Соединительная ткань. Расположение в организме, виды, строение и функции.
Поиск ЛекцийСостоит из клеток и большого количества межклеточного вещества. В межклеточном веществе находятся волокна и основное вещество. Волокна обеспечивают прочность и эластичность.
Волокна делятся на:
û коллагеновые
û ретикулярные
û эластичные
Коллагеновые волокна содержат белок коллаген и обладают высокой прочностью.
Ретикулярные волокна входят в состав красного костного мозга, лимфатических узлов и селезёнки. Они тонкие и могут образовывать тонкую сеть.
Эластичные волокна содержат белок эластин, они менее прочные чем коллагеновые и могут легко растягиваться.
Основное вещество которое относится к межклеточному заполняет пространство между клетками и волокнами.
Функция разнообразна:
- Опорная — соединительная ткань входит в состав костей, хрящей, связок, сухожилий, фасций скелета. Опорную функцию выполняет плотно волокнистая ткань (связки и сухожилия), костная и хрящевая ткани.
- Трофическая — эту функцию выполняет кровь и лимфа (обеспечение других тканей питательными веществами).
- Механическая — соединительная ткань принимает участие в формировании мягкого скелета, т. е. стромы.
- Соединительная ткань участвует в кроветворение, т. е. гемопоэз.
- Соединительная ткань участвует в фагоцитозе.
- Соединительная ткань участвует в регенерации.
- Дыхательная функция – участвует в процессе газообмена, протекающих в тканях и органах.
К соединительной ткани относят собственно соединительную ткань, которая включает в себя рыхлую волокнистую и плотную волокнистую; скелетные соединительные ткани (хрящевые и костную), а также соединительную ткань со специальными свойствами (жировая ткань, кровь, лимфа и кроветворные ткани).
Рыхлая волокнистая соединительная ткань (РВСТ).
Состоит из клеток и межклеточного вещества.
РВСТ заполняет пространство между органами.
В состав РВСТ входят следующие клетки:
ü фибробласты — это плоские, веретенообразные клетки. Участвуют в заживлении ран и образовании рубцовой ткани.
ü Макрофаги — это клетки, которые захватывают и переваривают чужеродные частицы.
ü Тучные клетки — вырабатывают гепарин который препятствует свертыванию крови.
ü Плазматические — участвуют в синтезе антител.
Антитела — это белки, которые защищают от инфекции.
ü Жировые клетки — способны накапливать резервный жир.
ü Пигментные клетки — содержат зёрна пигмента меланин.
Плотная волокнистая соединительная ткань (ПВСТ).
В этой ткани волокна располагаются плотно. Межклеточного вещества мало. ПВСТ входит в состав связок, сухожилий, фасций, перепонок.
Фасция — это тонкая соединительнотканная оболочка в которую помещена мышца.
Содержит много коллагеновых волокон.
Хрящевая ткань состоит из клеток хондроцитов и плотного межклеточного вещества.
В межклеточном веществе встречаются различные волокна:
ñ гиалиновые
ñ эластичные
ñ волокнистые
Гиалиновый хрящ входит в состав рёбер. Располагается в местах соединения ребра с грудиной.
Эластичный хрящ входит в состав ушной раковины и хрящей гортани. В эластичном хряще никогда не откладывается кальций.
Волокнистый хрящ образует межпозвоночные диски, покрывает нижний челюстной сустав.
Костная ткань.
Состоит из клеток и межклеточного вещества.
Межклеточное вещество содержит основное вещество, в котором много неорганических солей (кальций, магний).
Органические вещества — жиры, белки, углеводы, содержащие углерод.
Неорганические вещества — минеральные соли.
Благодаря этому кости отличаются прочностью. В кости очень много солей кальция. Если не хватает солей кальция, то развиваетсяостеопороз.Кость становится хрупкой и возможны переломы.
Среди органических солей в кости больше всего осеина, который придает костям гибкость.
В кости постоянно происходит процесс разрушения и образования новых клеток.
Различают 3 вида костных клеток:
- Остеобласты — это клетки, которые образуют костную ткань.
- Остеоциты — клетки, которые образуются из остеобластов.
- Остеокласты — клетки, которые разрушают костную ткань.
Различают 2 вида костной ткани:
Ø грубоволокнистая
Ø пластинчатая
Грубоволокнистая ткань встречается в швах черепа. Состоит из коллагеновых волокон и остеоцитов.
Пластинчатая ткань плотнее чем грубоволокнистая и из неё построены все кости. Так же включает большое количество коллагеновых волокон и клеток в виде пластинок.
Функциональной единицей кости является остеон.
Жировая ткань
Эта соединительная ткань, в которой основной объем занимают жировые клетки – адипоциты. Различают 2 вида: белая жировая ткань (образует поверхностные и глубокие скопления), бурая жировая ткань (находится между лопаток, в подмышечных впадинах, в области крупных сосудов шеи).
Кровь и лимфа
Состоят из жидкой части и форменных элементов.
Рекомендуемые страницы:
poisk-ru.ru
Дополнение к лекции «Ткани. Классификация тканей, расположение в организме» МС
Дополнение к лекции №2 Сестринское дело
4. Ткани. Классификация тканей, расположение в организме.
Ткань – это совокупность клеток и межклеточного вещества, имеющих общее происхождение, строение и функции. Различают четыре основные группы тканей: эпителиальные, соединительные, мышечные и нервную. Каждый группа тканей имеет несколько разновидностей.
Эпителиальные ткани (эпителий) находится на границе между внешней и внутренней средой, через них происходит обмен веществ между организмом и внешней средой. Клетки эпителия называются эпителиоцитами, имеют разную форму. Эпителий покрывает поверхность тела и стенки полых органов, являясь составной частью слизистой оболочки пищеварительного тракта, дыхательных путей, мочеполовой системы и т.д.
Основные морфологические признаки эпителия:
1) пограничное положение между тканями внутренней и внешней сред;
2) много клеток расположенных тесно сомкнутыми пластами;
3) клетки лежат на базальной мембране;
4) минимальное количество межклеточного вещества;
5) отсутствие сосудов, в результате чего питание осуществляется путем диффузии из подлежащих тканей;
6) высокая способность к регенерации — восстановлению после повреждения.
Классификация эпителия
По количеству слоев:
По форме клеток:
(призматический)
По функции:
Покровный
Железистый
Сенсорный
Многослойный
— ороговевающий
— неороговевающий
— переходный
Однослойный
— однорядный
— многорядный
Расположение эпителия в организме
Вид эпителия | Расположение |
Однослойный плоский эпителий (мезотелий) | Брюшина, плевра, перикард |
Однослойный кубический эпителий | Канальцы почек, протоки желез, мелкие бронхи |
Однослойный цилиндрический эпителий | Слизистая оболочка желудка, кишечника, маточных труб, желчные пути, проток поджелудочной железы |
Однослойный многорядный цилиндрический мерцательный эпителий | Полость носа, гортань, трахея, бронхи |
Многослойный плоский ороговевающий эпителий | Эпидермис кожи |
Многослойный плоский неороговевающий эпителий | Роговица и конъюктива глазного яблока, слизистая оболочка полости рта, глотки, влагалища |
Многослойный переходный эпителий | Почечные чашки, лоханка, мочеточник, мочевой пузырь, часть мочеиспускательного канала |
Железистый эпителий | Крупные железы |
Сенсорный эпителий | Органы чувств |
Функции эпителиальных тканей:
1. разграничительная и барьерная;
2. защитная;
3. транспортная;
4. всасывательная;
5. секреторная;
6. экскреторная;
7. сенсорная.Соединительные ткани широко распространены в организме человека. Они выполняют прежде всего механические связующие функции, соединяя друг с другом различные структуры, образуют внутреннюю среду организма и участвуют в поддержании ее постоянства. Они характеризуются выраженным преобладанием межклеточного вещества над клетками.
К соединительной ткани относят:
— собственно соединительную ткань, которая включает в себя рыхлую соединительную ткань и плотную соединительную ткань;
— скелетные соединительные ткани (хрящевые и костные),
— соединительную ткань со специальными свойствами. В эту группу включают жировую ткань, кровь, лимфу и кроветворные ткани.
Собственно соединительная ткань содержит ретикулярные, коллагеновые и эластические волокна. Рыхлая соединительная ткань характеризуется сравнительно невысоким содержанием только ретикулярных волокон в межклеточном веществе, которые формируют тонкие растяжимые трехмерные сети. Она покрывает снаружи мышцы и ряд внутренних органов. Коллагеновые волокна отличаются высокой механической прочностью и составляют основу плотной волокнистой соединительной ткани (сухожилия, связки и фасции).
Скелетные соединительные ткани (хрящевые и костные). Различают гиалиновый, эластический и волокнистый хрящи. Клетками хрящевой ткани являются хондроциы и хондробласты.
Гиалиновый хрящ — наиболее распространенный в организме вид хрящевых тканей. Он образует скелет у плода, передние концы ребер, хрящи носа, большинство хрящей гортани, трахеи и крупных бронхов, покрывает суставные поверхности.
Эластический хрящ характеризуется гибкостью и способностью к обратимой деформации. Из него состоит хрящ ушной раковины, наружного слухового прохода, слуховой трубы, надгортанник.
Волокнистый хрящ обладает значительной механической прочностью. Он образует межпозвоночные диски, лобковый симфиз.
Костные ткани образуют скелет, защищающий внутренние органы от повреждений, входящий в локомоторный аппарат (передвижение) и являющийся депо минеральных веществ в организме. Костная ткань образована костными клетками и обызвествленным (пропитанным минеральными веществами, преимущественно кальцием) межклеточным веществом. Различают следующие костные клетки: остеобласты (молодые, делящиеся клетки), остеоциты (зрелые костные клетки, не способные к делению), остеокласты (клетки, разрушающие костную ткань). В межклеточном веществе костной ткани располагаются пучки коллагеновых волокон. В зависимости от степени их упорядоченности выделяют два типа костной ткани: грубоволокнистую и пластинчатую.
Грубоволокнистая костная ткань характеризуется неупорядоченным, хаотичным расположением коллагеновых волокон в костном матриксе, отличается небольшой механической прочностью. и обычно образуется в тех случаях, когда остеобласты формируют межклеточное вещество с большой скоростью. Из этого вида ткани состоят кости плода, которые по мере его роста и созревания замещаются пластинчатой костной тканью. Ее минерализованное межклеточное вещество состоит из особых костных пластинок, содержащих высокоупорядоченные параллельно расположенные коллагеновые волокна.
Функции соединительных тканей:
1. трофическая;
2. транспортная;
3. регуляторная;
4. защитная;
5. дыхательная;
6. опорная.
Мышечные ткани выполняют в организме сократительную функцию, которая осуществляется благодаря специальным органеллам — миофибриллам. Мышечные ткани существуют в форме гладкой и поперечнополосатой (скелетной и сердечной) мускулатуры.
Гладкая мышечная ткань. Находится в стенках внутренних органов, кровеносных и лимфатических сосудов, а также в составе некоторых желез. Она состоит из клеток — гладких миоцитов. Миоциты имеют веретенообразную форму, с палочковидным ядром внутри. Гладкая мышечная ткань работает непроизвольно, т. е. не подчиняется воле человека, медленно и долго не устает.
Поперечнополосатая мышечная ткань. Составляет основу скелетных мышц и некоторых мышц в составе внутренних органов (мышцы, обеспечивающие движения глазного яблока; мышцы стенок полости рта, языка, глотки, гортани, верхней трети пищевода). Она состоит из поперечнополосатых мышечных волокон, которые обладают поперечной исчерченностью вследствие упорядоченного расположения нитей белков: актина и миозина. Своеобразие этих мышечных волокон заключается в том, что они являются многоядерными, сформировавшимися в результате слияния многих клеток (миобластов). Сокращение скелетных мышц осуществляется произвольно по желанию человека, работают быстро и быстро устают. Поперечно-полосатые мышечные волокна представляют собой вытянутые (до 10 см) цилиндрические тела с округлыми или заостренными концами, которыми волокна прилежат друг к другу или вплетаются в соединительную ткань сухожилий и фасций.
Сократительным аппаратом являются поперечно-полосатые миофибриллы, которые образуют пучок волоконец, идущих от одного до другого конца мышечного волокна. В состав миофибрилл входят тончайшие волоконца – микрофиламенты. Мышечные волокна содержат большое количество ядер (от нескольких десятков до нескольких сотен), саркосомы, сходные с митохондриями других клеток, саркоплазму и покрыты сарколеммой.
Особая форма мышечной ткани — поперечнополосатая сердечная мышечная ткань, которая образует миокард сердца. Клетка этой ткани называется кардиомиоцит. Сердечная мышца не подчиняются ноле человека, т.е. являются непроизвольной.
Нервная ткань включает собственно нервную ткань, представленную нервными клетками, и нейроглию, представленную глиальными клетками. Каждая нервная клетка (нейрон) состоит из тела с ядром, особых включений и нескольких коротких древовидноветвящихся отростков, или дендритов, а также одного (обычно длинного) отходящего от ее тела аксона.
По количеству отростков выделяют следующие морфологические типы нейронов: — униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге; — псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях; — биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях; — мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.
Нервные клетки способны воспринимать раздражения из внешней или внутренней среды, трансформировать (преобразовывать) энергию раздражения в нервный импульс, проводить их, анализировать и интегрировать. По дендритам нервный импульс идет
телу нервной клетки; по аксону — от тела к следующей нервной клетке или к рабочему органу.
По функции различают афферентные нейроны (чувствительные, рецепторные), эфферентные (двигательные или моторные) нейроны и ассоциативные (вставочные) нейроны.
Нейроглия окружает нервные клетки (нейроциты), выполняя при этом разграничительную, опорную, трофическую и защитную функции. Клетки нейроглии сосредоточены в центральной нервной системе, где их количество в десять раз превышает количество нейронов. Они заполняют пространство между нейронами, обеспечивая их питательными веществами. Возможно, клетки нейроглии участвуют в сохранении информации в форме РНК-кодов. При повреждении клетки нейроглии активно делятся, образуя на месте повреждения рубец; клетки нейроглии другого типа превращаются в фагоциты и защищают организм от вирусов и бактерий.
Вопросы для контроля усвоения материала
1. Дайте определение – клетка.
2. Назовите неорганические вещества клетки.
3. Назовите органические вещества клетки.
4. Назовите основные компоненты клетки.
5. Каково строение и функции ядра?
6. Перечислите органоиды клетки и укажите их функции.
7. Какие существуют группы тканей?
8. Перечислите виды эпителия и их расположение в организме.
9. Назовите виды соединительной ткани и их функции.
10. Перечислите виды мышечной ткани, охарактеризуйте их функции.
multiurok.ru
Охарактеризуйте соединительную ткань, её виды, функции, расположение в организме.
Соединительные ткани разнообразны по своему строению, так как выполняют опорную, трофическую и защитную функции. Они состоят из клеток и межклеточного вещества, которого по количеству больше, чем клеток. Эти ткани обладают высокой регенеративной способностью, пластичностью, приспособлением к изменению условий существования. Рост и развитие их происходит за счет размножения, трансформации малодиференцирванных молодых клеток.
Соединительные ткани произошли из мезенхимы, т.е. эмбриональной соединительной ткани, которая сформировалась из среднего зародышевого листка — мезодермы.
Различают несколько видов соединительной ткани:
· Кровь и лимфа;
· Рыхлая волокнистая неоформленная ткань;
· Плотная волокнистая (оформленная и неоформленная) ткань;
· Ретикулярная ткань;
· Жировая;
· Хрящвая;· Костная;
Из этих видов плотная волокнистая, хрящевая и костная выполняют опорную функцию, остальные ткани – защитную и трофическую.
Клетки соединительной ткани
Фибробласты являются основными клетками соединительной ткани. Они веретенообразные, от поверхности фиброблас-тов отходят тонкие короткие и длинные отростки (рис. 11 ). Количество фибробластов в разных типах соединительной ткани различное, особенно много их в рыхлой волокнистой соединительной ткани. Фибробласты имеют овальное ядро, заполненное мелкими глыбками хроматина, четко различимыми ядрышком и базофильной цитоплазмой, содержащей множество свободных и прикрепленных рибосом. У фибробластов хорошо развита зернистая эндоплазматическая сеть. Комплекс Гольджи развит также хорошо. На клеточной поверхности фибробластов располагается фибронектин — адгезивный белок, к которому прикрепляются коллагеновые и эластические волокна. На внутренней поверхности цитолеммы фибробластов имеются микропиноцитозные пузырьки. Их наличие свидетельствует об интенсивномэндоцитозе. Цитоплазму фибробластов заполняет трехмерная микротрабекулярная сеть, образованная тонкими белковымифиламентами толщиной 5—7 нм, которые соединяют между собой актиновые, миозиновые и промежуточные филаменты. Движения фибробластов возможны за счет связи их актиновых и миозиновыхфиламентов, расположенных под цитолеммой клетки.
Фибробласты синтезируют и секретируют основные компоненты межклеточного вещества, а именно аморфное вещество и волокна. Аморфное (основное) вещество представляет собой студнеобразную гидрофильную среду, состоит из протеоглика- нов, гликопротеинов (адгезивных белков) и воды. Протеоглика-ны, в свою очередь, состоят из гликозаминогликанов (сульфа- тированных: кератинсульфат, дерматансульфат, хондроитин- сульфат, гепаринсульфат и др.), связанных с белками. Протео-гликаны вместе со специфическими белками объединяются в комплексы, соединенные с гиалуроновой кислотой (несульфа- тированными гликозаминогликанами). Гликозаминогликаны имеют отрицательный заряд, а вода является диполем (±), поэтому она связывается с гликозаминогликанами. Эту воду называют связанной. Количество связанной воды зависит от количества и длины молекул гликозаминогликанов. Например, в рыхлой соединительной ткани много гликозаминогликанов, поэтому в ней много воды. В костной ткани молекулы гликозаминогликанов короткие, в ней мало воды.
Коллагеновые волокна начинают образовываться в комплексе Гольджи фибробластов, где формируются агрегаты проколлагена, переходящие в «секреторные» гранулы. Во время секреции проколлагена из клеток этот проколлаген на поверхности превращается в тропоколлаген. Молекулы тропоколлагена во внеклеточном пространстве объединяются между собой путем «самосборки», образуя протофибриллы. Пять-шесть протофибрилл, соединяясь вместе с помощью боковых связей, образуют микрофибриллы толщиной около 10 нм. Микрофибриллы, в свою очередь, объединяются в длинные поперечно исчерченные фибриллы толщиной до 300 нм, которые формируют коллагеновые волокна толщиной от 1 до 20 мкм. Наконец, множество волокон, собираясь, составляют коллагеновые пучки толщиной до 150 мкм.
Важная роль в фибриллогенезе принадлежит самому фибробласту, который не только секретирует компоненты межклеточного вещества, но и создает направление (ориентацию) волокон соединительной ткани. Это направление соответствует длиной оси фибробластов, которые регулируют сборку и трехмерное расположение волокон и их пучков в межклеточном веществе.
Эластические волокна толщиной от 1 до 10 мкм состоят из белка эластина. Молекулы проэластина синтезируются фибро-бластами на рибосомах зернистой эндоплазматической сети и секретируются во внеклеточное пространство, где образуются микрофибриллы. Эластические микрофибриллы толщиной около 13 нм вблизи клеточной поверхности во внеклеточном пространстве образуют петлистую сеть. Эластические волокна анастомозируют и переплетаются между собой, образуя сети, фенестрированные пластины и мембраны. В отличие от колла-геновых эластические волокна способны растягиваться в 1,5 раза, после чего они возвращаются в исходное состояние.
Ретикулярные волокна тонкие (толщиной от 100 нм до 0,5 мкм), разветвленные, образуют мелкопетлистые сети, в ячейках которых расположены клетки. Вместе с ретикулярными клетками ретикулярные волокна образуют каркас (строму) лимфатических узлов, селезенки, красного костного мозга, а вместе с коллагеновыми эластическими волокнами участвуют в образовании стромы многих других органов. Ретикулярные волокна являются производными фибробластов и ретикулярных клеток. Каждое ретикулярное волокно содержит множество фибрилл диаметром 30 нм с поперечной исчерченностью, сходной с таковой коллагеновых волокон. Ретикулярные волокна содержат коллаген III типа, покрыты углеводами, что позволяет выявлять их с помощью реакции Шика. Они окрашиваются в черный цвет при импрегнации серебром.
Фиброциты также являются клетками соединительной ткани. Фибробласты по мере старения превращаются в фиброциты. Фиброцит представляет собой веретенообразную клетку с крупным эллипсоидным ядром, мелким ядрышком и небольшим количеством бедной органеллами цитоплазмы. Зернистая эндоплазматическая сеть и комплекс Гольджиразвиты слабо. Каждая клетка содержит и лизосомы, и аутофагосомы, и другие органеллы.
Наряду с клетками, синтезирующими компоненты межклеточного вещества, в рыхлой волокнистой соединительной ткани присутствуют клетки, разрушающие его. Эти клетки — фиброкласты — по своей структуре весьма напоминают фибробласты (по форме, развитию зернистой эндоплазматической сети и комплексаГольджи). В то же время они богаты лизосомами, что делает их похожими на макрофаги. Фиброкласты обладают большой фагоцитарной и гидролитической активностью.
В рыхлой волокнистой ткани также присутствуют и выполняют определенные функции макрофаги, лимфоциты, тканевые базофилы (тучные клетки), жировые, пигментные, адвентициальные, плазматические и другие клетки.
Макрофаги, или макрофагоциты (от греч. mаkros — большой, пожирающий), являются подвижными клетками. Они захватывают и пожирают чужеродные вещества, взаимодействуют с клетками лимфоидной ткани — лимфоцитами. Макрофаги имеют различную форму, их размеры составляют от 10 до 20 мкм, цитолемма образует многочисленные отростки. Ядро у макрофагов округлое, овоидное или бобовидное. В цитоплазме много лизосом. Макрофаги выделяют (секретируют) в межклеточное вещество большое количество различных веществ: ферменты (лизосомные, коллагеназа, протеаза, эластаза) и другие биологически активные вещества, в том числе стимулирующие выработку В-лимфоцитов и иммуноглобулинов, повышающие активность Т-лимфоцитов.
Тканевые базофилы (тучные клетки) располагаются обычно в рыхлой волокнистой соединительной ткани внутренних органов, а также возле кровеносных сосудов. Они округлые или ово-идные. В их цитоплазме много различной величины гранул, содержащих гепарин, гиалуроновую кислоту, хондроитинсульфа- ты. При дегрануляции (выделение гранул) гепарин снижает свертываемость крови, увеличивает проницаемость кровеносных сосудов, вызывая тем самым отек. Гепарин является антикоагулянтом. Эозинофилы, содержащие гистаминазу, блокируют эффект гистамина и медленного фактора анафилаксина. Следует отметить, что выброс гранул (дегрануляция) является результатом аллергии, реакции гиперчувствительности немедленного типа и анафилаксии.
Жировые клетки, или адипоциты, крупные (до 100—200 мкм в диаметре), шаровидные, почти полностью заполнены каплей жира, который накапливается в качестве резервного материала. Располагаются жировые клетки обычно группами, образуя жировую ткань. Потеря жира из адипоцитов происходит под влиянием гормонов липолитического действия (адреналин, инсулин) и липазы (липотетический фермент). При этом триглицериды жировых клеток расщепляются до глицерина и жирных кислот, которые поступают в кровь и переносятся в другие ткани. Адипоциты человека не делятся. Новые адипоциты могут образовываться из адвентициальных клеток, которые располагаются возле кровеносных капилляров.
Адвентициальные клетки представляют собой малодифференцированные клетки фибробластического ряда. Они прилежат к кровеносным капиллярам, веретенообразные или уплощенные. Ядро у них овоидное, органеллы развиты слабо.
Перициты (перикапиллярные клетки, или клетки Руже) располагаются кнаружи от эндотелия, внутри базального слоя кровеносных капилляров. Это отростчатые клетки, соприкасающиеся отростками с каждым соседним эндотелиоцитом.
Пигментные клетки, или пигментоциты, отростчатые, содержат в своей цитоплазме пигмент меланин. Этих клеток много в радужной и сосудистой оболочках глаза, коже соска и околосос-кового кружка молочной железы и в других участках тела.
Плазматические клетки (плазмоциты) и лимфоциты являются «рабочими» клетками иммунной системы, они активно перемещаются в тканях, в том числе и в соединительной, участвуют в реакциях гуморального и клеточного иммунитета.
Волокнистые соединительные ткани
Волокнистые соединительные ткани включают рыхлую и плотную волокнистые соединительные ткани. Плотная волокнистая соединительная ткань, в свою очередь, имеет две разновидности — неоформленную и оформленную плотную соединительную ткань.
Рыхлая волокнистая соединительная ткань располагается преимущественно по ходу кровеносных и лимфатических сосудов, нервов, образует строму многих внутренних органов, а также собственную пластинку слизистой оболочки, подслизистую и подсерозную основы, адвентициальную оболочку. Она содержит многочисленные клетки: фибробласты, фиброциты, макрофаги, тучные клетки (тканевые базофилы), адипоциты, пигментные клетки, лимфоциты, плазмоциты, лейкоциты. В межклеточном веществе рыхлой волокнистой соединительной ткани преобладает аморфное вещество, а волокна, как правило, тонкие. Волокон мало, они располагаются в разных направлениях, поэтому такая ткань названа рыхлой.
Плотная волокнистая соединительная ткань благодаря хорошо развитым волокнистым структурам выполняет в основном опорную и защитную функции. В межклеточном веществе преобладают волокна, аморфного вещества мало, количество клеток менее значительное (рис. 12). Соединительно-тканные волокна или переплетаются в разных направлениях (неоформленная плотная волокнистая ткань), или располагаются параллельно друг другу (оформленная плотная волокнистая ткань). Неоформленная плотная волокнистая соединительная ткань формирует футляры для мышц, нервов, капсулы органов и отходящие от них внутрь органов трабекулы. Эта ткань образует склеру глаза, надкостницу и надхрящницу, волокнистый слой суставных капсул, сетчатый слой дермы, клапаны сердца, перикард, твердую мозговую оболочку.
Оформленная плотная волокнистая соединительная ткань образует сухожилия, связки, фасции, межкостные мембраны. Параллельно расположенные коллагеновые волокна представляют собой тонкие пучки 1-го порядка. Между ними находятся так называемые сухожильные клетки с характерными темными ядрами продолговатой формы. Пучки коллагеновых волокон 1-го порядка объединены в более толстые пучки 2-го порядка, которые разделены прослойками волокнистой соединительной ткани. Эти пучки сформированы плотно упакованными в слои коллагеновыми волокнами, которые в соседних слоях перекрещиваются почти под прямым углом. Между слоями залегают уплощенные многоотростчатые фиброциты.
Эластическая соединительная ткань образует эластический конус гортани и ее голосовые связки, желтые связки, участвует в образовании стенок артерий эластического типа (аорта, легочный ствол). Главными элементами этой ткани являются тесно прилежащие друг к другу эластические волокна, между которыми залегают малочисленные фиброциты. Тонкофибриллярная сеть, образованная коллагеновыми и ретикулярными микрофибриллами, окутывает эластические волокна.
Ткани со специальными свойствами
К соединительным тканям со специальными свойствами относятся жировая, ретикулярная и слизистая. Они расположены лишь в определенных органах и участках тела и характеризуются особыми чертами строения и своеобразными функциями.
Жировая ткань выполняет трофическую, депонирующую, формообразующую и терморегуляторную функции. Выделяют два вида жировой ткани: белую, образованную однокапельнымиадипоцитами, и бурую, образованную многокапельнымиадипоцитами. Группы жировых клеток объединены в дольки, отделенные друг от друга перегородками рыхлой волокнистой соединительной ткани, в которой проходят сосуды и нервы. Между отдельными адипоцитами расположены тонкие коллагеновые и ретикулярные волокна, рядом с которыми находятся кровеносные капилляры. У человека преобладает белая жировая ткань. Она окружает некоторые органы, сохраняя их положение в теле человека (например, почки, лимфатические узлы, глазное яблоко и др.), заполняет пространства еще не функционирующих органов (например, молочная железа), замещает красный костный мозг в диафизах длинных трубчатых костей. Большая часть жировой ткани является резервной (подкожная основа, сальники, брыжейки, жировые привески толстой кишки, субсерозная основа). Количество бурой жировой ткани у взрослого человека невелико. Она имеется главным образом у новорожденного ребенка. Подобно белой, бурая жировая ткань также образует дольки, сформированные много капельными адипоцитами. Бурый цвет обусловлен множеством кровеносных капилляров, обилием митохондрий и лизосом в многокапельныхадипоцитах. Главная функция бурой жировой ткани у новорожденных — теплоизоляция. У животных бурая жировая ткань поддерживает температуру тела во время зимней спячки.
Ретикулярная соединительная ткань образует строму селезенки, лимфатических узлов, красного костного мозга. Она сформирована ретикулярными клетками, которые соединяются своими отростками, и ретикулярными волокнами. При импрегнации (окраска серебром) под микроскопом видна сеть, состоящая из тонких черного цвета волокон, которые образуют сетчатый каркас. В петлях этой сети располагаются клетки, главным образом лимфоциты, ретикулярные клетки, макрофаги, плазмоциты.
Слизистая соединительная ткань имеется только у зародыша, поэтому ее относят к эмбриональным тканям. Морфологически она напоминает мезенхиму, отличается от нее высокой степенью дифференцировки. Слизистая соединительная ткань входит в состав пупочного канатика и хориона, окружает кровеносные сосуды плода. Слизистая ткань пупочного канатика (вартонов студень) образована слизистыми клетками (их иногда называют мукоцитами), которые имеют отростчатую форму и напоминают мезенхимные, и межклеточным веществом, окрашивающимся толуидиновым синим в розовый цвет за счет наличия большого количества гиалуроновой кислоты. В петлях, образуемых клетками слизистой ткани, проходят тонкие коллагеновые волокна. Многоотростчатые клетки формируют трехмерную сеть. Переплетающиеся пучки коллагеновых микрофибрилл обеспечивают прочность пупочного канатика, а способность гликозаминогликанов связывать воду создает тургор, что препятствует сдавлению сосудов при перекручивании пупочного канатика. По мере увеличения возраста плода увеличивается количество коллагеновых волокон в слизистой ткани.
Кровь
Кровь является разновидностью соединительной ткани. Ее межклеточное вещество жидкое — это плазма крови. В плазме крови находятся («плавают») ее клеточные элементы: эритроциты, лейкоциты, а также тромбоциты (кровяные пластинки). У человека с массой тела 70 кг в среднем 5,0—5,5 л крови (это 5—9 % от всей массы тела). Функциями крови являются перенос кислорода и питательных веществ к органам и тканям и выведение из них продуктов обмена веществ.
Плазма крови представляет собой жидкость, остающуюся после удаления из нее форменных элементов — клеток. Она содержит 90—93 % воды, 7—8 % различных белковых веществ (альбумины, глобулины, липопротеиды, фибриноген), 0,9 % солей, 0,1 % глюкозы. В плазме крови имеются также ферменты, гормоны, витамины и другие необходимые организму вещества. Белки плазмы участвуют в процессе свертывания крови, обеспечивают постоянство ее реакции (pH 7,36), давления в сосудах, вязкость крови, препятствуют оседанию эритроцитов. В плазме крови содержатся иммуноглобулины (антитела), участвующие в защитных реакциях организма.
Содержание глюкозы в крови у здорового человека составляет 80—120 мг% (4,44—6,66 ммоль/л). Резкое уменьшение количества глюкозы (до 2,22 ммоль/л) приводит к резкому повышению возбудимости клеток мозга. Дальнейшее снижение содержания глюкозы в крови ведет к нарушению дыхания, кровообращения, сознания и может быть смертельным для человека.
Минеральными веществами плазмы крови являются NaCI, KCl, CaCl2, NaHC02, Nah3P04 и другие соли, а также ионы Na+, Са2+, К+. Постоянство ионного состава крови обеспечивает устойчивость осмотического давления и сохранение объема жидкости в крови и клетках организма.
К форменным элементам (клеткам) крови относятся эритроциты, лейкоциты, тромбоциты (рис. 13).
Эритроциты (красные кровяные тельца) являются безъядерными клетками, не способными к делению. Количество эритроцитов в 1 мкл крови у взрослого мужчины составляет 3,9—5,5 млн (в среднем 5,0×10 /л), у женщин — 3,7—4,9 млн (в среднем 4,5х10|2/л) и зависит от возраста, физической (мышечной) или эмоциональной нагрузки, содержания гормонов в крови. При сильных кровопотерях (и некоторых заболеваниях) содержание эритроцитов уменьшается, при этом в крови снижается уровень гемоглобина. Это состояние называют анемией (малокровие).
Каждый эритроцит имеет форму двояковогнутого диска диаметром 7—8 мкм и толщиной в центре около 1 мкм, а в краевой зоне — до 2—2,5 мкм. Площадь поверхности одного эритроцита составляет примерно 125 мкм2. Общая поверхность всех эритроцитов в 5,5 л крови достигает 3500—3700 м2. Снаружи эритроциты покрыты полупроницаемой мембраной (оболочкой) — цитолеммой, через которую избирательно проникают вода, газы и другие элементы. В цитоплазме отсутствуют органеллы: 34 % от ее объема составляет пигмент гемоглобин, функцией которого является перенос кислорода (02) и углекислого газа (С02).
Гемоглобин состоит из белка глобина и небелковой группы — гема, содержащего железо. В одном эритроците до 400 млн молекул гемоглобина. Гемоглобин переносит кислород из легких к органам и тканям, а углекислоту — из органов и тканей к легким. Молекулы кислорода благодаря высокому парциальному давлению его в легких присоединяются к гемоглобину. Гемоглобин с присоединившимся к нему кислородом имеет ярко-красный цвет и называется оксигемоглобином. При низком давлении кислорода в тканях кислород отсоединяется от гемоглобина и
выходит из кровеносных капилляров в окружающие их клетки, ткани. Отдав кислород, кровь насыщается углекислым газом, давление которого в тканях выше, чем в крови. Гемоглобин в соединении с углекислым газом называется карбогемо- глобином. В легких углекислый газ покидает кровь, гемоглобин которой вновь насыщается кислородом.
Гемоглобин легко вступает в соединение с угарным газом (СО), образуя при этом карбоксигемоглобин. Присоединение угарного газа к гемоглобину происходит в 300 раз легче, чем присоединение кислорода. Поэтому содержания в воздухе даже небольшого количества угарного газа вполне достаточно, чтобы он присоединился к гемоглобину крови и блокировал поступление в кровь кислорода. В результате недостатка кислорода в организме наступает кислородное голодание (отравление угарным газом) и возникают головная боль, рвота, головокружение, потеря сознания и даже смерть.
Лейкоциты (белые кровяные клетки) обладают большой подвижностью, однако имеют различные морфологические признаки. У взрослого человека в 1 л крови от 3,8-109 до 9,0-109 лейкоцитов. В это число, согласно устаревшим представлениям, включают также лимфоциты, имеющие общее с лейкоцитами происхождение (из стволовых клеток костного мозга), однако относящиеся к иммунной системе. Лимфоциты составляют 20— 35 % от общего числа «белых» клеток крови (не эритроцитов).
Лейкоциты в тканях активно перемещаются навстречу различным химическим факторам, среди которых важную роль играют продукты метаболизма. При передвижении лейкоцитов изменяется форма клетки и ядра.
Все лейкоциты в связи с наличием или отсутствием в их цитоплазме гранул подразделяют на две группы: на зернистые и незернистые лейкоциты. Большая группа — это зернистые лейкоциты (гранулоцит ы), которые в своей цитоплазме имеют зернистость в виде мелких гранул и более-менее сегментированное ядро. Лейкоциты второй группы не имеют зернистости в цитоплазме, ядра их несегментированные. Такие лейкоциты называют незернистыми лейкоцитами (агранулоцитами).
У зернистых лейкоцитов при окраске и кислыми, и основными красителями выявляется зернистость. Это нейтрофиль-ные (нейтральные) гранулоциты (нейтрофилы). Другие грануло-циты имеют сродство к кислым красителям. Их называют эозинофильными гранулоцитами (эозинофилами). Третьи гранулоциты окрашиваются основными красителями. Это базофильные гранулоциты (базофилы). Все гранулоциты содержат два типа гранул: первичные и вторичные — специфические.
Нейтрофильные гранулоциты (нейтрофилы) округлые, их диаметр 7—9 мкм. Нейтрофилы составляют 65—75 % от общего числа «белых» клеток крови (включая лимфоциты). Ядро у ней-трофилов сегментированное, состоит из 2—3 долек и более с тонкими перемычками между ними. Некоторые нейтрофилы имеют ядро в виде изогнутой палочки (палочкоядерныенейтрофилы). Бобовидное ядро у молодых (юных) нейтрофилов. Число таких нейтрофилов невелико — около 0,5 %.
В цитоплазме нейтрофилов имеется зернистость, размеры гранул от 0,1 до 0,8 мкм. Одни гранулы — первичные (крупные азурофильные) — содержат характерные для лизосом гидролитические ферменты: кислые протеазу и фосфатазу, (3-гиалурони-дазы и др. Другие, более мелкие нейтрофильные гранулы (вторичные) имеют диаметр 0,1—0,4 мкм, содержат щелочную фосфатазу, фагоцитины, аминопептидазы, катионные белки. В цитоплазме нейтрофилов имеются гликоген и липиды.
Нейтрофильные гранулоциты, будучи подвижными клетками, обладают довольно высокой фагоцитарной активностью. Они захватывают бактерии и другие частицы, которые разрушаются (перевариваются) под действием гидролитических ферментов. Живут нейтрофильные гранулоциты до 8 сут. В кровеносном русле они находятся 8—12 ч, а затем выходят в соединительную ткань, где осуществляют свои функции.
Эозинофильные гранулоциты (эозинофилы) называются также ацитофильными лейкоцитами из-за способности их гранул окрашиваться кислыми красителями. Диаметр эозинофилов около 9 — 10 мкм (до 14 мкм). Количество их в крови составляет 1—5 % от общего числа «белых» клеток. Ядро у эозинофилов обычно состоит из двух или, реже, из трех сегментов, соединенных тонкой перемычкой. Встречаются также палочкоядерные и юные формы эозинофилов. В цитоплазме эозинофилов два типа гранул: мелкие, размером 0,1—0,5 мкм, содержащие гидролитические ферменты, и крупные гранулы (специфические) — величиной 0,5—1,5 мкм, имеющие пероксидазу, кислую фосфатазу, гистаминазу и др. Эозинофилы обладают меньшей подвижностью, чем нейтрофилы, однако они тоже выходят из крови в ткани к очагам воспаления. В крови эозинофилы находятся до 3—8 ч. Количество эозинофилов зависит от уровня секреции глюкокортикоидных гормонов. Эозинофилы способны инактивировать гистамин благодаря гистаминазе, а также тормозить выделение гистамина тучными клетками.
Базофильные гранулоциты (базофилы) крови имеют диаметр 9 мкм. Количество этих клеток в крови составляет 0,5—1 %. Ядро у базофилов дольчатое или сферическое. В цитоплазме имеются гранулы размером от 0,5 до 1,2 мкм, содержащие гепарин, гистамин, кислую фосфатазу, пероксидазу, серотонин. Базофилы участвуют в метаболизме гепарина и гистамина, влияют на проницаемость кровеносных капилляров и на процесс свертывания крови.
К незернистым лейкоцитам, или агрануло- ц и т а м, относятся моноциты и лейкоциты. Моноциты в крови составляют 6—8 % от общего числа лейкоцитов и находящихся в крови лимфоцитов. Диаметр моноцитов 9—12 мкм (18— 20 мкм — в мазках крови). Форма ядра у моноцитов различная — от бобовидного до дольчатого. Цитоплазма слабобазо-фильная, в ней имеются мелкие лизосомы и пиноцитозные пузырьки. Моноциты, происходящие из стволовых клеток костного мозга, относятся к так называемой мононуклеарной фагоцитарной системе (МФС). В крови моноциты циркулируют от 36 до 104 ч, затем выходят в ткани, где превращаются в макрофаги.
Тромбоциты крови (кровяные пластинки) представляют собой бесцветные округлые или веретенообразные пластинки диаметром 2—3 мкм. Образовались тромбоциты путем отделения от мегакариоцитов — гигантских клеток костного мозга. В 1 л крови от 200-109 до 300-109 тромбоцитов. У каждого тромбоцита выделяют гиаломер и расположенный в нем грануломер в виде зернышек размером около 0,2 мкм. В гиаломере находятся тонкие филаменты, а среди скопления зернышек грануломера располагаются митохондрии и гранулы гликогена. Благодаря способности разрушаться и склеиваться тромбоциты участвуют в свертывании крови. Продолжительность жизни тромбоцитов составляет 5—8 сут.
В крови постоянно присутствуют также клетки лимфоидного ряда (лимфоциты), которые являются структурными элементами иммунной системы. В то же время в научной и учебной литературе эти клетки все еще рассматриваются как незернистые лейкоциты, что явно неправильно.
Лимфоциты содержатся в большом количестве в крови (1000—4000 в 1 мм3), преобладают в лимфе и ответственны за иммунитет. В организме взрослого человека их число достигает 6*1012. Большая часть лимфоцитов постоянно циркулирует в крови и тканях, что способствует выполнению ими функции иммунной защиты организма. Все лимфоциты имеют сферическую форму, но отличаются друг от друга своими размерами. Диаметр большей части лимфоцитов около 8 мкм (малые лимфоциты). Примерно 10 % клеток имеют диаметр около 12 мкм (средние лимфоциты). В органах иммунной системы имеются и большие лимфоциты (лимфобласты) диаметром около 18 мкм. Последние в норме не встречаются в циркулирующей крови. Это молодые клетки, которые обнаруживаются в органах иммунной системы. Цитолемма лимфоцитов образует короткие микроворсинки. Округлое ядро, заполненное в основном конденсированным хроматином, занимает большую часть клетки. В окружающем узком ободке базофиль- ной цитоплазмы множество свободных рибосом, а в 10 % клеток содержится небольшое количество азурофильных гранул — лизосом. Элементы зернистой эндоплазматической сети и митохондрии малочисленны, комплекс Гольджиразвит слабо, центриоли мелкие.
Скелетные ткани
К соединительным тканям относятся также хрящевая и костная ткани, из которых построен скелет тела человека. Эти ткани называют скелетными. Органы, построенные из этих тканей, выполняют функции опоры, движения, защиты. Они также участвуют в минеральном обмене.
Хрящевая ткань (tеxtuscartilaginus) образует суставные хрящи, межпозвоночные диски, хрящи гортани, трахеи, бронхов, наружного носа. Состоит хрящевая ткань из хрящевых клеток (хондробластов и хондроцитов) и плотного, упругого межклеточного вещества (рис. 14).
Хрящевая ткань содержит около 70—80 % воды, 10—15 % органических веществ, 4—7 % солей. Около 50—70 % сухого вещества хрящевой ткани — это коллаген. Межклеточное вещество (матрикс), вырабатываемое хрящевыми клетками, состоит из комплексных соединений, в которые входят протеогликаны, ги-алуроновая кислота, молекулы гликозаминогликанов. В хрящевой ткани присутствуют клетки двух типов: хондробласты (от греч. chуndros — хрящ) и хондроциты.
Хондробласты — это молодые, способные к митотическому делению округлые или овоидные клетки. Они продуцируют компоненты межклеточного вещества хряща: протеогликаны, гликопротеины, коллаген, эластин. Цитолеммахондробластов образует множество микроворсинок. Цитоплазма богата РНК, хорошо развитой эндоплазматической сетью (зернистой и незернистой), комплексом Гольджи, митохондриями, лизосо-мами, гранулами гликогена. Ядро хондробласта, богатое активным хроматином, имеет 1 —2 ядрышка.
Хондроциты— это зрелые крупные клетки хрящевой ткани. Они округлые, овальные или полигональные, с отростками, развитыми органеллами.
Хондроциты располагаются в полостях — лакунах, окружены межклеточным веществом. Если в лакуне одна клетка, то такая лакуна называется первичной. Чаще всего клетки располагаются в виде изогенных групп (2 — 3 клетки), занимающих полость вторичной лакуны. Стенки лакуны состоят из двух слоев: наружного, образованного коллаге- новыми волокнами, и внутреннего, состоящего из агрегатов протеогликанов, которые входят в контакт с гликокаликсом хрящевых клеток.
Структурной и функциональной единицей хрящей является хондрон, образованный клеткой или изогенной группой клеток, околоклеточным матриксом и капсулой лакуны.
В соответствии с особенностями строения хрящевой ткани различают три вида хряща: гиалиновый, волокнистый и эластический хрящ.
Гиалиновый хрящ (от греч. hyаlos — стекло) имеет голубоватый цвет. В его основном веществе располагаются тонкие коллагеновые волокна. Хрящевые клетки имеют разнообразные форму и строение в зависимости от степени дифференцировки и места расположения их в хряще. Хондроциты образуют изо- генные группы. Из гиалинового хряща построены суставные, реберные хрящи и большинство хрящей гортани.
Волокнистый хрящ, в основном веществе которого содержится большое количество толстых коллагеновых волокон, обладает повышенной прочностью. Клетки, расположенные между коллагеновыми волокнами, имеют вытянутую форму, у них длинное палочковидное ядро и узкий ободок базофильнойцитоплазмы. Из волокнистого хряща построены фиброзные кольца межпозвоночных дисков, внутрисуставные диски и мениски. Этим хрящом покрыты суставные поверхности височно-нижнечелюстного и грудино-ключичного суставов.
Эластический хрящ отличается упругостью, гибкостью. В матриксе эластического хряща наряду с коллагеновыми содержится большое количество сложно переплетающихся эластических волокон. Округлые хондроциты расположены в лакунах. Из эластического хряща построены надгортанник, клиновидные и рожковидные хрящи гортани, голосовой отросток черпаловидных хрящей, хрящ ушной раковины, хрящевая часть слуховой трубы.
Костная ткань (tеxtusоssei) отличается особыми механическими свойствами. Она состоит из костных клеток, замурованных в костное основное вещество, содержащее коллагеновые волокна и пропитанное неорганическими соединениями (рис. 15). Различают три типа костных клеток: остеобласты, остеоциты и остеокласты.
Остеобласты — это отростчатые молодые костные клетки многоугольной, кубической формы. Остеобласты богаты элементами зернистой эндоплазматической сети, рибосомами, хорошо развитым комплексом Гольджи и резко базофильной цитоплазмой.
Они залегают в поверхностных слоях кости. Округлое или овальное ядро их богато хроматином и содержит одно крупное ядрышко, обычно расположенное на периферии. Остеобласты окружены тонкими коллагеновыми микрофибриллами. Вещества, синтезируемые остеобластами, выделяются через всю их поверхность в различных направлениях, что приводит к образованию стенок лакун, в которых эти клетки залегают. Остеобласты синтезируют компоненты межклеточного вещества (коллаген — это компонент протеогликана). В промежутках между волокнами располагается аморфное вещество — остеоидная ткань, или предкость, которая затем кальцифицируется. Органический матрикс кости содержит кристаллы гидро-ксиапатита и аморфный фосфат кальция, элементы которых поступают в костную ткань из крови через тканевую жидкость.
Остеоциты — это зрелые многоотростчатые веретенообразные костные клетки с крупным округлым ядром, в котором четко видно ядрышко. Количество органелл невелико: митохондрии, элементы зернистой эндоплазматической сети и комплекс Гольджи. Остеоциты располагаются в лакунах, однако тела клеток окружены тонким слоем так называемой костной жидкости (тканевой) и не соприкасаются непосредственно с кальцинированным матриксом (стенками лакуны). Очень длинные (до 50 мкм) отростки остеоцитов, богатые актиноподобнымимикрофиламентами, проходят в костных канальцах. Отростки также отделены от кальцинированного матрикса пространством шириной около 0,1 мкм, в котором циркулирует тканевая (костная) жидкость. За счет этой жидкости осуществляется питание (трофика) остеоцитов. Расстояние между каждым остео-цитом и ближайшим кровеносным капилляром не превышает 100—200 мкм.
Остеокласты — это крупные многоядерные (5—100 ядер) клетки моноцитарного происхождения, размером до 190 мкм. Эти клетки разрушают кость и хрящ, осуществляют резорбцию костной ткани в процессе ее физиологической и репаративной регенерации. Ядра остеокластов богаты хроматином и имеют хорошо видимые ядрышки. В цитоплазме содержится множество митохондрий, элементов зернистой эндоплазматической сети и комплекса Гольджи, свободных рибосом, различных функциональных форм лизосом. Остеокласты имеют многочисленные ворсинкообразные цитоплазматические отростки. Таких отростков особенно много на поверхности, прилежащей к разрушаемой кости. Это гофрированная, или щеточная, каемка, увеличивающая площадь соприкосновения остеокласта с костью. Отростки остеокластов также имеют микроворсинки, между которыми находятся кристаллы гидроксиапатита. Эти кристаллы обнаруживаются в фаголизосомах остеокластов, где они разрушаются. Деятельность остеокластов зависит от уровня паратиреоидного гормона, увеличение синтеза и секреции которого приводит к активации функции остеокластов и разрушению кости.
Различают два типа костной ткани — ретикулофиброзную (грубоволокнистую) и пластинчатую.
Грубоволокнистая костная ткань имеется у зародыша. У взрослого человека она располагается в зонах прикрепления сухожилий к костям, в швах черепа после их зарастания. Грубоволокнистая костная ткань содержит толстые неупорядоченные пучки коллагеновых волокон, между которыми находится аморфное вещество.
Пластинчатая костная ткань образована костными пластинками толщиной от 4 до 15 мкм, которые состоят из остеоцитов, основного вещества, тонких коллагеновых волокон. Волокна (коллаген I типа), участвующие в образовании костных пластинок, лежат параллельно друг другу и ориентированы в определенном направлении. При этом волокна соседних пластинок разнонаправленные и перекрещиваются почти под прямым углом, что обеспечивает большую прочность кости.
Рекомендуемые страницы:
Воспользуйтесь поиском по сайту:
megalektsii.ru
Соединительная ткань. Расположение в организме, виды, строение и функции.
Ревматология
Соединительная ткань. Расположение в организме, виды, строение и функции.просмотров — 420
Состоит из клеток и большого количества межклеточного вещества. В межклеточном веществе находятся волокна и основное вещество. Волокна обеспечивают прочность и эластичность.
Волокна делятся на:
û коллагеновые
û ретикулярные
û эластичные
Коллагеновые волокна содержат белок коллаген и обладают высокой прочностью.
Ретикулярные волокна входят в состав красного костного мозга, лимфатических узлов и селезёнки. Οʜᴎ тонкие и могут образовывать тонкую сеть.
Эластичные волокна содержат белок эластин, они менее прочные чем коллагеновые и могут легко растягиваться.
Основное вещество ĸᴏᴛᴏᴩᴏᴇ относится к межклеточному заполняет пространство между клетками и волокнами.
Функция разнообразна:
- Опорная — соединительная ткань входит в состав костей, хрящей, связок, сухожилий, фасций скелета. Опорную функцию выполняет плотно волокнистая ткань (связки и сухожилия), костная и хрящевая ткани.
- Трофическая — эту функцию выполняет кровь и лимфа (обеспечение других тканей питательными веществами).
- Механическая — соединительная ткань принимает участие в формировании мягкого скелета͵ т. е. стромы.
- Соединительная ткань участвует в кроветворение, т. е. гемопоэз.
- Соединительная ткань участвует в фагоцитозе.
- Соединительная ткань участвует в регенерации.
- Дыхательная функция – участвует в процессе газообмена, протекающих в тканях и органах.
К соединительной ткани относят собственно соединительную ткань, которая включает в себя рыхлую волокнистую и плотную волокнистую; скелетные соединительные ткани (хрящевые и костную), а также соединительную ткань со специальными свойствами (жировая ткань, кровь, лимфа и кроветворные ткани).
Рыхлая волокнистая соединительная ткань (РВСТ).
Состоит из клеток и межклеточного вещества.
РВСТ заполняет пространство между органами.
В состав РВСТ входят следующие клетки:
ü фибробласты — это плоские, веретенообразные клетки. Участвуют в заживлении ран и образовании рубцовой ткани.
ü Макрофаги — это клетки, которые захватывают и переваривают чужеродные частицы.
ü Тучные клетки — вырабатывают гепарин который препятствует свертыванию крови.
ü Плазматические — участвуют в синтезе антител.
Антитела — это белки, которые защищают от инфекции.
ü Жировые клетки — способны накапливать резервный жир.
ü Пигментные клетки — содержат зёрна пигмента меланин.
Плотная волокнистая соединительная ткань (ПВСТ).
В этой ткани волокна располагаются плотно. Межклеточного вещества мало. ПВСТ входит в состав связок, сухожилий, фасций, перепонок.
Фасция — это тонкая соединительнотканная оболочка в которую помещена мышца.
medic.oplib.ru
Соединительная ткань — строение, функции, состав
Особенности химического строения соединительной ткани
Соединительная ткань составляет до 50% массы человеческого организма. Это связующее звено между всеми тканями организма. Различают 3 вида соединительной ткани:
— собственно соединительная ткань;
— хрящевая соединительная ткань;
— костная соединительная ткань
Соединительная ткань может выполнять как самостоятельные функции, так и входить в качестве прослоек в другие ткани.
ФУНКЦИИ СОЕДИНИТЕЛЬНОЙ ТКАНИ
1. Структурная
2. Обеспечение постоянства тканевой проницаемости
3. Обеспечение водно-солевого равновесия
4. Участие в иммунной защите организма
СОСТАВ И СТРОЕНИЕ СОЕДИНИТЕЛЬНОЙ ТКАНИ
В соединительной ткани различают: МЕЖКЛЕТОЧНОЕ (ОСНОВНОЕ) ВЕЩЕСТВО, КЛЕТОЧНЫЕ ЭЛЕМЕНТЫ, ВОЛОКНИСТЫЕ СТРУКТУРЫ (коллагеновые волокна). Особенность: межклеточного вещества гораздо больше, чем клеточных элементов.
МЕЖКЛЕТОЧНОЕ (ОСНОВНОЕ) ВЕЩЕСТВО
Желеобразная консистенция основного вещества объясняется его составом. Основное вещество — это сильно гидратированный гель, который образован высокомолекулярными соединениями, составляющими до 30% массы межклеточного вещества. Оставшиеся 70% — это вода.
Высокомолекулярные компоненты представлены белками и углеводами. Углеводы по своему строению являются гетерополисахаридами — ГЛЮКОЗОАМИНОГЛИКАНЫ (ГАГ). Эти гетерополисахариды построены из дисахаридных единиц, которые и являются их мономерами.
По строению мономеров различают 7 типов ГАГ:
1. Гиалуроновая кислота
2. Хондроитин-4-сульфат
3. Хондроитин-6-сульфат
4. Дерматансульфат
5. Кератансульфат
6. Гепарансульфат
7. Гепарин
Мономеры различных ГАГ построены по одному принципу. Во первых, в их состав входят гексуроновые кислоты: бета-D-глюкуроновая кислота, бета-L-идуроновая кислота. В некоторых ГАГ вместо бета-D-глюкуроновой кислоты встречается бета-D-галактоза:
Вторым компонентом мономера ГАГ является амин. Гексозамины представлены глюкозамином и галактозамином, а чаще их ацетильными производными: бета-D-N-ацетилглюкозамином, бета-D-N-ацетилгалактозамином:
В составе мономера гексуроновая кислота и гексозамин соединяются 1,3-бета-гликозидной связью. Исключение — гепарин (у него 1,3-альфа-гликозидная связь). Между мономерами 1,4-бета-гликозидная связь (гепарин — 1,4-альфа-гликозидная связь) (смотрите рисунок). Различаются ГАГ строением мономеров, их количеством, связями между ними.
ГИАЛУРОНОВАЯ КИСЛОТА
Молекулярная масса этого полимера — до 1.000.000 Da. Мономер построен из глюкуроновой кислоты и N-ацетилглюкозамина. Внутри мономера — 1,3-бета-гликозидная связь, между мономерами — 1,4-бета-гликозидная связь. Гиалуроновая кислота может находиться и в свободном виде, и в составе сложных агрегатов. Это единственный представитель ГАГ, который не сульфатирован.
ХОНДРОИТИН-СУЛЬФАТЫ
2 вида: хондроитин-4-сульфат и хондроитин-6-сульфат. Отличаются друг от друга местом расположения остатка серной кислоты. Все они содержат остаток серной кислоты. Мономер хондроитин-сульфата построен из глюкуроновой кислоты и N-ацетилгалактозаминсульфата. Встречаются в связках суставов и в ткани зуба.
ДЕРМАТАН-СУЛЬФАТ
Его мономер построен из идуроновой кислоты и галактозамин-4-сульфата. Он является одним из структурных компонентов хрящевой ткани.
КЕРАТАН-СУЛЬФАТ
Мономер кератан-сульфата состоит из галактозы и N-ацетилглюкозамин-6-сульфата.
ГЕПАРАН-СУЛЬФАТ и ГЕПАРИН
Они сильно сульфатированы (в мономере 2-3 остатка серной кислоты). В состав их входят глюкуронат-2-сульфат и N-ацетилглюкозамин-6-сульфат.
Длинные полисахаридные цепи складываются в глобулы. Однако эти глобулы рыхлые (не имеют компактной укладки) и занимают сравнительно большой объем. ГАГ являются гидрофильными соединениями, содержат много гидроксильных групп, имеют значительный отрицательный заряд (много карбоксильных и сульфогрупп). Значительный отрицательный заряд способствует присоединению к ним положительно заряженных катионов калия, натрия, кальция, магния. Это еще более увеличивает способность удерживать воду, а также способствует диссоциации молекул этих веществ в соединительной ткани.
ГАГ входят в состав сложных белков, которые называются ПРОТЕОГЛИКАНАМИ. ГАГ составляют в протеогликанах 95% их веса. Остальные 5% веса — это белок. Белковый и небелковый компоненты в протеогликанах связаны прочными, ковалентными связями. Как построена молекула протеогликанов?
Белковый компонент — это особый COR-белок. К нему при помощи трисахаридов присоединяются ГАГ. 1 молекула COR-белка может присоединить до 100 ГАГ.
В клетке протеогликаны связаны с гиалуроновой кислотой. Образуется сложный надмолекулярный комплекс. В его составе: гиалуроновая кислота, особые связующие белки, а также протеогликаны. Упругие цепи ГАГ в составе протеогликанов образуют образуют макромолекулярные сетчатые структуры. Такое химическое строение обеспечивает выполнение функции молекулярного сита с определенными размерами пор при транспорте различных веществ и метаболитов. Размер пор определяется типом ГАГ, преобладающим в данной конкретной ткани. Например, соединительнотканая капсула почечного клубочка обеспечивает селективный транспорт веществ в процессе ультрафильтрации. За счет множества сульфо- и карбоксильных групп сетчатые структуры являются полианионами, способными депонировать воду, некоторые катионы (К+, Na+, Ca+2, Mg+2).
Кроме протеогликанов, основное вещество содержит гликопротеины.
ГЛИКОПРОТЕИНЫ
Их углеводный компонент — это олигосахарид, состоящий 10 — 15 мономерных единиц. Этими мономерными единицами могут быть в основном минорные моносахариды: манноза, метилпентозы рамноза и фукоза, арабиноза, ксилоза. На конце этого олигосахарида имеется еще одно производное моносахаридов: сиаловые кислоты (ацильные производные нейраминовой кислоты). Если в крови увеличивается концентрация сиаловых кислот — значит, идет распад межклеточного матрикса. Это бывает при воспалении.
ГЛИКОПРОТЕИНЫ делят на 2 группы:
1. Растворимые
2. Нерастворимые.
Углеводная часть гликопротеинов очень вариабельна. Важное значение имеет последовательность моносахаридов, как и последовательность аминокислот в белковой части. Из гликопротеинов наиболее изучены растворимый фибронектин и нерастворимый ламинин.
РАСТВОРИМЫЕ гликопротеины представлены особым белком — ФИБРОНЕКТИНом. Молекулярная масса фибронектина — 440 kDa. Он состоит из двух полипептидных цепей, соединенных дисульфидным мостиком. Имеет центры связывания с протеогликанами, с волокнистыми структурами, гликолипидами клеточных мембран. Поэтому фибронектин называют «молекулярным клеем». Он обычно располагается на поверхности фибробластов и участвует в адгезии всех перечисленных клеточных структур, а, значит, и клеток. Известно, что при опухолевых заболеваниях количество фибронектина снижается, что способствует метастазированию опухоли.
К растворимым гликопротеинам также относятся COR-белок — компонент протеогликанов, связующие белки, а также целый ряд белков плазмы крови.
НЕРАСТВОРИМЫЕ гликопротеины образуют «каркас», «строму» межклеточного матрикса.
К нерастворимым гликопротеинам относится ЛАМИНИН. Молекулярная масса этого белка — 10000 kDa. Содержит такие же углеводные компоненты, как и ганглиозиды клеточных мембран.
Углеводные компоненты гликопротеинов также, как и углеводные компоненты гликопротеинов обладают свойствами тканевых антигенов.
КАТАБОЛИЗМ КОМПОНЕНТОВ ОСНОВНОГО ВЕЩЕСТВА
Идет под действием некоторых гидролаз.
Например, НЕЙРАМИНИДАЗА отщепляет от гликопротеинов N-ацетилнейраминовую (сиаловую) кислоту, и уже дестабилизированный гликопротеин поглощается макрофагами. Поэтому концентрация сиаловых кислот в крови — характеристика состояния соединительной ткани. При воспалительных процессах эта концентрация намного возрастает.
При недостаточности ферментов катаболизма основного вещества развиваются заболевания — мукополисахаридозы, при которых в тканях происходит накопление тех или иных ГАГ.
ВОЛОКНА СОЕДИНИТЕЛЬНОЙ ТКАНИ
В межклеточном матриксе находятся 2 типа волокнистых структур: КОЛЛАГЕНОВЫЕ и ЭЛАСТИНОВЫЕ ВОЛОКНА. Основным их компонентом является нерастворимый белок КОЛЛАГЕН.
КОЛЛАГЕН — сложный белок, относится к группе гликопротеинов, имеет четвертичную структуру, его молекулярная масса составляет 300 kDa. Составляет 30% от общего количества белка в организме человека. Его фибриллярная структура — это суперспираль, состоящая из 3-х альфа-цепей. Нерастворим в воде, солевых растворах, в слабых растворах кислот и щелочей. Это связано с особенностями первичной структуры коллагена. В коллагене 70% аминокислот являются гидрофобными. Аминокислоты по длине полипептидной цепи расположены группами (триадами), сходными друг с другом по строению, состоящими из трех аминокислот. Каждая третья аминокислота в первичной структуре коллагена — это глицин (триада (или группа): (гли-X-Y)n, где X — любая аминокислота или оксипролин, Y — любая аминокислота или оксипролин или оксилизин). Эти аминокислотные группы в полипептидной цепи многократно повторяются. Необычна и вторичная структура коллагена: шаг одного витка спирали составляют только 3 аминокислоты (даже немного меньше, чем 3), а не 3.6 аминокислоты на 1 виток, как это наблюдается у других белков. Такая плотная упаковка спирали объясняется присутствием глицина. Эта особенность определяет высшие структуры коллагена. Молекула коллагена построена из 3-х цепей и представляет собой тройную спираль. Эта тройная спираль состоит из 2-х альфа-1-цепей и одной альфа-2-цепи. В каждой цепи 1.000 аминокислотных остатков. Цепи параллельны и имеют необычную укладку в пространстве: снаружи расположены все радикалы гидрофобных аминокислот. Известно несколько типов коллагена, различающихся генетически.
СИНТЕЗ КОЛЛАГЕНА
Существуют 8 этапов биосинтеза коллагена: 5 внутриклеточных и 3 внеклеточных.
1-Й ЭТАП
Протекает на рибосомах, синтезируется молекула-предшественник: препроколлаген.
2-Й ЭТАП
С помощью сигнального пептида “пре” транспорт молекулы в канальцы эндоплазматической сети. Здесь отщепляется “пре” — образуется “проколлаген”.
3- Й ЭТАП
Аминокислотные остатки лизина и пролина в составе молекулы коллагена подвергаются окислению под действием ферментов пролилгидроксилазы и лизилгидроксилазы (эти окислительные ферменты относятся к подподклассу монооксигеназ) (смотрите рисунок). При недостатке витамина “С” — аскорбиновой кислоты наблюдается цинга, — заболевание, вызванное синтезом дефектного коллагена с пониженной механической прочностью, что вызывает, в частности, разрыхление сосудистой стенки и другие неблагоприятные явления.
4-Й ЭТАП
Посттрасляционная модификация — гликозилирование проколлагена под действием фермента гликозил трансферазы. Этот фермент переносит глюкозу или галактозу на гидроксильные группы оксилизина.
5-Й ЭТАП
Заключительный внутриклеточный этап — идет формирование тройной спирали — тропоколлагена (растворимый коллаген). В составе про-последовательности — аминокислота цистеин, который образует дисульфидные связи между цепями. Идет процесс спирализации.
6-Й ЭТАП
Секретируется тропоколлаген во внеклеточную среду, где амино- и карбоксипротеиназы отщепляют (про-)-последовательность.
7-Й ЭТАП
Ковалентное “сшивание” молекулы тропоколлагена по принципу “конец-в-конец” с образованием нерастворимого коллагена. В этом процессе принимает участие фермент лизилоксидаза (флавометаллопротеин, содержит ФАД и Cu). Происходит окисление и дезаминирование радикала лизина с образованием альдегидной группы. Затем между двумя радикалами лизина возникает альдегидная связь. Только после многократного сшивания фибрилл коллаген приобретает свою уникальную прочность, становится нерастяжимым волокном. Лизилоксидаза является Cu-зависимым ферментом, поэтому при недостатке меди в организме происходит уменьшение прочности соединительной ткани из-за значительного повышения количества растворимого коллагена (тропоколлагена).
8-Й ЭТАП
Ассоциация молекул нерастворимого коллагена по принципу “бок-в-бок”. Ассоциация фибрилл происходит таким образом, что каждая последующая цепочка сдвинута на 1/4 своей длины относительно предыдущей цепи.
ЭЛАСТИЧЕСКИЕ ВОЛОКНА
2-й вид волокон — эластические. В основе строения — белок ЭЛАСТИН. Эластин еще более гидрофобен, чем коллаген. В нем до 90% гидрофобных аминокислот. Много лизина, есть участки со строго определенной последовательностью расположения аминокислот. Цепи укладываются в пространстве в виде глобул. Глобула из одной полипептидной цепи называется альфа-эластин. За счет остатков лизина происходит взаимодействие между молекулами альфа-эластина.
В образовании этой структуры принимают участие радикалы аминокислоты лизина. Это структура ДЕСМОЗИНА. ДЕСМОЗИН — это структура пиридина, которая образуется при взаимодействии лизина 4-х молекул альфа-эластина.
КЛЕТОЧНЫЕ ЭЛЕМЕНТЫ СОЕДИНИТЕЛЬНОЙ ТКАНИ.
Это ФИБРОБЛАСТЫ, ТУЧНЫЕ КЛЕТКИ и МАКРОФАГИ. В них происходят процессы синтеза структурных компонентов, а также процесс распада соединительной ткани. Коллаген обновляется на 50% за 10 лет. В фибробластах идут синтетические процессы: синтез коллагена, эластина.
medbe.ru
функции, строение, клетки и виды соединительной ткани.
Соединительная ткань
Хотя соединительная и опорная ткани выглядят по-разному, они тесно между собой связаны, поскольку имеют общее происхождение. Обе ткани произошли из мезенхимы — эмбриональной соединительной ткани.Соединительная и опорная ткани включают как клеточное, так и межклеточное вещество (внеклеточный матрикс, основное вещество). Межклеточное вещество может быть жидким, либо более или менее твердым. Оба типа ткани формируют соединительные и опорные структуры, однако качественно и количественно различными путями. Чем в меньшей степени они выполняют опорную функцию, тем более очевидным становится их участие в обменных процессах, поскольку соединительная ткань находится в контакте с кровью. Как следует из названия, этот тип ткани соединяет органы с кровеносными сосудами, хотя выполняет и другие функции. Опорная ткань включает плотную соединительную ткань, а также костную и хрящевую, которые выполняют в основном опорную функцию. Кости хорошо снабжаются кровью.
ФУНКЦИИ
— Соединительная функция. Обычно соединительная ткань образует капсулы органов, а также футляры нервов и оболочки сосудов, и связывает органы между собой. В форме связок она поддерживает суставы, а в форме сухожилий обеспечивает передачу усилий от мышцы к кости.
— Обменная функция. Хотя обменные процессы происходят в фибробластах, обмен метаболитами осуществляется в межклеточной среде. Питательные вещества, содержащиеся в крови, диффундируют в межклеточную среду. Оттуда они попадают в клетки. Таким образом, соединительная ткань осуществляет трофическую функцию. Соответственно, выходящие из клеток вещества при участии соединительной ткани попадают в капилляры и лимфатические сосуды.
— Водный баланс. Большая часть внеклеточной жидкости находится в межклеточном пространстве ареолярной (рыхлой) соединительной ткани, в которой может
быть сосредоточено большое количество воды. При заболеваниях сердца и почек избыток жидкости в тканях может вызвать отек.
— Заживление ран. Раны заживляются за счет образования соединительной ткани (грануляционная ткань) с последующим ее огрубением и формированием шрама.
— Защита. Некоторые специализированные клетки соединительной ткани, находящиеся в «свободном состоянии» (различные типы лейкоцитов), защищают организм от патогенных микробов и чужеродных веществ. Они обладают способностью к фагоцитозу (захвату частиц) и поддерживают защитные функции организма, образуя антитела.
— Трофические функции. Жировая (адипозная) ткань служит питательным резервом организма.
КЛЕТКИ СОЕДИНИТЕЛЬНОЙ ТКАНИ
Среди клеток, находящихся в пространстве, занимаемом соединительной тканью, присутствуют фибробласты, обладающие тканевой специфичностью. Иногда эти клетки называют фиброцитами, особенно если они неактивны. Фибробласты продуцируют компоненты межклеточного вещества (основное вещество и волокнистые структуры). Еще один тип находящихся там клеток представляют собой клетки, которые покинули сосудистую систему и стали частью иммунной системы организма. Это «свободные клетки» соединительной ткани. Они способны к амебоидному движению. По современным представлениям, свободные клетки произошли от эмбриональной мезенхимы, и почти все они относятся к белым кровяным клеткам (лейкоцитам), которые мигрировали в соединительную ткань из крови.
МЕЖКЛЕТОЧНЫЙ МАТРИКС (ОСНОВНОЕ ВЕЩЕСТВО)
Поскольку межклеточное вещество представлено двумя компонентами, то соединительная ткань функционирует как посредник между кровеносными сосудами и органами (основное вещество) и как связующее звено организма (волокнистые структуры). Основное вещество состоит из интерстициальной жидкости, белков, полисахаридов и гликопротеинов. Белки и полисахариды определяют консистенцию интерстициальной жидкости. Благодаря способности связывать воду, они, например, обеспечивают эластические свойства суставных хрящей и прозрачность роговицы. Гликопротеины входят в состав гликокаликса, расположенного на внешних мембранах клеток, а также являются компонентами базальной мембраны. Отчасти они выполняют механические функции (участвуют в прикреплении клеток к внеклеточному матриксу), а также, по-видимому, создают барьер, регулирующий обмен метаболитов между интерстициальным пространством и примыкающими клетками.
Волокнистые структуры подразделяются на три типа: коллагеновые, эластические и ретикулярные. Коллагеновые волокна не растягиваются и возникают в местах, где развиваются напряжения (сухожилия, связки). Ретикулярные волокна гибкие, и их разветвленная сеть формирует основную структуру таких органов, как лимфоузлы и селезенка. Эластические волокна способны сильно и обратимо растягиваться. При этом их длина может увеличиваться более чем в 1,5 раза (кровеносные сосуды).
Рыхлая ареолярная (интерстициальная) ткань
Рыхлая ареолярная (интерстициальная) соединительная ткань образует строму, соединяющую отдельные ткани органов; она также фиксирует на своих местах нервы и сосуды, образуя вокруг них футляры. Эта ткань служит резервуаром для воды и дает возможность смещаться другим тканям.
Плотная белая волокнистая соединительная ткань
Плотная белая волокнистая соединительная ткань состоит из волокон и небольшого количества клеток. Различают два типа ткани: плотная неоформленная и оформленная плотная белая волокнистая ткань. В неоформленной ткани коллагеновые волокна расположены пучками, которые переплетены между собой (капсулы органов, сетчатый слой дермы, склера, твердая оболочка мозга). В оформленной ткани коллагеновые волокна участвуют в двигательных процессах (передача усилия от мышц к кости). Поэтому они расположены параллельными пучками, видными невооруженным глазом (например, сухожилия и апоневрозы).
Ретикулярная соединительная ткань
Ретикулярная соединительная ткань очень напоминает эмбриональную соединительную ткань — мезенхиму. Она состоит из особых волокон, ретикулярных клеток и разветвленной сети ретикулярных волокон. Наряду с другими структурными элементами, ретикулярная соединительная ткань служит каркасом для лимфатических органов (селезенки и лимфоузлов), промежутки в котором заполнены «свободными клетками» (например, клетками иммунной системы — лимфоцитами). В костном мозге в пространстве между ретикулярными волокнами находятся кроветворные клетки, Таким образом, ретикулярная соединительная ткань и «свободные клетки» составляют одно функциональное целое. В то же время ретикулярные волокна также находятся в ареолярной ткани и во внутренних органах (печень, почки), где они не являются частью ретикулярной соединительной ткани. Например, ретикулярные волокна образуют футляр вокруг волокон гладких и поперечнополосатых мышц и связывают их в упорядоченные структуры.
Адипозная (жировая) ткань
Жировая ткань представляет собой особую форму ретикулярной соединительной ткани. Клетки жировой ткани (липоциты, адипоциты) накапливают жир, который удаляется из крови по механизму пиноцитоза или образуется в самих клетках из углеводов (сахаров). Находящаяся в адипоците жировая капля оттесняет уплощенное ядро клетки к периферии. По краю клетки расположен тонкий ободок цитоплазмы. Жировая ткань выполняет механические функции, является источником энергии и защищает организм от холода.
Резервная жировая ткань. Жиры служат богатым энергетическим ресурсом для организма. Их калорийность в два раза выше, чем углеводов и белков. Ареолярная соединительная ткань, образующая футляры кровеносных сосудов в подкожной соединительной ткани, служит хранилищем избыточного жира. При необходимости этот жир может быть использован на энергетические нужды организма. При этом клетки сохраняют жизнеспособность и продолжают выполнять свои резервные функции. Согласно современной точке зрения, жировые клетки, сформировавшиеся в раннем детстве, продолжают существовать в течение всей дальнейшей жизни человека, выполняя функцию депонирования.
Структурная жировая ткань. В отличие от резервной, структурная жировая ткань служит для поддержания формы отдельных частей тела (подошв ног, ладоней рук, ягодиц, щек и глазниц). Она начинает использоваться в качестве энергетического резерва только при сильном голодании организма (ввалившиеся глаза, впалые щеки).
Бурая адипозная ткань. Этот тип жировой ткани (бурая жировая ткань, малтилокулярная ткань) представляет собой особый тип жировой ткани, которая содержит многочисленные темные митохондрии, богатые цитохромом. У новорожденных она находится между лопатками. В первые месяцы жизни бурая жировая ткань выполняет важную функцию теплового резервуара. У взрослых она присутствует в редких случаях, однако характерна для грызунов (обеспечивает прогрев организма после зимней спячки).
Опорная ткань
К опорным тканям принадлежат костная и хрящевая ткани. Сюда же следует отнести хордовую ткань и зубную эмаль — специализированную костную ткань, отличающуюся высокой прочностью. Эти ткани в основном состоят из коллагеновых волокон, что придает их структуре жесткость. Устойчивость хрящей к механическим нагрузкам обеспечивается особой структурой внеклеточного матрикса, а прочность кости связана с отложением в ней солей кальция.
Хордовая ткань
Хордовая ткань по строению напоминает жировую, с тем лишь исключением, что вместо жира клетки содержат жидкость. Эта ткань найдена у позвоночных, включая человека, где она представлена первичным эмбриональным органом — нотохордом (chorda dorsalis; спинная струна). За счет плотной упаковки клеток, нотохорд отличается прочностью и эластичностью, подобно покрышке автомобильного колеса. У взрослого человека нотохорд редуцировался, сохранившись лишь в виде студенистого ядра межпозвоночных дисков (nucleus pulposus).
Хрящевая ткань
Хрящевая ткань локализуется в скелете и дыхательных путях. Характерными для этой ткани являются хрящевые клетки (хондроциты). Они находятся в основном хрящевом веществе (межклеточный матрикс) в виде округлых структур, расположенных отдельными небольшими группами (хондрионы). В зависимости от типа и плотности волокон, различают три группы хрящей: гиалиновый хрящ, эластический хрящ и волокнистый хрящ. У взрослого человека ни один из перечисленных типов хрящей не содержит кровеносных сосудов. Питание хрящей осуществляется либо за счет диффузии через покрывающую их оболочку ( надхрящницу), либо непосредственно из синовиальной жидкости (суставные гиалиновые хрящи).
Развитие хряща начинается с формирования надхрящницы, но хрящ обладает ограниченной способностью к регенерации. Без надхрящницы (гиалиновые хрящи) регенерация не происходит. Хрящи обладают высокой устойчивостью к давлению, способностью к эластичной деформации и противостоят истиранию.
Гиалиновый хрящ. Отпрепарированный гиалиновый хрящ молочно-белого цвета и полупрозрачный. Поэтому он напоминает матовое стекло. Этот тип хряща выстилает внутреннюю поверхность суставов, образует реберные хрящи, частично формирует носовую перегородку, гортань, трахеи и большие бронхи. В эмбриональном периоде большая часть скелета закладывается в форме хрящей. При последующем росте организма между эпифизом (растущим участком кости) и телом кости образуется гиалиновый хрящ, который замещается костной тканью только после прекращения роста. Суставные гиалиновые хрящи являются единственным типом хрящей, не содержащих надхрящницы. Поэтому при их разрушении (в результате воспалительных или дегенеративных процессов в суставах) последующей регенерации не происходит.
Эластический хрящ. Наряду со структурами, присутствующими в гиалиновом хряще, в эластическом хряще находится разветвленная сеть эластичных волокон, которые локализуются вокруг хондроцитов и проникают в надхрящницу. Из-за присутствия эластичных волокон хрящ обладает желтоватой окраской. У человека эластический хрящ находится в ушной раковине, надгортаннике и в наружном слуховом проходе (ушном канале).
Волокнистый хрящ. В отличие от гиалинового хряща, в волокнистом хряще находится гораздо больше коллагеновых волокон. Волокнистый хрящ локализуется в таких местах скелета, которые часто находятся под нагрузкой, за счет действия сухожилий и связок. Это межпозвонковые диски (annulus fibrosis), а также внутрисуставные диски (диски и мениски).
www.sportmassag.ru
Археология Архитектура Астрономия Аудит Биология Ботаника Бухгалтерский учёт Войное дело Генетика География Геология Дизайн Искусство История Кино Кулинария Культура Литература Математика Медицина Металлургия Мифология Музыка Психология Религия Спорт Строительство Техника Транспорт Туризм Усадьба Физика Фотография Химия Экология Электричество Электроника Энергетика | Соединительная ткань очень разнообразна по строению и функциям. Для нее характерно наличие клеток и межклеточного вещества, состоящего из коллагеновых, эластических, ретикулярных волокон и основного вещества. Различают собственно соединительную ткань, хрящевую и костную. Собственно соединительная ткань представлена рыхлой и плотной волокнистой соединительной тканью. Соединительная ткань выполняет опорную, защитную (механическую) функции (плотная волокнистая соединительная ткань, хрящ, кость). В трофической (питательной) функции участвуют рыхлая волокнистая и ретикулярная соединительная ткань, а также кровь и лимфа. В рыхлой волокнистой соединительной ткани находятся различные клеточные элементы (фибробласты, макрофаги, плазматические, тучные клетки и др.) и волокна, по-разному ориентированные в основном веществе в зависимости от строения и функции органа. Располагается эта ткань преимущественно по ходу кровеносных сосудов. Разновидностью соединительной ткани, состоящей из ретикулярных клеток и ретикулярных волокон, является ретикулярная соединительная ткань. Она образует остов кроветворных органов и органов иммунной системы (костный мозг, тимус, селезенка, лимфатические узлы, групповые и одиночные лимфоидные узелки). В петлях, образованных ретикулярной тканью, располагаются кровообразующие и иммунокомпетентные клетки. Жировая ткань образуется под кожей, особенно развита она под брюшиной, в сальнике. Формируется жировая ткань при накоплении липидных (жировых) включений в цитоплазме фибробластов — молодых клеток рыхлой волокнистой соединительной ткани. Плотная волокнистая соединительная ткань может быть неоформленной: многочисленные соединительнотканные волокна густо переплетаются, а между ними содержится небольшое количество клеточных элементов (например, сетчатый слой кожи). Плотная оформленная соединительная ткань отличается упорядоченным расположением пучков волокон, определенным их направлением (связки, сухожилия). Хрящевая ткань состоит из хрящевых клеток (хондроцитов), располагающихся группами по 2—3 клетки, и основного вещества, находящегося в состоянии геля. Гиалиновый хрящ, полупрозрачный, снаружи покрыт надхрящницей, которая продуцирует молодые хрящевые клетки. Из гиалинового хряща построены суставные хрящи, хрящи ребер, эпифизарные хрящи. Фиброзный (волокнистый коллагеновый) хрящ отличается тем, что в его основном веществе содержится большое количество коллагеновых волокон, которые придают такому хрящу повышенную прочность. Из волокнистого хряща построены фиброзные кольца межпозвоночных дисков, внутрисуставные диски и мениски. Он покрывает суставные поверхности височно-нижнечелюстного и грудино-ключичного суставов. Эластический хрящ имеет желтоватый цвет, в его основном веществе много сложно переплетающихся эластических волокон. Этот хрящ отличается упругостью. Из него построены клиновидные и рожковидные хрящи гортани, голосовой отросток черпаловидных хрящей, надгортанник, ушная раковина, хрящевая часть слуховой трубы и наружного слухового прохода. Костная ткань отличается особыми механическими свойствами, состоит из костных клеток (остеоцитов), замурованных в обызвествленное межклеточное вещество, содержащее коллагеновые волокна и неорганические соли. Особое место в организме человека занимают кровь и лимфа, выполняющие трофическую и защитную функции. Кровь и лимфа состоят из жидкого основного вещества (плазма) сложного состава и взвешенных в нем форменных элементов. В плазме крови содержатся безъядерные клетки — эритроциты (4 500 000 — 5 000 000 в 1 куб. мм), лейкоциты (4 000 — 9 000 в 1 куб. мм), зернистые и незернистые, а также кровяные пластинки — тромбоциты (в 1 куб. мм крови 180 000 — 320 000). Лимфа — бесцветная, слегка мутноватая жидкость. Она также состоит из плазмы и клеток, преимущественно лимфоцитов, число которых в периферической лимфе (до прохождения ее через лимфатические узлы) значительно меньше, чем в центральной (прошедшей через один или несколько лимфатических узлов). Эритроциты в лимфе в норме не содержатся. Кровь и лимфа являются тканями, составляющими внутреннюю среду организма, обеспечивающую наилучшие условия для его жизнедеятельности. |
studopedya.ru