Концентрация растворов
Концентрации растворов обычно выражают в массовых (весовых) и объемных (для жидкостей) процентах, в молях или грамм-эквивалентах, содержащихся в единице объема раствора, а также титром и моляльностью.
Концентрации приблизительных растворов большей частью выражают в массовых процентах; точных — в молях, в грамм-эквивалентах, содержащихся в 1 л раствора, или титром.
При выражении концентрации в массовых процентах указывают содержание растворенного вещества (в граммах) в 100 г раствора (но не в 100 мл раствора!).
Так, если говорят, например, что взят 10%-ный раствор поваренной соли NaCl, это значит, что в 100 г раствора (а не в 100 мл его) содержится 10 г поваренной соли и 90 г воды.
Когда дана концентрация раствора, выраженная в массовых процентах (например, 25%-ный раствор NaCl), и хотят взять столько раствора, чтобы в нем содержалось определенное количество растворенного вещества (например, 5 г NaCl), то нужно брать раствор по массе (т. е. 20 г).
Покажем, что будет, если взять не 20 г раствора, а 20 мл. Плотность 25%-ного раствора NaCl равна 1,203 г/мл. Поэтому взяв 20 мл такого раствора, мы возьмем 20*1,203 = 24,06 г его. В этом количестве раствора будет содержаться уже не 5 г NaCl, а
Если известна плотность раствора, то, как указывалось выше, удобнее брать его по объему, а не по массе. Для нашего случая получаем объем, равный:
Сказанное относится преимущественно к концентрированным растворам; в случае же разбавленных (меньше 1%) получающаяся ошибка незначительна и ею можно пренебречь.
Концентрация раствора, выраженная в молях, содержащихся в 1 л раствора (но не в 1 л растворителя!) называется молярностью. Раствор, содержащий в 1 л 1 моль растворенного вещества, называется одномолярным или просто молярным. Молем (грамм-молекулой) какого-либо вещества называют молекулярный вес его, выраженный в граммах; 0,001 моль называют миллимолем, этой величиной пользуются для выражения концентрации при некоторых исследованиях.Пример. Моль серной кислоты равен 98,08 г, поэтому молярный раствор ее должен содержать это количество в 1 л раствора (но не в 1 л воды).
Если концентрация выражена числом грамм-эквивалентов, содержащихся в 1 л раствора, то такое выражение концентрации называется нормальностью. Раствор, содержащий в 1 л один грамм-эквивалент вещества, называется однонормальным или часто просто нормальным.
Грамм-эквивалентом
Грамм-эквивалент E в реакциях замещения вычисляют путем деления молекулярного веса на основность кислоты или полученной из нее соли, кислотность основания или при окислительно-восстановительных реакциях — на число переходящих электронов n:
Ввиду того что нормальные растворы для большийства аналитических целей и работ слишком концентрированы, обычно готовят более разбавленные растворы (полунормальные, децинормальные и т. д.). При записях нормальность обозначают русской буквой н. или латинской буквой N; перед буквенным обозначением ставят число, указывающее, какая часть грамм-эквивалента (или сколько грамм-эквивалентов) взята для приготовления. 1 л раствора. Так, полунормальный раствор обозначается 0,5 н., децинормальный 0,1 н. и т. д.
Титром называют содержание вещества в граммах в 1 мл раствора. Выражая концентрацию раствора при помощи титра, указывают число граммов вещества, содержащихся в 1 мл раствора. Пусть, например, в 1 л раствора содержится 5,843 г серной кислоты; тогда титр раствора будет равен;
Моляльными называют растворы, приготовляемые растворением одного (или части) моля вещества в 1 кг растворителя. Например, для приготовления одномоляль-ного раствора NaCl растворяют 58,457 г этой соли в 1 кг воды, приведя массу воды в данных условиях к объему. Следует помнить, что при приготовлении моляльных растворов расчет ведут именно на 1 кг растворителя, а не раствора, как в случае молярных или нормальных растворов.
Объемные проценты для выражения концентрации применяют только при смешивании взаимно растворяющихся жидкостей. Здесь указаны только основные, важнейшие приемы выражения концентраций. При специальных исследованиях могут применяться и другие единицы для выражения содержания вещества.
К оглавлению
см. также
- Основные понятия о растворах
- Классификация растворов
- Концентрация растворов
- Техника приготовления растворов
- Расчеты при приготовлении водных растворов
- Растворы солей
- Растворы щелочей
- Растворы кислот
- Фиксаналы
- Некоторые замечания о титровании и точных растворах
- Расчеты при титровании с помощью весовых бюреток
- Рациональные величины
- Растворение жидкостей
- Растворение газов
- Индикаторы
- Автоматическое титрование
- Неводные растворы
- Растворение в органических растворителях
- Обесцвечивание растворов
www.himikatus.ru
Приготовление растворов нормальной концентрации — Справочник химика 21
Домашняя подготовка. Определение понятия раствор. Ненасыщенные, насыщенные и пересыщенные растворы. Концентрация растворов. Способы выражения концентраций. Процентные, молярные, моляльные и нормальные растворы. Титр раствора. Приготовление растворов различных концентраций. Пересчет концентраций с одного выражения в другое. Кривые растворимости и их применение. [c.90]Приготовление растворов нормальной и молярной концентрации см. в разд. 7. [c.121]
Плотность 40%-ного раствора гидроксида калия 1,4 г/см . Сколько граммов КОН потребуется для приготовления 500 мл 40%-ного раствора Какова нормальная концентрация этого раствора Ответ 280 г 10 н.
Диагональную схему можно применять для расчетов при приготовлении раствора заданной нормальности путем смешения в определенном объемном соотношении двух растворов — большей и меньшей нормальности сравнительно с заданной. Схема может быть использована и при разбавлении раствора с известной концентрацией водой для получения раствора с заданной концентрацией. В этом случае в левый нижний угол диагональной схемы ставят нуль и далее поступают как обычно. [c.15]
ПРИГОТОВЛЕНИЕ РАСТВОРОВ НОРМАЛЬНОЙ КОНЦЕНТРАЦИИ [c.38]
Приготовление растворов заданной процентной концентрации. .. 13 4. Приготовление растворов заданной молярной, нормальной и моляльной концентрации. ………………………….16 [c.347]
Все объемно-аналитические определения ведут при помощи титрованных растворов. Так как приготовление точно нормальных растворов сопряжено с трудностями и со значительной затратой времени, то обычно в практике работают с растворами приблизительно нормальных концентраций, определяя для каждого раствора титр его и вводя поправочный коэффициент к нормальности. [c.128]
I. Если вещество не удовлетворяет перечисленным выше требованиям, то сначала готовят раствор его приблизительно нул ной нормальности. Параллельно с этим готовят титрованный раствор какого-нибудь подходящего исходного вещества. Далее оди из растворов оттитровывают другим и, зная концентрацию раствора исходного вещества, вычисляют точную концентрацию приготовленного раствора. [c.216]
Опыт 4. Приготовление раствора заданной нормальной концентрации из концентрированного раствора. Этот способ применяется для приготовления растворов кислот и щелочей в том случае, когда не требуется особой точности или когда концентрация будет впоследствии определена более точно методом титрования.
Нахождение количеств растворенного вещества и воды, необходимых для приготовления заданного количества раствора указанной нормальной концентрации. [c.63]
Опыт 3. Приготовление раствора заданной нормальной концентрации из навески твердого вещества. Этот способ применяется для приготовления раствора солей и кристаллических кпслот, когда концентрация раствора должна удовлетворять точности 0,01 г-экв/л. [c.99]
Определение понятий раствор, растворенное вещество, растворитель. Состояние вещества в растворе. Объемный и тепловой эффект растворения. Сольватация и гидратация. Гидратная теория растворов Менделеева. Ненасыщенные, насыщенные и пересыщенные растворы. Рассмотрение их с точки зрения подвиаРастворимость веществ в воде и способы ее выражения. Кривая растворимости и ее применение. Определение понятия концентрации. Процентное содержание растворенного вещества в растворе по весу и по объему. Молярный, мо-ляльный и нормальный растворы. Титр и молярные доли. Приготовление растворов различных концентраций и пересчет концентраций из одного выражения в другое. [c.62]
Приготовление растворов нормальной концентрации 38 А. Приготовление растворов приблизительной концентрации ………….. 38 [c.219]
Грамм-эквиваленты — это те весовые количества веществ, в которых они вступают в реакцию друг с другом. Практическое значение грамм-эквивалентов состоит в том, что они используются в различного рода вычислениях. Необходимо знать их в случае приготовления растворов нормальных концентраций. [c.148]
Для приготовления среды нормальной концентрации 10 г пептона, 5 г хлорида натрия и 5 г глюкозы растворяют в 1 л дистиллированной воды, прибавляют 2 мл, 6%-ного спиртового раствора бромтимолового синего или 10 мл индикатора Андре-де, устанавливают pH 7,4—7,6, разливают по 10 мл в пробирки с поплавками или комочками ваты и стерилизуют 12 мин в автоклаве при 112° С (0,5 кгс/см ). Для приготовления концентрированной среды количество всех ингредиентов увеличивают в 10 раз
Определив титр или нормальность концентрированного раствора кислоты, вычисляют объем исходной кислоты, необходимый для приготовления раствора заданной концентрации. [c.247]
Вычислите, воспользовавшись значением навески соли, точное значение нормальной концентрации приготовленного раствора. [c.181]
В тех случаях, когда вещество, применяемое для приготовления раствора, строго соответствует химической формуле и является хи.мически чистым, навеску этого вещества можно рассчитать в соответствии с заданной нормальностью раствора и отвесить на аналитических весах с точностью до 0,0002 г. Навеску помещают в откалиброванную мерную колбу, растворяют в воде, доводят объем раствора до метки и тщательно перемешивают. Приготовление растворов известной концентрации треб)-ет соблюдения очень точных приемов работы и большого опыта. [c.196]
Это выражение получено из уравнения Нернста в предположении, что диффузионный потенциал, нормальный потенциал электрода и коэффициенты активности измеряемого иона практически не изменяются при введении добавки. Как видно из уравнения (1.3), погрешность анализа методом стандартных добавок будет зависеть от точности измерения , Ух, Уд б. правильности приготовления раствора с концентрацией Сд б. а также стабильности величин 5 и о — нормального электродного потенциала индикаторного электрода. Многочисленные данные указывают на нестабильность значений 5 и Ед, поэтому для снижения погрешности анализа этим методом предложено вводить в анализируемый раствор несколько добавок (л З) и по результатам измерения потенциала индикаторного электрода, решая систему линейных уравнений, рассчитывать значения 5, Ед непосредственно в момент измерения и затем находить с . [c.8]
Для приготовления растворов с заданной молярной или нормальной концентрацией используются мерные колбы — плоскодонные круглые колбы с узким горлом и пришлифованной стеклянной пробкой. Мерные колбы выпускаются различной вместимости на 25, 50, 100, 200, 250, 500, 1000 и более миллилитров. Вместимость колбы, так же как и температура, которой она соответствует, указаны на самой колбе. [c.16]
Определив титр или нормальность раствора, вычисляют нужное коли чество кислоты для приготовления раствора определенной концентрации. [c.265]
Приготовленный раствор жидкого стекла является одним из гелеобразующих рабочих растворов и поступает на процесс формования катализатора. Перед формованием его еще раз перемешивают воздухом и повторно определяют концентрацию (контрольный анализ). Без контрольного анализа раствор брать не рекомендуется так как при хранении его в емкости (а тем более при длительном хранении) в раствор может попасть вода или растворы другой концентрации, т. е. нормальность рабочего раствора изменится. Качество раствора жидкого стекла устанавливают по плотности и количеству окиси натрия, определенного титрованием. Эти две величины позволяют ориентировочно найти модуль силикат-глыбы. Для точ- [c.38]
Л —концентрация приготовленного раствора, вес. % , yV—нормальность приготовленного раствора, г-зкв/л [c.29]
Какое количество 10%-ного раствора серной кислоты (пл. 1,07 г/см ) нужно взять для приготовления 1 л раствора с титром 0,001 г/мл Рассчитайте нормальную концентрацию приготовленного раствора. Ответ 9,65 мл 0,020 н. [c.390]
Ион 1з в растворах ведет себя так же, как и Гз. Для того чтобы иод хорошо растворялся, раствор К1 должен иметь концентрацию не ниже 10%. Приготовление раствора иода точно известной нормальности из навески представляет ряд трудностей. Поэтому сначала готовят раствор иода приблизительной концентрации, а затем определяют его точную нормальность, титруя раствором тиосульфата натрия. [c.145]
Концентрация растворов, выраженная в единицах нормальности или молярности, определяется исходя из количества растворенного вещества, отвешенного на технохимических или аналитических весах, в зависимости от степени заданной точности, и общего объема раствора. В этом случае нет надобности отдельно отмерять или взвешивать воду, так как ее объем определяется вместимостью мерной колбы, взятой для приготовления раствора. [c.12]
Приготовление рабочего титрованного раствора азотнокислого серебра. Азотнокислое серебро содержит некоторое количество примесей (до 0,25%) иногда препараты AgNO, имеют темный цвет из-за присутствия в них металлического серебра, образовавшегося вследствие восстановления азотнокислого серебра под действием света. Для приготовления раствора точной концентрации непосредственно из навески можно пользоваться перекристаллизованным и высушенным при 200—210° препаратом. В большинстве случаев предпочитают готовить раствор азотнокислого серебра приблизительной концентрации и после этого устанавливать нормальность по раствору исходного вещества. [c.420]
Рассчитывают массу соли, необходимую для приготовления заданного раствора, учитывая при этом и кристаллизационную воду. Это -объясняется тем, что при приготовлении растворов, концентрация которых выражена в единицах нормальности или молярности, количество воды отдельно не вычисляется, а определяется, как об этом было сказано ранее, общим объемом приготовляемого раствора, а следовательно, вместимостью мерной колбы, взятой для приготовления раствора. [c.16]
Какое количество хлорида аммония необходимо для приготовления 500 мл 0,2 М NH l Рассчитайте нормальную концентрацию и титр этого раствора. Ответ 5,35 г 0,2 н. Г = 0,0107 г/мл. [c.390]
Подсчитайте нормальную концентрацию раствора по формуле (8). Приготовленный раствор сдайте лаборанту. [c.99]
Определение по отмеренному объему раствора буры. Готовят раствор X. ч. буры строго определенной концентрации. Предварительно рассчитывают количество х.ч. N32640,-ЮНаО для приготовления раствора, нормальность которого приблизительно равна нормальности рабочего раствора кислоты. ЭкагВ.о,-юн о = 190,71 г. Для приготовления 1 л 0,1 н. раствора необходимо 19,071 г/л буры. Чтобы иметь 200 мл 0,1 н. раствора (объем мерной колбы), необходимо взять 19,071 5=3,8142 г буры. [c.245]
Определение нормальности кислоты титрованием определенного объема раствора буры. Готовят раствор х. ч. буры строго определенной концентрации. Предварительно рассчитывают количество X. ч. ЫагВцОт-1ОН2О, необходимое для приготовления раствора, нормальность которого приблизительно равна нормальности стандартного раствора кислоты (ЭыагВ40,1он,о равен 190,69 г). Для приготовления 0,1 н. раствора необходимо 19,069 г буры на 1 л раствора. Чтобы приготовить 200 мл 0,1 н. раствора, необходимо взять 19,069 5=3,8138 г буры. [c.286]
Из 10,66 г h3SO4 и 95,94 г Н2О приготовлен раствор серной кислоты. Объем полученного раствора 100,00 мл. Вычислите молярную, моляль-ную и нормальную концентрации раствора, а также его плотность. [c.107]
Методы приготовления сульфокислот с нормальной цепью углеродных атомов и сульфогрупной на конце цепи уже описаны выше [246, 25, 26, 28]. Физические свойства водных растворов этих кислот и их солей изучены полно главным образом благодаря исследованиям, которые провели Мак-Бэн и Тартар с сотрудниками [246, 118] в течение последних лет. Эти соединения обладают свойствами коллоидных электролитов. Первое отклонение от поведения обычных электролитов отмечено для кислоты с семью углеродными атомами в растворах с концентрацией выше 0,4 н., в то время как высшие члены ряда ведут себя, согласно правилу Дебая-Гюккеля-Онзагера, только при крайне большом разбавлении. [c.126]
Раствор точной концентрации может быть приготовлен непосредственно из навески вещества. Чаще, однако, готовят раствор приблизительной концентрации и устанавливают его нормальность по стандартному раствору сульфата магния MgSO [c.155]
Приготовление раствора серной кислоты и определение его нормальности. Определение нормальности раствора серной кислоты основано на реакции нейтрализации между приготовленным раствором Н2504, нормальность которого необходимо определить, и раствором щелочи известной концентрации (нормальности). Окончание реакции нейтрализации определяют при помощи одного из индикаторов, сведения о которых приведены ниже. [c.82]
Какое количество 96%-ного раствора серной кислоты (пл. 1,84 г/см ) нужно взять для приготовления 250 мл 0,5 М h3SO4 Какова нормальная концентрация приготовленного раствора Ответ 6,94 мл 1 н. [c.390]
Приготовление раствора титранта. Металлический натрий 0,05— 0,07 г, тщательно очищенный от окиси растворяют в колбе с притертой пробкой в 100 мл смеси абсолютного изопропилового и обезвоженного метилового спиртов (2 1). После полного растворения натрия колбу закрывают и содержимое колбы тщательно перемешивают. Затем приблизительно определяют нормальность полученного раствора титрованием его аликвотной части 0,01 и. раствором хлористоводородной кислоты по метиловому красному. В случае, если концентрация спиртового раствора метплата натрия сильно отличается от 0,02 н., добавляют илн еще металлического натрия, или раствор разбавляют той же смесью спиртов. Полученный раствор выдерживают в течение суток в колбе, закрытой пробкой. За это время из раствора выпадает карбонат натрия. Раствор осторожно сливают с осадка и точно устанавливают нормальность титранта, титруя им навеску салициловой кислоты при а = = 330 нм таким же образом, как это описано ниже для смеси кислот. [c.460]
chem21.info
Концентрация вещества нормальная — Справочник химика 21
Молярная концентрация вещества эквивалента (1/г )Х в растворе (ранее — нормальность, нормальная концентрация) с[ /г ) X] — отношение количества вещества эквивалента /г )Х к объему раствора [c.117]Нормальной концентрацией (или нормальностью) раствора называют число грамм-эквивалентов растворенного вещества в 1 л раствора. [c.63]
Определите процентную концентрацию вещества в растворе, получившемся в результате электролиза 400 мл 10%-ного раствора едкого натра (плотность 1,1), если известно, что при этом выделилось 56 мл кислорода, измеренного при нормальных условиях. [c.37]
Нормальная концентрация, или нормальность (М), — количество грамм-эквивалентов растворенного вещества в 1 л раствора [c.34]
Основные формулы для вычислений. Число грамм-эквивалентов вещества, находящихся в 1 л раствора, называют нормальностью (или ъор-мальной концентрацией) раствора. Нормальность раствора обозначают в формулах буквой N. Для вычисления главное значение имеет следующая очень важная характеристика этого числа если умножить объем данного раствора (I/) на нормальность (М) этого раствора, то аолучитхя эквивалентный объем точно однонормального раствора. [c.285]
Таким образом, если известна концентрация одного из реагирующих веществ и объемы растворов обоих веществ, участвующих в реакции, можно определить нормальную концентрацию второго раствора, исиользуя формулу (5.8). Такие расчеты проводят при определении концентрации веществ методом титрования. [c.75]
При работах с растворами электролитов удобно пользоваться так называемыми нормальными концентрациями. Нормальным (1 и.) называется раствор, содержащий в литре один эквивалент растворенного вещества. Массу электрона, которую нужно растворить в 1 л, чтобы получить нормальный раствор, находят, умножая его мольную массу на эквивалент. Например, мольная масса Ва(0Н)2 равна 171,3 г/моль, а эквивалент — /г моля для получения 1 н. раствора нужно взять 171,3-72 = 85,65 г Ва(0Н)2- Основное преимущество такого способа выражения концентрации электролитов заключается в том, что при одинаковой нормальности растворов, например, любая щелочь будет реагировать с любой кислотой в равных объемах. В отношении обозначения концентраций к нормальным растворам относится все сказанное ранее о молярных ( 2). [c.139]
При работе с окислителями и восстановителями потеря Получение удобно пользоваться их нормальными концентрация- Веществом [c.291]
Интересно отметить, что, несмотря на пиролиз, концентрация высокомолекулярных нормальных алканов в нефтях, полученных из асфальтенов, не уступает содержанию тех же углеводородов в нативных нефтях типа A . Можно предположить, что относительная величина содержания парафиновых цепей в асфальтенах различных нефтей (как продуктов, менее всего подвергшихся биодеградации) может быть использована в качестве дополнительного критерия определения фациального (генетического) типа нефтей. Например, асфальтены, выделенные из древних нефтей Восточной Сибири, исходное вещество которых заведомо было морского происхождения, не содержали в своем составе парафиновых цепей длиннее, чем В то же время асфальтены мезозойских нефтей Западной Сибири имели в своем составе парафиновые цепи вплоть до С40, что указывает на присутствие в исходном органическом веществе остатков высшей растительности. [c.249]
Таким же способом можно изучить зависимость между аналитическими концентрациями вещества в двух смежных фазах, если вещество в одной из них ассоциирует, и найти количественный закон ассоциации. Так, например, бензойная кислота в воде имеет нормальный молекулярный вес и почти не диссоциирует на ионы, а в бензоле находится практически полностью в виде двойных молекул. [c.289]
Следует отметить, что применение эквивалентов и нормальной концентрации имеет ряд недостатков. Для нахождения эквивалентов определяемого вещества и реагента необходимо составить уравнение данной реакции титрования. Однако если это сделано, более удобно расчеты вести непосредственно по этому уравнению с помощью молярных концентраций молекул, формульных единиц, ионов определяемого вещества и реагента. Кроме того, для многих веществ эквивалент изменяется при изменении условий протекания взаимодействия, даже при изменении pH раствора. Так, например, для перманганат-ионов в кислой среде г = 5, в нейтральной г = 3 и в сильнощелочной г = 1. Поэтому одновременно с указанием эквивалента следует указывать также все условия, изменение которых может изменить величину эквивалента. К сожалению, не всегда это делается, и часто на практике пользуются найденным эквивалентом также для реакций с другими веществами, что приводит к неверным результатам. Вследствие этого в последнее время предпочитают пользоваться молярной концентрацией молекул, формульных единиц, ионов и не пользоваться молярной концентрацией эквивалентов (нормальной. концентрацией), [c.167]
В нормальной системе противоточной экстракции растворитель, можно насытить веществом В почти до состояния равновесия с составом исходного раствора. Но одновременно растворяется также и некоторое количество вещества А (рафината), что—особенно при низких концентрациях экстрагируемого компонента В в исходном растворе—вызывает большие потери рафината. Применение возврата на стороне отбора экстракта позволяет снизить концентрацию вещества А в конечном экстракте до любого заданного уровня. Поток возврата вымывает вещество А из экстракта и присоединяет его к рафинату, отчего количество рафината увеличивается [31, 61, 76]. [c.153]
Зная, что объемы нормальных растворов веществ, вступивших в реакцию, обратно пропорциональны нормальным концентрациям веществ в растворах, запишем [c.114]
Удобство выражения концентраций через нормальность обусловлено тем, что вещества вступают в реакции в эквивалентных количествах. Поэтому если при смешении двух растворов с нормальностью соответственно Л ] и N2 содержащиеся в них вещества прореагируют без остатка, то справедливо соотношение [c.18]
Процесс любого измерения заключается в сравнении выбранного параметра объекта с аналогичным параметром эталона. В титриметрических анализах эталонами служат растворы с точно известной концентрацией (титром, нормальностью) определяемого компонента. Такие растворы называют стандартными (титрованными). Их можно приготовить несколькими способами 1) по точной навеске исходного вещества 2) по приблизительной навеске с последующим определением концентрации по первичному стандарту 3) разбавлением заранее приготовленного раствора с известной концентрацией 4) по фиксаналу 5) ионным обменом (см, гл. 13). [c.147]
Отношение числа эквивалентов растворенного вещества к объему раствора, выраженному в литрах, или, что то же самое, число эквивалентов растворенного вещества в 1 л раствора называется нормальной концентрацией, или нормальностью. [c.99]
Нормальная концентрация, или нормальность, означает число грамм-эквивалентов вещества, содержащееся в 1 л раствора. [c.111]
На рис. У-28 наряду с сплошными линиями, отражающими изменения температуры и концентрации для нормального технологического режима, пунктирными линиями представлены изменения этих же параметров при уменьшении начальной концентрации основного реагирующего вещества на 5 (кривая с индексом [c.139]
Было установлено, что при нормальном режиме и подаче в реактор полупродукта, содержащего вещество А в количестве 500 кг/ч с относительной весовой концентрацией Хац= 1 при подаче полупродукта, содержащего вещество В в количестве 525 кг/ч с концентрацией = 0,92, и температуре процесса, равной 18° С, концентрация вещества А в реакционной массе составляла Ха к= 0,025 при рабочем объеме реактора Уд = [c.174]
Установлены нормы предельно допустимых концентраций (ПДК) различных вредных веществ в атмосферном воздухе населенных мест. Различают два вида ПДК — максимально разовую и среднесуточную. Непревышение максимально разовой ПДК при воздействии до 20 мин не вызывает у человека неприятных реакций непревышение среднесуточной предельной концентрации обеспечивает нормальное функционирование человеческого организма. [c.204]
При тех же материальных потоках, что и в нормальном режиме, опытом было установлено, что концентрация вещества А в реакционной зоне в результате повышения температуры до 23° С понизилась до х д = 0,0154 и вследствие понижения до 15° С повысилась до х 0,0263. Таким образом, в этих опытах [c.175]
Эквивалентная концентрация или нормальность (С или н.) — отношение числа эквивалентов растворенного вещества к объему раствора например, 0,75 н. раствор нли С = 0,75 моль/л. [c.49]
Эквивалентная концентрация, или нормальность, показывает число эквивалентов растворенного вещества, содержащихся в 1 л раствора. [c.52]
При переходе от молярных концентраций к нормальным и наоборот следует учитывать число эквивалентов, образующих моль данного вещества. Для растворов соединений типа НС1, KNO3, КОН и др., для которых эквивалент совпадает с молем, молярность и нормальность растворов совпадают. [c.33]
На рис. 10.9 изображено изменение концентрации вещества С в одной из фаз (явления в другой фазе пока не рассматриваются взаимодействие фаз — предмет массопередачи). Примыкающая к границе (7) фазового раздела область, в которой наблюдается изменение С нормально к границе, называется диффузионным пограничным слоем. Изменение концентрации от значения на границе до С в ядре фазы происходит плавно. Для удобства анализа и расчета вводят понятие о модельной пограничной пленке с четкими границами и определенной толщиной 5д считают, что в этой пленке сосредоточено все изменение концентрации от С до С, а за пределами пленки (в ядре) концентрация постоянна. Диффузионная пограничная пленка аналогична тепловой (ее толщина т) и ламинарному пристеночному слою (5и) во всех этих пленках невелика роль турбулентного переноса (количества движения, теплоты, вещества), доминирует вклад молекулярного переноса — вязкость, кондукция, а в изучаемых здесь явлениях — диффузия. В общем случае толщина диффузионной пленки 5д не совпадает с и и 8р количественная оценка связи между ними дана в разд. [c.774]
Молярная концентрация эквивалента (нормальная концентрация) С(Х) — это отношение количества вещества эквивалента, содержащегося в растворе, к объему этого раствора [моль/м ]. На практике нормальную концентрацию по аналогии с молярной выражают в моль/л. Так, например, С(Н2504) = = 1 моль/л или С(КОН) = 0,01 моль/л. При С(В) = 1 моль/л раствор называют нормальным, при С (В) = 0,01 моль/л — санти-нормальным и т. п. Приняты и такие обозначения 1 н. раствор Н2504 0,01 н. раствор КОН. [c.147]
Таким образом, для того чтобы решить гидродинамическую задачу о движении жидкости с учетом изменения 21 на межфазной поверхности, необходимо предварительно знать распределение концентрации вещества, температуры и заряда на поверхности. Их распределение, в свою очередь, связано с распределением гидродинамических параметров. Таким образом, решение этой задачи требует привлечения уравнений сохранения массы, количества движения, энергии и заряда с соответствующими граничными условиями, отражающими баланс сил на межфазной поверхности равенство тангенциальных сил и скачок нормальных сил, равный капиллярному давлению, а в случае модели Буссинеска — учет поверхностной вязкости слоя. В дальнейшем поверхностная вязкость учитываться не будет. [c.452]
Результаты анализа можно вычислять по титру растворенного вещества в тнтранте. oжнo также выражать концентрацию стандартного раствора через титр определяемого вещества, т, е. числом граммов определяемого вещества, соответствующим 1 мл стандартного раствора. Можно выражать все концентрации через нормальности реагирующих растворов. [c.352]
На практике во многих случаях расчет результатов титриметрических определений удобнее проводить на основе принципа эквивалентности. При этом стехиометрию ки-слотно-основных и окислительно-восстановительных реакций выражают в эквивалентной форме, а эталоном химического взаимодействия служит протон или электрон (см. раздел 2.1 и табл. 2.1 2.2). Все расчеты ведутся через число моль эквивалентов вещества, молярную массу эквивалента и молярную концентрацию эквивалента (нормальную концентрацию ). [c.575]
При обтекании гранулы катализатора потоком реагирующих веществ н продуктов реакции траиспорт вещества к поверхности и от нее в общем случае осуществляется путем мак диффузионного, так и конвекционного (массового) переноса. Первый связан с разными парциальными концентрациями веществ в направлении, нормальном к поверхности (или, иначе, с возникновением градиента концентраций а это М направлении), второй — с перепадом общего давления (с градиентом о бщего давления) в том же напр1авлении, с тепловым эффектом реакции и условиями теплоотвода. [c.6]
Технологический процесс определяется параметрами, обеспечивающими нормальное его течение. Технологическими параметрами называются измеримые величины, определяющие состояние веществ, образующихся в процессе, и их реакционную снособиэсть. К ним, например, относятся температура и концентрация веществ иа входе в аппарат и выходе из него, состав и дисперсность твердых материалов, давление жидких и газообразных продуктов, скорость движения и количество по-даваемь1х веществ, интенсивность их перемещивания и др. Наиболее важным в химико-технологических процессах являются так называемые интенсивные физико-химические параметры—давление, температура и концентрация веществ. Совокупность технологических параметров определяет технологический режим производства. [c.221]
Подставляя имеющиеся экспериментальные данные в приведенные уравнения, можно наР1ти один из неизвестных объемов (Уг или I/.). если известны концентрации, выраженные нормальностью (известны N1 и N2). Можно решить и обратную задачу — определить нормальность одного из растворов (Л 1 или N2), если известны объемы растворов реагирующих веществ (известны 1 и У2). [c.200]
При работах с растворами электролитов удобно пользоваться так называемыми нормальными концентрациями. Нормальным (1 н.) называется раствор, содержащий в литре один грамм-эквивалент растворенного вещества. В общем случае грамм-экви-валентные или, как их часто называют, нормальные веса находят, деля грамм-молекулярный вес электролита на число валентных связей между образующими его молекулу ионами. Например, нормальные веса HNO3, Ва(ОН)2, А12(504)з соответстйенно равняются М, М/2 и М/в. Основное преимущество такого способа выражения концентрации электролитов перед другими заключается в том, что при одинаковой нормальности растворов, например. Любая щелочь будет реагировать с любой кислотой в равных объемах. В отношении обозначения концентраций к нормальным растворам относится все сказанное ранее о молярных ( 2). [c.175]
Молярная концентрация эквивалента (нормальная концентрация)—это отноитение количества вещества эквивалента к объему раствора [c.74]
Платиновый электрод, помещенный в раствор, содержащий хинон м гидрохинон, при определенной концентрации водородных ионов при-О бретает электрический потенциал, который можио измерить, соединив этот электрод через проводящую жидкость с нормальным полуэлемен-тоад, таким, как каломельный или водородный электрод. Потенциал Е электрода органического полуэлемента зависит от концентрации веществ, находящихся в равновесии, т. е. хинона, гидрохинона и водородных ионов, причем эта зависимость выр ажается уравиением [c.411]
Примерный ионный и солевой состав рассолов, применяемых на содовых заводах, приведен в Приложении. Концентрация солей выражена в так назьшаемых нормальных делениях (нд.). Это измерение концентраций принято на содовых заводах. Одно нормальное деление соответствует 1/20 г-экв вещества в 1 л раствора. Измерение концентраций веществ в грамм-эквивалентах упрощает вычисления, облегчает просмотр и сравнительную оценку технических отчетов и лабораторных сводок. Но во избежание большого количества десятичных знаков при этой системе подсчетов за единицу измерения концентраций раствора берут 1/20 часть грамм-эквивалента, или нормальное деление (нд.). [c.17]
Практически при решении задач теплопереноса весьма часто X к а можно считать не зависящими от температуры. Но вот при переносе импульса в движущейся среде встречаются ситуации, когда пренебрегать нелинейностью нельзя значения ц и V могут существенно зависеть от градиентов скоростей. Это происходит, когда нарущается связь и аи /Эл, заданная формулой Ньютона либо ц не является постоянной величиной из-за происходящих в жидкости структурных деформаций, так что ц зависит от градиента скоростей, либо осуществляется намеренная подмена задачи, когда нелинейные эффекты вихреоб-разования в жидкости выражают в терминах и символах нормального переноса импульса, т.е. в манере формулы (1.9). Такие случаи будут освещены в главе «Гидравлика». При переносе вещества коэффициенты диффузии О также нередко зависят от уровня концентраций С. С этим встречаются, например, при массопереносе в твердых телах (процессы адсорбции, сушки), когда с изменением концентрации вещества в твердом теле изменяются скоростные характеристики диффузии, а иногда и сам механизм массопереноса (по крайней мере, изменяется вклад различных механизмов в перенос вещества). Тогда вместо [c.97]
Прежде чем молекулы какого-либо вещества адсорбируются из потока газа-носителя, они должны достичь наружной поверхности частиц адсорбента. Это происходит за счет нормальной диффузи11 молекул вещества с газом-носителем. С увеличением концентрации вещества на поверхности адсорбционный фронт проникает внутрь пористого вещества, адсорбент начинает равномерно насыщаться адсорбируемым компонентом из газа-носи-теля. [c.205]
Так как титры многих титрованных растворов не гут быть определены путем деления навески растворенного вещества на объем раствора из-за того, что многие вещества не удовлетворяют основным требованиям, предъявляемым к исходным веществам, то их титры устанавливают по соответствующим исходным веществам путем титрования. Поскольку объемы реагирующих веществ обратно пропорциональны их концентрациям, то нормальность определяют из отношения объемов. растворов VilV NilNy а поэтому N2= ViN jV2. [c.132]
Пояснение. 1 мл титранта (титрующего раствора) оттитровы-вает с(/,и(К)К) Л/(/,и(А)А) мг определяемого вещества, где с(Лкв(1 -)Ю — молярная концентрация эквивалента (нормальная концентрация) титранта. Л/(/,ш(А)А) — молярная масса эквивалента определяемого вещества и — фактор эквивалентности приведены в таблице. Если g— навеска анализируемого материала (в мг), V— объем титранта, пошедшего на титрование, то содержание (массовая доля) определяемого вещества (в(А) в % равно [c.580]
На рис. 5.2 приведены кривые нормального распределения результатов определения для различных критериев предельно низких количеств (концентраций) вещества. Открываемому минимуму Х соответствует кривая 2, которая характеризуется доверительной вероятностью Р = 0,5, так как кривая распределения результатов холостого опыта Хыл (кривая /) перекрывает ее наполовину. В данном случае с вероятностью Р = 0,5 имеется риск переоткрыть определяемый компонент, приняв сигнал холостого опыта за аналитический сигнал (погрешность второго рода). Кривая рас-пред еиия результатов 3 соответствует пределу обнаружения Хпред данной аналитической реакции. Предел обнаружения — количество (концентрация) определяемого вещества, которое может быть обнаружено с достаточно большой вероятностью Р. В данном случае Р = 0,997 (трехсигмовый критерий). Так как кривая 3 все же перекрывается кривой / холостого опыта, можно принять сигнал определяемого [c.93]
chem21.info
Концентрация растворов (видео) — Портал аналитической химии
Концентрация — величина, характеризующая количественный состав раствора. Концентрация растворённого вещества это отношение количества растворённого вещества (либо его массы) к объёму раствора.
В тоже время величины, которые являются отношением однотипных величин (соотношение объёма растворённого вещества к объёму раствора, масс растворённого вещества к массе раствора) называют «долями». Однако на практике доли также относят к концентрациям.
Существует ряд способов для выражения концентрации растворов.
Массовая доля
Массовая доля — соотношение масс растворённого вещества к массе раствора. (в долях единицы или в процентах):
,
где:
· m — общая масса раствора, г .
· m1 — масса растворённого вещества, г;
Массовое процентное содержание компонента, m%
m%=(mi/Σmi)*100
Объёмная доля
Объёмная доля — соотношение объёма растворённого вещества к объёму раствора. Объёмная доля определяется в долях единицы или в процентах.
,
где:
· V — общий объём раствора, л.
· V1 — объём растворённого вещества, л;
Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.
,
где:
· n — число компонентов;
· νi — количество i-го компонента, моль;
Молярность
Молярная концентрация — количество растворённого вещества (число молей) в единице объёма раствора, единицы измерения (моль/м³),
,
где:
· V — общий объём раствора, л.
· ν — количество растворённого вещества, моль;
Нормальная концентрация (или нормальность)
Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Единицы измерения моль-экв/л.
Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.
,
где:
· V — общий объём раствора, л;
· ν — количество растворённого вещества, моль;
· z — число эквивалентности (фактор эквивалентности
).
Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество.
К примеру, одномолярный раствор H2SO4 будет двухнормальным в реакции с образованием K2SO4 и однонормальным если он предназначается для реакции со щёлочью с образованием KHSO4.
Моляльность ( моляльная концентрация)
Моляльность — количество растворённого вещества (число моль) в 1000 г растворителя. Единицы измерения моли на кг.
,
где:
· m2 — масса растворителя, кг.
· ν — количество растворённого вещества, моль;
Титр раствора — масса растворённого вещества в 1 мл раствора.
,
где:
· V — общий объём раствора, мл;
· m1 — масса растворённого вещества, г;
Формулы пересчета концентраций
Из молярности в нормальность:
,
где:
z — число эквивалентности.
· M — молярность, моль/л;
Из массовой доли в молярность:
,
где:
· M1 — молярная масса растворенного вещества, г/моль.
· ω — массовая доля растворенного вещества в долях от 1;
· ρ — плотность раствора, г/л;
Из массовой доли в титр:
,
где:
· ω — массовая доля растворенного вещества в долях от 1;
· ρ — плотность раствора, г/л;
Из молярности в титр:
,
где:
· M1 — молярная масса растворенного вещества, г/моль.
· M — молярность, моль/л;
Из моляльности в мольную долю:
,
где:
· mi — моляльность, моль/кг;
· M2 — молярная масса растворителя, г/моль.
Наиболее распространённые единицы
Из молярности в моляльность:
,
где:
· M — молярность, моль/л;
· ρ — плотность раствора, г/мл;
· M1 — молярная масса растворенного вещества, г/моль.
www.chemical-analysis.ru
Концентрация растворов — это… Что такое Концентрация растворов?
Концентрация — величина, характеризующая количественный состав раствора.
Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л), то есть это отношение неоднородных величин.
Те величины, которые являются отношением однотипных величин (отношение массы растворённого вещества к массе раствора, отношение объёма растворённого вещества к объёму раствора), правильно называть долями. Однако на практике для обоих видов выражения состава применяют термин концентрация и говорят о концентрации растворов.
Существует много способов выражения концентрации растворов.
Массовая доля
Массовая доля — отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах.
- ,
где:
- m1 — масса растворённого вещества, г ;
- m — общая масса раствора, г .
Массовое процентное содержание компонента, m%
m%=(mi/Σmi)*100
В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят 2 измерения: непосредственное, и при небольшом разбавлении раствора.
Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.
ω, % | 5 | 10 | 15 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 95 |
ρ H2SO4, г/мл | 1,032 | 1,066 | 1,102 | 1,139 | 1,219 | 1,303 | 1,395 | 1,498 | 1,611 | 1,727 | 1,814 | 1,834 |
Объёмная доля — отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.
- ,
где:
- V1 — объём растворённого вещества, л;
- V — общий объём раствора, л.
Как и было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.
Молярность (молярная объёмная концентрация)
Молярная концентрация — количество растворённого вещества (число молей) в единице объёма раствора. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также распространено выражение в «молярности». Возможно другое обозначение молярной концентрации , которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным. Примечание: единица «моль» не склоняется по падежам. После цифры пишут «моль», подобно тому, как после цифры пишут «см», «кг» и т. д.
- ,
где:
Нормальная концентрация (мольная концентрация эквивалента, или просто «нормальность»)
Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.
- ,
где:
Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.
Мольная (молярная) доля
Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.
- ,
где:
- νi — количество i-го компонента, моль;
- n — число компонентов;
Моляльность (молярная весовая концентрация, моляльная концентрация)
Моляльность — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.
- ,
где:
Следует обратить особое внимание, что несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.
Титр раствора
Титр раствора — масса растворённого вещества в 1 мл раствора.
- ,
где:
- m1 — масса растворённого вещества, г;
- V — общий объём раствора, мл;
В аналитической химии обычно концентрацию титранта пересчитывают применительно к конкретной реакции титрования таким образом, чтобы объём использованного титранта непосредственного показывал массу определяемого вещества; то есть титр раствора показывает, какой массе определяемого вещества (в граммах) соответствует 1 мл титрованного раствора.
Весообъёмные проценты
Соответствуют отношению массы одной части вещества (например, 1 г) к 100 частям объёма раствора (например, к 100 мл).[1] Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[2]
Другие способы выражения концентрации растворов
Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, в фотометрии часто используют массовую концентрацию, равную массе растворённого вещества в 1 л раствора. При приготовлении растворов кислот часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Концентрация загрязнений в воздухе может выражаться в частях на миллион (ppm). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).
Применимость способов выражения концентрации растворов, их свойства
В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.
Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.
Формулы перехода от одних выражений концентраций растворов к другим
От массовой доли к молярности:
- ,
где:
- ρ — плотность раствора, г/л;
- ω — массовая доля растворенного вещества в долях от 1;
- M1 — молярная масса растворенного вещества, г/моль.
От молярности к нормальности:
- ,
где:
От массовой доли к титру:
- ,
где:
- ρ — плотность раствора, г/л;
- ω — массовая доля растворенного вещества в долях от 1;
От молярности к титру:
- ,
где:
- M — молярность, моль/л;
- M1 — молярная масса растворенного вещества, г/моль.
От молярности к моляльности:
- ,
где:
- M — молярность, моль/л;
- ρ — плотность раствора, г/мл;
- M1 — молярная масса растворенного вещества, г/моль.
От моляльности к мольной доле:
- ,
где:
- mi — моляльность, моль/кг;
- M2 — молярная масса растворителя, г/моль.
Наиболее распространённые единицы
Эта статья содержит незавершённый перевод с английского языка. Вы можете помочь проекту, переведя её до конца. |
Примечания
veter.academic.ru
Концентрация растворов — это… Что такое Концентрация растворов?
Концентрация — величина, характеризующая количественный состав раствора.
Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л), то есть это отношение неоднородных величин.
Те величины, которые являются отношением однотипных величин (отношение массы растворённого вещества к массе раствора, отношение объёма растворённого вещества к объёму раствора), правильно называть долями. Однако на практике для обоих видов выражения состава применяют термин концентрация и говорят о концентрации растворов.
Существует много способов выражения концентрации растворов.
Массовая доля
Массовая доля — отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах.
- ,
где:
- m1 — масса растворённого вещества, г ;
- m — общая масса раствора, г .
Массовое процентное содержание компонента, m%
m%=(mi/Σmi)*100
В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят 2 измерения: непосредственное, и при небольшом разбавлении раствора.
Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.
ω, % | 5 | 10 | 15 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 95 |
ρ H2SO4, г/мл | 1,032 | 1,066 | 1,102 | 1,139 | 1,219 | 1,303 | 1,395 | 1,498 | 1,611 | 1,727 | 1,814 | 1,834 |
Объёмная доля — отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.
- ,
где:
- V1 — объём растворённого вещества, л;
- V — общий объём раствора, л.
Как и было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.
Молярность (молярная объёмная концентрация)
Молярная концентрация — количество растворённого вещества (число молей) в единице объёма раствора. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также распространено выражение в «молярности». Возможно другое обозначение молярной концентрации , которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным. Примечание: единица «моль» не склоняется по падежам. После цифры пишут «моль», подобно тому, как после цифры пишут «см», «кг» и т. д.
- ,
где:
Нормальная концентрация (мольная концентрация эквивалента, или просто «нормальность»)
Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.
- ,
где:
Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.
Мольная (молярная) доля
Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.
- ,
где:
- νi — количество i-го компонента, моль;
- n — число компонентов;
Моляльность (молярная весовая концентрация, моляльная концентрация)
Моляльность — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.
- ,
где:
Следует обратить особое внимание, что несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.
Титр раствора
Титр раствора — масса растворённого вещества в 1 мл раствора.
- ,
где:
- m1 — масса растворённого вещества, г;
- V — общий объём раствора, мл;
В аналитической химии обычно концентрацию титранта пересчитывают применительно к конкретной реакции титрования таким образом, чтобы объём использованного титранта непосредственного показывал массу определяемого вещества; то есть титр раствора показывает, какой массе определяемого вещества (в граммах) соответствует 1 мл титрованного раствора.
Весообъёмные проценты
Соответствуют отношению массы одной части вещества (например, 1 г) к 100 частям объёма раствора (например, к 100 мл).[1] Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[2]
Другие способы выражения концентрации растворов
Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, в фотометрии часто используют массовую концентрацию, равную массе растворённого вещества в 1 л раствора. При приготовлении растворов кислот часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Концентрация загрязнений в воздухе может выражаться в частях на миллион (ppm). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).
Применимость способов выражения концентрации растворов, их свойства
В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.
Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.
Формулы перехода от одних выражений концентраций растворов к другим
От массовой доли к молярности:
- ,
где:
- ρ — плотность раствора, г/л;
- ω — массовая доля растворенного вещества в долях от 1;
- M1 — молярная масса растворенного вещества, г/моль.
От молярности к нормальности:
- ,
где:
От массовой доли к титру:
- ,
где:
- ρ — плотность раствора, г/л;
- ω — массовая доля растворенного вещества в долях от 1;
От молярности к титру:
- ,
где:
- M — молярность, моль/л;
- M1 — молярная масса растворенного вещества, г/моль.
От молярности к моляльности:
- ,
где:
- M — молярность, моль/л;
- ρ — плотность раствора, г/мл;
- M1 — молярная масса растворенного вещества, г/моль.
От моляльности к мольной доле:
- ,
где:
- mi — моляльность, моль/кг;
- M2 — молярная масса растворителя, г/моль.
Наиболее распространённые единицы
Эта статья содержит незавершённый перевод с английского языка. Вы можете помочь проекту, переведя её до конца. |
Примечания
med.academic.ru
Концентрация растворов — это… Что такое Концентрация растворов?
Концентрация — величина, характеризующая количественный состав раствора.
Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л), то есть это отношение неоднородных величин.
Те величины, которые являются отношением однотипных величин (отношение массы растворённого вещества к массе раствора, отношение объёма растворённого вещества к объёму раствора), правильно называть долями. Однако на практике для обоих видов выражения состава применяют термин концентрация и говорят о концентрации растворов.
Существует много способов выражения концентрации растворов.
Массовая доля
Массовая доля — отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах.
- ,
где:
- m1 — масса растворённого вещества, г ;
- m — общая масса раствора, г .
Массовое процентное содержание компонента, m%
m%=(mi/Σmi)*100
В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят 2 измерения: непосредственное, и при небольшом разбавлении раствора.
Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.
ω, % | 5 | 10 | 15 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 95 |
ρ H2SO4, г/мл | 1,032 | 1,066 | 1,102 | 1,139 | 1,219 | 1,303 | 1,395 | 1,498 | 1,611 | 1,727 | 1,814 | 1,834 |
Объёмная доля — отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.
- ,
где:
- V1 — объём растворённого вещества, л;
- V — общий объём раствора, л.
Как и было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.
Молярность (молярная объёмная концентрация)
Молярная концентрация — количество растворённого вещества (число молей) в единице объёма раствора. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также распространено выражение в «молярности». Возможно другое обозначение молярной концентрации , которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным. Примечание: единица «моль» не склоняется по падежам. После цифры пишут «моль», подобно тому, как после цифры пишут «см», «кг» и т. д.
- ,
где:
Нормальная концентрация (мольная концентрация эквивалента, или просто «нормальность»)
Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.
- ,
где:
Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.
Мольная (молярная) доля
Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.
- ,
где:
- νi — количество i-го компонента, моль;
- n — число компонентов;
Моляльность (молярная весовая концентрация, моляльная концентрация)
Моляльность — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.
- ,
где:
Следует обратить особое внимание, что несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.
Титр раствора
Титр раствора — масса растворённого вещества в 1 мл раствора.
- ,
где:
- m1 — масса растворённого вещества, г;
- V — общий объём раствора, мл;
В аналитической химии обычно концентрацию титранта пересчитывают применительно к конкретной реакции титрования таким образом, чтобы объём использованного титранта непосредственного показывал массу определяемого вещества; то есть титр раствора показывает, какой массе определяемого вещества (в граммах) соответствует 1 мл титрованного раствора.
Весообъёмные проценты
Соответствуют отношению массы одной части вещества (например, 1 г) к 100 частям объёма раствора (например, к 100 мл).[1] Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[2]
Другие способы выражения концентрации растворов
Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, в фотометрии часто используют массовую концентрацию, равную массе растворённого вещества в 1 л раствора. При приготовлении растворов кислот часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Концентрация загрязнений в воздухе может выражаться в частях на миллион (ppm). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).
Применимость способов выражения концентрации растворов, их свойства
В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.
Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.
Формулы перехода от одних выражений концентраций растворов к другим
От массовой доли к молярности:
- ,
где:
- ρ — плотность раствора, г/л;
- ω — массовая доля растворенного вещества в долях от 1;
- M1 — молярная масса растворенного вещества, г/моль.
От молярности к нормальности:
- ,
где:
От массовой доли к титру:
- ,
где:
- ρ — плотность раствора, г/л;
- ω — массовая доля растворенного вещества в долях от 1;
От молярности к титру:
- ,
где:
- M — молярность, моль/л;
- M1 — молярная масса растворенного вещества, г/моль.
От молярности к моляльности:
- ,
где:
- M — молярность, моль/л;
- ρ — плотность раствора, г/мл;
- M1 — молярная масса растворенного вещества, г/моль.
От моляльности к мольной доле:
- ,
где:
- mi — моляльность, моль/кг;
- M2 — молярная масса растворителя, г/моль.
Наиболее распространённые единицы
Эта статья содержит незавершённый перевод с английского языка. Вы можете помочь проекту, переведя её до конца. |
Примечания
dvc.academic.ru