Нормальная концентрация раствора – Концентрации растворов. Массовая и молярная концентрация, Титр, Моляльность, Мольная, массовая, объемная доли. Нормальная (эквивалентная) концентрация, Фактор эквивалентности, Молярная масса эквивалента вещества

Содержание

Концентрация растворов


Концентрации растворов обычно выражают в массовых (весовых) и объемных (для жидкостей) процентах, в молях или грамм-эквивалентах, содержащихся в единице объема раствора, а также титром и моляльностью.

Концентрации приблизительных растворов большей частью выражают в массовых процентах; точных — в молях, в грамм-эквивалентах, содержащихся в 1 л раствора, или титром.

При выражении концентрации в массовых процентах указывают содержание растворенного вещества (в граммах) в 100 г раствора (но не в 100 мл раствора!).

Так, если говорят, например, что взят 10%-ный раствор поваренной соли NaCl, это значит, что в 100 г раствора (а не в 100 мл его) содержится 10 г поваренной соли и 90 г воды.

Когда дана концентрация раствора, выраженная в массовых процентах (например, 25%-ный раствор NaCl), и хотят взять столько раствора, чтобы в нем содержалось определенное количество растворенного вещества (например, 5 г NaCl), то нужно брать раствор по массе (т. е. 20 г).

Покажем, что будет, если взять не 20 г раствора, а 20 мл. Плотность 25%-ного раствора NaCl равна 1,203 г/мл. Поэтому взяв 20 мл такого раствора, мы возьмем 20*1,203 = 24,06 г его. В этом количестве раствора будет содержаться уже не 5 г NaCl, а

Если известна плотность раствора, то, как указывалось выше, удобнее брать его по объему, а не по массе. Для нашего случая получаем объем, равный:

Сказанное относится преимущественно к концентрированным растворам; в случае же разбавленных (меньше 1%) получающаяся ошибка незначительна и ею можно пренебречь.

Концентрация раствора, выраженная в молях, содержащихся в 1 л раствора (но не в 1 л растворителя!) называется молярностью. Раствор, содержащий в 1 л 1 моль растворенного вещества, называется одномолярным или просто молярным. Молем (грамм-молекулой) какого-либо вещества называют молекулярный вес его, выраженный в граммах; 0,001 моль называют миллимолем, этой величиной пользуются для выражения концентрации при некоторых исследованиях.

Пример. Моль серной кислоты равен 98,08 г, поэтому молярный раствор ее должен содержать это количество в 1 л раствора (но не в 1 л воды).

Если концентрация выражена числом грамм-эквивалентов, содержащихся в 1 л раствора, то такое выражение концентрации называется нормальностью. Раствор, содержащий в 1 л один грамм-эквивалент вещества, называется однонормальным или часто просто нормальным.

Грамм-эквивалентом

вещества является такое количество его, выраженное в граммах, которое в данной реакции соединяется, вытесняет или эквивалентно 1,008 г водорода (т. е. 1 г-атом). Грамм-эквивалент одного и того же вещества может иметь различную величину в зависимости от той химической реакции, в которой это вещество участвует.

Грамм-эквивалент E в реакциях замещения вычисляют путем деления молекулярного веса на основность кислоты или полученной из нее соли, кислотность основания или при окислительно-восстановительных реакциях — на число переходящих электронов n:

 

Ввиду того что нормальные растворы для большийства аналитических целей и работ слишком концентрированы, обычно готовят более разбавленные растворы (полунормальные, децинормальные и т. д.). При записях нормальность обозначают русской буквой н. или латинской буквой N; перед буквенным обозначением ставят число, указывающее, какая часть грамм-эквивалента (или сколько грамм-эквивалентов) взята для приготовления. 1 л раствора. Так, полунормальный раствор обозначается 0,5 н., децинормальный 0,1 н. и т. д.

Титром называют содержание вещества в граммах в 1 мл раствора. Выражая концентрацию раствора при помощи титра, указывают число граммов вещества, содержащихся в 1 мл раствора. Пусть, например, в 1 л раствора содержится 5,843 г серной кислоты; тогда титр раствора будет равен;

Моляльными называют растворы, приготовляемые растворением одного (или части) моля вещества в 1 кг растворителя. Например, для приготовления одномоляль-ного раствора NaCl растворяют 58,457 г этой соли в 1 кг воды, приведя массу воды в данных условиях к объему. Следует помнить, что при приготовлении моляльных растворов расчет ведут именно на 1 кг растворителя, а не раствора, как в случае молярных или нормальных растворов.

Объемные проценты для выражения концентрации применяют только при смешивании взаимно растворяющихся жидкостей. Здесь указаны только основные, важнейшие приемы выражения концентраций. При специальных исследованиях могут применяться и другие единицы для выражения содержания вещества.

К оглавлению

 

см. также

  1. Основные понятия о растворах
  2. Классификация растворов
  3. Концентрация растворов
  4. Техника приготовления растворов
  5. Расчеты при приготовлении водных растворов
  6. Растворы солей
  7. Растворы щелочей
  8. Растворы кислот
  9. Фиксаналы
  10. Некоторые замечания о титровании и точных растворах
  11. Расчеты при титровании с помощью весовых бюреток
  12. Рациональные величины
  13. Растворение жидкостей
  14. Растворение газов
  15. Индикаторы
  16. Автоматическое титрование
  17. Неводные растворы
  18. Растворение в органических растворителях
  19. Обесцвечивание растворов

 

 


www.himikatus.ru

Приготовление растворов нормальной концентрации — Справочник химика 21

    Домашняя подготовка. Определение понятия раствор. Ненасыщенные, насыщенные и пересыщенные растворы. Концентрация растворов. Способы выражения концентраций. Процентные, молярные, моляльные и нормальные растворы. Титр раствора. Приготовление растворов различных концентраций. Пересчет концентраций с одного выражения в другое. Кривые растворимости и их применение. [c.90]
    Приготовление растворов нормальной и молярной концентрации см. в разд. 7. [c.121]

    Плотность 40%-ного раствора гидроксида калия 1,4 г/см . Сколько граммов КОН потребуется для приготовления 500 мл 40%-ного раствора Какова нормальная концентрация этого раствора Ответ 280 г 10 н. 

[c.390]

    Диагональную схему можно применять для расчетов при приготовлении раствора заданной нормальности путем смешения в определенном объемном соотношении двух растворов — большей и меньшей нормальности сравнительно с заданной. Схема может быть использована и при разбавлении раствора с известной концентрацией водой для получения раствора с заданной концентрацией. В этом случае в левый нижний угол диагональной схемы ставят нуль и далее поступают как обычно. [c.15]

    ПРИГОТОВЛЕНИЕ РАСТВОРОВ НОРМАЛЬНОЙ КОНЦЕНТРАЦИИ [c.38]

    Приготовление растворов заданной процентной концентрации. .. 13 4. Приготовление растворов заданной молярной, нормальной и моляльной концентрации. ………………………….16 [c.347]

    Все объемно-аналитические определения ведут при помощи титрованных растворов. Так как приготовление точно нормальных растворов сопряжено с трудностями и со значительной затратой времени, то обычно в практике работают с растворами приблизительно нормальных концентраций, определяя для каждого раствора титр его и вводя поправочный коэффициент к нормальности. 

[c.128]

    I. Если вещество не удовлетворяет перечисленным выше требованиям, то сначала готовят раствор его приблизительно нул ной нормальности. Параллельно с этим готовят титрованный раствор какого-нибудь подходящего исходного вещества. Далее оди из растворов оттитровывают другим и, зная концентрацию раствора исходного вещества, вычисляют точную концентрацию приготовленного раствора. [c.216]

    Опыт 4. Приготовление раствора заданной нормальной концентрации из концентрированного раствора. Этот способ применяется для приготовления растворов кислот и щелочей в том случае, когда не требуется особой точности или когда концентрация будет впоследствии определена более точно методом титрования. 

[c.100]

    Нахождение количеств растворенного вещества и воды, необходимых для приготовления заданного количества раствора указанной нормальной концентрации. [c.63]

    Опыт 3. Приготовление раствора заданной нормальной концентрации из навески твердого вещества. Этот способ применяется для приготовления раствора солей и кристаллических кпслот, когда концентрация раствора должна удовлетворять точности 0,01 г-экв/л. [c.99]

    Определение понятий раствор, растворенное вещество, растворитель. Состояние вещества в растворе. Объемный и тепловой эффект растворения. Сольватация и гидратация. Гидратная теория растворов Менделеева. Ненасыщенные, насыщенные и пересыщенные растворы. Рассмотрение их с точки зрения подвиаРастворимость веществ в воде и способы ее выражения. Кривая растворимости и ее применение. Определение понятия концентрации. Процентное содержание растворенного вещества в растворе по весу и по объему. Молярный, мо-ляльный и нормальный растворы. Титр и молярные доли. Приготовление растворов различных концентраций и пересчет концентраций из одного выражения в другое. 

[c.62]

    Приготовление растворов нормальной концентрации 38 А. Приготовление растворов приблизительной концентрации ………….. 38 [c.219]

    Грамм-эквиваленты — это те весовые количества веществ, в которых они вступают в реакцию друг с другом. Практическое значение грамм-эквивалентов состоит в том, что они используются в различного рода вычислениях. Необходимо знать их в случае приготовления растворов нормальных концентраций. [c.148]

    Для приготовления среды нормальной концентрации 10 г пептона, 5 г хлорида натрия и 5 г глюкозы растворяют в 1 л дистиллированной воды, прибавляют 2 мл, 6%-ного спиртового раствора бромтимолового синего или 10 мл индикатора Андре-де, устанавливают pH 7,4—7,6, разливают по 10 мл в пробирки с поплавками или комочками ваты и стерилизуют 12 мин в автоклаве при 112° С (0,5 кгс/см ). Для приготовления концентрированной среды количество всех ингредиентов увеличивают в 10 раз 

[c.387]

    Определив титр или нормальность концентрированного раствора кислоты, вычисляют объем исходной кислоты, необходимый для приготовления раствора заданной концентрации. [c.247]

    Вычислите, воспользовавшись значением навески соли, точное значение нормальной концентрации приготовленного раствора. [c.181]

    В тех случаях, когда вещество, применяемое для приготовления раствора, строго соответствует химической формуле и является хи.мически чистым, навеску этого вещества можно рассчитать в соответствии с заданной нормальностью раствора и отвесить на аналитических весах с точностью до 0,0002 г. Навеску помещают в откалиброванную мерную колбу, растворяют в воде, доводят объем раствора до метки и тщательно перемешивают. Приготовление растворов известной концентрации треб)-ет соблюдения очень точных приемов работы и большого опыта. [c.196]

    Это выражение получено из уравнения Нернста в предположении, что диффузионный потенциал, нормальный потенциал электрода и коэффициенты активности измеряемого иона практически не изменяются при введении добавки. Как видно из уравнения (1.3), погрешность анализа методом стандартных добавок будет зависеть от точности измерения , Ух, Уд б. правильности приготовления раствора с концентрацией Сд б. а также стабильности величин 5 и о — нормального электродного потенциала индикаторного электрода. Многочисленные данные указывают на нестабильность значений 5 и Ед, поэтому для снижения погрешности анализа этим методом предложено вводить в анализируемый раствор несколько добавок (л З) и по результатам измерения потенциала индикаторного электрода, решая систему линейных уравнений, рассчитывать значения 5, Ед непосредственно в момент измерения и затем находить с . [c.8]

    Для приготовления растворов с заданной молярной или нормальной концентрацией используются мерные колбы — плоскодонные круглые колбы с узким горлом и пришлифованной стеклянной пробкой. Мерные колбы выпускаются различной вместимости на 25, 50, 100, 200, 250, 500, 1000 и более миллилитров. Вместимость колбы, так же как и температура, которой она соответствует, указаны на самой колбе. [c.16]

    Определив титр или нормальность раствора, вычисляют нужное коли чество кислоты для приготовления раствора определенной концентрации. [c.265]

    Приготовленный раствор жидкого стекла является одним из гелеобразующих рабочих растворов и поступает на процесс формования катализатора. Перед формованием его еще раз перемешивают воздухом и повторно определяют концентрацию (контрольный анализ). Без контрольного анализа раствор брать не рекомендуется так как при хранении его в емкости (а тем более при длительном хранении) в раствор может попасть вода или растворы другой концентрации, т. е. нормальность рабочего раствора изменится. Качество раствора жидкого стекла устанавливают по плотности и количеству окиси натрия, определенного титрованием. Эти две величины позволяют ориентировочно найти модуль силикат-глыбы. Для точ- [c.38]

    Л —концентрация приготовленного раствора, вес. % , yV—нормальность приготовленного раствора, г-зкв/л  [c.29]

    Какое количество 10%-ного раствора серной кислоты (пл. 1,07 г/см ) нужно взять для приготовления 1 л раствора с титром 0,001 г/мл Рассчитайте нормальную концентрацию приготовленного раствора. Ответ 9,65 мл 0,020 н. [c.390]

    Ион 1з в растворах ведет себя так же, как и Гз. Для того чтобы иод хорошо растворялся, раствор К1 должен иметь концентрацию не ниже 10%. Приготовление раствора иода точно известной нормальности из навески представляет ряд трудностей. Поэтому сначала готовят раствор иода приблизительной концентрации, а затем определяют его точную нормальность, титруя раствором тиосульфата натрия. [c.145]

    Концентрация растворов, выраженная в единицах нормальности или молярности, определяется исходя из количества растворенного вещества, отвешенного на технохимических или аналитических весах, в зависимости от степени заданной точности, и общего объема раствора. В этом случае нет надобности отдельно отмерять или взвешивать воду, так как ее объем определяется вместимостью мерной колбы, взятой для приготовления раствора. [c.12]

    Приготовление рабочего титрованного раствора азотнокислого серебра. Азотнокислое серебро содержит некоторое количество примесей (до 0,25%) иногда препараты AgNO, имеют темный цвет из-за присутствия в них металлического серебра, образовавшегося вследствие восстановления азотнокислого серебра под действием света. Для приготовления раствора точной концентрации непосредственно из навески можно пользоваться перекристаллизованным и высушенным при 200—210° препаратом. В большинстве случаев предпочитают готовить раствор азотнокислого серебра приблизительной концентрации и после этого устанавливать нормальность по раствору исходного вещества. [c.420]

    Рассчитывают массу соли, необходимую для приготовления заданного раствора, учитывая при этом и кристаллизационную воду. Это -объясняется тем, что при приготовлении растворов, концентрация которых выражена в единицах нормальности или молярности, количество воды отдельно не вычисляется, а определяется, как об этом было сказано ранее, общим объемом приготовляемого раствора, а следовательно, вместимостью мерной колбы, взятой для приготовления раствора. [c.16]

    Какое количество хлорида аммония необходимо для приготовления 500 мл 0,2 М NH l Рассчитайте нормальную концентрацию и титр этого раствора. Ответ 5,35 г 0,2 н. Г = 0,0107 г/мл. [c.390]

    Подсчитайте нормальную концентрацию раствора по формуле (8). Приготовленный раствор сдайте лаборанту. [c.99]

    Определение по отмеренному объему раствора буры. Готовят раствор X. ч. буры строго определенной концентрации. Предварительно рассчитывают количество х.ч. N32640,-ЮНаО для приготовления раствора, нормальность которого приблизительно равна нормальности рабочего раствора кислоты. ЭкагВ.о,-юн о = 190,71 г. Для приготовления 1 л 0,1 н. раствора необходимо 19,071 г/л буры. Чтобы иметь 200 мл 0,1 н. раствора (объем мерной колбы), необходимо взять 19,071 5=3,8142 г буры. [c.245]

    Определение нормальности кислоты титрованием определенного объема раствора буры. Готовят раствор х. ч. буры строго определенной концентрации. Предварительно рассчитывают количество X. ч. ЫагВцОт-1ОН2О, необходимое для приготовления раствора, нормальность которого приблизительно равна нормальности стандартного раствора кислоты (ЭыагВ40,1он,о равен 190,69 г). Для приготовления 0,1 н. раствора необходимо 19,069 г буры на 1 л раствора. Чтобы приготовить 200 мл 0,1 н. раствора, необходимо взять 19,069 5=3,8138 г буры. [c.286]

    Из 10,66 г h3SO4 и 95,94 г Н2О приготовлен раствор серной кислоты. Объем полученного раствора 100,00 мл. Вычислите молярную, моляль-ную и нормальную концентрации раствора, а также его плотность. [c.107]

    Методы приготовления сульфокислот с нормальной цепью углеродных атомов и сульфогрупной на конце цепи уже описаны выше [246, 25, 26, 28]. Физические свойства водных растворов этих кислот и их солей изучены полно главным образом благодаря исследованиям, которые провели Мак-Бэн и Тартар с сотрудниками [246, 118] в течение последних лет. Эти соединения обладают свойствами коллоидных электролитов. Первое отклонение от поведения обычных электролитов отмечено для кислоты с семью углеродными атомами в растворах с концентрацией выше 0,4 н., в то время как высшие члены ряда ведут себя, согласно правилу Дебая-Гюккеля-Онзагера, только при крайне большом разбавлении. [c.126]

    Раствор точной концентрации может быть приготовлен непосредственно из навески вещества. Чаще, однако, готовят раствор приблизительной концентрации и устанавливают его нормальность по стандартному раствору сульфата магния MgSO  [c.155]

    Приготовление раствора серной кислоты и определение его нормальности. Определение нормальности раствора серной кислоты основано на реакции нейтрализации между приготовленным раствором Н2504, нормальность которого необходимо определить, и раствором щелочи известной концентрации (нормальности). Окончание реакции нейтрализации определяют при помощи одного из индикаторов, сведения о которых приведены ниже. [c.82]

    Какое количество 96%-ного раствора серной кислоты (пл. 1,84 г/см ) нужно взять для приготовления 250 мл 0,5 М h3SO4 Какова нормальная концентрация приготовленного раствора Ответ 6,94 мл 1 н. [c.390]

    Приготовление раствора титранта. Металлический натрий 0,05— 0,07 г, тщательно очищенный от окиси растворяют в колбе с притертой пробкой в 100 мл смеси абсолютного изопропилового и обезвоженного метилового спиртов (2 1). После полного растворения натрия колбу закрывают и содержимое колбы тщательно перемешивают. Затем приблизительно определяют нормальность полученного раствора титрованием его аликвотной части 0,01 и. раствором хлористоводородной кислоты по метиловому красному. В случае, если концентрация спиртового раствора метплата натрия сильно отличается от 0,02 н., добавляют илн еще металлического натрия, или раствор разбавляют той же смесью спиртов. Полученный раствор выдерживают в течение суток в колбе, закрытой пробкой. За это время из раствора выпадает карбонат натрия. Раствор осторожно сливают с осадка и точно устанавливают нормальность титранта, титруя им навеску салициловой кислоты при а = = 330 нм таким же образом, как это описано ниже для смеси кислот. [c.460]


chem21.info

Концентрация вещества нормальная — Справочник химика 21

    Молярная концентрация вещества эквивалента (1/г )Х в растворе (ранее — нормальность, нормальная концентрация) с[ /г ) X] — отношение количества вещества эквивалента /г )Х к объему раствора  [c.117]

    Нормальной концентрацией (или нормальностью) раствора называют число грамм-эквивалентов растворенного вещества в 1 л раствора. [c.63]

    Определите процентную концентрацию вещества в растворе, получившемся в результате электролиза 400 мл 10%-ного раствора едкого натра (плотность 1,1), если известно, что при этом выделилось 56 мл кислорода, измеренного при нормальных условиях. [c.37]


    Нормальная концентрация, или нормальность (М), — количество грамм-эквивалентов растворенного вещества в 1 л раствора  [c.34]

    Основные формулы для вычислений. Число грамм-эквивалентов вещества, находящихся в 1 л раствора, называют нормальностью (или ъор-мальной концентрацией) раствора. Нормальность раствора обозначают в формулах буквой N. Для вычисления главное значение имеет следующая очень важная характеристика этого числа если умножить объем данного раствора (I/) на нормальность (М) этого раствора, то аолучитхя эквивалентный объем точно однонормального раствора. [c.285]

    Таким образом, если известна концентрация одного из реагирующих веществ и объемы растворов обоих веществ, участвующих в реакции, можно определить нормальную концентрацию второго раствора, исиользуя формулу (5.8). Такие расчеты проводят при определении концентрации веществ методом титрования. [c.75]

    При работах с растворами электролитов удобно пользоваться так называемыми нормальными концентрациями. Нормальным (1 и.) называется раствор, содержащий в литре один эквивалент растворенного вещества. Массу электрона, которую нужно растворить в 1 л, чтобы получить нормальный раствор, находят, умножая его мольную массу на эквивалент. Например, мольная масса Ва(0Н)2 равна 171,3 г/моль, а эквивалент — /г моля для получения 1 н. раствора нужно взять 171,3-72 = 85,65 г Ва(0Н)2- Основное преимущество такого способа выражения концентрации электролитов заключается в том, что при одинаковой нормальности растворов, например, любая щелочь будет реагировать с любой кислотой в равных объемах. В отношении обозначения концентраций к нормальным растворам относится все сказанное ранее о молярных ( 2).  [c.139]

    При работе с окислителями и восстановителями потеря Получение удобно пользоваться их нормальными концентрация- Веществом [c.291]

    Интересно отметить, что, несмотря на пиролиз, концентрация высокомолекулярных нормальных алканов в нефтях, полученных из асфальтенов, не уступает содержанию тех же углеводородов в нативных нефтях типа A . Можно предположить, что относительная величина содержания парафиновых цепей в асфальтенах различных нефтей (как продуктов, менее всего подвергшихся биодеградации) может быть использована в качестве дополнительного критерия определения фациального (генетического) типа нефтей. Например, асфальтены, выделенные из древних нефтей Восточной Сибири, исходное вещество которых заведомо было морского происхождения, не содержали в своем составе парафиновых цепей длиннее, чем В то же время асфальтены мезозойских нефтей Западной Сибири имели в своем составе парафиновые цепи вплоть до С40, что указывает на присутствие в исходном органическом веществе остатков высшей растительности. [c.249]

    Таким же способом можно изучить зависимость между аналитическими концентрациями вещества в двух смежных фазах, если вещество в одной из них ассоциирует, и найти количественный закон ассоциации. Так, например, бензойная кислота в воде имеет нормальный молекулярный вес и почти не диссоциирует на ионы, а в бензоле находится практически полностью в виде двойных молекул. [c.289]

    Следует отметить, что применение эквивалентов и нормальной концентрации имеет ряд недостатков. Для нахождения эквивалентов определяемого вещества и реагента необходимо составить уравнение данной реакции титрования. Однако если это сделано, более удобно расчеты вести непосредственно по этому уравнению с помощью молярных концентраций молекул, формульных единиц, ионов определяемого вещества и реагента. Кроме того, для многих веществ эквивалент изменяется при изменении условий протекания взаимодействия, даже при изменении pH раствора. Так, например, для перманганат-ионов в кислой среде г = 5, в нейтральной г = 3 и в сильнощелочной г = 1. Поэтому одновременно с указанием эквивалента следует указывать также все условия, изменение которых может изменить величину эквивалента. К сожалению, не всегда это делается, и часто на практике пользуются найденным эквивалентом также для реакций с другими веществами, что приводит к неверным результатам. Вследствие этого в последнее время предпочитают пользоваться молярной концентрацией молекул, формульных единиц, ионов и не пользоваться молярной концентрацией эквивалентов (нормальной. концентрацией), [c.167]

    В нормальной системе противоточной экстракции растворитель, можно насытить веществом В почти до состояния равновесия с составом исходного раствора. Но одновременно растворяется также и некоторое количество вещества А (рафината), что—особенно при низких концентрациях экстрагируемого компонента В в исходном растворе—вызывает большие потери рафината. Применение возврата на стороне отбора экстракта позволяет снизить концентрацию вещества А в конечном экстракте до любого заданного уровня. Поток возврата вымывает вещество А из экстракта и присоединяет его к рафинату, отчего количество рафината увеличивается [31, 61, 76]. [c.153]

    Зная, что объемы нормальных растворов веществ, вступивших в реакцию, обратно пропорциональны нормальным концентрациям веществ в растворах, запишем [c.114]

    Удобство выражения концентраций через нормальность обусловлено тем, что вещества вступают в реакции в эквивалентных количествах. Поэтому если при смешении двух растворов с нормальностью соответственно Л ] и N2 содержащиеся в них вещества прореагируют без остатка, то справедливо соотношение [c.18]

    Процесс любого измерения заключается в сравнении выбранного параметра объекта с аналогичным параметром эталона. В титриметрических анализах эталонами служат растворы с точно известной концентрацией (титром, нормальностью) определяемого компонента. Такие растворы называют стандартными (титрованными). Их можно приготовить несколькими способами 1) по точной навеске исходного вещества 2) по приблизительной навеске с последующим определением концентрации по первичному стандарту 3) разбавлением заранее приготовленного раствора с известной концентрацией 4) по фиксаналу 5) ионным обменом (см, гл. 13). [c.147]

    Отношение числа эквивалентов растворенного вещества к объему раствора, выраженному в литрах, или, что то же самое, число эквивалентов растворенного вещества в 1 л раствора называется нормальной концентрацией, или нормальностью. [c.99]

    Нормальная концентрация, или нормальность, означает число грамм-эквивалентов вещества, содержащееся в 1 л раствора. [c.111]

    На рис. У-28 наряду с сплошными линиями, отражающими изменения температуры и концентрации для нормального технологического режима, пунктирными линиями представлены изменения этих же параметров при уменьшении начальной концентрации основного реагирующего вещества на 5 (кривая с индексом [c.139]

    Было установлено, что при нормальном режиме и подаче в реактор полупродукта, содержащего вещество А в количестве 500 кг/ч с относительной весовой концентрацией Хац= 1 при подаче полупродукта, содержащего вещество В в количестве 525 кг/ч с концентрацией = 0,92, и температуре процесса, равной 18° С, концентрация вещества А в реакционной массе составляла Ха к= 0,025 при рабочем объеме реактора Уд = [c.174]

    Установлены нормы предельно допустимых концентраций (ПДК) различных вредных веществ в атмосферном воздухе населенных мест. Различают два вида ПДК — максимально разовую и среднесуточную. Непревышение максимально разовой ПДК при воздействии до 20 мин не вызывает у человека неприятных реакций непревышение среднесуточной предельной концентрации обеспечивает нормальное функционирование человеческого организма. [c.204]

    При тех же материальных потоках, что и в нормальном режиме, опытом было установлено, что концентрация вещества А в реакционной зоне в результате повышения температуры до 23° С понизилась до х д = 0,0154 и вследствие понижения до 15° С повысилась до х 0,0263. Таким образом, в этих опытах [c.175]

    Эквивалентная концентрация или нормальность (С или н.) — отношение числа эквивалентов растворенного вещества к объему раствора например, 0,75 н. раствор нли С = 0,75 моль/л. [c.49]

    Эквивалентная концентрация, или нормальность, показывает число эквивалентов растворенного вещества, содержащихся в 1 л раствора. [c.52]

    При переходе от молярных концентраций к нормальным и наоборот следует учитывать число эквивалентов, образующих моль данного вещества. Для растворов соединений типа НС1, KNO3, КОН и др., для которых эквивалент совпадает с молем, молярность и нормальность растворов совпадают. [c.33]

    На рис. 10.9 изображено изменение концентрации вещества С в одной из фаз (явления в другой фазе пока не рассматриваются взаимодействие фаз — предмет массопередачи). Примыкающая к границе (7) фазового раздела область, в которой наблюдается изменение С нормально к границе, называется диффузионным пограничным слоем. Изменение концентрации от значения на границе до С в ядре фазы происходит плавно. Для удобства анализа и расчета вводят понятие о модельной пограничной пленке с четкими границами и определенной толщиной 5д считают, что в этой пленке сосредоточено все изменение концентрации от С до С, а за пределами пленки (в ядре) концентрация постоянна. Диффузионная пограничная пленка аналогична тепловой (ее толщина т) и ламинарному пристеночному слою (5и) во всех этих пленках невелика роль турбулентного переноса (количества движения, теплоты, вещества), доминирует вклад молекулярного переноса — вязкость, кондукция, а в изучаемых здесь явлениях — диффузия. В общем случае толщина диффузионной пленки 5д не совпадает с и и 8р количественная оценка связи между ними дана в разд. [c.774]

    Молярная концентрация эквивалента (нормальная концентрация) С(Х) — это отношение количества вещества эквивалента, содержащегося в растворе, к объему этого раствора [моль/м ]. На практике нормальную концентрацию по аналогии с молярной выражают в моль/л. Так, например, С(Н2504) = = 1 моль/л или С(КОН) = 0,01 моль/л. При С(В) = 1 моль/л раствор называют нормальным, при С (В) = 0,01 моль/л — санти-нормальным и т. п. Приняты и такие обозначения 1 н. раствор Н2504 0,01 н. раствор КОН. [c.147]

    Таким образом, для того чтобы решить гидродинамическую задачу о движении жидкости с учетом изменения 21 на межфазной поверхности, необходимо предварительно знать распределение концентрации вещества, температуры и заряда на поверхности. Их распределение, в свою очередь, связано с распределением гидродинамических параметров. Таким образом, решение этой задачи требует привлечения уравнений сохранения массы, количества движения, энергии и заряда с соответствующими граничными условиями, отражающими баланс сил на межфазной поверхности равенство тангенциальных сил и скачок нормальных сил, равный капиллярному давлению, а в случае модели Буссинеска — учет поверхностной вязкости слоя. В дальнейшем поверхностная вязкость учитываться не будет. [c.452]

    Результаты анализа можно вычислять по титру растворенного вещества в тнтранте. oжнo также выражать концентрацию стандартного раствора через титр определяемого вещества, т, е. числом граммов определяемого вещества, соответствующим 1 мл стандартного раствора. Можно выражать все концентрации через нормальности реагирующих растворов. [c.352]

    На практике во многих случаях расчет результатов титриметрических определений удобнее проводить на основе принципа эквивалентности. При этом стехиометрию ки-слотно-основных и окислительно-восстановительных реакций выражают в эквивалентной форме, а эталоном химического взаимодействия служит протон или электрон (см. раздел 2.1 и табл. 2.1 2.2). Все расчеты ведутся через число моль эквивалентов вещества, молярную массу эквивалента и молярную концентрацию эквивалента (нормальную концентрацию ). [c.575]

    При обтекании гранулы катализатора потоком реагирующих веществ н продуктов реакции траиспорт вещества к поверхности и от нее в общем случае осуществляется путем мак диффузионного, так и конвекционного (массового) переноса. Первый связан с разными парциальными концентрациями веществ в направлении, нормальном к поверхности (или, иначе, с возникновением градиента концентраций а это М направлении), второй — с перепадом общего давления (с градиентом о бщего давления) в том же напр1авлении, с тепловым эффектом реакции и условиями теплоотвода. [c.6]

    Технологический процесс определяется параметрами, обеспечивающими нормальное его течение. Технологическими параметрами называются измеримые величины, определяющие состояние веществ, образующихся в процессе, и их реакционную снособиэсть. К ним, например, относятся температура и концентрация веществ иа входе в аппарат и выходе из него, состав и дисперсность твердых материалов, давление жидких и газообразных продуктов, скорость движения и количество по-даваемь1х веществ, интенсивность их перемещивания и др. Наиболее важным в химико-технологических процессах являются так называемые интенсивные физико-химические параметры—давление, температура и концентрация веществ. Совокупность технологических параметров определяет технологический режим производства. [c.221]

    Подставляя имеющиеся экспериментальные данные в приведенные уравнения, можно наР1ти один из неизвестных объемов (Уг или I/.). если известны концентрации, выраженные нормальностью (известны N1 и N2). Можно решить и обратную задачу — определить нормальность одного из растворов (Л 1 или N2), если известны объемы растворов реагирующих веществ (известны 1 и У2). [c.200]

    При работах с растворами электролитов удобно пользоваться так называемыми нормальными концентрациями. Нормальным (1 н.) называется раствор, содержащий в литре один грамм-эквивалент растворенного вещества. В общем случае грамм-экви-валентные или, как их часто называют, нормальные веса находят, деля грамм-молекулярный вес электролита на число валентных связей между образующими его молекулу ионами. Например, нормальные веса HNO3, Ва(ОН)2, А12(504)з соответстйенно равняются М, М/2 и М/в. Основное преимущество такого способа выражения концентрации электролитов перед другими заключается в том, что при одинаковой нормальности растворов, например. Любая щелочь будет реагировать с любой кислотой в равных объемах. В отношении обозначения концентраций к нормальным растворам относится все сказанное ранее о молярных ( 2). [c.175]

    Молярная концентрация эквивалента (нормальная концентрация)—это отноитение количества вещества эквивалента к объему раствора  [c.74]

    Платиновый электрод, помещенный в раствор, содержащий хинон м гидрохинон, при определенной концентрации водородных ионов при-О бретает электрический потенциал, который можио измерить, соединив этот электрод через проводящую жидкость с нормальным полуэлемен-тоад, таким, как каломельный или водородный электрод. Потенциал Е электрода органического полуэлемента зависит от концентрации веществ, находящихся в равновесии, т. е. хинона, гидрохинона и водородных ионов, причем эта зависимость выр ажается уравиением  [c.411]

    Примерный ионный и солевой состав рассолов, применяемых на содовых заводах, приведен в Приложении. Концентрация солей выражена в так назьшаемых нормальных делениях (нд.). Это измерение концентраций принято на содовых заводах. Одно нормальное деление соответствует 1/20 г-экв вещества в 1 л раствора. Измерение концентраций веществ в грамм-эквивалентах упрощает вычисления, облегчает просмотр и сравнительную оценку технических отчетов и лабораторных сводок. Но во избежание большого количества десятичных знаков при этой системе подсчетов за единицу измерения концентраций раствора берут 1/20 часть грамм-эквивалента, или нормальное деление (нд.). [c.17]

    Практически при решении задач теплопереноса весьма часто X к а можно считать не зависящими от температуры. Но вот при переносе импульса в движущейся среде встречаются ситуации, когда пренебрегать нелинейностью нельзя значения ц и V могут существенно зависеть от градиентов скоростей. Это происходит, когда нарущается связь и аи /Эл, заданная формулой Ньютона либо ц не является постоянной величиной из-за происходящих в жидкости структурных деформаций, так что ц зависит от градиента скоростей, либо осуществляется намеренная подмена задачи, когда нелинейные эффекты вихреоб-разования в жидкости выражают в терминах и символах нормального переноса импульса, т.е. в манере формулы (1.9). Такие случаи будут освещены в главе «Гидравлика». При переносе вещества коэффициенты диффузии О также нередко зависят от уровня концентраций С. С этим встречаются, например, при массопереносе в твердых телах (процессы адсорбции, сушки), когда с изменением концентрации вещества в твердом теле изменяются скоростные характеристики диффузии, а иногда и сам механизм массопереноса (по крайней мере, изменяется вклад различных механизмов в перенос вещества). Тогда вместо [c.97]

    Прежде чем молекулы какого-либо вещества адсорбируются из потока газа-носителя, они должны достичь наружной поверхности частиц адсорбента. Это происходит за счет нормальной диффузи11 молекул вещества с газом-носителем. С увеличением концентрации вещества на поверхности адсорбционный фронт проникает внутрь пористого вещества, адсорбент начинает равномерно насыщаться адсорбируемым компонентом из газа-носи-теля. [c.205]

    Так как титры многих титрованных растворов не гут быть определены путем деления навески растворенного вещества на объем раствора из-за того, что многие вещества не удовлетворяют основным требованиям, предъявляемым к исходным веществам, то их титры устанавливают по соответствующим исходным веществам путем титрования. Поскольку объемы реагирующих веществ обратно пропорциональны их концентрациям, то нормальность определяют из отношения объемов. растворов VilV NilNy а поэтому N2= ViN jV2. [c.132]

    Пояснение. 1 мл титранта (титрующего раствора) оттитровы-вает с(/,и(К)К) Л/(/,и(А)А) мг определяемого вещества, где с(Лкв(1 -)Ю — молярная концентрация эквивалента (нормальная концентрация) титранта. Л/(/,ш(А)А) — молярная масса эквивалента определяемого вещества и — фактор эквивалентности приведены в таблице. Если g— навеска анализируемого материала (в мг), V— объем титранта, пошедшего на титрование, то содержание (массовая доля) определяемого вещества (в(А) в % равно  [c.580]

    На рис. 5.2 приведены кривые нормального распределения результатов определения для различных критериев предельно низких количеств (концентраций) вещества. Открываемому минимуму Х соответствует кривая 2, которая характеризуется доверительной вероятностью Р = 0,5, так как кривая распределения результатов холостого опыта Хыл (кривая /) перекрывает ее наполовину. В данном случае с вероятностью Р = 0,5 имеется риск переоткрыть определяемый компонент, приняв сигнал холостого опыта за аналитический сигнал (погрешность второго рода). Кривая рас-пред еиия результатов 3 соответствует пределу обнаружения Хпред данной аналитической реакции. Предел обнаружения — количество (концентрация) определяемого вещества, которое может быть обнаружено с достаточно большой вероятностью Р. В данном случае Р = 0,997 (трехсигмовый критерий). Так как кривая 3 все же перекрывается кривой / холостого опыта, можно принять сигнал определяемого [c.93]


chem21.info

Концентрация растворов (видео) — Портал аналитической химии

Концентрация  — величина, характеризующая количественный состав раствора. Концентрация растворённого вещества это отношение количества растворённого вещества (либо его массы) к объёму раствора.

 

В тоже время величины, которые являются отношением однотипных величин (соотношение  объёма растворённого вещества к объёму раствора, масс растворённого вещества к массе раствора) называют «долями». Однако на практике доли также относят к концентрациям.

 

 

 

Существует ряд способов для выражения концентрации растворов.

 

Массовая доля

Массовая доля — соотношение масс растворённого вещества к массе раствора. (в долях единицы или в процентах):

,

где:

·        m — общая масса раствора, г .

·        m1 — масса растворённого вещества, г;

Массовое процентное содержание компонента, m%

m%=(mi/Σmi)*100

 

 

 

 

Объёмная доля

Объёмная доля — соотношение объёма растворённого вещества к объёму раствора. Объёмная доля определяется в долях единицы или в процентах.

,

где:

·     V — общий объём раствора, л.

·     V1 — объём растворённого вещества, л;

 

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.

,

где:

·         n — число компонентов;

 ·         νi — количество i-го компонента, моль;

 

 

Молярность 

Молярная концентрация — количество растворённого вещества (число молей) в единице объёма раствора, единицы измерения (моль/м³),

,

где:

·         V — общий объём раствора, л.

·         ν — количество растворённого вещества, моль;

 

Нормальная концентрация (или нормальность)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Единицы измерения  моль-экв/л.

 

Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

,

где:

·   V — общий объём раствора, л;

 

·   ν — количество растворённого вещества, моль;

·   z — число эквивалентности (фактор эквивалентности

).

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество.

К примеру, одномолярный раствор H2SO4 будет двухнормальным в реакции с образованием K2SO4 и однонормальным если он предназначается для реакции со щёлочью с образованием KHSO4.

Моляльность ( моляльная концентрация)

Моляльность — количество растворённого вещества (число моль) в 1000 г растворителя. Единицы измерения моли на кг.

 

,

где:

· m2 — масса растворителя, кг.

· ν — количество растворённого вещества, моль;

 

Титр раствора — масса растворённого вещества в 1 мл раствора.

,

где:

·         V — общий объём раствора, мл;

·         m1 — масса растворённого вещества, г;

 

 

Формулы пересчета концентраций

 

Из молярности в нормальность:

,

где:

z — число эквивалентности.

·         M — молярность, моль/л;

 

 

Из массовой доли в молярность:

,

где:

·         M1 — молярная масса растворенного вещества, г/моль.

·         ω — массовая доля растворенного вещества в долях от 1;

·         ρ — плотность раствора, г/л;

 

 

 

Из массовой доли в титр:

,

где:

·         ω — массовая доля растворенного вещества в долях от 1;

 

·         ρ — плотность раствора, г/л;

 

 

Из молярности в титр:

,

где:

·       M1 — молярная масса растворенного вещества, г/моль.

·       M — молярность, моль/л;

 

 

 

Из моляльности в мольную долю:

,

где:

·     mi — моляльность, моль/кг;

·     M2 — молярная масса растворителя, г/моль.

Наиболее распространённые единицы

 

 

Из молярности в моляльность:

,

где:

·         M — молярность, моль/л;

·         ρ — плотность раствора, г/мл;

·         M1 — молярная масса растворенного вещества, г/моль.

 

www.chemical-analysis.ru

Концентрация растворов — это… Что такое Концентрация растворов?

Концентрация  — величина, характеризующая количественный состав раствора.

Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л), то есть это отношение неоднородных величин.

Те величины, которые являются отношением однотипных величин (отношение массы растворённого вещества к массе раствора, отношение объёма растворённого вещества к объёму раствора), правильно называть долями. Однако на практике для обоих видов выражения состава применяют термин концентрация и говорят о концентрации растворов.

Существует много способов выражения концентрации растворов.

Массовая доля

Массовая доля — отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах.

,

где:

  • m1 — масса растворённого вещества, г ;
  • m — общая масса раствора, г .

Массовое процентное содержание компонента, m%

m%=(mi/Σmi)*100

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят 2 измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Пример. Зависимость плотности растворов H2SO4 от её массовой доли в водном растворе при 25 °C[источник не указан 235 дней]
ω, %51015203040506070809095
ρ H2SO4, г/мл1,0321,0661,1021,1391,2191,3031,3951,4981,6111,7271,8141,834

Объёмная доля — отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.

,

где:

  • V1 — объём растворённого вещества, л;
  • V — общий объём раствора, л.

Как и было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)

Молярная концентрация — количество растворённого вещества (число молей) в единице объёма раствора. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также распространено выражение в «молярности». Возможно другое обозначение молярной концентрации , которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным. Примечание: единица «моль» не склоняется по падежам. После цифры пишут «моль», подобно тому, как после цифры пишут «см», «кг» и т. д.

,

где:

Нормальная концентрация (мольная концентрация эквивалента, или просто «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

,

где:

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.

Мольная (молярная) доля

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.

,

где:

  • νi — количество i-го компонента, моль;
  • n — число компонентов;

Моляльность (молярная весовая концентрация, моляльная концентрация)

Моляльность — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

,

где:

Следует обратить особое внимание, что несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

Титр раствора

Титр раствора — масса растворённого вещества в 1 мл раствора.

,

где:

  • m1 — масса растворённого вещества, г;
  • V — общий объём раствора, мл;

В аналитической химии обычно концентрацию титранта пересчитывают применительно к конкретной реакции титрования таким образом, чтобы объём использованного титранта непосредственного показывал массу определяемого вещества; то есть титр раствора показывает, какой массе определяемого вещества (в граммах) соответствует 1 мл титрованного раствора.

Весообъёмные проценты

Соответствуют отношению массы одной части вещества (например, 1 г) к 100 частям объёма раствора (например, к 100 мл).[1] Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[2]

Другие способы выражения концентрации растворов

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, в фотометрии часто используют массовую концентрацию, равную массе растворённого вещества в 1 л раствора. При приготовлении растворов кислот часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Концентрация загрязнений в воздухе может выражаться в частях на миллион (ppm). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).

Применимость способов выражения концентрации растворов, их свойства

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.

Формулы перехода от одних выражений концентраций растворов к другим

От массовой доли к молярности:

,

где:

  • ρ — плотность раствора, г/л;
  • ω — массовая доля растворенного вещества в долях от 1;
  • M1 — молярная масса растворенного вещества, г/моль.

От молярности к нормальности:

,

где:

От массовой доли к титру:

,

где:

  • ρ — плотность раствора, г/л;
  • ω — массовая доля растворенного вещества в долях от 1;

От молярности к титру:

,

где:

  • M — молярность, моль/л;
  • M1 — молярная масса растворенного вещества, г/моль.

От молярности к моляльности:

,

где:

  • M — молярность, моль/л;
  • ρ — плотность раствора, г/мл;
  • M1 — молярная масса растворенного вещества, г/моль.

От моляльности к мольной доле:

,

где:

  • mi — моляльность, моль/кг;
  • M2 — молярная масса растворителя, г/моль.

Наиболее распространённые единицы

Эта статья содержит незавершённый перевод с английского языка.

Вы можете помочь проекту, переведя её до конца.

Примечания

veter.academic.ru

Концентрация растворов — это… Что такое Концентрация растворов?

Концентрация  — величина, характеризующая количественный состав раствора.

Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л), то есть это отношение неоднородных величин.

Те величины, которые являются отношением однотипных величин (отношение массы растворённого вещества к массе раствора, отношение объёма растворённого вещества к объёму раствора), правильно называть долями. Однако на практике для обоих видов выражения состава применяют термин концентрация и говорят о концентрации растворов.

Существует много способов выражения концентрации растворов.

Массовая доля

Массовая доля — отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах.

,

где:

  • m1 — масса растворённого вещества, г ;
  • m — общая масса раствора, г .

Массовое процентное содержание компонента, m%

m%=(mi/Σmi)*100

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят 2 измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Пример. Зависимость плотности растворов H2SO4 от её массовой доли в водном растворе при 25 °C[источник не указан 235 дней]
ω, %51015203040506070809095
ρ H2SO4, г/мл1,0321,0661,1021,1391,2191,3031,3951,4981,6111,7271,8141,834

Объёмная доля — отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.

,

где:

  • V1 — объём растворённого вещества, л;
  • V — общий объём раствора, л.

Как и было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)

Молярная концентрация — количество растворённого вещества (число молей) в единице объёма раствора. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также распространено выражение в «молярности». Возможно другое обозначение молярной концентрации , которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным. Примечание: единица «моль» не склоняется по падежам. После цифры пишут «моль», подобно тому, как после цифры пишут «см», «кг» и т. д.

,

где:

Нормальная концентрация (мольная концентрация эквивалента, или просто «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

,

где:

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.

Мольная (молярная) доля

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.

,

где:

  • νi — количество i-го компонента, моль;
  • n — число компонентов;

Моляльность (молярная весовая концентрация, моляльная концентрация)

Моляльность — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

,

где:

Следует обратить особое внимание, что несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

Титр раствора

Титр раствора — масса растворённого вещества в 1 мл раствора.

,

где:

  • m1 — масса растворённого вещества, г;
  • V — общий объём раствора, мл;

В аналитической химии обычно концентрацию титранта пересчитывают применительно к конкретной реакции титрования таким образом, чтобы объём использованного титранта непосредственного показывал массу определяемого вещества; то есть титр раствора показывает, какой массе определяемого вещества (в граммах) соответствует 1 мл титрованного раствора.

Весообъёмные проценты

Соответствуют отношению массы одной части вещества (например, 1 г) к 100 частям объёма раствора (например, к 100 мл).[1] Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[2]

Другие способы выражения концентрации растворов

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, в фотометрии часто используют массовую концентрацию, равную массе растворённого вещества в 1 л раствора. При приготовлении растворов кислот часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Концентрация загрязнений в воздухе может выражаться в частях на миллион (ppm). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).

Применимость способов выражения концентрации растворов, их свойства

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.

Формулы перехода от одних выражений концентраций растворов к другим

От массовой доли к молярности:

,

где:

  • ρ — плотность раствора, г/л;
  • ω — массовая доля растворенного вещества в долях от 1;
  • M1 — молярная масса растворенного вещества, г/моль.

От молярности к нормальности:

,

где:

От массовой доли к титру:

,

где:

  • ρ — плотность раствора, г/л;
  • ω — массовая доля растворенного вещества в долях от 1;

От молярности к титру:

,

где:

  • M — молярность, моль/л;
  • M1 — молярная масса растворенного вещества, г/моль.

От молярности к моляльности:

,

где:

  • M — молярность, моль/л;
  • ρ — плотность раствора, г/мл;
  • M1 — молярная масса растворенного вещества, г/моль.

От моляльности к мольной доле:

,

где:

  • mi — моляльность, моль/кг;
  • M2 — молярная масса растворителя, г/моль.

Наиболее распространённые единицы

Эта статья содержит незавершённый перевод с английского языка.

Вы можете помочь проекту, переведя её до конца.

Примечания

med.academic.ru

Концентрация растворов — это… Что такое Концентрация растворов?

Концентрация  — величина, характеризующая количественный состав раствора.

Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л), то есть это отношение неоднородных величин.

Те величины, которые являются отношением однотипных величин (отношение массы растворённого вещества к массе раствора, отношение объёма растворённого вещества к объёму раствора), правильно называть долями. Однако на практике для обоих видов выражения состава применяют термин концентрация и говорят о концентрации растворов.

Существует много способов выражения концентрации растворов.

Массовая доля

Массовая доля — отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах.

,

где:

  • m1 — масса растворённого вещества, г ;
  • m — общая масса раствора, г .

Массовое процентное содержание компонента, m%

m%=(mi/Σmi)*100

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят 2 измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Пример. Зависимость плотности растворов H2SO4 от её массовой доли в водном растворе при 25 °C[источник не указан 235 дней]
ω, %51015203040506070809095
ρ H2SO4, г/мл1,0321,0661,1021,1391,2191,3031,3951,4981,6111,7271,8141,834

Объёмная доля — отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.

,

где:

  • V1 — объём растворённого вещества, л;
  • V — общий объём раствора, л.

Как и было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)

Молярная концентрация — количество растворённого вещества (число молей) в единице объёма раствора. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также распространено выражение в «молярности». Возможно другое обозначение молярной концентрации , которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным. Примечание: единица «моль» не склоняется по падежам. После цифры пишут «моль», подобно тому, как после цифры пишут «см», «кг» и т. д.

,

где:

Нормальная концентрация (мольная концентрация эквивалента, или просто «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

,

где:

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.

Мольная (молярная) доля

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.

,

где:

  • νi — количество i-го компонента, моль;
  • n — число компонентов;

Моляльность (молярная весовая концентрация, моляльная концентрация)

Моляльность — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

,

где:

Следует обратить особое внимание, что несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

Титр раствора

Титр раствора — масса растворённого вещества в 1 мл раствора.

,

где:

  • m1 — масса растворённого вещества, г;
  • V — общий объём раствора, мл;

В аналитической химии обычно концентрацию титранта пересчитывают применительно к конкретной реакции титрования таким образом, чтобы объём использованного титранта непосредственного показывал массу определяемого вещества; то есть титр раствора показывает, какой массе определяемого вещества (в граммах) соответствует 1 мл титрованного раствора.

Весообъёмные проценты

Соответствуют отношению массы одной части вещества (например, 1 г) к 100 частям объёма раствора (например, к 100 мл).[1] Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[2]

Другие способы выражения концентрации растворов

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, в фотометрии часто используют массовую концентрацию, равную массе растворённого вещества в 1 л раствора. При приготовлении растворов кислот часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Концентрация загрязнений в воздухе может выражаться в частях на миллион (ppm). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).

Применимость способов выражения концентрации растворов, их свойства

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.

Формулы перехода от одних выражений концентраций растворов к другим

От массовой доли к молярности:

,

где:

  • ρ — плотность раствора, г/л;
  • ω — массовая доля растворенного вещества в долях от 1;
  • M1 — молярная масса растворенного вещества, г/моль.

От молярности к нормальности:

,

где:

От массовой доли к титру:

,

где:

  • ρ — плотность раствора, г/л;
  • ω — массовая доля растворенного вещества в долях от 1;

От молярности к титру:

,

где:

  • M — молярность, моль/л;
  • M1 — молярная масса растворенного вещества, г/моль.

От молярности к моляльности:

,

где:

  • M — молярность, моль/л;
  • ρ — плотность раствора, г/мл;
  • M1 — молярная масса растворенного вещества, г/моль.

От моляльности к мольной доле:

,

где:

  • mi — моляльность, моль/кг;
  • M2 — молярная масса растворителя, г/моль.

Наиболее распространённые единицы

Эта статья содержит незавершённый перевод с английского языка.

Вы можете помочь проекту, переведя её до конца.

Примечания

dvc.academic.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *