Особенности бесполого и полового размножения
Живой материи присущи два основных свойства, которыми неорганический мир не располагает, — способность к обмену веществ и размножению. Без этих свойств немыслима жизнь, сложившаяся на нашей планете.
В основе всех видов размножения одноклеточных и многоклеточных организмов лежит один универсальный процесс — деление клетки.
Существуют два способа размножения: бесполое и половое. Они принципиально отличаются друг от друга. При бесполом размножении одна клетка делится на две или более дочерние, каждая из которых способна воспроизвести целый организм. При половом размножении, как правило, две клетки (мужская и женская), морфологически и физиологически не различающиеся или различающиеся, соединяются и дают начало одной клетке, которая затем делится.
Всем животным, растениям и микроорганизмам свойствен тот или другой способ размножения; у некоторых организмов в жизненном цикле имеются оба способа размножения. Даже у человека встречается бесполое размножение — в случае рождения однояйцевых близнецов.
Формы полового и бесполого размножения чрезвычайно разнообразны. Половое размножение, например, в отдельных случаях Может происходить на основе только яйцеклетки (партеногенез).
Указанные два способа размножения имеют то общее, что они осуществляются при помощи отдельных клеток и поэтому могут быть объединены одним понятием — цитогония.
От цитогонии некоторые авторы отличают вегетативное размножение, при котором новое поколение воспроизводится не из отдельной клетки, а из группы клеток эмбриональной или специализированной соматической ткани или из отдельных органов. В основе вегетативного размножения, как и цитогонии, лежит процесс клеточного деления. Возникающие при этом организмы оказываются также сходными с родительскими. Вегетативное размножение часто встречается в растительном мире: новые растения развиваются из вегетативных органов — клубней, луковиц, корневищ, участков мицелия (у грибов) и т. д. Вегетативное размножение широко используется человеком в практике для сохранения ценных сортов растений.
Большинство животных и высших растений размножается половым путем. Половое размножение животных и растений возникло в процессе эволюции как высшая форма воспроизведения потомства. Бесполое размножение является более древним типом размножения, оно является наиболее универсальным: бесполое размножение имеет место при формировании многоклеточного организма, поскольку деление клетки лежит в основе процесса роста, а также при смене поколений.
С возникновением многоклеточных организмов появилась и специализация тканей: возникли соматические ткани (мышечная, нервная, соединительная и др.), обособилась также ткань, дающая начало половым клеткам (половая, или генеративная, ткань). Соматические ткани приобрели различные физиологические функции, обеспечивающие рост, развитие и жизнедеятельность организма. В процессе филогенеза в большинстве своем специализированные клетки этих тканей утратили свойство воспроизведения целого организма из одиночной клетки. Лишь некоторые из тканей сохранили такое свойство.
Однако клетки половой ткани в многоклеточном организме не только сохранили древнюю функцию воспроизведения целого организма из единичной клетки, но и совершенствовали ее в процессе эволюции. Именно они взяли на себя основную функцию организма — функцию воспроизведения.
Каждый тип размножения имеет свои преимущества в воспроизведении и сохранении вида. В случае полового размножения возрастает численность потомства (в расчете на один материнский организм) и увеличивается его наследственная изменчивость, что облегчает отбор наиболее приспособленных форм. При этом обеспечивается смена поколений. Половое размножение повышает лабильность — динамичность филогенеза, облегчает и ускоряет изменение направления отбора в условиях изменяющейся внешней среды.
При бесполом и вегетативном размножении, напротив, наследственное разнообразие потомства ограничивается, так как генетически потомки в основном идентичны, но создаются безграничные возможности повышения численности потомков одной особи со сходной наследственностью. Сохранение сходства организмов обусловливается, во-первых, наличием воспроизводящихся элементов клетки, во-вторых, механизмом деления, обеспечивающим закономерное распределение основных структур клетки.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
www.activestudy.info
В чем заключается биологическая сущность размножения
Биологическая роль размножения состоит в том, что оно обеспечивает смену поколений. Различия, закономерно проявляющиеся в фенотипах особей разных поколений, делают возможным естественный отбор и, следовательно, эволюцию жизни.1. Размножение и его значение. Размножение — воспроизведение себе подобных организмов, что обеспечивает существование видов в течение многих тысячелетий, способствует увеличению численности особей вида, преемственности жизни. Бесполое, половое и вегетативное размножение организмов.
2. Бесполое размножение — наиболее древний способ. В бесполом участвует один организм, в то время как в половом чаще всего участвуют две особи. У растений бесполое размножение с помощью споры — одной специализированной клетки. Размножение спорами водорослей, мхов, хвощей, плаунов, папоротников. Высыпание спор из растений, прорастание их и развитие из них новых дочерних организмов в благоприятных условиях. Гибель огромного числа спор, попадающих в неблагоприятные условия. Невысокая вероятность появления новых организмов из спор, поскольку они содержат мало питательных веществ и проросток поглощает их в основном из окружающей среды.
3. Вегетативное размножение — размножение растений с помощью вегетативных органов: надземного или подземного побега, части корня, листа, клубня, луковицы. Участие в вегетативном размножении одного организма или его части. Сходство дочернего растения с материнским, так как оно продолжает развитие материнского организма. Большая эффективность и распространение вегетативного размножения в природе, так как дочерний организм формируется быстрее из части материнского, чем из споры. Примеры вегетативного размножения: с помощью корневищ — ландыш, мята, пырей и др. ; укоренением нижних, касающихся почвы ветвей (отводками) — смородина, дикий виноград; усами — земляника; луковицами — тюльпан, нарцисс, крокус. Использование вегетативного размножения при выращивании культурных растений: клубнями размножают картофель, луковицами — лук и чеснок, отводками — смородину и крыжовник, корневыми отпрысками — вишню, сливу, черенками — плодовые деревья.
4. Половое размножение. Сущность полового размножения в формировании половых клеток (гамет) , слиянии мужской половой клетки (сперматозоида) и женской (яйцеклетки) — оплодотворении и развитии нового дочернего организма из оплодотворенной яйцеклетки. Благодаря оплодотворению получение дочернего организма с более разнообразным набором хромосом, значит, с более разнообразными наследственными признаками, вследствие чего он может оказаться более приспособленным к среде обитания. Наличие полового размножения у водорослей, мхов, папоротников, голосеменных и покрытосеменных. Усложнение полового процесса у растений в процессе их эволюции, появление наиболее сложной формы у семенных растений.
5. Семенное размножение происходит с помощью семян, оно характерно для голосеменных и покрытосеменных растений (у покрытосеменных широко распространено и вегетативное размножение) . Последовательность этапов семенного размножения: опыление — перенос пыльцы на рыльце пестика, ее прорастание, появление путем деления двух спермиев, их продвижение в семязачаток, затем слияние одного спермия с яйцеклеткой, а другого — со вторичным ядром (у покрытосеменных) . Формирование из семязачатка семени — зародыша с запасом питательных веществ, а из стенок завязи — плода. Семя — зачаток нового растения, в благоприятных условиях оно прорастает и первое время проросток питается за счет питательных веществ семени, а затем его корни начинают поглощать воду и минеральные вещества из почвы, а листья — углекислый газ из воздуха на солнечном свету. Самостоятельная жизнь нового растения.
otvet.mail.ru
Размножение и его цитологические основы. Особенности полового размножения у млекопитающих. Биологическая сущность нерегулярных типов полового размножения
Министерство здравоохранения Республики Беларусь
УО «Гомельский государственный медицинский университет»
Кафедра медицинской биологии и генетики
Обсуждено на заседании кафедры
Протокол № ____ от «___»_________________20___ года
ЛЕКЦИЯ № 4
по медицинской биологии и генетике
для студентов 1 курса
лечебного, медико-профилактического и медико-диагностического
факультетов
Тема: «Размножение и его цитологические основы».
Время — 90 мин.
Учебные и воспитательные цели:
1. Знать эволюцию форм размножения организмов, сущность бесполого и полового размножения.
2. Выделить особенности полового размножения у млекопитающих.
3. Ознакомить с биологической сущностью нерегулярных типов полового размножения.
ЛИТЕРАТУРА:
1. — биология. Курс лекций для студентов мед. ВУЗов. — Витебск, 2000 с. 70-84.
2. Биология /Под ред.В.Н. Ярыгина/ 1-я книга — М.:Вш,1997. — с. 202-220.
3. О.-Я. Л. , Л.А. Храмцова. Практикум по мед.биологии. — Изд. «Белый Ветер», 2000 - с. 33-38.
4. Заяц Р.Г., Рачковская И.В. Основы общей и медицинской генетики. Мн.: ВШ, 1998. — с.29-31.
МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ
1. Мультимедийная презентация.
РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ
№ п/п |
Содержание |
Расчет рабочего времени |
1. |
Размножение — универсальное свойство живого. |
5 |
2. |
Бесполое размножение, его виды и биологическое значение. |
15 |
3. |
Половое размножение, его виды. |
15 |
4. |
Гаметогенез. Закономерности овогенеза и сперматогенеза у млекопитающих. Особенности строения гамет. |
20 |
5. |
Оплодотворение, его фазы, биологическая сущность. Моно- и полиспермия. |
10 |
6. |
Особенности репродукции у человека, ее гормональная регуляция. |
25 |
Всего: |
90 |
Вопрос 1
Размножение — способность организмов к самовоспроизведению. Свойства организмов производить потомство. Это является условием существования вида, в основе которого — передача генетического материала.
Вопрос 2
Существует два основных типа размножения: бесполое и половое.
Бесполое размножение — участвует одна особь; образуются особи генетически идентичные исходной родительской особи; половые клетки не образуются; нет генетического разнообразия. Бесполое размножение усиливает роль стабилизирующей функции естественного отбора, обеспечивает сохранение приспособленности в изменяющихся условиях обитания.
Встречается два вида бесполого размножения: вегетативное и спорообразование. Частным случаем является полиэмбриония у позвоночных — бесполое размножение на ранних стадиях эмбрионального развития. Впервые описано И. Мечниковым на примере расщепления бластул у медузы и развитие из каждого агрегата клеток целого организма. У человека примером полиэмбрионии является развитие двойни однояйцевых однополых близнецов.
Размножение на организменном уровне
Бесполое
Вегетативное: |
Спорообразование: |
Размножение группой соматических клеток. 1. Простое деление надвое: у прокариот, и одноклеточных эукариот. 2. Шизогония (эндогония): у одноклеточных: жгутиковых и споровиков. 3. Почкование: у одноклеточных дрожжей; у многоклеточных — гидры. 4. Фрагментация: у многоклеточных червей. 5. Полиэмбриония. 6. Вегетативными органами: образование стеблевых, корневых почек, луковицами, клубнями. Упорядоченное деление: равномерный, продольный, и поперечный амитоз у морской звезды и кольчатых червей. |
Спора – специализированная клетка с гаплоидным набором хромосом. Образуется мейозом, реже – митозом на материнском растении спорофите в спорангиях. Встречается у простейших эукариот, водорослей, грибов, мхов, папоротников, хвощей, плаунов. |
Вопрос 3
Эволюционно половому размножению предшествовал половой процесс — конъюгация. Конъюгация обеспечивает обмен генетической информации без увеличения количества особей. Встречается у простейших эукариот, водорослей и бактерий.
Половое размножение — возникновение и развитие потомства из оплодотворенной яйцеклетки — зиготы. В ходе исторического развития половое размножение организмов стало доминирующим в растительном и животном мире. Оно имеет ряд преимуществ:
1. Высокий коэффициент размножения. Большое количество зачатков новых особей.
2. Полное обновление генетического материала. Источник наследственной изменчивости. Успех в борьбе за существование.
3. Большие адаптивные способности дочерних особей.
Половое размножение характеризуется следующими особенностями:
1. Участвуют две особи.
2. Источником образования новых организмов служат специальные клетки – гаметы, обладающие половой дифференцировкой.
3. Для образования нового организма необходимо слияние двух половых клеток. Достаточно 1 клетки каждого родителя.
4. Деление — мейоз, обеспечивает эволюционные перспективы.
У эукариот сформировались следующие виды полового размножения:
vunivere.ru
Размножение организмов
Размножение — способность живых существ воспроизводить себе подобных. При этом обеспечивается непрерывность и преемственность жизни.
Принято различать бесполое и половое размножение.
Признак | Размножение | |
---|---|---|
бесполое | половое | |
Родители | Одна особь | Обычно две особи (разного пола) |
Потомство | Генетически точная копия родителя (клон) | Генетически отличны от обоих родителей |
Главный клеточный механизм | Митоз | Мейоз |
Время возникновения | Раньше полового | Позже бесполого |
Клеточные источники наследственной информации для развития потомка | Многоклеточные: одна или несколько соматических клеток родителя; одноклеточные: клетка-организм как целое | Родители образуют половые клетки (гаметы) |
Эволюционное значение | Обеспечивает воспроизведение большого количества идентичных особей, поддерживает наибольшую приспособленность в маломеняющихся условиях обитания, способствует стабилизирующему естественному отбору. Более выгодно в относительно постоянных условиях | Обеспечивает биологическое разнообразие видов, возможность освоения разнообразных условий обитания, увеличивает эволюционные перспективы, способствует движущему естественному отбору. Более выгодно в изменяющихся условиях |
Процесс полового размножения обычно осуществляется между двумя физиологически различными особями — мужской и женской. Они формируют особые половые клетки (гаметы), при слиянии которых образуется зигота. При этом геномы родительских клеток смешиваются, поэтому потомки генетически отличаются от каждого из родителей и друг от друга. У гермафродитов половое размножение может происходить с участием только одной особи, но только в случаях отсутствия второй особи этого вида, поскольку получение генетической информации от двух разных организмов эволюционно более предпочтительно.
В процессе бесполого размножения участвует только одна особь. Образования гамет не происходит. Организм либо просто делится на две или более частей, либо формирует специальные структуры, из которых восстанавливаются новые индивиды, генетически идентичные материнской особи.
Бесполое размножение возникло раньше полового. Оно обеспечивает воспроизведение большого числа идентичных особей и более выгодно в относительно постоянных условиях.
Половое размножение появилось более 3 млрд лет назад. При половом размножении происходит объединение генетической информации от двух особей одного вида (родителей) в наследственном материале потомка. Следовательно, биологическое значение полового размножения заключается не только в самовоспроизведении особей, но и в обеспечении биологического разнообразия видов, их адаптивных возможностей и эволюционных перспектив. Это делает половое размножение биологически более прогрессивным, чем бесполое.
Updated: 19.10.2014 at 6:57 пп
jbio.ru
Биологическое значение размножения
Что такое размножение
Размножение или репродукция, присущая всем живым существам функция воспроизведения себе подобных. В отличие от всех других жизненно важных функций организма, размножение направлено не на поддержание жизни отдельной особи, а на сохранение ее генов в потомстве и продолжение рода— тем самым на сохранение генофонда популяции, вида, семейства и т.д.
Молекулярную основу процессов размножения всех организмов составляет способность ДНК к самоудвоению. В результате генетический материал воспроизводится в строении и функционировании дочерних организмов.
Размножение происходит на следующих уровнях организации:
• молекулярно-генетическом (репликация ДНК),
• клеточном (амитоз, митоз),
• организменном.
Биологическое значение размножения
Способность к размножению – одна из важнейших особенностей живого. В процессе размножения происходит передача генетического материала от родителей потомкам. Значение размножения для вида в целом состоит в непрерывном восполнении количества особей данного вида, умирающих по различным причинам. Кроме того, размножение позволяет в благоприятных условиях увеличить количество особей.
Выделяют два типа размножения — бесполое и половое.
Бесполый тип размножения более прост и его биологическая роль в процессе эволюции меньше, чем полового.
Бесполое размножение широко распространено у бактерий, водорослей. При нем происходит деление бактерии, представляющей собою организм, состоящий из одной клетки, на две новые клетки.
Бесполое размножение может осуществляться также путем побегов, корневищ, отводков, что распространено у многих высших растений. В садоводстве и полеводстве часто используют этот способ для быстрого размножения полезных растений. Биологическая наука достигла таких успехов, когда с помощью отдельных клеток или кусочка ткани можно быстро размножить ценные растения. Вегетативное размножение позволяет быстро получить большое количество посадочного материала и высокие урожаи. Потомство получается однородным по своим наследственным свойствам. Это как бы бесчисленные копии одного единственного родителя. Эта особенность часто используется в селекции, когда хотят сохранить какие-либо полезные качества, широко используются в практике сельского хозяйства, для сохранения ценных сортов.
Бесполое размножение простым делением встречается, но значительно реже, и у животных (у одноклеточных животных вроде амебы и инфузорий, у некоторых червей).
При вегетативном размножении жизнь организма, из которого образовалось потомство, как бы продолжается, а не возникает заново. Так, поставленная в воду срезанная ветка даст корни и будет продолжать развитие с того состояния, в котором находилось дерево, с которого она была взята. Ветка, срезанная с дерева весной, распустит почки и будет зеленеть; ветка, срезанная осенью, даст опадание листьев.
Более сложный и биологически более полезный в эволюционном отношении тип размножения — половой.Биологическую роль полового размножения вскрыл впервые Ч. Дарвин. Под влиянием идеалистических теорий менделизма-морганизма-вейсманизма эти исследования Дарвина были забыты многими биологами. И только благодаря работам наших отечественных ученых К. А. Тимирязева и особенно И. В. Мичурина и академика Т. Д. Лысенко труды Дарвина по оплодотворению были углублены и достигнуто правильное понимание значения полового размножения и биологической сущности процесса оплодотворения.
Биологическое значение полового размножения в процессе эволюции заключается в том, что оно создает более сильное, более жизненное потомство,чем потомство, получаемое от бесполого размножения.
Как мы уже говорили, организм, полученный от вегетативного размножения, продолжает тот этап развития, в котором находился организм, отделивший этот новый, т. е. срезанная ветка дерева, превращенная в самостоятельный организм, будет иметь тот же возраст и тот же этап развития, какие имело дерево, от которого ее отделили. У потомства, полученного от вегетативного размножения, обнаруживается понижение жизненности и как бы преждевременное одряхление.
Интересным примером этого служит работа Т. Д. Лысенко с пирамидальным тополем. Это быстро растущее дерево, очень нужное для полезащитных насаждений, имеет один большой недостаток — оно быстро стареет и начинает суховершинить. Академик Т. Д. Лысенко вскрыл причину этого и нашел меры борьбы. Ранняя суховершинность, т. е. раннее старение объясняется тем, что пирамидальный тополь размножается у нас ветками и черенками, т. е. вегетативным бесполым путем. Разводя его так многие столетия, мы получаем с каждым поколением все менее жизненные организмы. Половым же путем тополь не размножался, так как деревьев, имеющих женские цветки, в Советском Союзе оказалось очень мало, а деревья с мужскими цветками после цветения не могут оставить потомства. Вот почему размножения тополя семенами не происходило.
По заданию академика Т. Д. Лысенко были отысканы редко встречающиеся экземпляры деревьев с женскими цветками. Было произведено искусственное опыление этих цветков пыльцой и получены семена. Из полученных семян выращены были еще перед Великой Отечественной войной тополевые сеянцы, обладающие крепостью, скорым ростом и выносливостью. Такое потомство от полового размножения тополя будет более долголетним и не имеет преждевременной суховершинности.
Из этого примера видно, что половое размножение имеет большое значение в создании крепкого, жизненного потомства. Это означает, что половое размножение биологически полезно в жизни животных и растений.
Кроме тогополовое размножение увеличивает наследственную изменчивость и предоставляет материал для естественного отбора. В результате повышаются приспособительные возможности организмов к меняющимся условиям внешней среды. Оно обеспечивает биологическое разнообразие видов, повышение их адаптивных возможностей и эволюционных перспектив.
Типы размножения
Все разнообразие способов размножения можно разделить на два основных типа: бесполое (его вариант – вегетативное) размножение и половое размножение.
В бесполой форме размножение осуществляется родительской особью самостоятельно, без обмена наследственной информацией с другими особями. Дочерний организм образуется путем отделения от родительской особи одной или нескольких соматических (телесных) клеток и дальнейшего их размножения посредством митоза. Потомство наследует признаки родителя, являясь в генетическом отношении его точной копией. Различают несколько типов бесполого размножения.
В половом размножении, в отличие от бесполого, участвует пара особей. Их половые клетки (гаметы) несут гаплоидные наборы хромосом. В процессе оплодотворения гаметы сливаются и образуют диплоидную оплодотворенную яйцеклетку (зиготу), которая дает начало новому организму.
Одна из гомологичных хромосом соматической клетки достается от «мамы», а другая — от «папы». В результате части генетического материала родительских особей объединяются, и в потомстве появляются новые комбинации генов. Разнообразие генетического материала позволяет потомству успешнее приспосабливаться к изменяющимся внешним условиям. В обогащении наследственной информации состоит главное преимущество полового размножения, его основное биологическое значение.
Формы бесполого размножения
Различают несколько форм бесполого размножения:
Простое деление. Особенно распространено бесполое размножение у бактерий и синезеленых водорослей. Единственная клетка этих безъядерных организмов разделяется пополам или сразу на несколько частей. Каждая часть является целостным функциональным организмом. Простым делением размножаются амебы, инфузории, эвглены и другие простейшие. Разделение происходит посредством митоза, поэтому дочерние организмы получают от родительских тот же набор хромосом.
Почкование. Этот тип размножения используют как одноклеточные, так и некоторые многоклеточные организмы: дрожжи (низшие грибы), инфузории, коралловые полипы. Почкование у пресноводных гидр происходит следующим образом. Сначала на стенке гидры образуется вырост, который постепенно удлиняется. На его конце появляются щупальца и ротовое отверстие. Из почки вырастает маленькая гидра, которая отделяется и становится самостоятельным организмом. У других существ почки могут оставаться на теле родителя.
Фрагментация. Ряд плоских и кольчатых червей, иглокожие (морские звезды) могут размножаться посредством расчленения тела на несколько фрагментов, которые затем достраиваются до целостного организма. В основе фрагментации лежит способность многих простых существ к регенерации утраченных органов. Так, если от морской звезды отделить луч, то из него вновь разовьется морская звезда. Гидра способна восстановиться из 1/200 части своего организма. Обычно размножение фрагментацией происходит при повреждениях. Самопроизвольную фрагментацию осуществляют только плесневые грибы и некоторые морские кольчатые черви.
Спорообразование. Родоначальницей нового организма может стать специализированная клетка родительского существа — спора. Такой способ размножения характерен для растений и грибов. Размножаются спорами многоклеточные водоросли, мхи, папоротники, хвощи и плауны. Споры представляют собой клетки, покрытые прочной оболочкой, защищающей их от чрезмерной потери влаги и устойчивой к температурным и химическим воздействиям. Споры наземных растений пассивно переносятся ветром, водой, живыми существами. Попадая в благоприятные условия, спора раскрывает оболочку и приступает к митозу, образуя новый организм. Водоросли и некоторые грибы, обитающие в воде, размножаются зооспорами, снабженными жгутиками для активного передвижения.
Одноклеточное животное малярийный плазмодий (возбудитель малярии) размножается посредством шизогонии— множественного деления. Сначала в его клетке путем делений формируется большое количество ядер, затем клетка распадается на множество дочерних.
Вегетативное размножение. Этот вид бесполого размножения широко распространен у растений. В отличие от спорообразования, вегетативное размножение осуществляется не особыми специализированными клетками, а практически любыми частями вегетативных органов. Многолетние дикорастущие травы размножаются корневищами (осот дает до 1800 особей/м2 почвы), земляника — усами, а виноград, смородина и слива — отводками. Картофель и георгины используют для размножения клубни — видоизмененные подземные участки корня. Тюльпаны и лук размножаются луковицами. У деревьев и кустарников укореняются с образованием нового растения побеги — черенки, а у бегонии роль черенков способны выполнять листья. Черенками размножают малину, сливу, вишню и розы. На корнях и пнях деревьев образуется поросль, которая затем превращается в самостоятельные растения.
Клонирование. Как уже говорилось, получение идентичных потомков при помощи бесполого размножения называют клонированием. В естественных условиях клоны появляются редко. Общеизвестный пример естественного клонирования, существующего в природе и имеющего место у человека – однояйцевые близнецы, развившиеся из одной яйцеклетки (Это обязательно дети одного пола). До шестидесятых годов двадцатого века клоны получали искусственным путем исключительно при вегетативном размножении растительных организмов, чаще всего для сохранения сортовых признаков и при получении культур микроорганизмов, используемых в медицине. В начале шестидесятых годов были разработаны методы, позволяющие успешно клонировать некоторые высшие растения и животных путем выращивания из отдельных клеток. Такого рода эксперименты не только доказывают, что дифференцированные (специализированные) клетки содержат всю информацию, необходимую для развития целого организма, но и позволяют рассчитывать, что подобные методы можно будет использовать для клонирования позвоночных, стоящих на более высоких ступенях развития, в том числе и человека. Техника клонирования сулит, в первую очередь, большие перспективы для животноводства, так как дает возможность получать от любого животного, обладающего ценными качествами, многочисленные генетически идентичные копии с теми же признаками. Клонирование нужных животных, например племенных быков, скаковых лошадей и т.п., может оказаться столь же выгодным, как и клонирование растений, которое, как было сказано, уже производится. Также одна из возможных областей применения данной технологии клонирование редких и исчезающих видов диких животных.
Формы полового размножения
У животных чаще встречается раздельнополость, т. е. наличие мужских и женских особей (самцов) и (самок), которые нередко различаются по размерам и внешнему виду (половой диморфизм). Половые клетки образуются в специальных органах — половых железах. Мелкие, снабженные жгутиком, подвижные сперматозоиды формируются в семенниках, а крупные неподвижные яйцеклетки (яйца) — в яичниках.Процесс оплодотворения у многоклеточных организмов, как и у одноклеточных, заключается в слиянии мужских и женских гамет. Как правило, затем сразу же происходит и слияние их ядер с образованием диплоидной зиготы (оплодотворенной яйцеклетки)
Сформировавшаяся зигота объединяет в своем ядре гаплоидные наборы хромосом родительских организмов. У развивающегося из зиготы дочернего организма происходит комбинирование наследственных признаков обоих родителей.
У многоклеточных организмов различают наружное оплодотворение (при слиянии гамет вне организма) и внутреннее оплодотворение, происходящее внутри родительского организма. Наружное может осуществляться только в водной среде, поэтому оно наиболее широко встречается у водных организмов (водорослей, кишечнополостных, рыб). Наземным организмам чаще свойственно внутреннее оплодотворение (высшие семенные растения, насекомые, высшие позвоночные животные).
Различают также перекрестное оплодотворение (при слиянии гамет от разных особей) и самооплодотворение (при слиянии мужских и женских гамет, продуцируемых двуполым организмом — гермафродитом, например, у некоторых паразитических червей). Цветковым растениям присуще двойное оплодотворение, при котором один спермий сливается с яйцеклеткой, а второй — с диплоидной центральной клеткой зародышевого мешка. В результате образуются зигота и триплоидная клетка, дающая начало эндосперму — ткани, в клетках которой запасаются питательные вещества, необходимые для развития зародыша.
Нетипичное половое размножение
Партеногенез (девственное размножение). Открыт в середине XVIII в. швейцарским натуралистом Ш. Бонне. Партеногенез встречается у растений и животных. При нем развитие дочернего организма осуществляется из неоплодотворенной яйцеклетки. Причем образующиеся дочерние особи, как правило, либо мужского пола (трутни у пчел), либо женского (у кавказских скальных ящериц), кроме того, могут рождаться потомки обоих полов (тли, дафнии). Количество хромосом у партеногенетических организмов может быть гаплоидным (самцы пчел) или диплоидным (тли, дафнии).
Значение партеногенеза:
1) размножение возможно при редких контактах разнополых особей;
2) резко возрастает численность популяции, так как потомство, как правило, многочисленно;
3) встречается в популяциях с высокой смертностью в течение одного сезона.
Виды партеногенеза:
1) облигатный (обязательный) партеногенез. Встречается в популяциях, состоящих исключительно из особей женского пола (у кавказской скалистой ящерицы). При этом вероятность встречи разнополых особей минимальна (скалы разделены глубокими ущельями). Без партеногенеза вся популяция оказалась бы на грани вымирания;
2) циклический (сезонный) партеногенез (у тлей, дафний, коловраток). Встречается в популяциях, которые исторически вымирали в больших количествах в определенное время года. У этих видов партеногенез сочетается с половым размножением. При этом в летнее время существуют только самки, которые откладывают два вида яиц — крупные и мелкие. Из крупных яиц партеногенетически появляются самки, а из мелких — самцы, которые оплодотворяют яйца, лежащие зимой на дне. Из них появляются исключительно самки; факультативный (необязательный) партеногенез. Встречается у общественных насекомых (ос, пчел, муравьев). В популяции пчел из оплодотворенных яиц выходят самки (рабочие пчелы и царицы), из неоплодотворенных — самцы (трутни). У этих видов партеногенез существует для регулирования численного соотношения полов в популяции.
Выделяют также естественный (существует в естественных популяциях) и искусственный (используется человеком) партеногенез. Этот вид партеногенеза исследовал В. Н. Тихомиров. Он добился развития неоплодотворенных яиц тутового шелкопряда, раздражая их тонкой кисточкой или погружая на несколько секунд в серную кислоту (известно, что шелковую нить дают только самки).
Гиногенез(у костистых рыб и некоторых земноводных). Сперматозоид проникает в яйцеклетку и лишь стимулирует ее развитие. Ядро сперматозоида при этом с ядром яйцеклетки не сливается и погибает, а источником наследственного материала для развития потомка служит ДНК ядра яйцеклетки.
Андрогенез. В развитии зародыша участвует мужское ядро, привнесенное в яйцеклетку, а ядро яйцеклетки при этом гибнет. Яйцеклетка дает лишь питательные вещества своей цитоплазмы.
Полиэмбриония. Зигота (эмбрион) делится на несколько частей бесполым способом, каждая из которых развивается в самостоятельный организм. Встречается у насекомых (наездников), броненосцев. У броненосцев клеточный материал первоначально одного зародыша на стадии бластулы равномерно разделяется между 4—8 зародышами, каждый из которых в дальнейшем дает полноценную особь. К этой категории явлений можно отнести появление однояйцовых близнецов у человека.
Что такое мейоз
Мейоз — особый тип деления клеток, в результате которого образуются половые клетки.
В отличии от митоза, при котором сохраняется число хромосом, получаемых дочерними клетками, при мейозе число хромосом в дочерних клетках уменьшается вдвое.
Процесс мейоза состоит из двух последовательных клеточных делений — мейоза I (первое деление) и мейоза II (второе деление).
Удвоение ДНК и хромосом происходит только перед мейозом I.
В результате первого деления мейоза, называемого редукционным, образуются клетки с уменьшенным вдвое числом хромосом. Второе деление мейоза заканчивается образованием половых клеток. Таким образом, все соматические клетки организма содержат двойной, диплоидный (2n), набор хромосом, где каждая хромосома имеет парную, гомологичную хромосому. Зрелые половые клетки имеют лишь одинарный, гаплоидный (n), набор хромосом и соответственно вдвое меньшее количество ДНК.
Биологическая роль мейоза
Если бы в процессе мейоза не происходило уменьшения числа хромосом, то в каждом следующем поколении при слиянии ядер яйцеклетки и сперматозоида число хромосом увеличивалось бы бесконечно. Благодаря мейозу зрелые половые клетки получают гаплоидное (n) число хромосом, при оплодотворении же восстанавливается свойственное данному виду диплоидное (2n) число.
При мейозе гомологичные хромосомы попадают в разные половые клетки, а при оплодотворении парность гомологичных хромосом восстанавливается. Следовательно, обеспечивается постоянство для каждого вида полных диплоидных наборов хромосом и постоянное количество ДНК.
Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом определяют закономерности наследственной передачи признака от родителей потомству. Из каждой пары двух гомологичных хромосом (материнской и отцовской), входивших в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится лишь одна хромосома. Она может быть:
o отцовской хромосомой;
o материнской хромосомой;
o отцовской с участком материнской;
o материнской с участком отцовской.
Эти процессы возникновения большого количества качественно различных половых клеток способствуют наследственной изменчивости.
В отдельных случаях вследствие нарушения процесса мейоза, при нерасхождении гомологичных хромосом, половые клетки могут не иметь гомологичной хромосомы или, наоборот, иметь обе гомологичные хромосомы. Это приводит к тяжелым нарушениям в развитии организма или к его гибели.
Отличие мейоза от митоза
Все живое имеет клеточное строение. Клетки живут: растут, развиваются и делятся. Их деление может происходить различными способами: в процессе митоза или мейоза. Оба этих способа имеют одинаковые фазы деления, предваряя эти процессы, происходят спирализация хромосом и самостоятельное удвоение в них молекул ДНК. Рассмотрим, в чем заключается отличие митоза от мейоза.
Митоз является универсальным способом непрямого деления клеток, имеющих ядро, то есть клеток животных, растений, грибов. Слово «митоз» произошло от греческого «митос», что означает «нить». Его еще называют вегетативным способом размножения или клонированием.
Мейоз – это также способ деления аналогичных клеток, но число хромосом в ходе мейоза уменьшается в два раза. Основой происхождения названия «мейоз» стало греческое слово «меёсис», то есть «уменьшение».
Процесс деления
В процессе митоза каждая хромосома расщепляется на две дочерние и распределяется по двум вновь образовавшимся клеткам. Жизнь образовавшихся клеток может развиваться по-разному: обе могут продолжать деление, делится дальше только одна клетка, в то время, как другая теряет такую способность, обе клетки утрачивают способность делиться.
Мейоз состоит из двух делений. В первом делении число хромосом становится меньше в два раза, из диплоидной клетки получаются две гаплоидные, при этом в каждой хромосоме имеется по две хроматиды. Во втором делении число хромосом не уменьшается, лишь образуется четыре клетки с хромосомами, которые содержат по одной хроматиде.
Конъюгация
В процессе мейоза в первом делении происходит слияние гомологичных хромосом, при митозе любые виды спаривания отсутствуют.
Выстраивание
В процессе митоза удвоенные хромосомы выстраиваются по экватору по раздельности, в то время как при мейозе аналогичное выстраивание происходит парами.
Итог процесса деления
В результате митоза происходит образование двух соматических диплоидных клеток. Важнейшим аспектом этого процесса является то, что наследственные факторы в ходе деления не изменяются.
Итогом мейоза является появление четырех половых гаплоидных клеток, наследственность которых изменена.
Размножение
Мейоз происходит в созревающих половых клетках и является основой полового размножения.
Митоз является основой бесполого размножения соматических клеток, причем это единственный способ их самовосстановления.
Биологическое значение
В процессе мейоза поддерживается постоянное число хромосом и кроме того происходит появление новых соединений наследственных задатков в хромосомах.
При митозе происходит удвоение хромосом в ходе их продольного расщепления, которые равномерно распределяются по дочерним клеткам. Объем и качество исходной информации не меняется, и сохраняется в полной мере.
Митоз является основой индивидуального развития всех многоклеточных организмов.
Таким образом, основные отличия митоза от мейоза:
- Митоз и мейоз – это способы деления клеток, содержащих в своем составе ядро.
- Митоз происходит в соматических клетках, мейоз – в половых.
- При митозе происходит одно деление клетки, мейоз предполагает деление в две стадии.
- В результате мейоза происходит уменьшение числа хромосом в 2 раза, в процессе митоза – сохранение исходного числа хромосом в дочерних клетках.
Генетические аспекты мейоза
Процессы деления клеток лежат в основе роста и размножения любых организмов, развития и преемственности жизни на Земле. У многоклеточных организмов с половым размножением различают два типа деления клеток: митоз и мейоз. Хотя известны они давно, их молекулярные механизмы во многом еще далеки от понимания. Даже у цитологов, изучающих структуру и функционирование клеток, есть разногласия о функциях ряда структур, которые появляются в процессе клеточного деления.
Центральную роль в обоих типах деления играет самокопирование и распределение по дочерним клеткам носителей генов – хромосом. У растений и животных хромосомы представляют собой гигантские линейные молекулы ДНК, связанные с белками. Именно ДНК обладает свойством самокопирования, или репликации. Хромосомы не одинаковы по составу ДНК. Каждая из них содержит лишь часть общего набора генов. Число и структура хромосом постоянны у большинства особей одного вида. У высших организмов набор хромосом парный – половина от матери, другая – от отца. Такие пары называют гомологичными.
Суть митоза состоит в репликации (удвоении) и точном распределении между дочерними клетками набора хромосом клеточного ядра. Так обеспечивается воспроизведение материальных носителей наследственной информации. В случае же мейоза происходит сокращение вдвое (редукция) числа хромосом. Образующиеся в результате мейотического деления половые клетки, или гаметы, несут лишь по одному гомологу каждой пары хромосом. Именно особенности мейоза лежат в основе законов наследования Менделя и хромосомной теории наследственности. Независимое наследование разных генов и их сочетание у потомков основано на независимом расхождении разных пар гомологичных хромосом в гаметы. Кроме того, в мейозе могут обмениваться гены, лежащие и в одной хромосоме.
Интерес к мейозу особенно возрос в конце 60-х гг., когда выяснилось, что одни и те же ферменты могут принимать участие в процессах воспроизведения ДНК, обмена ее отдельных участков, восстановления повреждений. В последнее время ряд биологов развивает оригинальную идею, заключающуюся в том, что мейоз у высших организмов гарантирует стабильность генетической индивидуальности, т.к. в процессе мейоза, когда пары хромосом-гомологов тесно соприкасаются, происходит проверка нитей ДНК на полную идентичность и восстановление повреждений сразу в обеих нитях.
Изучение мейоза связало методы и интересы двух наук: цитологии и генетики. Это привело к рождению новой ветви знания – цитогенетики, тесно соприкасающейся с молекулярной биологией и генной инженерией. Селекционеров всегда манила перспектива объединить, например, в одном растении полезность культурной пшеницы и продуктивность и устойчивость к внешним повреждающим факторам дикого пырея. Но эта заманчивая идея создания гибридных хромосом натолкнулась на сито мейоза. В мейозе у гибридных растений хромосомы расходились как попало, и в итоге плодовитость падала. Стало ясно, что необходимо выяснить молекулярный механизм гибридизации и то, каким образом контролируется поведение хромосом.
Генетика обладает надежным инструментом изучения сложных процессов путем выявления изменений генов (мутаций), нарушающих ход отдельных стадий. Объектом, удобным с точки зрения цитологии и генетики для систематического поиска и анализа мутаций, нарушающих мейоз (далее в тексте – мей-мутаций), оказалась кукуруза. Это растение, прекрасно изученное и цитологами и генетиками, имеет всего 10 пар относительно крупных хромосом. Кроме того, у кукурузы уже было найдено несколько мей-мутаций.
Поиск новых мутаций был основан на представлении о мейозе как универсальном биологическом процессе, свойственном всем эукариотам. В результате с единых позиций были систематизированы все имевшиеся разрозненные данные о проявлении мей-мутаций у разных объектов – дрожжей, растений, насекомых и человека, что позволило сформулировать концепцию генного контроля мейоза. Но прежде чем изложить ее принципы, необходимо хотя бы в самых общих чертах описать сложный «танец» хромосом при мейотическом редукционном делении клетки. В этом «танце» цитологи выделяют четыре основных фигуры, или фазы: профаза, метафаза, анафаза и телофаза. Суть мейоза можно кратко выразить так: одна репликация хромосом приходится на два последовательных деления клетки. В итоге получаются четыре дочерние половые клетки, которые имеют вдвое меньшее число непарных хромосом (рис. 1).
Центральное событие начальных этапов мейоза – таинственный процесс узнавания друг другом гомологичных хромосом, их попарное сближение и тесное соприкосновение – синапсис (от греч. «соединение, связь»). В ходе синапсиса гомологи обмениваются фрагментами. В световом микроскопе последствия этого обмена видны как перекресты, или хиазмы (рис. 2).
После синаптического танца и обмена фрагментами хромосомы выстраиваются на экваторе клетки. В это время они напоминают пары лыж, сцепленных в районе креплений. Область креплений у хромосомы носит название центромер. Затем в клетке появляется специальный нитевой аппарат, идущий от одного полюса клетки к другому и получивший образное название веретено. Часть нитей веретена в метафазе прикрепляется к центромерам и растаскивает их в разные стороны к полюсам (стадия анафазы). Хромосома без центромеры-крепления не может существовать и сразу же утрачивается, как чемодан без ручки. Точное расхождение гомологичных пар к противоположным полюсам лежит в основе уменьшения их числа вдвое .
Рис. 1. Схема мейоза (для простоты показана одна пара хромосом)
Во втором делении мейоза центромеры разделяются, и образовавшиеся ранее (до первого деления) копии в каждой паре просто расходятся, после чего образуются еще две дочерние клетки, и в итоге их получается четыре). Второе деление мейоза в принципе соответствует митозу. Таков в самом общем виде сценарий основных цитологических картин мейоза у самых разных организмов
Рис. 2. Хиазмы в результате трех отдельных перекрестов хроматид обеих хромосом
Механизмы оплодотворения
Процесс проникновения сперматозоидов в яйцеклетку называется оплодотворением,в результате чего восстанавливается диплоидный набор хромосом, характерный для того или иного вида животных.
Встреча гамет происходит либо внутри половых путей самки (внутреннее оплодотворение), либо во внешней среде, например, в воде (наружное оплодотворение). Яйцеклетка окружена несколькими оболочками, структура которых такова, что только сперматозоид собственного вида может попасть в яйцеклетку. После оплодотворения оболочки яйцеклетки меняются и другие сперматозоиды уже не могут в нее проникнуть.
Сперматозоид приближается к яйцеклетке головкой вперед. В случае если оболочка яйцеклетки мягкая, навстречу ему приподнимается протоплазматический вырост яйца – воспринимающий бугорок, который и втягивает спермий в глубь яйца. После этого почти мгновенно над воспринимающим бугорком появляется тонкая желточная оболочка оплодотворения, наглухо закрывающая сюда доступ остальным спермиям. При плотных оболочках спермии проникают в яйцеклетки через одно из микропилярных отверстий. В процессе оплодотворения различают три фазы.
Первая фаза – сближение. Как при наружном (у рыб, амфибий), так и при внутреннем (у рептилий, птиц и млекопитающих) оплодотворении сперматозоиды в результате хемотаксиса в условиях слабо щелочной среды очень быстро перемещаются по направлению к яйцеклеткам. Смещение рН в кислую сторону, наоборот, парализует спермии. Сперматозоиды млекопитающих обладают способностью двигаться против тока жидкости, направленного из яйцевода, где происходит оплодотворение, в матку. Сближению половых клеток способствуют: перистальтика маточных труб и мерцательное движение ресничек эпителия маточных труб, а также определенная разность потенциалов между положительной электрозарядностью для семенной жидкости и отрицательной для яйцеклетки.
Вторая фаза – проникновение сперматозоида через оболочки яйцеклетки.Контактное взаимодействие гамет наступает, когда сперматозоид сближается с яйцеклеткой. У млекопитающих при оплодотворении в яйцеклетку проникает лишь один сперматозоид. Такое явление называется моноспермией. У беспозвоночных животных, рыб, амфибий, рептилий и птиц возможна полиспермия, когда в яйцеклетку проникает несколько сперматозоидов, но в слиянии ядер (оплодотворении) все равно принимает участие только один. В цитоплазму яйцеклетки проникает головка, шейка и часть хвостового отдела . Проникновение сперматозоида значительно усиливает процессы внутриклеточного обмена, что связано с повышением дыхания и активизацией ферментативных систем яйцеклетки.
Третья фаза – образование мужского и женского пронуклеусов с последующим слиянием их . При этом у многих видов животных ядра мужской и женской клеток во время сближения переходят в состояние метафазы. Затем хромосомы обоих ядер образуют единую материнскую «звезду», но уже с удвоенным (диплоидным) числом хромосом. В других случаях ядра вначале сливаются и затем переходят в состояние кариокинеза. Одновременно внесенные сперматозоидом центриоли расходятся к полюсам клетки, и этот одноклеточный зародыш – зигота вступает во второй период эмбрионального развития – период дробления.
Оплодотворение у животных. Населяющие планету живые организмы различаются строением, образом жизни, средой обитания. Одни из них производят очень много половых клеток, другие — относительно мало. Существует разумная закономерность: чем меньше вероятность встречи мужской и женской гамет, тем большее число половых клеток продуцируют организмы. Рыбам и амфибиям свойственно внешнее осеменение. Их гаметы попадают в воду, где и происходит оплодотворение. Многие гаметы погибают или поедаются другими существами, поэтому эффективность внешнего осеменения очень низка. Для сохранения вида рыбам и амфибиям необходимо производить огромное количество гамет (треска мечет около 10 млн. икринок).
Высшие животные и растения используют внутреннее осеменение. В этом случае процесс оплодотворения и образующаяся зигота защищены организмом матери. Вероятность оплодотворения значительно повышается, поэтому и продуцируется, как правило, лишь несколько яйцеклеток. Но сперматозоидов все же производится достаточно много, их избыточное количество необходимо для создания вокруг яйцеклетки определенной химической среды, без которой оплодотворение невозможно. Яйцеклетка имеет механизмы, препятствующие проникновению лишних сперматозоидов. После того, как проник первый, она выделяет вещество, подавляющее подвижность мужских гамет. Даже если их в яйцеклетку успевает проникнуть несколько, то с яйцеклеткой сливается только один, остальные гибнут.
infopedia.su
Половое размножение и его биологический смысл.
Размножение – важнейшее свойство всего живого. Вид, размножающийся только бесполым путем, может процветать достаточно длительное время, если он обитает в относительно постоянных условиях. При возникновении в среде его обитания изменений, которые вызывают гибель отдельных особей, весьма вероятно, что погибнут все особи, потому что они очень сходны генетически.
Половое размножение – более прогрессивная форма размножения, очень широко распространено в природе, как среди растений, так и среди животных. Образующиеся в процессе полового размножения организмы отличаются друг от друга генетически, а также по характеру приспособленности к условиям обитания.
При половом размножении материнским и отцовским организмами вырабатываются специализированные половые клетки – гаметы. Женские неподвижные гаметы называются яйцеклетками, мужские неподвижные – спермиями, а подвижные – сперматозоидами. Эти половые клетки сливаются с образованием зиготы, т.е. происходит оплодотворение. Половые клетки, как правило, имеют половинный набор хромосом (гаплоидный), так что при их слиянии восстанавливается двойной (диплоидный) набор, из зиготы развивается новая особь. При половом размножении потомство образуется при слиянии гаплоидных ядер. Гаплоидные ядра образуются в результате мейотического деления.
Мейоз ведет к уменьшению генетического материала вдвое, благодаря чему количество генетического материала у особей данного вида в ряду поколений остается постоянным. Во время мейоза происходит несколько важных процессов: случайное расхождение хромосом (независимое расчленение), обмен генетическим материалом между гомологичными хромосомами (кроссинговер). В результате этих процессов возникают новые комбинации генов. Поскольку ядро зиготы после оплодотворения содержит генетический материал двух родительских особей, это повышает генетическое разнообразие внутри вида. Если суть и биологическое значение полового процесса едины для всех организмов, то его формы очень разнообразны и зависят от уровня эволюционного развития, среды обитания, образа жизни и некоторых других особенностей.
Половое размножение есть у всех групп растений. Мхи растут дернинами. Мужские и женские растения оказываются рядом. Дождевая вода помогает сперматозоидам попасть на верхушки женских растений, где они сливаются с яйцеклетками, образуется зигота, из которой развивается сидящая на длинной ножке коробочка со спорами. У папоротников половые клетки развиваются на заростке, образовавшемся в результате прорастания споры. На нижней стороне заростка женские органы – архегонии, мужские – антеридии. Во влажной среде половые клетки сливаются, зигота дает начало зародышу, из которого вырастает молодой папоротник. У цветковых растений самое сложное половое размножение – двойное оплодотворение. Пыльца (мужские половые клетки) попадает на рыльце пестика (женский половой орган) и прорастает. По пыльцевой трубке спермии движутся к семязачатку. Спермии проникают в зародышевый мешок. Один сливается с яйцеклеткой и дает начало зародышу, второй спермий сливается с центральной клеткой и дает начало эндосперму – запасу питательных веществ.
У животных половое размножение связано с образованием половых клеток, которое происходит в специализированных органах – половых железах, в результате особого процесса. Половые клетки отличаются от всех остальных клеток тела уменьшенным вдвое набором хромосом. Яйцеклетка неподвижна, содержит набор питательных веществ, сперматозоиды мелкие, подвижные. Половые клетки могут образоваться в разных организмах, а могут в одном. Такие организмы называют гермафродитами (плоские черви). В природе явление гермафродитизма распространено чрезвычайно широко. Он считается самой примитивной формой полового размножения и распространен преимущественно у примитивных организмов. Одним из основных преимуществ гермафродитизма заключается в возможности самооплодотворения, что очень важно для некоторых крупных внутренних паразитов, ведущих одиночный образ жизни. Еще одной модификацией полового размножения является партеногенез. При таком способе размножения женская гамета развивается в дочернюю особь без оплодотворения мужской гаметой. Ярким примером партеногенеза является размножение общественных насекомых, пчел, муравьев, термитов.
Половое размножение имеет очень большие эволюционные преимущества по сравнению с бесполым. Сущность полового размножения заключается в объединении в наследственном материале потомка генетической информации из двух разных источников – родителей. Оплодотворение у животных может быть наружным или внутренним. При слиянии образуется зигота с двойным набором хромосом.
В ядре зиготы все хромосомы становятся парными: в каждой паре одна из хромосом отцовская, другая – материнская. Дочерний организм, который разовьется из такой зиготы, в одинаковой мере снабжен наследственной информацией обоих родителей.
Биологический смысл полового размножения состоит в том, что возникающие организмы могут сочетать полезные признаки отца и матери. Такие организмы более жизнеспособны. Половое размножение играет важную роль в эволюции организмов.
ebiology.ru
Размножение организмов. Бесполое размножение
Вопросы внутри параграфа: Чем различаются половое и бесполое размножение?
1) В бесполом размножении участвует один организм, а в половом – два. 2) В бесполом размножении участвуют соматические клетки, размножающиеся митозом, а в половом – половые клетки (гаметы), полученные путем мейоза. Следовательно, при бесполом размножении дети получаются одинаковые, а при половом – разные. 3) При половом размножении происходят большие затраты энергии (на поиск полового партнера и т.п.). При бесполом размножении затраты энергии меньше. Сдедовательно, при одинаковых затратах бесполым путем можно получить больше потомства и в более короткие сроки. Главным отличием полового размножения от бесполого является рекомбинация (разные дети; за счет этого создается материал для естественного отбора).
Стр. 83. Вопросы и задания после §
1. Каковы особенности бесполого размножения?
Бесполое размножение заключается воспроизведении себе подобных без участия половых клеток. В бесполом размножении принимает участие лишь одна родительская особь. среди способов бесполого размножения различают: простое митотическое деление простейших, вегетативное размножение (фрагментация, покование), спорообразование, множественное деление. В результате материнская особь дает начало дочерним одноклеточным организмам.
2. Почему при различных способах вегетативного размножения потомки являются генетическими копиями родительских организмов?
Потому что потомки образуются из одной материнской особи, нет обмена генетическим материалом с другой особью.
3. Приведите примеры широкого использования вегетативного размножения в практике растениеводства.
Размножение растений негативными органами: корнями, побегами, листьями или их частями называется фрагментация. Этот тип широко используется в практике садоводства, овощеводства, цветоводства, так как это очень удобный и быстрый способ получить много посадочного материала от одного растения с желаемыми заданными качествами.
4. В чем преимущества организмов, размножающихся бесполым путем?
Это быстрый способ размножения, меньше затрат энергии (нет поиска партнера, забота о потомстве), необходима только одна особь, не нужны специальные приспособления для размножения, короткие сроки полового созревания, более широкое распространение в природе.
5. Что представляют собой споры высших растений?
Споры – это репродуктивные клетки, служащие для размножения и расселения. Они покрыты плотной, устойчивой к внешним воздействиям оболочкой. У высших растений споры образуются в результате репродуктивного деления (мейоза) и всегда гаплоидны, то есть содержат одинарный гаплоидный набор хромосом. Из так спор образуются гаметофиты – поколение растений, на котором образуются половые клетки – гаметы.
6. Почему гаметофит называют гаплоидным поколением?
Гаметофит – это гаплоидная многоклеточная стадия в жизненном цикле растений и водорослей, развивающаяся из спор и производящая половые клетки (гаметы), а споры образуются в результате репродуктивного деления (мейоза) и всегда гаплоидны, то есть содержат одинарный гаплоидный набор хромосом.
7. Объясните значение терминов «репродукция», «гаметофит», «клон».
Репродукция – это одна из важнейших способностей организмов к размножению. Гаметофит – это гаплоидная многоклеточная стадия в жизненном цикле растений и водорослей, развивающаяся из спор и производящая половые клетки (гаметы). Клон – это генетически идентичный потомок, полученный от одного материнского организма.
resheba.me