современные дачники основное внимание уделяют почвенному питанию растений, забывая о его воздушном питании. Неизвестно, какой урожай могли бы получить садоводы, если бы они внимательно относились к процессу фотосинтеза.

Однако ни растения, ни водоросли не могли бы так активно производить кислород и углеводы, не будь у них удивительного зеленого пигмента – хлорофилла.

Тайна зеленого пигмента

Главное отличие клеток растения от клеток иных живых организмов – это наличие хлорофилла. К слову сказать, именно он является виновником того, что листья растений окрашены именно в зеленый цвет. Это сложное органическое соединение обладает одним удивительным свойством: оно способно поглощать солнечный свет! Благодаря хлорофиллу становится возможны и процесс фотосинтеза.

Две стадии фотосинтеза

Говоря простым языком, фотосинтез представляет собой процесс, при котором поглощенные растением вода и углекислый газ на свету при помощи хлорофилла образуют сахар и кислород. Таким образом, неорганические вещества удивительным образом превращаются в органические. Полученный в результате преобразования сахар является источником энергии растений.

Фотосинтез имеет две стадии: световую и темновую.

Световая фаза фотосинтеза

Осуществляется на мембранах тилакойдов.

Тилакойд – это структуры, ограниченные мембраной. Они располагаются в строме хлоропласта.

Порядок событий световой стадии фотосинтеза:

  1. На молекулу хлорофилла попадает свет, который затем поглощается зеленым пигментом и приводит его в возбужденное состояние. Входящий в состав молекулы электрон переходит на более высокий уровень, участвует в процессе синтеза.
  2. Происходит расщепление воды, в ходе которого протоны под воздействием электронов превращаются в атомы водорода. Впоследствии они расходуются на синтез углеводов.
  3. На завершающем этапе световой стадии происходит синтез АТФ (Аденозинтрифосфат). Это органическое вещество, которое играет роль универсального аккумулятора энергии в биологических системах.

Темновая фаза фотосинтеза

Местом протекания темновой фазы являются строму хлоропластов. Именно в ходе темновой фазы происходит выделение кислорода и синтез глюкозы. Многие подумают, что такое название эта фаза получила потому что процесс, происходящие в рамках этого этапа осуществляются исключительно в ночное время. На самом деле, это не совсем верно. Синтез глюкозы происходит круглосуточно. Дело в том, что именно на данном этапе световая энергия больше не расходуется, а значит, она попросту не нужна.

Значение фотосинтеза для растений

Мы уже определили тот факт, что фотоинтез нужен растениям ничем не меньше, чем нам. О масштабах фотосинтеза очень просто говорить языком цифр. Ученые рассчитали, что только растения суши запасают столько солнечной энергии, сколько могли бы израсходовать 100 мегаполисов в течение 100 лет!

Дыхание растений – это процесс, противоположный фотосинтезу. Смысл дыхания растений заключается в освобождении энергии в процессе фотосинтеза и направление ее на нужды растений. Говоря простым языком, урожай – это разница между фотосинтезом и дыханием. Чем больше фотосинтез и ниже дыхание, тем больше урожай, и наоборот!

Фотосинтез – это удивительный процесс, который делает возможной жизнь на Земле!

xn—-8sbiecm6bhdx8i.xn--p1ai

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *