Школьный курс физики электричество – Элементарный учебник физики, Электричество и магнетизм , Том 2, Ландсберг Г.С., 2001

Содержание

Электронный учебник по физике: все темы школьной программы

 

Физика — одна из основных наук естествознания. Изучение физики в школе начинается с 7 класса и продолжается до конца обучения в школе. К этому времени у школьников уже должен быть сформирован должный математический аппарат, необходимый для изучения курса физики.

  • Школьная программа по физике состоит из нескольких больших разделов: механика, электродинамика, колебания и волны оптика, квантовая физика, молекулярная физика и тепловые явления.

Темы школьной физики

В 7 классе идет поверхностное ознакомление и введение в курс физики. Рассматриваются основные физические понятия, изучается строение веществ, а также сила давления, с которой различные вещества действуют на другие. Кроме того изучаются законы Паскаля и Архимеда.

В 8 классе изучаются различные физические явления. Даются начальные сведения, о магнитном поле и явления, при которых оно возникает. Изучается постоянный электрический ток и основные законы оптики. Отдельно разбираются различные агрегатные состояния вещества и процессы, происходящие при переходе вещества из одного состояния в другое. 

9 класс посвящен основным законам движения тел и взаимодействия их между собой. Рассматриваются основные понятия механических колебаний и волн. Отдельно разбирается тема звука и звуковых волны. Изучается основы теории электромагнитного поля и электромагнитные волны. Кроме того происходит знакомство с элементами ядерной физики и изучается строение атома и атомного ядра.

В 10 классе начинается углубленное изучение механики (кинематики и динамики) и законов сохранения. Рассматриваются основные виды механических сил. Происходит углубленное изучение тепловых явлений, изучается молекулярно-кинетическая теория и основные законы термодинамики. Повторяются и систематизируются основы электродинамики: электростатика, законы постоянного электрического тока и электрический ток в различных средах. 

11 класс посвящен изучению магнитного поля и явления электромагнитной индукции. Подробно изучаются различные виды колебаний и волн: механические и электромагнитные. Происходит углубление знаний из раздела оптики. Рассматриваются элементы теории относительности и квантовая физика.

  • Ниже идет список классов с 7 по 11. Каждый класс содержит темы по физике, которые написаны нашими репетиторами. Данные материалы могут использоваться как учениками и их родителями, так и школьными учителями и репетиторами.

 

Все материалы разбиты по классам:

Физика 7 классФизика 8 классФизика 9 классФизика 10 классФизика 11 класс

Нужна помощь в учебе?


Все неприличные комментарии будут удаляться.

www.nado5.ru

Электрический ток — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Электрический ток. Сила тока. Сопротивление

К оглавлению…

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным

. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника

R определяется по формуле:

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Сопротивление проводника зависит и от его температуры:

где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

 

Закон Ома. Последовательное и параллельное соединение проводников

К оглавлению…

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

2. Закономерности параллельного соединения:

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы –

вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

 

ЭДС. Закон Ома для полной цепи

К оглавлению…

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно, то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

 

Работа и мощность тока. Закон Джоуля-Ленца

К оглавлению…

Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).

 

Энергобаланс замкнутой цепи

К оглавлению…

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

КПД источника тока:

 

Электролиз

К оглавлению…

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

 

Электрический ток в газах и в вакууме

К оглавлению…

Электрический ток в газах

В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов. Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов — электроны и положительные ионы. Этот процесс называется ионизацией газов.

Ионизировать молекулы газа можно внешним воздействием — ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц. Молекулы газа также ионизируются при высокой температуре. Ионизация приводит к возникновению в газах свободных носителей зарядов — электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).

Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.

Электрический ток в вакууме

Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.

Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума. Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации. Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.

educon.by

Электричество для «чайников». Школа для электрика

Предлагаем небольшой материал по теме: «Электричество для начинающих». Он даст первоначальное представление о терминах и явлениях, связанных с движением электронов в металлах.

Особенности термина

Электричество представляет собой энергию маленьких заряженных частиц, движущихся в проводниках в определенном направлении.

При постоянном токе не наблюдается изменения его величины, а также направления движения за определенный промежуток времени. Если в качестве источника тока выбирается гальванический элемент (батарейка), в таком случае заряд движется упорядоченно: от отрицательного полюса к положительному концу. Процесс продолжается до тех пор, пока он полностью не исчезнет.

Переменный ток периодически изменяет величину, а также направление движения.

Схема передачи переменного тока

Попробуем понять, что такое фаза в электричестве. Это слово слышали все, но далеко не всем понятен его истинный смысл. Не будем углубляться в детали и подробности, выберем только тот материал, который необходим домашнему мастеру. Трехфазная сеть является способом передачи электрического тока, при котором по трем разным проводам протекает ток, а по одному идет его возврат. Например, в электрической цепи есть два провода.

По первому проводу к потребителю, например, к чайнику, идет ток. Второй провод используется для его возвращения. При размыкании такой цепи, прохождения электрического заряда внутри проводника не будет. Данная схема описывает однофазную цепь. Что такое фаза в электричестве? Фазой считают провод, по которому протекает электрический ток. Нулевым называют провод, по которому осуществляется возврат. В трехфазной цепи присутствует сразу три фазных провода.

Электрический щиток в квартире необходим для распределения электрического тока по всем помещениям. Трехфазные сети считают экономически целесообразными, поскольку для них не нужны два нулевых провода. При подходе к потребителю, идет разделение тока на три фазы, причем в каждой есть по нолю. Заземлитель, который используется в однофазной сети, не несет рабочей нагрузки. Он является предохранителем.

К примеру, при возникновении короткого замыкания появляется угроза удара током, пожара. Для предотвращения такой ситуации, величина тока не должна превышать безопасный уровень, избыток уходит в землю.

Пособие «Школа для электрика» поможет начинающих мастерам справляться с некоторыми поломками бытовых приборов. Например, если возникли проблемы при функционировании электрического двигателя стиральной машины, ток будет попадать на внешний металлический корпус.

При отсутствии заземления заряд будет распределяться по машине. При прикосновении к ней руками, в роли заземлителя выступит человек, получив удар электрическим током. При наличии провода заземления такой ситуации не возникнет.

Особенности электротехники

Пособие «Электричество для чайников» пользуется популярностью у тех, кто далек от физики, но планирует использовать эту науку в практических целях.

Датой появления электротехники считают начало девятнадцатого века. Именно в это время был создан первый источник тока. Открытия, сделанные в области магнетизма и электричества, сумели обогатить науку новыми понятиями и фактами, обладающими важным практическим значением.

Пособие «Школа для электрика» предполагает знакомство с основными терминами, касающимися электричества.

Советы начинающим

Во многих сборниках по физике есть сложные электрические схемы, а также разнообразные непонятные термины. Для того чтобы новички могли разобраться во всех тонкостях данного раздела физики, было разработано специальное пособие «Электричество для чайников». Экскурсию в мир электрона необходимо начинать с рассмотрения теоретических законов и понятий. Наглядные примеры, исторические факты, используемые в книге «Электричество для чайников», помогут начинающим электрикам усваивать знания. Для проверки успеваемости можно использовать задания, тесты, упражнения, связанные с электричеством.

Если вы понимаете, что у вас недостаточно теоретических знаний для того, чтобы самостоятельно справиться с подключением электрической проводки, обратитесь к справочникам для «чайников».

Безопасность и практика

Для начала нужно внимательно изучить раздел, касающийся техники безопасности. В таком случае во время работ, связанных с электричеством, не будет возникать чрезвычайных ситуаций, опасных для здоровья.

Для того чтобы на практике реализовать теоретические знания, полученные после самостоятельного изучения основ электротехники, можно начать со старой бытовой техники. До начала ремонта обязательно ознакомьтесь с инструкцией, прилагаемой к прибору. Не забывайте, что с электричеством шутить не нужно.

Электрический ток связан с передвижением электронов в проводниках. Если вещество не способно проводить ток, его называют диэлектриком (изолятором).

Для движения свободных электронов от одного полюса к другому между ними должна существовать определенная разность потенциалов.

Интенсивность тока, проходящего через проводник, связана с количеством электронов, проходящих через поперечное сечение проводника.

На скорость прохождения тока влияет материал, длина, площадь сечения проводника. При увеличении длины провода, увеличивается его сопротивление.

Заключение

Электричество является важным и сложным разделом физики. Пособие «Электричество для чайников» рассматривает основные величины, характеризующие эффективность работы электрических двигателей. Единицами измерения напряжения являются вольты, ток определяется в амперах.

У любого источника электрической энергии существует определенная мощность. Она подразумевает количество электричества, вырабатываемое прибором за определенный промежуток времени. Потребители энергии (холодильники, стиральные машины, чайники, утюги) также имеют мощность, расходуя электричество во время работы. При желании можно провести математические расчеты, определить примерную плату за каждый бытовой прибор.

fb.ru

Физика для вузов. Электричество — обучающая программа

Описание компонент комплекса

ОК «Физика для вузов. Электричество» содержит 23 темы по разделам: электростатика, проводники в электрическом поле, диэлектрики в электрическом поле, постоянный электрический ток, магнитостатика, магнитное поле в веществе, уравнения Максвелла.

Изложение материала строится на доказательстве основных положений раздела, переходя от элементарных понятий к более сложным. Каждая тема сопровождается иллюстративным материалом (моделями, графиками), позволяющим сформировать у обучаемых физическую картину мира.

Материалы для практических занятий содержат более 150 задач. Каждая тема практического занятия содержит 5 задач с пояснениями и 5–8 задач для самостоятельного решения. Для последних указан только ответ, символьный или численный. Большое количество задач позволит преподавателям использовать ОК для организации эффективной самостоятельной работы студентов, назначая им индивидуальные наборы задач. Совмещение в одной теме задач с описанием их решения и задач для самостоятельной работы сделает работу студентов более продуктивной.

Тесты для самопроверки содержат задания по ряду тем, объединенных по смысловому признаку. Это могут быть темы, последовательность изучения которых традиционна для вузовского курса физики на протяжении определенного временного интервала.

Тесты для самопроверки включают в себя более 250 заданий, направленных на закрепление лекционного материала. На случай затруднений в каждом задании имеется подсказка, которая позволяет посмотреть правильный ответ на предложенное задание. Тесты могут использоваться на занятиях для быстрого получения преподавателем информации о ходе усвоения материалов по разделу, а также для самостоятельной работы студентов.

Система поиска позволяет находить список ресурсов внутри ОК, соответствующих запросу. Этот функционал может быть использован не только для нахождения справочной информации, но и для тщательной проработки вопросов, не отраженных непосредственно в тематическом классификаторе комплекса.

obr.1c.ru

Физика электричества: определение, опыты, единица измерения

Физика электричества — это то, с чем приходится сталкиваться каждому из нас. В статье мы рассмотрим основные понятия, связанные с ней.

Что такое электричество? Для человека непосвященного оно ассоциируется со вспышкой молнии или с энергией, питающей телевизор и стиральную машину. Он знает, что электропоезда используют электрическую энергию. О чем еще он может рассказать? О нашей зависимости от электричества ему напоминают линии электропередач. Кто-то сможет привести и несколько других примеров.

Однако с электричеством связано немало других, не столь очевидных, но повседневных явлений. Со всеми ними нас знакомит физика. Электричество (задачи, определения и формулы) мы начинаем изучать еще в школе. И узнаем много интересного. Оказывается, бьющееся сердце, бегущий спортсмен, спящий ребенок и плавающая рыба — все вырабатывает электрическую энергию.

Электроны и протоны

Определим основные понятия. С точки зрения ученого, физика электричества связана с движением электронов и других заряженных частиц в различных веществах. Поэтому научное понимание природы интересующего нас явления зависит от уровня знаний об атомах и составляющих их субатомных частицах. Ключом к этому пониманию служит крошечный электрон. Атомы любого вещества содержат один или более электронов, движущихся по различным орбитам вокруг ядра подобно тому, как планеты вращаются вокруг Солнца. Обычно число электронов в атоме равно количеству протонов в ядре. Однако протоны, будучи значительно тяжелее электронов, можно считать как бы закрепленными в центре атома. Этой предельно упрощенной модели атома вполне достаточно, чтобы объяснить основы такого явления, как физика электричества.

О чем еще необходимо знать? Электроны и протоны имеют одинаковый по величине электрический заряд (но разного знака), поэтому они притягиваются друг к другу. Заряд протона является положительным, а электрона — отрицательным. Атом, имеющий электронов больше или меньше, чем обычно, называется ионом. Если в атоме их недостаточно, то он называется положительным ионом. Если же он содержит их избыток, то его называют отрицательным ионом.

Когда электрон покидает атом, тот приобретает некоторый положительный заряд. Электрон, лишенный своей противоположности — протона, либо движется к другому атому, либо возвращается к прежнему.

Почему электроны покидают атомы?

Это объясняется несколькими причинами. Наиболее общая состоит в том, что под воздействием импульса света или какого-то внешнего электрона движущийся в атоме электрон может быть выбит со своей орбиты. Тепло заставляет атомы колебаться быстрее. Это означает, что электроны могут вылететь из своего атома. При химических реакциях они также перемещаются от атома к атому.

Хороший пример взаимосвязи химической и электрической активности дают нам мышцы. Их волокна сокращаются при воздействии электрического сигнала, поступающего из нервной системы. Электрический ток стимулирует химические реакции. Они-то и приводят к сокращению мышцы. Внешние электрические сигналы нередко используются для искусственного стимулирования мышечной активности.

Проводимость

В некоторых веществах электроны под действием внешнего электрического поля движутся более свободно, чем в других. Говорят, что такие вещества обладают хорошей проводимостью. Их называют проводниками. К ним относится большинство металлов, нагретые газы и некоторые жидкости. Воздух, резина, масло, полиэтилен и стекло плохо проводят электричество. Их называют диэлектриками и используют для изоляции хороших проводников. Идеальных изоляторов (абсолютно не проводящих тока) не существует. При определенных условиях электроны можно удалить из любого атома. Однако обычно эти условия столь трудно выполнить, что с практической точки зрения подобные вещества можно считать непроводящими.

Знакомясь с такой наукой, как физика (раздел «Электричество»), мы узнаем, что существует особая группа веществ. Это полупроводники. Они ведут себя отчасти как диэлектрики, а отчасти — как проводники. К ним, в частности, относятся: германий, кремний, окись меди. Благодаря своим свойствам полупроводник находит множество применений. Например, он может служить электрическим вентилем: подобно клапану велосипедной шины он позволяет зарядам двигаться только в одном направлении. Такие устройства называются выпрямителями. Они используются и в миниатюрных радиоприемниках, и на больших электростанциях для преобразования переменного тока в постоянный.

Тепло представляет собой хаотичную форму движения молекул или атомов, а температура — мера интенсивности этого движения (у большинства металлов с понижением температуры движение электронов становится более свободным). Это означает, что сопротивление свободному движению электронов падает с уменьшением температуры. Другими словами, проводимость металлов возрастает.

Сверхпроводимость

В некоторых веществах при очень низких температурах сопротивление потоку электронов исчезает полностью, и электроны, начав движение, продолжают его неограниченно. Это явление называется сверхпроводимостью. При температуре несколько градусов выше абсолютного нуля (— 273 °С) она наблюдается в таких металлах, как олово, свинец, алюминий и ниобий.

Генераторы Ван де Граафа

В школьную программу входят различные опыты с электричеством. Существует можество видов генераторов, об одном из которых нам хотелось бы подробнее рассказать. Генератор Ван де Граафа используется для получения сверхвысоких напряжений. Если предмет, содержащий избыток положительных ионов, поместить внутрь контейнера, то на внутренней поверхности последнего появятся электроны, а на внешней — такое же количество положительных ионов. Если теперь коснуться внутренней поверхности заряженным предметом, то на него перейдут все свободные электроны. На внешней же положительные заряды останутся.

В генераторе Ван де Граафа положительные ионы от источника наносятся на ленту конвейера, проходящего внутри металлической сферы. Лента связана с внутренней поверхностью сферы с помощью проводника в виде гребня. Электроны стекают с внутренней поверхности сферы. На внешней же стороне ее появляются положительные ионы. Эффект можно усилить, используя два генератора.

Электрический ток

В школьный курс физики входит и такое понятие, как электрический ток. Что же это такое? Электрический ток обусловлен движением электрических зарядов. Когда электрическая лампа, соединенная с батареей, включена, ток течет по проводу от одного полюса батареи к лампе, затем через ее волосок, вызывая его свечение, и возвращается назад по второму проводу к другому полюсу батареи. Если выключатель повернуть, то цепь разомкнется — движение тока прекратится, и лампа погаснет.

Движение электронов

Ток в большинстве случаев представляет собой упорядоченное движение электронов в металле, служащем проводником. Во всех проводниках и некоторых других веществах всегда происходит какое-то случайное их движение, даже если ток не протекает. Электроны в веществе могут быть относительно свободны или сильно связаны. Хорошие проводники имеют свободные электроны, способные перемещаться. А вот в плохих проводниках, или изоляторах, большинство этих частиц достаточно прочно связано с атомами, что препятствует их движению.

Иногда естественным или искусственным путем в проводнике создается движение электронов в определенном направлении. Этот поток и называют электрическим током. Он измеряется в амперах (А). Носителями тока могут служить также ионы (в газах или растворах) и «дырки» (нехватка электронов в некоторых видах полупроводников. Последние ведут себя как положительно заряженные носители электрического тока. Чтобы заставить электроны двигаться в том или ином направлении, необходима некая сила. В природе ее источниками могут быть: воздействие солнечного света, магнитные эффекты и химические реакции. Некоторые из них используются для получения электрического тока. Обычно для этой цели служат: генератор, использующий магнитные эффекты, и элемент (батарея), действие которого обусловлено химическими реакциями. Оба устройства, создавая электродвижущую силу (ЭДС), заставляют электроны двигаться в одном направлении по цепи. Величина ЭДС измеряется в вольтах (В). Таковы основные единицы измерения электричества.

Величина ЭДС и сила тока связаны между собой, как давление и поток в жидкости. Водопроводные трубы всегда заполнены водой под определенным давлением, но вода начинает течь, только когда открывают кран.

Аналогично электрическая цепь может быть соединена с источником ЭДС, но ток в ней не потечет до тех пор, пока не будет создан путь, по которому могут двигаться электроны. Им может быть, скажем, электрическая лампа или пылесос, выключатель здесь играет роль крана, «выпускающего» ток.

Соотношение между током и напряжением

По мере роста напряжения в цепи растет и ток. Изучая курс физики, мы узнаем, что электрические цепи состоят из нескольких различных участков: обычно это выключатель, проводники и прибор — потребитель электричества. Все они, соединенные вместе, создают сопротивление электрическому току, которое (при условии постоянства температуры) для этих компонентов не изменяется со временем, но для каждого из них различно. Поэтому, если одно и то же напряжение применить к лампочке и к утюгу, то поток электронов в каждом из приборов будет различен, поскольку различны их сопротивления. Следовательно, сила тока, протекающего через определенный участок цепи, определяется не только напряжением, но и сопротивлением проводников и приборов.

Закон Ома

Величина электрического сопротивления измеряется в омах (Ом) в такой науке, как физика. Электричество (формулы, определения, опыты) — обширная тема. Мы не будем выводить сложные формулы. Для первого знакомства с темой достаточно того, что было сказано выше. Однако одну формулу все-таки стоит вывести. Она совсем несложная. Для любого проводника или системы проводников и приборов соотношение между напряжением, током и сопротивлением задается формулой: напряжение = ток х сопротивление. Это математическое выражение закона Ома, названного так в честь Георга Ома (1787-1854 гг.), который первым установил взаимосвязь этих трех параметров.

Физика электричества — очень интересный раздел науки. Мы рассмотрели лишь основные понятия, связанные с ней. Вы узнали, что такое электричество, как оно образуется. Надеемся, эта информация вам пригодится.

fb.ru

Полный курс школьной физики на видео

Полный курс школьной физики на видео

1. Относительность движения ………. смотреть

2. Явление инерции ………. смотреть

3. Инертность тел ………. смотреть

4. Реактивное движение ………. смотреть

5. Атмосферное давление ………. смотреть

6. Фонтан в пустоте ………. смотреть

7. Магдебургские полушария ………. смотреть

8. Действие жидкости на погруженное тело ………. смотреть

9. Закон Архимеда ………. смотреть

10. Условия плавания тел ………. смотреть

11. Поплавок Декарта ………. смотреть

12. Тепловое расширение тел ………. смотреть

13. Слипание твердых тел ………. смотреть

14. Кипение при пониженном давлении ………. смотреть

15. Воздушное огниво ………. смотреть

16. Принцип действия ДВС ………. смотреть

17. Распределение заряда по поверхности проводника ………. смотреть

18. Проводники в электрическом поле ………. смотреть

19. Диэлектрики в электрическом поле ………. смотреть

20. Взаимодействие диэлектрика с заряженной палочкой ………. смотреть

21. Взаимодействие проводника с заряженной палочкой ………. смотреть

22. Разряд конденсатора большой емкости ………. смотреть

23. Зависимость сопротивления проводника от температуры ………. смотреть

24. Зависимость сопротивления проводника от освещенности ………. смотреть

25. Реле на фоторезисторе ………. смотреть

26. Термоэлектронная эмиссия ………. смотреть

27. Термоэлектронная эмиссия ………. смотреть

28. Явление электромагнитной индукции ………. смотреть

29. Причина возникновения индукционного тока ………. смотреть

30. Индукционный ток в кольце ………. смотреть

31. Применение индукционного тока ………. смотреть

32. Модель электросварки ………. смотреть

33. Применение токов Фуко ………. смотреть

34. Модель спидометра ………. смотреть

35. Явление самоиндукции ………. смотреть

36. Емкость в цепи постоянного и переменного тока ………. смотреть

37. Индуктивность в цепи постоянного и переменного тока ………. смотреть

38. Резонанс в цепи переменного тока ………. смотреть

39. Электрические колебания в колебательном контуре ………. смотреть

40. Влияние значения емкости и индуктивности на частоту колебаний в контуре ………. смотреть

41. Тень и полутень ………. смотреть

42. Закон отражения света ………. смотреть

43. Закон преломления света ………. смотреть

44. Явление обратимости светового луча ………. смотреть

45. Полное внутреннее отражение ………. смотреть

46. Полное отражение в трехгранной призме ………. смотреть

47. Фокус и фокусное расстояние ………. смотреть

48. Фокальная плоскость, побочная ось и побочный фокус ………. смотреть

49. Диафрагмирование собирающей линзы ………. смотреть

50. Модель оптической системы взгляда ………. смотреть

51. Взаимосвязь между магнитными и оптическими полями ………. смотреть

52. Токи высокой частоты ………. смотреть

53. Распределение энергии в сплошном спектре ………. смотреть

54. Фотоэффект ………. смотреть

55. Красная граница ………. смотреть


class-fizika.ru

Разделы Физики — Весь курс физики

Кинематика
1.1 Основные понятия кинематики
1.2 Относительность движения
1.3 Равномерное движение
1.4 Равноускоренное движение
1.5 Свободное падение тел
1.6 Движение по окружности

Основы динамики
1.7 Первый закон Ньютона. Масса. Сила
1.8 Второй закон Ньютона
1.9 Третий закон Ньютона

Силы в природе
1.10 Закон всемирного тяготения. Движение тел под действием силы тяжести
1.11 Вес и невесомость
1.12 Сила упругости. Закон Гука
1.13 Сила трения

Элементы статики
1.14 Условия равновесия тел
1.15 Элементы гидростатики
1.16 Импульс тела

Законы сохранения в механике
1.17 Закон сохранения импульса. Реактивное движение
1.18 Механическая работа и мощность
1.19 Кинетическая и потенциальная энергии
1.20 Закон сохранения механической энергии
1.21 Упругие и неупругие соударения
1.22 Элементы гидро- и аэродинамики
1.23 Вращение твердого тела
1.24 Законы Кеплера

Механические колебания
2.1 Гармонические колебания
2.2 Свободные колебания. Пружинный маятник
2.3 Свободные колебания. Математический маятник
2.4 Превращения энергии при свободных механических колебаниях
2.5 Вынужденные колебания. Резонанс. Автоколебания

Волны
2.6 Механические волны
2.7 Звук
2.8 Эффект Доплера

Молекулярно-кинетическая теория
3.1 Основные положения МКТ
3.2 Основное уравнение МКТ газов. Температура
3.3 Уравнение состояния идеального газа. Изопроцессы
3.4 Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары
3.5 Свойства жидкостей. Поверхностное натяжение
3.6 Кристаллические и аморфные тела
3.7 Деформация

Термодинамика

3.8 Внутренняя энергия. Количество теплоты. Работа в термодинамике
3.9 Первый закон термодинамики
3.10 Теплоемкость идеального газа
3.11 Тепловые двигатели. Термодинамические циклы. Цикл Карно
3.12 Необратимость тепловых процессов. Второй закон термодинамики. Понятие энтропии

Электрическое поле

4.1 Электрический заряд. Закон Кулона
4.2 Электрическое поле
4.3 Теорема Гаусса
4.4 Работа в электрическом поле. Потенциал
4.5 Проводники и диэлектрики в электрическом поле
4.6 Электроемкость. Конденсаторы
4.7 Энергия электрического поля

Постоянный электрический ток
4.8 Электрический ток. Закон Ома
4.9 Последовательное и параллельное соединение проводников
4.10 Правила Кирхгофа для разветвленных цепей
4.11 Работа и мощность тока
4.12 Электрический ток в металлах
4.13 Электрический ток в полупроводниках
4.14 Электронно-дырочный переход. Транзистор
4.15 Электрический ток в электролитах

Магнитное поле
4.16 Магнитное взаимодействие токов
4.17 Закон Био-Савара. Теорема о циркуляции
4.18 Сила Лоренца
4.19 Магнитное поле в веществе
4.20 Электромагнитная индукция. Правило Ленца
4.21 Самоиндукция. Энергия магнитного поля

Электромагнитные колебания и волны
5.1 Квазистационарные процессы. RC- и RL-цепи
5.2 RLC-контур. Свободные колебания
5.3 Вынужденные колебания. Переменный ток
5.4 Закон Ома для цепи переменного тока. Мощность
5.5 Трансформаторы. Передача электрической энергии
5.6 Электромагнитные волны

Геометрическая оптика
6.1 Основные законы геометрической оптики
6.2 Зеркала
6.3 Тонкие линзы
6.4 Глаз как оптический инструмент
6.5 Оптические приборы для визуальных наблюдений

Волновая оптика
6.6 Развитие представлений о природе света
6.7 Интерференция световых волн
6.8 Дифракция света
6.9 Дифракционный предел разрешения оптических инструментов
6.10 Спектральные приборы. Дифракционная решетка
6.11 Поляризация света

Основы специальной теории относительности
7.1 Постулаты СТО
7.2 Относительность промежутков времени
7.3 Относительность расстояний
7.4 Преобразования Лоренца
7.5 Элементы релятивисткой динамики

Квантовая физика
8.1 Тепловое излучение тел
8.2 Фотоэффект. Фотоны
8.3 Эффект Комптона
8.4 Волновые свойства микрочастиц. Дифракция электронов

Физика атома и атомного ядра
9.1 Опыт Резерфорда. Ядерная модель атома
9.2 Квантовые постулаты Бора
9.3 Атом водорода. Линейчатые спектры
9.4 Лазеры
9.5 Состав атомных ядер
9.6 Энергия связи ядер
9.7 Радиоактивность
9.8 Ядерные реакции

fizika.ayp.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *