Отличие растительной и живой клетки – Ответьте на вопрос по биологии ! Сходство и различия растительной и животной клетки

какие основные отличия животной клетки от растительной

1
Главным отличием растительной клетки от животной является способ питания. Растительные клетки — автотрофы, они способны сами синтезировать органические вещества, необходимые для их жизнедеятельности, для этого им нужен только свет. Животные же клетки — гетеротрофы; необходимые им для жизни вещества они получают с пищей.

Правда, среди животных наблюдаются и исключения. Например, зеленые жгутиконосцы: днем они способны к фотосинтезу, но в темноте питаются готовыми органическими веществами.
2
Растительная клетка, в отличие от животной, имеет клеточную стенку и не может, вследствие этого, менять свою форму. Животная клетка может растягиваться и видоизменяться, т. к. клеточной стенки нет.
3
Различия наблюдаются и в способе деления: при делении растительной клетки в ней образуется перегородка; животная клетка делится с образованием перетяжки.
4
Клетки растений содержат в себе пластиды: хлоропласты, лейкопласты, хромопласты. Клетки животных не содержат таких пластид. Кстати, именно благодаря пластидам, несущим в себе хлорофилл, и происходит фотосинтез в растительных клетках.
5
В клетках как растений, так и животных есть вакуоли. Но у растений это малочисленные крупные полости, а у животных многочисленные и мелкие. Вакуоли растений запасают питательные вещества, тогда как вакуоли животных несут пищеварительную и сократительную функции.
6
Синтез аденозинтрифосфорной кислоты, необходимой для получения энергии, у растений происходит в митохондриях и пластидах, у животных же лишь в пластидах.
7
Все виды клеток имеют особый вид запасного углевода. У растительных клеток это крахмал, у животных — гликоген. Крахмал и гликоген отличаются по химическому составу и строению.
8
У животной клетки есть центриоли, у растительной клетки их нет.
9
Питательные вещества растительной клетки хранятся в клеточном соке, заполняющем вакуоли; питательные вещества животной клетки располагаются в цитоплазме и имеют вид клеточных включений.

otvet.mail.ru

Отличия растительной и животной клетки.

⇐ ПредыдущаяСтр 2 из 7Следующая ⇒

Клетки представителей различных царств, относящихся к Эукариота, имеют оп­ределенные сходства и различия. Структурно клетки всех организмов едины. Как лю­бая живая система, они дискретны, т.е. отграничены от внешней среды, и структури­рованы: имеют определенное внутреннее строение. В то же время клетки организмов разных царств Эукариота имеют ряд специфических черт.

К важнейшим отличитель­ным чертам растительных клеток относятся:

1. жесткая углеводная оболочка

2. наличие пластид

3. наличие крупной центральной вакуоли

Эти особенности возникли как следствие автотрофного питания фотосинтеза, и предопределили обилие уг­леводов в клетке, адсорбционное питание (всасывание воды и поглощение ионов), сильную обводненность протопласта и появление клеточного сока (вакуолей), нейт­рализацию отбросов метаболизма (обмена веществ) клетки путем их кристаллизации (переходом из жидкой фазы в твердую) в клеточном соке.

Протопласт представляет собой чрезвычайно сложное образование, дифферен­цированное на различные компоненты, называемые органеллами (или органоида­ми), которые постоянно в нем встречаются, имеют характерное строение, позволяю­щее легко отличать их друг от друга, и выполняют специфические функции. К органеллам клетки относятся ядро, пластиды, митохондрии, рибосомы, эндоплазматический ретикулум, аппарат Гольджи, пероксисомы (микротельца), лизосомы.

По данным Ф. Клоуса и Б. Джунипера в одной клетке растения может быть одно ядро, 20—40 пла­стид, 700 и более митохондрий, 400 диктиосом, 500 тысяч рибосом, 500 млн и более молекул ферментов, представленных 10 тыс. различных типов.

Органеллы погружены в гомогенную гиалоплазму (греч. hialos — стекло), которая обеспечивает их взаимодействие. Гиалоплазма с органеллами, за вычетом ядра, со­ставляет цитоплазму клетки. Количественное соотношение и особенности строения органелл определены специфической направленностью жизнедеятельности той или иной специализированной клетки.

ДНК, ответственная за хранение и передачу информации, локализована в хромо­сомах, которые заключены в клеточном ядре, отграниченном двумя мембранами. В ядре содержится также одно или несколько ядрышек — телец, обеспечивающих под­держание постоянного числа рибосом в клетке. Фотосинтез происходит в зеленых пластидах — хлоропластах, аэробное дыхание — в митохондриях. Диктиосомы произ­водят вещества, которые входят в состав клеточной оболочки, и ряд других. Синтез белка осуществляют рибосомы. Эндоплазматическая сеть связывает отдельные уча­стки клетки, а также протопласты соседних клеток благодаря вхождению в состав де-смотрубок плазмодесм.

В протопласте присутствуют также клеточные включения (кристаллы минераль­ных солей, крахмальные и белковые зерна, капли масла и т.д.) — места сосредоточе­ния веществ временно или постоянно выведенных из процессов метаболизма (соот­ветственно — запасных и отбросов). Растительные клетки обладают специфическим характером роста: путем растяжения. Он обусловлен наличием жесткой оболочки и вакуоли. При таком росте размеры клетки увеличиваются в основном за счет увели­чения объема вакуоли, а не цитоплазмы.

В отличие от клеток животных, во время клеточного деления (цитокинеза) у выс­ших растений отсутствуют центриоли, и деление происходит при участии особого об­разования — фрагмопласта (греч. phragmos — перегородка и plastos — вылепленный, оформленный). Фрагмопласт — нитчатая структура, состоящая из микротрубочек, появляется между дочерними ядрами в телофазе кариокинеза. Она формирует перво­начальную перегородку (клеточную пластинку), делящую материнскую клетку на­двое. Фрагмопласт вначале имеет веретеновиднуто форму, а позже, по мере центро­бежного роста клеточной пластинки, становится кольцевым.

mykonspekts.ru

Разнообразие формы растительных клеток. Отличие растительной и живой клетки.

Разнообразие формы растительных клеток. Отличие растительной и живой клетки.

Форма и размеры клеток очень различны и зависят от их положения в теле растения и от функций, которые они выполняют.

Наиболее простая форма — шаровидная — встречается довольно редко у свободных клеток, не граничащих с другими клетками. Многие клетки имеют форму многогранников, определяемую главным образом их взаимным давлением. Если клетка разрастается равномерно по всем направлениям, то она обычно принимает форму многогранника с 14 гранями, из которых 8 представляют собой шестиугольники, а 6 — четырехугольники. Клетки, диаметр которых по всем направлениям приблизительно одинаков, называются паренхимными. Однако очень часто разрастание клеток идет преимущественно в одном направлении, в результате чего образуются очень вытянутые с заостренными концами прозенхимные клетки (например, клетки волокон). У таких клеток длина может в сотни и даже в тысячи раз превышать толщину. Взрослые клетки растений, в отличие от клеток животных, почти всегда имеют постоянную форму, что объясняется наличием у них довольно прочной оболочки. Более подробно разнообразие клеток по форме будет рассмотрено ниже, при описании тканей.

Обычно клетки настолько мелки, что видимы только в микроскоп. Так, у высших растений диаметр клеток колеблется в среднем между 10 и 100 мк. Более крупными обычно бывают клетки, которые служат для запаса воды и питательных веществ (например, паренхимные клетки клубня картофеля, клетки сочных плодов). Мякоть плодов арбуза, лимона, апельсина состоит из столь крупных (несколько миллиметров) клеток, что их можно видеть невооруженным глазом. Но особенно большой величины достигают некоторые прозенхимные клетки. Так, например, лубяные волокна льна имеют длину около 40 мм, а крапивы — даже до 80 мм, в то время как величина их поперечного сечения микроскопически мала. Хотя размер клеток сильно колеблется, эти колебания лежат в определенных границах, которые характерны для вида растений и типа ткани.

Типы пластид. Хлоропласты. Строение и специфические функции.

Пластиды являются основными цитоплазматическими органеллами клеток автотрофных растений. Название происходит от греческого слова «plastos», что в переводе означает «вылепленный».

Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.



Классификация пластид по окраске и выполняемой функции подразумевает деление этих органоидов на три типа: хлоропласты, лейкопласты и хромопласты. Пластиды водорослей именуются хроматофорами.

Хлоропласты – это зеленые пластиды высших растений, содержащие хлорофилл – фотосинтезирующий пигмент. Представляют собой тельца округлой формы размерами от 4 до 10 мкм. Химический состав хлоропласта: примерно 50% белка, 35% жиров, 7% пигментов, малое количество ДНК и РНК. У представителей разных групп растений комплекс пигментов, определяющих окраску и принимающих участие в фотосинтезе, отличается. Это подтипы хлорофилла и каротиноиды (ксантофилл и каротин). При рассматривании под световым микроскопом видна зернистая структура пластид – это граны. Под электронным микроскопом наблюдаются небольшие прозрачные уплощенные мешочки (цистерны, или граны), образованные белково-липидной мембраной и располагающиеся в непосредственно в строме. Причем некоторые из них сгруппированы в пачки, похожие на столбики монет (тилакоиды гран), другие, более крупные находятся между тилакоидами. Благодаря такому строению, увеличивается активная синтезирующая поверхность липидно-белково-пигментного комплекса гран, в котором на свету происходит фотосинтез.

Первичные покровные ткани

Эпидерма образуется из поверхностного слоя апикальной меристемы — протодермы. Она покрывает листья, плоды, части цветка и молодые стебли. Кроме защитной функции, эпидерма регулирует процессы транспирации и газообмена, принимает участие в синтезе различных веществ и др. В состав эпидермы входит несколько морфологически различных клеток: основные клетки эпидермы, замыкающие и побочные клетки устьиц, трихомы (выросты эпидермы). Клетки эпидермы живые, имеют ядра, лейкопласты, вакуоли, хлоропласты (только в замыкающих клетках устьиц). Эпидерма у большинства растений однослойная, реже многослойная. Клетки первичной покровной ткани плотно примыкают друг к другу, и не имеют межклетников. С наружной стороны вся эпидерма покрыта сплошным слоем

кутикулы (прерывается только над устьичными щелями).



Ризодерма (эпиблема) образована апикальной меристемой корня. Она покрывает молодые корневые окончания и именно через ризодерму происходит поглощение воды и минеральных солей из почвы. Кроме того, она взаимодействует с микроорганизмами почвы, из корня в почву выделяются вещества, помогающие почвенному питанию. Клетки ризодермы имеют очень тонкие оболочки. У первичной покровной ткани корня нет кутикулы, вследствие чего эти клетки имеют оболочки легко проницаемые для воды. На небольшом расстоянии от кончика корня образуются корневые волоски — выросты ризодермы.

Веламен, как и ризодерма, происходит из поверхностного слоя апикальной меристемы корня. Эта своеобразная ткань покрывает корни эпифитов и некоторых других растений, приспособленных к жизни на периодически пересыхающих почвах (аспидистра, аспарагус, алоэ, кливия). Веламен от ризодермы отличается многослойностью. Протопласт веламена отмирает и поэтому всасывает воду не осмотическим, а капиллярным путем.

Вторичная покровная ткань

Перидерма возникает при заложении феллогена в эпидерме, субэпидермальном слое (под эпидермой) или в более глубоких слоях первичной коры. Она замещает эпидерму в тех стеблях и корнях, которые разрастаются в толщину путем вторичного роста. Перидерма состоит из трех основных компонентов: феллогена (пробковый камбий), за счет которого перидерма длительное время нарастает в толщину, производя к поверхности феллему (пробку), выполняющую защитную функцию, а внутрь феллодерму (подпитывающую ткань).

Живые ткани, расположенные под пробкой испытывают потребность в газообмене. Для этого в перидерме с самого начала ее образования формируются чечевички — проходные отверстия.

Третичная покровная ткань

Корка (ритидом) приходит на смену перидермы. У большинства древесных растений она образуется в результате многократного заложения новых прослоек перидермы во все более глубокие ткани первичной коры. Живые клетки, заключенные между этими прослойками отмирают. Таким образом, корка состоит из чередующихся слоев пробки и заключенных между ними отмерших прочих тканей первичной коры.

ОСОБЕННОСТИ СТРОЕНИЯ ПОКРОВНОЙ ТКАНИ. ОБЩАЯ ИНФОРМАЦИЯ

Особенности строения покровной ткани обусловлены ее предназначением. Хотя существует и много разновидностей данного типа ткани, все они похожи.

В ней всегда большое количество клеток и мало межклеточного вещества. Структурные частицы расположены близко друг к другу. Строение покровной ткани также всегда предусматривает четкую ориентацию клеток в пространстве. Последние имеют верхнюю и нижнюю часть и всегда располагаются верхней частью ближе к поверхности органа. Еще одна особенность, которой характеризуется строение покровной ткани, заключается в том, что она хорошо регенерируется. Ее клетки живут недолго. Они способны быстро делиться, за счет чего ткань постоянно обновляется.

ФУНКЦИИ ПОКРОВНЫХ ТКАНЕЙ

Прежде всего они играют защитную роль, отделяя внутреннюю среду организма от внешнего мира.

Также они выполняют обменную и выделительную функции. Часто покровная ткань снабжена порами для обеспечения этого. Последняя основная функция – рецепторная.

Один из видов покровной ткани у животных – железистый эпителий – выполняет секреторную функцию.

 

Разнообразие формы растительных клеток. Отличие растительной и живой клетки.

Форма и размеры клеток очень различны и зависят от их положения в теле растения и от функций, которые они выполняют.

Наиболее простая форма — шаровидная — встречается довольно редко у свободных клеток, не граничащих с другими клетками. Многие клетки имеют форму многогранников, определяемую главным образом их взаимным давлением. Если клетка разрастается равномерно по всем направлениям, то она обычно принимает форму многогранника с 14 гранями, из которых 8 представляют собой шестиугольники, а 6 — четырехугольники. Клетки, диаметр которых по всем направлениям приблизительно одинаков, называются паренхимными. Однако очень часто разрастание клеток идет преимущественно в одном направлении, в результате чего образуются очень вытянутые с заостренными концами прозенхимные клетки (например, клетки волокон). У таких клеток длина может в сотни и даже в тысячи раз превышать толщину. Взрослые клетки растений, в отличие от клеток животных, почти всегда имеют постоянную форму, что объясняется наличием у них довольно прочной оболочки. Более подробно разнообразие клеток по форме будет рассмотрено ниже, при описании тканей.

Обычно клетки настолько мелки, что видимы только в микроскоп. Так, у высших растений диаметр клеток колеблется в среднем между 10 и 100 мк. Более крупными обычно бывают клетки, которые служат для запаса воды и питательных веществ (например, паренхимные клетки клубня картофеля, клетки сочных плодов). Мякоть плодов арбуза, лимона, апельсина состоит из столь крупных (несколько миллиметров) клеток, что их можно видеть невооруженным глазом. Но особенно большой величины достигают некоторые прозенхимные клетки. Так, например, лубяные волокна льна имеют длину около 40 мм, а крапивы — даже до 80 мм, в то время как величина их поперечного сечения микроскопически мала. Хотя размер клеток сильно колеблется, эти колебания лежат в определенных границах, которые характерны для вида растений и типа ткани.

cyberpedia.su

Разнообразие формы растительных клеток. Отличие растительной и живой клетки.

Разнообразие формы растительных клеток. Отличие растительной и живой клетки.

Форма и размеры клеток очень различны и зависят от их положения в теле растения и от функций, которые они выполняют.

Наиболее простая форма — шаровидная — встречается довольно редко у свободных клеток, не граничащих с другими клетками. Многие клетки имеют форму многогранников, определяемую главным образом их взаимным давлением. Если клетка разрастается равномерно по всем направлениям, то она обычно принимает форму многогранника с 14 гранями, из которых 8 представляют собой шестиугольники, а 6 — четырехугольники. Клетки, диаметр которых по всем направлениям приблизительно одинаков, называются паренхимными. Однако очень часто разрастание клеток идет преимущественно в одном направлении, в результате чего образуются очень вытянутые с заостренными концами прозенхимные клетки (например, клетки волокон). У таких клеток длина может в сотни и даже в тысячи раз превышать толщину. Взрослые клетки растений, в отличие от клеток животных, почти всегда имеют постоянную форму, что объясняется наличием у них довольно прочной оболочки. Более подробно разнообразие клеток по форме будет рассмотрено ниже, при описании тканей.

Обычно клетки настолько мелки, что видимы только в микроскоп. Так, у высших растений диаметр клеток колеблется в среднем между 10 и 100 мк. Более крупными обычно бывают клетки, которые служат для запаса воды и питательных веществ (например, паренхимные клетки клубня картофеля, клетки сочных плодов). Мякоть плодов арбуза, лимона, апельсина состоит из столь крупных (несколько миллиметров) клеток, что их можно видеть невооруженным глазом. Но особенно большой величины достигают некоторые прозенхимные клетки. Так, например, лубяные волокна льна имеют длину около 40 мм, а крапивы — даже до 80 мм, в то время как величина их поперечного сечения микроскопически мала. Хотя размер клеток сильно колеблется, эти колебания лежат в определенных границах, которые характерны для вида растений и типа ткани.

Типы пластид. Хлоропласты. Строение и специфические функции.

Пластиды являются основными цитоплазматическими органеллами клеток автотрофных растений. Название происходит от греческого слова «plastos», что в переводе означает «вылепленный».

Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.

Классификация пластид по окраске и выполняемой функции подразумевает деление этих органоидов на три типа: хлоропласты, лейкопласты и хромопласты. Пластиды водорослей именуются хроматофорами.

Хлоропласты – это зеленые пластиды высших растений, содержащие хлорофилл – фотосинтезирующий пигмент. Представляют собой тельца округлой формы размерами от 4 до 10 мкм. Химический состав хлоропласта: примерно 50% белка, 35% жиров, 7% пигментов, малое количество ДНК и РНК. У представителей разных групп растений комплекс пигментов, определяющих окраску и принимающих участие в фотосинтезе, отличается. Это подтипы хлорофилла и каротиноиды (ксантофилл и каротин). При рассматривании под световым микроскопом видна зернистая структура пластид – это граны. Под электронным микроскопом наблюдаются небольшие прозрачные уплощенные мешочки (цистерны, или граны), образованные белково-липидной мембраной и располагающиеся в непосредственно в строме. Причем некоторые из них сгруппированы в пачки, похожие на столбики монет (тилакоиды гран), другие, более крупные находятся между тилакоидами. Благодаря такому строению, увеличивается активная синтезирующая поверхность липидно-белково-пигментного комплекса гран, в котором на свету происходит фотосинтез.

Первичные покровные ткани

Эпидерма образуется из поверхностного слоя апикальной меристемы — протодермы. Она покрывает листья, плоды, части цветка и молодые стебли. Кроме защитной функции, эпидерма регулирует процессы транспирации и газообмена, принимает участие в синтезе различных веществ и др. В состав эпидермы входит несколько морфологически различных клеток: основные клетки эпидермы, замыкающие и побочные клетки устьиц, трихомы (выросты эпидермы). Клетки эпидермы живые, имеют ядра, лейкопласты, вакуоли, хлоропласты (только в замыкающих клетках устьиц). Эпидерма у большинства растений однослойная, реже многослойная. Клетки первичной покровной ткани плотно примыкают друг к другу, и не имеют межклетников. С наружной стороны вся эпидерма покрыта сплошным слоем кутикулы (прерывается только над устьичными щелями).

Ризодерма (эпиблема) образована апикальной меристемой корня. Она покрывает молодые корневые окончания и именно через ризодерму происходит поглощение воды и минеральных солей из почвы. Кроме того, она взаимодействует с микроорганизмами почвы, из корня в почву выделяются вещества, помогающие почвенному питанию. Клетки ризодермы имеют очень тонкие оболочки. У первичной покровной ткани корня нет кутикулы, вследствие чего эти клетки имеют оболочки легко проницаемые для воды. На небольшом расстоянии от кончика корня образуются корневые волоски — выросты ризодермы.

Веламен, как и ризодерма, происходит из поверхностного слоя апикальной меристемы корня. Эта своеобразная ткань покрывает корни эпифитов и некоторых других растений, приспособленных к жизни на периодически пересыхающих почвах (аспидистра, аспарагус, алоэ, кливия). Веламен от ризодермы отличается многослойностью. Протопласт веламена отмирает и поэтому всасывает воду не осмотическим, а капиллярным путем.

Вторичная покровная ткань

Перидерма возникает при заложении феллогена в эпидерме, субэпидермальном слое (под эпидермой) или в более глубоких слоях первичной коры. Она замещает эпидерму в тех стеблях и корнях, которые разрастаются в толщину путем вторичного роста. Перидерма состоит из трех основных компонентов: феллогена (пробковый камбий), за счет которого перидерма длительное время нарастает в толщину, производя к поверхности феллему (пробку), выполняющую защитную функцию, а внутрь феллодерму (подпитывающую ткань).

Живые ткани, расположенные под пробкой испытывают потребность в газообмене. Для этого в перидерме с самого начала ее образования формируются чечевички — проходные отверстия.

Третичная покровная ткань

Корка (ритидом) приходит на смену перидермы. У большинства древесных растений она образуется в результате многократного заложения новых прослоек перидермы во все более глубокие ткани первичной коры. Живые клетки, заключенные между этими прослойками отмирают. Таким образом, корка состоит из чередующихся слоев пробки и заключенных между ними отмерших прочих тканей первичной коры.

ОСОБЕННОСТИ СТРОЕНИЯ ПОКРОВНОЙ ТКАНИ. ОБЩАЯ ИНФОРМАЦИЯ

Особенности строения покровной ткани обусловлены ее предназначением. Хотя существует и много разновидностей данного типа ткани, все они похожи.

В ней всегда большое количество клеток и мало межклеточного вещества. Структурные частицы расположены близко друг к другу. Строение покровной ткани также всегда предусматривает четкую ориентацию клеток в пространстве. Последние имеют верхнюю и нижнюю часть и всегда располагаются верхней частью ближе к поверхности органа. Еще одна особенность, которой характеризуется строение покровной ткани, заключается в том, что она хорошо регенерируется. Ее клетки живут недолго. Они способны быстро делиться, за счет чего ткань постоянно обновляется.

ФУНКЦИИ ПОКРОВНЫХ ТКАНЕЙ

Прежде всего они играют защитную роль, отделяя внутреннюю среду организма от внешнего мира.

Также они выполняют обменную и выделительную функции. Часто покровная ткань снабжена порами для обеспечения этого. Последняя основная функция – рецепторная.

Один из видов покровной ткани у животных – железистый эпителий – выполняет секреторную функцию.

Разнообразие формы растительных клеток. Отличие растительной и живой клетки.

Форма и размеры клеток очень различны и зависят от их положения в теле растения и от функций, которые они выполняют.

Наиболее простая форма — шаровидная — встречается довольно редко у свободных клеток, не граничащих с другими клетками. Многие клетки имеют форму многогранников, определяемую главным образом их взаимным давлением. Если клетка разрастается равномерно по всем направлениям, то она обычно принимает форму многогранника с 14 гранями, из которых 8 представляют собой шестиугольники, а 6 — четырехугольники. Клетки, диаметр которых по всем направлениям приблизительно одинаков, называются паренхимными. Однако очень часто разрастание клеток идет преимущественно в одном направлении, в результате чего образуются очень вытянутые с заостренными концами прозенхимные клетки (например, клетки волокон). У таких клеток длина может в сотни и даже в тысячи раз превышать толщину. Взрослые клетки растений, в отличие от клеток животных, почти всегда имеют постоянную форму, что объясняется наличием у них довольно прочной оболочки. Более подробно разнообразие клеток по форме будет рассмотрено ниже, при описании тканей.

Обычно клетки настолько мелки, что видимы только в микроскоп. Так, у высших растений диаметр клеток колеблется в среднем между 10 и 100 мк. Более крупными обычно бывают клетки, которые служат для запаса воды и питательных веществ (например, паренхимные клетки клубня картофеля, клетки сочных плодов). Мякоть плодов арбуза, лимона, апельсина состоит из столь крупных (несколько миллиметров) клеток, что их можно видеть невооруженным глазом. Но особенно большой величины достигают некоторые прозенхимные клетки. Так, например, лубяные волокна льна имеют длину около 40 мм, а крапивы — даже до 80 мм, в то время как величина их поперечного сечения микроскопически мала. Хотя размер клеток сильно колеблется, эти колебания лежат в определенных границах, которые характерны для вида растений и типа ткани.

student2.ru

Основное отличие животной клетки от растительной: таблица + подробное описание

Образование 4 июля 2017

Многие ключевые различия между растениями и животными берут начало в структурных различиях на клеточном уровне. У одних есть некоторые детали, которые есть у других, и наоборот. Прежде, чем мы найдем главное отличие животной клетки от растительной (таблица далее в статье), давайте выясним, что они имеют общего, а затем исследуем то, что делает их разными.

Животные и растения

Вы, сгорбившись в кресле, читаете эту статью? Старайтесь сидеть прямо, вытяните руки к небу и потянитесь. Чувствуете себя хорошо, верно? Нравится вам это или нет, но вы – животное. Ваши клетки – это мягкие сгустки цитоплазмы, но вы можете использовать ваши мышцы и кости, чтобы стоять на ногах и передвигаться. Геторотрофы, как и все животные, должны получать питание из других источников. Если вы чувствуете голод или жажду, вам нужно просто встать и дойти до холодильника.

Теперь подумайте о растениях. Представьте себе высокий дуб или крохотные травинки. Они стоят в вертикальном положении, не имея мышц или костей, но они не могут позволить себе ходить куда-то, чтобы получить еду и питье. Растения, автотрофы, создают свои собственные продукты, используя энергию Солнца. Отличие животной клетки от растительной в таблице №1 (смотри далее) очевидно, но есть также и много общего.

Общая характеристика

Растительная и животная клетки являются эукариотическими, а это уже большое сходство. Они имеют мембранно-связанное ядро, которое содержит генетический материал (ДНК). Полупроницаемая плазматическая мембрана окружает оба типа ячеек. Их цитоплазма содержит многие из тех же частей и органелл, в том числе рибосомы, комплексы Гольджи, эндоплазматический ретикулум, митохондрии и пероксисомы и другие. В то время как растительные и животные клетки являются эукариотическими и имеют много общего, они также отличаются по нескольким параметрам.

Видео по теме

Особенности растительных клеток

Теперь давайте рассмотрим особенности клеток растений. Как большинство из них могут стоять вертикально? Эта способность имеется благодаря клеточной стенке, которая окружает оболочки всех растительных клеток, обеспечивает поддержку и жесткость и часто дает им прямоугольный или даже шестиугольной внешний вид при наблюдении в микроскоп. Все эти структурные единицы имеют жесткую правильную форму и содержат много хлоропластов. Стенки могут быть толщиной в несколько микрометров. Их состав варьируется в зависимости от групп растений, но они обычно состоят из волокон углеводной целлюлозы, погруженных в матрицу из белков и прочих углеводов.

Клеточные стенки помогают сохранить прочность. Давление, создаваемое поглощением воды, способствует их жесткости и дает возможность для вертикального роста. Растения не способны передвигаться с места на место, поэтому они нуждаются в том, чтобы делать свои собственные продукты питания. Органелла, называемая хлоропластом, отвечает за фотосинтез. Растительные клетки могут содержать несколько таких органелл, иногда сотни.

Хлоропласты окружены двойной мембраной и содержат стеки мембраносвязанных дисков, в которых специальными пигментами поглощается солнечный свет, и эта энергия используется для питания растения. Одной из самых известных структур является крупная центральная вакуоль. Эта органелла занимает большую часть объема и окружена мембраной, называемой тонопласт. В ней хранится вода, а также ионы калия и хлорида. По мере того, как клетка растет, вакуоль поглощает воду и помогает удлинить ячейки.

Отличия животной клетки от растительной (таблица №1)

Растительные и животные структурные единицы имеют некоторые отличия и сходства. Например, у первых нет клеточной стенки и хлоропластов, они круглые и неправильной формы, в то время как растительные имеют фиксированную прямоугольную форму. И те и те являются эукариотическими, поэтому они имеют ряд общих особенностей, таких как наличие мембраны и органелл (ядро, митохондрии и эндоплазматический ретикулум). Итак, рассмотрим сходства и отличия между растительной и животной клетки в таблице №1:

Животная клеткаРастительная клетка
Клеточная стенкаотсутствуетприсутствует (формируется из целлюлозы)
Формакруглая (неправильная)прямоугольная (неподвижная)
Вакуольодна или несколько мелких (гораздо меньше, чем в растительных клетках)Одна большая центральная вакуоль занимает до 90% объема клетки
Центриолиприсутствуют во всех клетках животныхприсутствуют в более низких растительных формах
ХлоропластынетРастительные клетки имеют хлоропласты, потому что они создают свои собственные продукты питания
Цитоплазмаестьесть
Рибосомыприсутствуютприсутствуют
Митохондрииимеютсяимеются
Пластидыотсутствуютприсутствуют
Эндоплазматический ретикулум (гладкий и шершавый)естьесть
Аппарат Гольджиимеетсяимеется
Плазматическая мембранаприсутствуетприсутствует
Жгутики
могут быть найдены в некоторых клетках
могут быть найдены в некоторых клетках
Лизосомыесть в цитоплазмеобычно не видны
Ядраприсутствуютприсутствуют
Ресничкиприсутствуют в большом количестверастительные клетки не содержат реснички

Животные против растений

Какой позволяет сделать таблица «Отличие животной клетки от растительной» вывод? Обе являются эукариотическими. Они имеют настоящие ядра, где находится ДНК и отделены от других структур ядерной мембраной. Оба типа имеют сходные процессы по воспроизводству, включая митоз и мейоз. Животные и растения нуждаются в энергии, они должны расти и поддерживать нормальную клеточную функцию в процессе дыхания.

И там и там есть структуры, известные как органеллы, которые являются специализированными для выполнения функций, необходимых для нормального функционирования. Представленные отличия животной клетки от растительной в таблице №1 дополняются некоторыми общими чертами. Оказывается, они имеют много общего. И те и те имеют некоторые из тех же компонентов, в том числе ядра, комплекс Гольджи, эндоплазматический ретикулум, рибосомы, митохондрии и так далее.

В чем отличие растительной клетки от животной?

В таблице №1 сходства и отличия представлены достаточно кратко. Рассмотрим эти и другие моменты более подробно.

  • Размер. Животные клетки обычно имеют меньшие размеры, чем клетки растений. Первые составляют от 10 до 30 микрометров в длину, в то время как растительные клетки имеют диапазон длины от 10 до 100 микрометров.
  • Форма. Животные клетки бывают различных размеров и, как правило, имеют круглую или неправильную форму. Растительные больше похожи по размеру и, как правило, имеют прямоугольную или кубическую форму.
  • Хранение энергии. Животные клетки запасают энергию в виде сложных углеводов (гликогена). Растительные запасают энергию в виде крахмала.
  • Дифференцировка. В клетках животных только стволовые клетки способны переходить в другие типы клеток. Большинство видов растительной клетки не способно к дифференциации.
  • Рост. Животные клетки увеличиваются в размерах за счет числа клеток. Растительные же поглощают больше воды в центральной вакуоли.
  • Центриоли. Клетки животных содержат цилиндрические структуры, которые организуют сборку микротрубочек во время деления клетки. Растительные, как правило, не содержат центриолей.
  • Реснички. Они встречаются в клетках животных, но не являются обычным явлением в растительных клетках.
  • Лизосомы. Эти органеллы содержат ферменты, которые переваривают макромолекулы. Клетки растений редко содержат лизосомы, эту функцию выполняет вакуоль.
  • Пластиды. Животные клетки не имеют пластид. Клетки растений содержат пластиды, такие как хлоропласты, которые необходимы для фотосинтеза.
  • Вакуоль. Животные клетки могут иметь много мелких вакуолей. Растительные клетки имеют большую центральную вакуоль, которая может занимать до 90% объема клетки.

Структурно растительные и животные клетки очень похожи, они содержат мембраносвязанные органеллы, такие как ядро, митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы и пероксисомы. Оба также содержат аналогичные мембраны, цитозоль и цитоскелетные элементы. Функции этих органелл также очень похожи. Однако то небольшое отличие растительной клетки от животной (таблица №1), которое существуют между ними, является весьма существенным и отражает разницу в функциях каждой клетки.

Итак, мы провели сравнение растительной и животной клеток, выяснив, в чем их сходство и отличия. Общими являются план строения, химические процессы и состав, деление и генетический код.

В то же время эти мельчайшие единицы принципиально отличаются способом питания.

Источник: fb.ru Образование
Чем отличается бактериальная клетка от растительной: особенности строения и жизнедеятельности

Практически все живые организмы состоят из клеток. От особенностей строения этих наименьших структур зависят особенности жизнедеятельности и уровень организации всех представителей природы. В нашей статье мы рассмотри…

Автомобили
Модельный ряд БМВ (BMW): обзор, фото, технические характеристики. Основные отличия новых автомобилей от устаревшей версии

Если рассматривать модельный ряд БМВ, то на это уйдёт очень много времени. Информации обо всех автомобилях, выпускавшихся ранее и производящихся на сегодняшний день, хватит на выпуск целой книги. Однако о самых популя…

Духовное развитие
Сформулируй основные отличия духовных ценностей от материальных. Материальные и духовные ценности

Каждый человек имеет свою собственную неповторимую систему ценностей. В современном мире часто на первый план выходят материальные блага, при этом люди совершенно забывают о духовной стороне. Так что же все-таки важне…

Закон
Чем отличается ограничение свободы от лишения свободы: разница, описание, особенности

В Российской Федерации ежегодно регистрируется более 950 000 уголовных дел. Конечно, большая часть из них успешно раскрывается. Виновники правонарушений предстают перед судом и получают наказание, соответствующее прес…

Образование
Сравнение растительной и животной клетки: основные черты сходства и отличия

В статье будет проведено сравнение растительной и животной клетки. Эти структуры, несмотря на единство происхождения, имеют значительные отличия.Общий план строения клетокРассматривая сравнение растите…

Образование
Чем клетки бактерий отличаются от растительных клеток: сравнительная характеристика

Клетки организмов различных систематических единиц имеют ряд отличий. Они касаются формы, размеров и наличия некоторых структур. В нашей статье мы расскажем, чем клетки бактерий отличаются от растительных клеток, и ср…

Образование
Основные отличия человека от животного

Что же отличает человека от животного? Отличий много, но прежде всего, это его мозг. Это – главное отличие человека от животного. Наш мозг приблизительно в 3 раза больше по объёму мозга шимпанзе, ближайшего к на…

Бизнес
Чем отличается сахарная свекла от кормовой? Основные признаки

Корнеплод, добавляемый хозяйками в борщ или свекольник, произошел от дикой свеклы, которая произрастает в Индии и на Дальнем Востоке. У этого овоща есть несколько видов, но самыми распространенными являются кормовые и…

Домашний уют
Чем отличается инверторный кондиционер от неинверторного? Основные характеристики, преимущества и недостатки

На сегодняшний день потребителю предлагается широкий выбор охладителей воздуха. В процессе выбора люди обращают внимание на технические характеристики такого оборудования. Однако в первую очередь требуется узнать о пр…

Еда и напитки
Арманьяк и коньяк: разница в напитках. Основное отличие коньяка от арманьяка

У всех на слуху эти названия: бренди, коньяк и арманьяк. В чем разница этих напитков? Ошибочным будет утверждать, что это разные названия одного и того же продукта. Но в чем-то они и похожи. Роднит коньяк с арманьяком…

monateka.com

Строение растительной клетки.Отличие растительной клетки от живой клетки.

Растительная клетка состоит из жесткой клеточной оболочки и протопласта. Клеточная оболочка – это клеточная стенка и цитоплазматическая мембрана. Протопласт – это протоплазма индивидуальной клетки.Протопласт состоит из цитоплазмы и ядра.

В цитоплазме находятся органеллы (рибосомы, микротрубочки, пластиды, митохондрии) и мембранные системы (эндоплазматический ретикулум, диктиосомы).

От клеточной стенки цитоплазма отделена плазматической мембраной, которая представляет собой элементарную мембрану. В отличие от большинства животных клеток растительные клетки содержат одну или несколько вакуолей. Это пузырьки, заполненные жидкостью и окруженные элементарной мембраной ( тонопластом).

Строение растительной клетки.В живой растительной клетке основное вещество находится в постоянном движении. В движение, называемое током цитоплазмы или циклозом, вовлекается органеллы. Циклоз облегчает передвижение веществ в клетке и обмен ими между клеткой и окружающей средой.

Плазматическая мембрана. Представляет собой бислойную фосфолипидную структуру. Плазматическая мембрана выполняет следующие функции:

-участвует в обмене веществ между клеткой и окружающей средой;

-координирует синтез и сборку целлюлозных микрофибрилл клеточной стенки;

-передает гормональные и внешние сигналы, контролирующие рост и дифференцировку клеток.

Ядро. Это наиболее заметная структура в цитоплазме эукариотической клетки. Ядро выполняет две важные функции:

-контролирует жизнедеятельность клетки, определяя, какие белки, и в какое время должны синтезироваться;

-хранит генетическую информацию и передает её дочерним клеткам в процессе клеточного деления.

Ядро эукариотической клетки окружено двумя элементарными мембранами, образующие ядерную оболочку. Она пронизана многочисленными порами диаметром от 30 до 100 нм, видимыми только в электронный микроскоп. Поры имеют сложную структуру. Наружная мембрана ядерной оболочки в некоторых местах объединяется с эндоплазматическим ретикулумом.

Под световым микроскопом можно рассмотреть сферические структуры – ядрышки. В каждом ядре имеется одно или несколько ядрышек, которые заметны в неделящихся ядрах. В ядрышках синтезируются рибосомные РНК

Нуклеоплазма (кариоплазма) представлена гомогенной жидкостью, в которой растворены различные белки, в том числе и ферменты.

Митохондрии. Как и хлоропласты, митохондрии окружены двумя элементарными мембранами. Внутренняя мембрана образует множество складок и выступов – крист, которые значительно увеличивают внутреннюю поверхность митохондрии. Они значительно меньше, чем пластиды, имеют около 0,5 мкм в диаметре и разнообразны по длине и форме.

В митохондриях осуществляется процесс дыхания, в результате которого органические молекулы расщепляются с высвобождением энергии и передачей её молекулам АТФ, основного резерва энергии всех эукариотических клеток.

Микротельца. В отличие от пластид и митохондрий, которые отграничены двумя мембранами, микротельца представляют собой сферические органеллы, окруженные одной мембраной. Микротельца имеют гранулярное (зернистое) содержимое, иногда в них встречаются и кристаллические белковые включения. Вакуоли – это отграниченные мембраной участки клетки, заполненные жидкостью – клеточным соком. Они окружены тонопластом (вакуолярной мембраной).

Вакуоли – места накопления продуктов обмена веществ (метаболизма). Это могут быть белки, кислоты и даже ядовитые для человека вещества (алкалоиды). Часто откладываются пигментыРибосомы. Маленькие частицы (17 – 23нм), состоящие примерно из равного количества белка и РНК. В рибосомах аминокислоты соединяются с образованием белков. Эндоплазматический ретикулум. Это сложная трехмерная мембранная система неопределенной протяженности. В разрезе ЭР выглядит как две элементарные мембраны с узким прозрачным пространством между ними.



infopedia.su

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *