Структура | Особенности организации | Функции |
---|---|---|
Плазматическая мембрана (плазмалемма) | Двойной слой липидов и погруженные в него белки | Избирательно регулирует обмен веществ между клеткой и внешней средой. Обеспечивает контакт между соседними клетками |
Ядро | Имеет двумембранную оболочку, содержит ДНК | Хранение и передача дочерним клеткам генетического материала. Регулирует клеточную активность |
Митохондрии | Окружена двумембранной оболочкой; внутренняя мембрана образует складки — кристы. Содержит кольцевую ДНК, рибосомы, множество ферментов | Осуществление кислородного этапа клеточного дыхания (синтез АТФ) |
Пластиды. Содержатся в растительной клетке, клетках некоторых протистов | Двумембранная структура. Производные внутренней мембраны — тилакоиды (содержат хлорофилл в хлоропластах). | Фотосинтез, запасание питательных веществ |
Эндоплазматический ретикулум (ЭР) | Система уплощенных мембранных мешочков — цистерн, полостей, трубочек | На шереховатом ЭР расположена рибосомы. В его цистернах изолируются и дозревают синтезированные белки. Транспорт синтезированных белков. В мембранах гладкого ЭР осуществляется синтез липидов и стероидов. Синтез мембран |
Комплекс Гольджи (КГ) | Система плоских одномембранных цистерн, ампулярно расширенных на концах цистерн и пузырьков, отщепляющихся или присоединяющихся к цистернам | Накопление, преобразование белков и липидов, синтез полисахаридов. Образование секреторных пузырьков, выведение веществ за пределы клетки. Образование лизосом |
Лизосомы | Одномембранные пузырьки, содержащие гидролитические ферменты | Внутриклеточное переваривание, расщепление поврежденных органелл, отмерших клеток, органов |
Рибосомы | Две субъединицы (большая и малая), состоящие из рРНК и белков | Сборка белковых молекул |
Центриоли | Система микротрубочек (9×3), построенных из белковых субъединиц | Центры организации микротрубочек (участвуют в образовании цитоскелета, веретена деления клетки, ресничек и жгутиков) |
ed-lib.ru
Основные черты строение эукариотической клетки
Все живые организмы можно разделить на две основные группы: прокариоты и эукариоты. Эти термины происходят от греческого слова karion, означающего ядро. Прокариоты — доядерные организмы, не имеют оформленного ядра. Эукариоты содержат оформленное ядро. К прокариотам относятся бактерии, цианобактерии, миксомицеты, риккетсии и др. организмы; эукариотами являются грибы, растения и животные.
Клетки всех эукариот имеют сходное строение. Они состоят из цитоплазмы и ядра, которые вместе представляют собой живое содержимое клетки — протопласт. Цитоплазма представляет собой полужидкое основное вещество или гиалоплазму, вместе с погруженными в нее внутриклеточными структурами — органеллами, выполняющими различные функции. С внешней стороны цитоплазма окружена плазматической мембраной. Растительные и грибные клетки имеют также жесткую клеточную оболочку. В цитоплазме клеток растений и грибов имеются вакуоли — пузырьки, заполненные водой и растворенными в ней различными веществами. Кроме того, в клетке могут находиться включения — запасные питательные вещества или конечные продукты обмена.
Структура | Особенности организации | Функции |
---|---|---|
Плазматическая мембрана (плазмалемма) | Двойной слой липидов и погруженные в него белки | Избирательно регулирует обмен веществ между клеткой и внешней средой. Обеспечивает контакт между соседними клетками |
Ядро | Имеет двумембранную оболочку, содержит ДНК | Хранение и передача дочерним клеткам генетического материала. Регулирует клеточную активность |
Митохондрии. Присутствуют в растительной и животной клетках | Окружена двумембранной оболочкой; внутренняя мембрана образует складки – кристы. Содержит кольцевую ДНК, рибосомы, множество ферментов | Осуществление кислородного этапа клеточного дыхания (синтез АТФ) |
Пластиды. Содержатся в растительной клетке | Двумембранная структура. Производные внутренней мембраны — тилакоиды (содержат хлорофилл в хлоропластах). | Фотосинтез, запасание питательных веществ |
Эндоплазматический ретикулум (ЭР) | Система уплощенных мембранных мешочков — цистерн, полостей, трубочек | На шереховатом ЭР расположена рибосомы. В его цистернах изолируются и дозревают синтезированные белки. Транспорт синтезированных белков. В мембранах гладкого ЭР осуществляется синтез липидов и стероидов. Синтез мембран |
Комплекс Гольджи (КГ) | Система плоских одномембранных цистерн, ампулярно расширенных на концах цистерн и пузырьков, отщепляющихся или присоединяющихся к цистернам | Накопление, преобразование белков и липидов, синтез полисахаридов. Образование секреторных пузырьков, выведе веществ за пределы клетки Образование лизосом |
Лизосомы | Одномембранные пузырьки, содержащие гидролитические ферменты | Внутриклеточное переваривание, расщепление поврежденных органелл, отмерших клеток, органов |
Рибосомы | Две субъединицы (большая и малая), состоящие из рРНК и белков | Сборка белковых молекул |
Центриоли | Система микротрубочек (9×3), построенных из белковых субъединиц | Центры организации микротрубочек (участвуют в образовании цитоскелета, веретена деления клетки, ресничек и жгутиков) |
Updated: 16.12.2012 at 4:51 пп
jbio.ru
Органоиды | Особенности строения | Функции |
клетки | ||
эпс | это сеть каналов и | соединяет все клеточные |
полостей, | структуры в единую | |
пронизывающих | внутриклеточную систему; | |
цитоплазму; бывает двух | на каналах-гранулярной | |
видов; гранулярная (на | сети идет синтез белков, на | |
поверхности находятся | поверхности гладкой сети | |
рибосомы) и гладкая | — синтез липидов и | |
углеводов | ||
рибосомы | немембранные | синтез белков |
органоиды, состоящие из | ||
двух субъединиц: малой и | ||
большой | ||
комплекс | состоит из группы | обеспечивает сортировку, |
Гольджи | ограниченных мембраной | окончательную упаковку и |
полостей —-цистерн и | транспортировку различных | |
пузырьков | вешеств в клетке | |
лизосомы | одномембранные | внутриклеточное |
пузырьки, содержащие | пищеварение | |
комплекс ферментов | ||
вакуоли | у растений — это | у растений они необходимы |
крупные полости, | для поддержания | |
заполненные .клеточным | тургорного давления | |
соком и покрытые одной | клетки; у животных | |
мембраной | осуществляют | |
внутриклеточное | ||
пищеварение | ||
(пищеварительные | ||
вакуоли) или выведение воды и продуктов распада | ||
(сократительные вакуоли). |
www.soloby.ru
Строение эукариотической клетки
Рис. 1.2. Схема строения эукариотической клетки: 1 – клеточная стенка; 2 – цитоплазматическая мембрана; 3 – цитоплазма; 4 – ядро; 5 – эндоплазматическая сеть; 6 – митохондрии; 7 – комплекс Гольджи; 8 – рибосомы; 9 – лизосомы; 10 – вакуоли |
Клеточная стенка эукариотической клетки, в отличие от клеточной стенки прокариот состоит главным образом из полисахаридов. У грибов основным является азотсодержащий полисахарид хитин. У дрожжей 60 – 70 % полисахаридов представлены глюканом и маннаном, которые связаны с белками и липидами. Функции клеточной стенки эукариот те же, что и у прокариот.
Цитоплазматическая мембрана (ЦПМ) также имеет трехслойную структуру. Поверхность мембраны имеет выпячивания, близкие к мезосомам прокариот. ЦПМ регулирует процессы обмена веществ клетки.
У эукариот ЦПМ способна захватывать из окружающей среды большие капли, содержащие углеводы, липиды и белки. Это явление называется
Ядро отделено от цитоплазмы двумя мембранами, в которых имеются поры. Поры у молодых клеток открыты, служат они для миграции из ядра в цитоплазму предшественников рибосом, информационной и транспортной РНК. В ядре в нуклеоплазме имеются хромосомы, состоящие из двух нитевидных цепочных молекул ДНК, соединенных с белками. В ядре имеется также ядрышко, богатое матричной РНК и связанное со специфической хромосомой – ядрышковым организатором.
Основной функцией ядра является участие в размножении клетки. Это носитель наследственной информации.
В эукариотической клетке ядро – важнейший, но не единственный носитель наследственной информации. Часть такой информации содержится в ДНК митохондрии и хлоропластов.
Митохондрии – мембранная структура, содержащая две мембраны – наружную и внутреннюю, сильно складчатую. На внутренней мембране сосредоточены окислительно-восстанови-тельные ферменты. Основной функцией митохондрии является снабжение клетки энергией (образование АТФ). Митохондрии – саморепродуцирующая система, так как в ней имеется собственная хромосома – кольцевая ДНК и другие компоненты, которые входят в состав обычной прокариотической клетки.
Эндоплазматическая сеть (ЭПС) – мембранная структура, состоящая из канальцев, которые пронизывают всю внутреннюю поверхность клетки. Бывает гладкой и шероховатой. На поверхности шероховатой ЭПС располагаются рибосомы, более крупные, чем рибосомы прокариот. На мембранах ЭПС расположены также ферменты, осуществляющие синтез липидов, углеводов и ответственных за транспорт веществ в клетке.
Комплекс Гольджи – пакеты уплощенных мембранных пузырьков – цистерн, в которых осуществляется упаковка и транспорт белков внутри клетки. В комплексе Гольджи происходит также синтез гидролитических ферментов (место образования лизосом).
В лизосомах сосредоточены гидролитические ферменты. Здесь происходит расщепление биополимеров (белков, жиров, нуклеиновые кислоты).
Вакуоли отделены от цитоплазмы мембранами. В запасных вакуолях содержатся запасные питательные вещества клетки, а в шлаковых – ненужные продукты обмена и токсические вещества.
Похожие статьи:
poznayka.org
Строение эукариотической клетки.
Эукариотическая клетка.
Эукариоты (эвкариоты) (от греч. ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемыйхроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.
Схематическое изображение животной клетки. (При нажатии на какое-либо из названий составных частей клетки, будет осуществлён переход на соответствующую статью.)
Поверхностный комплекс животной клетки.
Состоит из гликокаликса, плазмалеммы и расположенного под ней кортикального слоя цитоплазмы. Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана, толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняеттранспортную функцию. На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира —гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет собой «заякоренные» в плазмалемме молекулыолигосахаридов, полисахаридов, гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции. Плазматическая мембрана животных клеток в основном состоит изфосфолипидов и липопротеидов со вкрапленными в неё молекулами белков, в частности, поверхностных антигенов и рецепторов. В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета — упорядоченные определённым образом актиновые микрофиламенты. Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращение псевдоподий. При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличие микроворсинок).
Структура цитоплазмы.
Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами», и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.
На фотографиях зелёный флуоресцентный белокпоказывает расположение различных частей клетки
Эндоплазматический ретикулум.
В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называетсяэндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикрепленырибосомы, относят к гранулярному (или шероховатому) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к агранулярному (или гладкому) ЭПР, принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки.
studfiles.net
Строение эукариотической клетки — Мегаобучалка
Плазмалемма(клеточная оболочка) животных клеток образована мембраной, покрытой снаружи слоем гликокаликса толщиной 10-20 нм. Плазмалемма выполняет отграничивающую, барьерную, транспортную и рецепторную функции. Благодаря свойству избирательной проницаемости плазмалемма регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества (гормоны). В пластах и слоях соседние клетки удерживаются благодаря наличию разного вида контактов, которые представлены участками плазмалеммы, имеющими особое строение. Изнутри к мембране примыкает кортикальный (корковый) слойцитоплазмы толщиной 0,1—0,5 мкм.
Цитоплазма. В цитоплазме находится целый ряд оформленных структур, имеющих закономерные особенности строения и поведения в разные периоды жизнедеятельности клетки. Каждая из этих структур несёт определенную функцию. Отсюда возникло сопоставление их с органами целого организма, в связи с чем они получили название органеллы, или органоиды. В цитоплазме откладываются различные вещества — включения (гликоген, капли жира, пигменты). Цитоплазма пронизана мембранамиэндоплазматической сети.
Эндоплазматическая сеть (ЭДС). Эндоплазматическая сеть — это разветвлённая сеть каналов и полостей в цитоплазме клетки, образованная мембранами. На мембранах каналов находятся многочисленные ферменты, обеспечивающие жизнедеятельность клетки. Различают 2 вида мембран ЭДС — гладкие и шероховатые. На мембранахгладкой эндоплазматической сети находятся ферментные системы, участвующие в жировом и углеводном обмене. Основная функция шероховатой эндоплазматической сети — синтез белков, который осуществляется в рибосомах, прикрепленных к мембранам. Эндоплазматическая сеть — это общая внутриклеточная циркуляционная система, по каналам которой транспортируются вещества внутри клетки и из клетки в клетку.
Рибосомы осуществляют функцию синтеза белков. Рибосомы представляют собой сферические частицы диаметром 15-35нм, состоящие из 2 субъединиц неравных размеров и содержащие примерно равное количество белков и РНК. Рибосомы в цитоплазме располагаются или прикрепляются к наружной поверхности мембран эндоплазматической сети. В зависимости от типа синтезируемого белка рибосомы могут объединяться в комплексы — полирибосомы. Рибосомы присутствуют во всех типах клеток.
Комплекс Гольджи. Основным структурным элементом комплекса Гольджи является гладкая мембрана, которая образует пакеты уплощенных цистерн, или крупные вакуоли, или мелкие пузырьки. Цистерны комплекса Гольджи соединены с каналами эндоплазматической сети. Синтезированные на мембранах эндоплазматической сети белки, полисахариды, жиры транспортируются к комплексу, конденсируются внутри его структур и «упаковываются» в виде секрета, готового к выделению, либо используются в самой клетке в процессе её жизнедеятельности.
Митохондрии. Всеобщее распространение митохондрий в животном и растительном мире указывают на важную роль, которую митохондрии играют в клетке. Митохондрии имеют форму сферических, овальных и цилиндрических телец, могут быть нитевидной формы. Размеры митохондрий 0,2-1мкм в диаметре, до 5-7мкм в длину. Длина нитевидных форм достигает 15-20мкм. Количество митохондрий в клетках различных тканей неодинаково, их больше там, где интенсивны синтетические процессы (печень) или велики затраты энергии. Стенка митохондрий состоит из 2-х мембран — наружной и внутренней. Наружная мембрана гладкая, а от внутренней внутрь органоида отходят перегородки — гребни, или кристы. На мембранах крист находятся многочисленные ферменты, участвующие в энергетическом обмене. Основная функция митохондрий – синтез АТФ.
Лизосомы — небольшие овальные тельца диаметром около 0,4мкм, окруженные одной трехслойной мембраной. В лизосомах находится около 30 ферментов, способных расщеплять белки, нуклеиновые кислоты, полисахариды, липиды и др. вещества. Расщепление веществ с помощью ферментов называется лизисом, поэтому и органоид назван лизосомой. Полагают, что лизосомы образуются из структур комплекса Гольджи либо непосредственно из эндоплазматической сети. Функции лизосом: внутриклеточное переваривание пищевых веществ, разрушение структуры самой клетки при её отмирании в ходе эмбрионального развития, когда происходит замена зародышевых тканей на постоянные, и в ряде других случаев.
Центриоли. Клеточный центр состоит из 2-х очень маленьких телец цилиндрической формы, расположенных под прямым углом друг к другу. Эти тельца называются центриолями. Стенка центриоли состоит из 9-ти пар микротрубочек. Центриоли способны к самосборке и относятся к самовоспроизводящимся органоидам цитоплазмы. Центриоли играют важную роль в клеточном делении: от них начинается рост микротрубочек, образующих веретено деления.
Ядро. Ядро — важнейшая составная часть клетки. Оно содержит молекулы ДНК и поэтому выполняет две главные функции: 1) хранение и воспроизведение генетической информации, 2) регуляция процессов обмена веществ, протекающих в клетке. Клетка утратившая ядро, не может существовать. Ядро также неспособно к самостоятельному существованию. Большинство клеток имеет одно ядро, но можно наблюдать 2-3ядра в одной клетке, например в клетках печени. Известны многоядерные клетки с числом ядер в несколько десятков. Формы ядер зависят от формы клетки. Ядра бывают шаровидные, многолопастные. Ядро окружено оболочкой, состоящей из двух мембран, имеющих обычное трёхслойное строение. Наружная ядерная мембрана покрыта рибосомами, внутренняя мембрана гладкая. Главную роль в жизнедеятельности ядра играет обмен веществ между ядром и цитоплазмой. Содержимое ядра включает ядерный сок, или кариоплазму, хроматин и ядрышко. В состав ядерного сока входят различные белки, в том числе большинство ферментов ядра, свободные нуклеотиды, аминокислоты, продукты деятельности ядрышка и хроматина, перемещающиеся из ядра в цитоплазму. Хроматин содержит ДНК, белки и представляет собой спирализованные и уплотненные участки хромосом. Ядрышко представляет собой плотное округлое тельце, располагающееся в ядерном соке. Число ядрышек колеблется от 1 до 5-7 и более. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают, а после завершения деление образуются вновь. Ядрышко не является самостоятельным органоидом клетки, оно лишено мембраны и образуется вокруг участка хромосомы, в котором закодирована структура рРНК. В ядрышке формируются рибосомы, которые затем перемещаются в цитоплазму. Хроматином называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличные по форме от ядрышка.
ОСОБЕННОСТИ СТРОЕНИЯ РАСТИТЕЛЬНОЙ КЛЕТКИ |
Растительная клетка имеет более или менее жесткую клеточную оболочку (стенку). Клеточная оболочка построена из целлюлозы — полисахарида, молекулы которого образуют тончайшие нити, погруженные в аморфное вещество, состоящее из пектиновых соединений. В зависимости от расположения этих нитей клетка обладает способностью либо растягиваться в длину (если они расположены кольцом), либо в ширину (при продольном расположении нитей). В образовании клеточной оболочки непосредственное участие принимает цитоплазма: она продуцирует слагающие клеточную оболочку вещества, которые откладываются снаружи от нее. Однако не все растительные клетки имеют такую оболочку. Ее лишены зооспоры и гаметы водорослей, мужские гаметы высших растений. При всей своей прочности клеточная оболочка должна быть проницаема для большого количества веществ, участвующих в обменных процессах как между соседними клетками, так и между клеткой и окружающей средой. Связь между соседними клетками осуществляется через поры, представляющие собой неутолщенные участки оболочки. Через них проходят тонкие тяжи цитоплазмы, называемые плазмодес-мами и связывающие соседние клетки и ткани в единое целое. Для растительных клеток характерны специфические органоиды — пластиды. Они окружены двойной мембраной и содержат систему мембранных пузырьков — тила-коидов и более или менее гомогенное вещество — строму. их разделяют на несколько групп. Хлоропласты — это пластиды, в которых протекает фд] тосинтез. Они содержат хлорофилл и каротиноиды. Тил*. коиды хлоропластов собраны в стопки (граны) наподобие столбиков монет. Молекулы хлорофилла и каротинопд08 встроены в мембраны тилакоидов. В хлоропластах чисто можно обнаружить крахмальные зерна и мелкие липидньа (жировые) капли. Это временные хранилища запасных пЛ тательных веществ. Подобно митохондриям, хлоропл, -ГЬ1 имеют собственную ДНК и свой белоксинтезирующип ац. парат (см. гл. 2 § 4). Из пигментированных пластид в растительных клеткаж следует упомянуть хромопласты. Они многообразны щ форме, не содержат хлорофилла, а синтезируют и накапливают каротиноиды — желтые, оранжевые и красные пигменты, от которых зависит окраска цветков, плодов, корнЛ и осенних листьев. Хромопласты могут развиваться из зеленых хлоропластов, в которых разрушается хлорофилл и внутренние мембранные структуры и происходит накопление каротиноидов. Примером могут служить созревающие фрукты. Точная функция хромопластов неизвестна, но есть данные о том,что они привлекают насекомых-опылителей. В растительных клетках есть и бесцветные пластиды -1 лейкопласты. Некоторые из них (амилопласты) синтезируют крахмал, в некоторых могут образовываться и накапливаться липиды и белки. В присутствии света лейкопласты могут превращаться в хлоропласты. Пластиды сравнительно легко переходят из одного типа в другой. Размножаются они делением надвое, причем время их деления соответствует времени деления клетки, в которой они находятся. Предшественниками зрелых дифференцированных пла<Н тид являются пропластиды — мелкие бесцветные или бледно-зеленые недифференцированные компоненты растительной клетки, которые сосредоточены в меристеме или образовательной ткани, корней и побегов. Пропластиды, содержащие про* ламмелярные тельца, на свету превращаются в хлоропласты.] Например, в зародышах семян имеются пропластиды — ламеЛ* лярные тельца, сформировавшиеся в темноте, из которых при развитии зародыша на свету образуются хлоропласты. Специфическими для растительной клетки компонентам* «нляются также одна или несколько центральных вакуо-я — тонопласт. Это крупные, ограниченные мембраной ^зырьки, заполненные клеточным соком. Основным ком-«онентом клеточного сока является вода, остальные варьируют в зависимости от типа растения и его физиологического состояния. Обычное содержимое вакуоли — соли и сахара, иногда — растворимые белки. При высоком содержании’некоторых веществ в вакуолях могут образовываться кристаллы,в частности, оксалат кальция, имеющие разнообразную форму. Обычно содержимое вакуолей имеет слабокислую реакцию, реже — очень кислую, как, например, у плодов лимона. В вакуолях могут накапливаться метаболиты (продукты обмена веществ), например, запасные белки в семенах, а также ядовитые вторичные продукты метаболизма (алкалоид никотин). Часто в вакуолях откладываются пигменты — антоцианы, определяющие красную и голубую окраску овощей (редис), фруктов (вишня, слива), цветков (василек, герань, роза, пион). Иногда эти пигменты маскируют в листьях хлорофилл (декоративный красный клен). Именно антоцианы окрашивают осенние листья в ярко-красный цвет. Они образуются в холодную солнечную погоду, когда в листьях прекращается синтез хлорофилла и по мере его разрушения антоцианы проявляют свою окраску. Поэтому наиболее ярко окрашены листья холодной ясной осенью. Вакуоли участвуют также в разрушении некоторых органелл клетки (рибосом, митохондрий, пластид), которые попадают в вакуоли. Вакуоли формируются из эндоплазматического ретикулума. В живой растительной клетке основное вещество находится в постоянном движении, в которое вовлекаются органеллы и другие включения. Называется оно током цитоплазмы или циклозом и прекращается только в мертвых клетках. Циклоз облегчает передвижение веществ в цитоплазме и обмен ими между клеткой и окружающей средой. Плазматическая мембрана регулирует поступление веществ в клетку и выход их из нее. При росте клетки увеличивается и толщина, и площадь клеточной оболочки. Растяжение оболочки — сложный прочесе, находящийся под строгим биохимическим контролем протопласта, и регулируется гормоном ауксином. Вновь разовавшиеся нити целлюлозы располагаются преимущественно поверх старых, но часть из них может включаться уже существующую структуру. В клетках, растущих во всех направлениях равномерно (например, сердцевинные клетки стебля, клетки запасающих тканей), отложение ни. тей носит случайный характер, и они образуют неправиль., ную сеть. В удлиняющихся клетках нити ориентированы под прямым углом к оси удлинения. Деление клетки начинается после достижения ею опре-деленного размера. Две дочерние клетки, каждая из кото, рых примерно вполовину меньше исходной материнской, снова начинают расти. Одноклеточные растения (некоторые водоросли) могут делиться каждые несколько часов, образуя непрерывный ряд идентичных организмов. У многоклеточных растений деление клеток наряду с увеличением их размеров является еще и способом роста организма. Но в любом случае новые клетки, образовавшиеся путем деления, сходны по структуре и функциям как с родительской клеткой, так и между собой. |
Клетки прокариот
Структура прокариотической клетки |
Клетка прокариот устроена значительно проще клеток животных и растений. Снаружи она покрыта клеточной стенкой, выполняющей защитные, формирующие и транспортные функции. Жёсткость клеточной стенки обеспечивает муреин. Иногда бактериальная клетка покрыта сверху капсулой или слизистым слоем.
Протоплазма бактерий, как и у эукариот, окружена плазматической мембраной. В мешковидных, трубчатых или пластинчатых впячиваниях мембраны находятся мезосомы, участвующие в процессе дыхания, бактериохлорофилл и другие пигменты.
Клетки бактерий |
Генетический материал прокариот не образует ядра, а находится непосредственно в цитоплазме. ДНК бактерий – одиночные кольцевые молекулы, каждая из которых состоит из тысяч и миллионов пар нуклеотидов. Геном бактериальной клетки намного проше, чем у клеток более развитых существ: в среднем ДНК бактерий содержит несколько тысяч генов.
В прокариотических клетках отсутствует эндоплазматическая сеть, а рибосомы свободно плавают в цитоплазме. Нет у прокариот и митохондрий; частично их функции выполняет клеточная мембрана.
megaobuchalka.ru
органоиды эукариотической клетки (части клетки, особенности строения и их функции)
рис. Строение эукариотической клетки
Эукариотическая клетка: строение и функции органоидов
Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.
Эндоплазматическая сеть
Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.
Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты ( «отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.
Аппарат Гольджи
Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.
Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).
Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.
Лизосомы
Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.
Различают: 1) первичные лизосомы, 2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.
Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.
Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.
Далее — http://www.licey.net/bio/biology/lection7
http://www.mirbiologa.ru/index.php?option=com_content&view=article&id=27:2011-03-23-16-03-16&catid=2:kletka&Itemid=17
otvet.mail.ru