Моляльная концентрация формула – Концентрация смеси — Википедия

Содержание

Моляльность Википедия

Концентра́ция или до́ля компонента смеси — величина, количественно характеризующая содержание компонента относительно всей смеси. Терминология ИЮПАК под концентрацией компонента понимает четыре величины: соотношение молярного, или численного количества компонента, его массы, или объёма исключительно к объёму раствора[1] (типичные единицы измерения — соответственно моль/л, л−1, г/л, и безразмерная величина). Долей компонента ИЮПАК называет безразмерное соотношение одной из трёх однотипных величин — массы, объёма или количества вещества.[2] Однако в обиходе термин «концентрация» могут применять и для долей, не являющихся объёмными долями, а также к соотношениям, не описанным ИЮПАК. Оба термина могут применяться к любым смесям, включая механические смеси, но наиболее часто применяются к растворам.

Массовая доля

Массовая доля компонента — отношение массы данного компонента к сумме масс всех компонентов. По рекомендациям ИЮПАК,

[3] обозначается символом w{\displaystyle w}, в русскоязычной литературе чаще встречается обозначение ω{\displaystyle \omega }. Массовая доля — безразмерная величина, как правило выражается в долях единицы или в процентах (для выражения массовой доли в процентах следует умножить указанное выражение на 100 %):

ωB=mBm{\displaystyle \omega _{\mathrm {B} }={\frac {m_{\mathrm {B} }}{m}}}

где:

  • ωB — массовая доля компонента B
  • mB — масса компонента B;
  • m{\displaystyle m} — общая масса всех компонентов смеси.

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят два измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Пример: зависимость плотности растворов H2SO4 от её массовой доли в водном растворе при 25 °C[источник не указан 2468 дней]
ω, %51015203040506070809095
ρ H2SO4, г/мл1,0321,0661,1021,1391,219
1,303
1,3951,4981,6111,7271,8141,834

Объёмная доля

Объёмная доля компонента — отношение объёма компонента к сумме объёмов компонентов до смешивания. Объёмная доля измеряется в долях единицы или в процентах.

ϕB=VB∑Vi{\displaystyle \phi _{\mathrm {B} }={\frac {V_{\mathrm {B} }}{\sum V_{i}}}},

где:

  • ϕB{\displaystyle \phi _{\mathrm {B} }} — объёмная доля компонента B,
  • VB — объём компонента B;
  • ∑Vi{\displaystyle \sum V_{i}} — сумма объёмов всех компонентов до смешивания.

При смешивании жидкостей их суммарный объём может уменьшаться, поэтому не следует заменять сумму объёмов компонентов на объём смеси.

Как было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)

Молярная концентрация (молярность, мольность[4]) — количество вещества (число молей) компонента в единице объёма смеси. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также используют выражение «в молярности». Возможно другое обозначение молярной концентрации, которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным, записывают «0,5 M».

По рекомендации ИЮПАК, обозначается буквой c{\displaystyle c} или [B]{\displaystyle [B]}, где B — вещество, концентрация которого указывается.[5]

Примечание: После числа пишут «моль», подобно тому, как после числа пишут «см», «кг» и т. п., не склоняя по падежам.

cB=nBV{\displaystyle {c_{\mathrm {B} }}={\frac {n_{\mathrm {B} }}{V}}},

где:

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

c(feq B)=c((1/z) B)=z⋅cB=z⋅nBV=1feq⋅nBV{\displaystyle c(f_{eq}~\mathrm {B} )=c{\big (}(1/z)~\mathrm {B} {\big )}=z\cdot c_{\mathrm {B} }=z\cdot {\frac {n_{\mathrm {B} }}{V}}={\frac {1}{f_{eq}}}\cdot {\frac {n_{\mathrm {B} }}{V}}},

где:

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K

2SO4.

Мольная (молярная) доля

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы. ИЮПАК рекомендует обозначать мольную долю буквой x{\displaystyle x} (а для газов — y{\displaystyle y})[6], также в литературе встречаются обозначения χ{\displaystyle \chi }, X{\displaystyle X}.

xB=nB∑ni{\displaystyle x_{\mathrm {B} }={\frac {n_{\mathrm {B} }}{\sum n_{i}}}},

где:

  • xB{\displaystyle x_{\mathrm {B} }} — мольная доля компонента B;
  • nB{\displaystyle n_{\mathrm {B} }} — количество компонента B, моль;
  • ∑ni{\displaystyle \sum n_{i}} — сумма количеств всех компонентов.

Мольная доля может использоваться, например, для количественного описания уровня загрязнений в воздухе, при этом ее часто выражают в частях на миллион (ppm — от англ. parts per million). Однако, как и в случае с другими безразмерными величинами, во избежание путаницы, следует указывать величину, к которой относится указанное значение.

Моляльность (молярная весовая концентрация, моляльная концентрация)

Моляльная концентрация (моляльность,[4] молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

mB=nBmA{\displaystyle {m_{\mathrm {B} }}={\frac {n_{\mathrm {B} }}{m_{\mathrm {A} }}}},

где:

Следует обратить особое внимание, что, несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

Массовая концентрация (Титр)

Массовая концентрация — отношение массы растворённого вещества к объёму раствора. По рекомендации ИЮПАК, обозначается символом γ{\displaystyle \gamma } или ρ{\displaystyle \rho }

[7].

ρB=mBV{\displaystyle \rho _{\mathrm {B} }={\frac {m_{\mathrm {B} }}{V}}}.

где:

  • mB{\displaystyle m_{\mathrm {B} }} — масса растворённого вещества;
  • V{\displaystyle V} — общий объём раствора;

В аналитической химии используется понятие титр по растворённому или по определяемому веществу (обозначается буквой T{\displaystyle T}).

Концентрация частиц

По рекомендациям ИЮПАК концентрация частиц обозначается буквой C{\displaystyle C}[8], однако также часто встречается обозначение n{\displaystyle n} (не путать с количеством вещества).

CB=NBV=nB⋅NAV=cB⋅NA{\displaystyle C_{\mathrm {B} }={\frac {N_{\mathrm {B} }}{V}}={\frac {n_{\mathrm {B} }\cdot N_{\mathrm {A} }}{V}}=c_{\mathrm {B} }\cdot N_{\mathrm {A} }},

где:

Весообъёмные (массо-объёмные) проценты

Иногда встречается использование так называемых «весообъёмных процентов»

[9], которые соответствуют массовой концентрации вещества, где единица измерения г/(100 мл) заменена на процент. Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[10] Стоит отметить, что поскольку масса и объём имеют разные размерности, использование процентов для их соотношения формально некорректно. Также международное бюро мер и весов[11] и ИЮПАК[12] не рекомендуют добавлять дополнительные метки (например «% (m/m)» для обозначения массовой доли) к единицам измерения.

Другие способы выражения концентрации

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, при приготовлении растворов кислот в лабораторной практике часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).

Применимость способов выражения концентрации растворов, их свойства

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.

Формулы перехода от одних выражений концентраций к другим

В зависимости от выбранной формулы погрешность конвертации колеблется от нуля до некоторого знака после запятой.

От массовой доли к молярности

cB=ρ⋅ωBM(B){\displaystyle c_{\mathrm {B} }={\frac {\rho \cdot \omega _{\mathrm {B} }}{M(\mathrm {B} )}}},

где:

  • cB{\displaystyle c_{\mathrm {B} }} — молярная концентрация вещества B
  • ρ{\displaystyle \rho } — плотность раствора;
  • ωB{\displaystyle \omega _{\mathrm {B} }} — массовая доля вещества B;
  • M(B){\displaystyle M(\mathrm {B} )} — молярная масса вещества B.

Если плотность раствора выражена в г/мл, а молярная масса в г/моль, то для выражения ответа в моль/л выражение следует домножить на 1000 мл/л. Если массовая доля выражена в процентах, то выражение следует также разделить на 100 %.

От молярной концентрации к нормальной

c((1/z) B)=cB⋅z{\displaystyle {c((1/z)~\mathrm {B} )}={c_{\mathrm {B} }}\cdot {z}},

где:

От массовой доли к титру

T=ρ⋅ω{\displaystyle {T}={\rho }\cdot {\omega }},

где:

  • ρ{\displaystyle \rho } — плотность раствора, г/мл;
  • ω{\displaystyle \omega } — массовая доля растворённого вещества, в долях от 1;

От молярности к титру

T=cB⋅M{\displaystyle {T}={c_{\mathrm {B} }}\cdot {M}},

где:

  • cB{\displaystyle {c_{\mathrm {B} }}} — молярная концентрация;
  • M{\displaystyle M} — молярная масса растворённого вещества.

Если молярная концентрация выражена в моль/л, а молярная масса — в г/моль, то для выражения ответа в г/мл его следует разделить на 1000 мл/л.

От молярности к моляльности

mB=cBρ{\displaystyle m_{\mathrm {B} }={\frac {c_{\mathrm {B} }}{\rho }}},

где:

  • cB{\displaystyle {c_{\mathrm {B} }}} — молярная концентрация, моль/л;
  • ρ{\displaystyle \rho } — плотность раствора, г/мл;

От моляльности к мольной доле

xB=mBmB+1M(A){\displaystyle x_{\mathrm {B} }={\frac {m_{\mathrm {B} }}{m_{\mathrm {B} }+{\frac {1}{M(\mathrm {A} )}}}}},

где:

  • mB{\displaystyle m_{\mathrm {B} }} — моляльность,
  • M(A){\displaystyle M(\mathrm {A} )} — молярная масса растворителя.

Если моляльность выражена в моль/кг, а молярная масса растворителя в г/моль, то единицу в формуле следует представить как 1000 г/кг, чтобы слагаемые в знаменателе имели одинаковые единицы измерения.

Примечания

  1. International Union of Pure and Applied Chemistry. concentration (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — DOI:10.1351/goldbook.C01222.
  2. International Union of Pure and Applied Chemistry. fraction (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — DOI:10.1351/goldbook.F02494.
  3. International Union of Pure and Applied Chemistry. IUPAC Gold Book — mass fraction, w (англ.). goldbook.iupac.org. Проверено 11 декабря 2018.
  4. 1 2 Z. Sobecka, W. Choiński, P. Majorek. Dictionary of Chemistry and Chemical Technology: In Six Languages: English / German / Spanish / French / Polish / Russian. — Elsevier, 2013-09-24. — С. 641. — 1334 с. — ISBN 9781483284439.
  5. International Union of Pure and Applied Chemistry. IUPAC Gold Book — amount concentration, c (англ.). goldbook.iupac.org. Проверено 11 декабря 2018.
  6. International Union of Pure and Applied Chemistry. IUPAC Gold Book — amount fraction, x ( y for gaseous mixtures) (англ.). goldbook.iupac.org. Проверено 11 декабря 2018.
  7. International Union of Pure and Applied Chemistry. IUPAC Gold Book — mass concentration, γ, ρ (англ.). goldbook.iupac.org. Проверено 16 декабря 2018.
  8. International Union of Pure and Applied Chemistry. IUPAC Gold Book — number concentration, C,n (англ.). goldbook.iupac.org. Проверено 11 декабря 2018.
  9. ↑ Способы приготовления растворов на МедКурс. Ru
  10. Бернштейн И. Я., Каминский Ю. Л. Спектрофотометрический анализ в органической химии. — 2-е изд. — Ленинград: Химия, 1986. — с. 5
  11. ↑ The International System of Units (SI) (неопр.). www.bipm.org. Проверено 23 декабря 2018.
  12. ↑ Quantities, Units and Symbols in Physical Chemistry (неопр.). www.iupac.org. Проверено 23 декабря 2018.

wikiredia.ru

Концентрация раствора моляльная — Справочник химика 21

    I. При температуре Т давление пара раствора концентрации с неизвестного нелетучего вещества в жидком растворителе равно Р Па плотность этого рствора Зависимость давления насыщенного пара от температуры над жидким и твердым чистым растворителем приведена в таблице (с. 167—170) 1) вычислите молекулярную массу растворенного вещества 2) определите молярную и моляльную концентрации раствора 3) вычислите осмотическое давление раствора 4) постройте кривую Р = f Т) для данного раствора и растворителя 5) определите графически температуру, при которой давление пара над чистым растворителем будет равно Р Па 6) определите графически повышение температуры кипения при давлении Р раствора данной концентрации с 7) вычислите эбуллиоскопическую постоянную всеми возможными способами и сравните эти величины между собой при нормальной температуре кипения 8) определите понижение температуры замерзания раствора 9) вычислите криоскопическую постоянную. [c.206]
    Моляльная концентрация раствора (моляльность) — количество грамм-молекул растворенного вещества, содержащееся в 1 кг растворителя не зависит от температуры. [c.35]

    Рассчитать моляльную концентрацию раствора i [c.69]

    МОЛЯЛЬНОСТЬ РАСТВОРА — концентрация раствора, выраженная числом молей растворенного вещества в 1000 г растворителя. [c.164]

    При математическом выражении концентрации раствора путем указания его моляльности используется символ т. Результат, полученный в примере 14, следует записать так  [c.79]

    ИНТЕГРАЛЬНЫЕ ТЕПЛОТЫ РАСТВОРЕНИЯ КИСЛОТ, ЩЕЛОЧЕЙ И СОЛЕЙ В ВОДЕ ПРИ ЗО С И ПОСТОЯННОЙ КОНЦЕНТРАЦИИ РАСТВОРОВ (МОЛЯЛЬНОСТЬ 0,28, ГИДРАТНОЕ ЧИСЛО 200) [c.188]

    Коэффициент активности выражается отношением средней активности а ионов к общей моляльной концентрации раствора электролита  [c.309]

    Решение. Определяем понижение температуры замерзания раствора дГа = 0°—(—3,5) =3,5°. з и Ек находим в табл. 7 и 8 приложения. По формуле (П1.23) определим моляльную концентрацию раствора  [c.92]

    Определение концентрации раствора. На основании второго закона Рауля можно сравнительно легко вычислять моляльную концентрацию раствора, если известно понижение его температуры замерзания.  [c.108]

    Как объяснить, что при повышении концентрации растворов, моляльное понижение температуры замерзания раствора хлорной кислоты возрастает, а раствора перхлората натрия снижается  [c.191]

    Почему моляльные понижения температур замерзания растворов глюкозы, глицерина, сахара, этилового спирта повышаются с ростом концентрации, а моляльные понижения растворов ацетона, уксусной кислоты, щавелевой кислоты и фенола, наоборот понижаются Может ли это служить указанием на природу вещества  [c.181]

    Концентрация раствора эквивалентна 20 г белка на 1 кг воды, но вследствие высокой молекулярной массы моляльность раствора оказывается равной всего 0,0016. Поэтому Т = — 1,86 0,0016 = — 0,003°С, по эта величина слишком мала для точного определения молекулярной массы. [c.145]

    Количественную сторону осмотического давления изучал голландский ученый Вант-Гофф (1852—1911). Им установлено, чтО осмотическое давление в растворах находится в зависимости от числа растворенных в нем частиц (т. е. от моляльной концентрации). Растворы, имеющие одинаковую моляльную концентрацию, должны иметь при равных температурах одинаковое осмотическое давление. Такие растворы называются изотоническими. [c.21]

    Многочисленные исследования (особенно школы Льюиса) показали, что кривая зависимости среднего ионного коэффициента активности от концентрации раствора (моляльности) имеет минимум. Если изображать зависимость в координатах IgY — то для разбавленных растворов зависимость оказывается линейной. Наклон прямых, соответствующих предельному разбавлению (предельных прямых), одинаков для солей одного валентного типа (одно-одновалентные, двух-одновалентные соли и т. д. (рис. XVI, 1 и XVI, 2). Присутствие в растворе других солей изменяет коэффициент активности данной соли, смещая его по кривой вправо (см. рис. XVI, 1 или XVI, 2). Чем больше заряд ионов добавляемой соли, тем сильнее она влияет на величину у другой соли. Суммарное влияние смеси солей в растворе на коэффициент активности каждой из них охватывается общей закономерностью, если суммарную концентрацию всех солей в растворе выразить через ионную силу. [c.376]

    К—криоскопическая константа С, — моляльная концентрация раствора. [c.40]

    Вычертить график зависимости объема раствора от моляльной концентрации. 8. Определить парциально-молярный объем хлорида натрия при концентрации раствора 3,5 жоль/ЮОО г. [c.450]

    Решение, а) Моляльная концентрация, или моляльность раствора, находится из пропорции [c.9]

    В разбавленных растворах моляльные концентрации могут быть приравнены к молярным. [c.23]

    Вычислите моляльные понижения температур замерзания для этих веществ. Зависят ли они от концентрации раствора Если зависят, то объясните, почему. [c.180]

    При последующем изложении материала (кроме разд. 2 в гл. 5) стандартное состояние по Генри будет обозначаться верхним индексом Поэтому для шкалы мольных долей могут встречаться три разных записи химического потенциала вещества в стандартном состоянии — (Т), р) и ц (Т ) первая — индивидуальное вещество при р= атм и устойчивом для данной температуры фазовом состоянии, вторая — индивидуальное вещество при рассматриваемом давлении р и температуре Т (для /3=1 атм II Т, р)=ц°(7 )), третья — гипотетическое состояние вещества при давлении р и температуре Т, парциальные свойства которого такие же, как в бесконечно разбавленном растворе. Это означает, что величина дг зависит от природы второго компонента. При других способах выражения концентрации раствора, например при использовании шкал мо-лярностей или моляльностей, зависимость химического потенциала от концентрации выражается формулой (3.266), аналогичной (3.26а)  [c.130]

    Например, если говорят, что раствор одномоляльный , то под этим понимают раствор, образованный растворением 1 моль вещества в 1 кг растворителя. Выражение концентрации как моляльность чаще всего применяют в случае реакций, протекающих в неизотермических условиях. [c.69]

    В случае водных растворов концентрацию обычно выражают числом молей l растворенного вещества в одном литре раствора. Это, однако, не всегда удобно, так как концентрация раствора вследствие термического расширения зависит от температуры. В связи с этим часто пользуются моляльностью m , числом молен растворенного вещества в 1000 г растворителя (воды), величина которой не зависит от температуры. Между мольной долей и моляльностью в водных растворах существует простое соотношение N =m (m + 1000/18) (18 — молекулярная масса воды). [c.80]

    По термодинамическим свойствам растворы классифицируют на идеальные и неидеальные. Идеальным называют раствор, в процессе образования которого уменьилается энергия Гиббса, возрастает энтропия, а объем, энтальпия, внутренняя энергия и теплоемкость не меняются. Невыполнение одного из этих условий приводит к образованию неидеального раствора. Идеальные растворы подчиняются законам Вант-Гоффа и Рауля, связывающих моляльную концентрацию раствора с такими его свойствами, как осмос, понижение давления пара растворителя над раствором, повышение температуры кипения и понижение температуры замерзания. Эти свойства называют коллигативными, поскольку они зависят только от концентрации, но не зависят от природы растворенного вещества. [c.23]

    Многочисленные исследования (особенно школы Г. Льюиса) показали, что кривая зависимости среднего ионного коэффициента активности от концентрации раствора (моляльности) имеет минил м. Если изображать зависимость в координатах то для разбавленных растворов зависимость [c.400]

    На опыте установлено, что понижение температуры замерзания раствора и увеличение температуры кипения раствора пропорциональны концентрации растворепного вещества А7 з=Л крС, где АТя — понижение температуры замерзания раствора по отношению к чистому растворителю с — моляльная концентрация раствора (1 моль в 1000 г растворителя) Кнр—криоскопическая константа. Или АТк = К ,с, где К ,—эбуллиоскопическая константа АГк—приращение температуры кипения раствора по отношению к чистому растворителю с —моляльная концентрация. [c.23]

    Другим способом выражения концентрации растворов служит указание их моляльной концентрации, или моляльности, которое основано на учете количества использованного растворителя, а не количества образующегося раствора. Моляльность раствора означает число молей растворенного вешества в 1 кг растворителя (а не раствора ). Единица моляльности обозначается символом Мл. Плотность воды 1,00 г млпоэтому 1 кг воды занимает объем 1 л. Следовательно, рассмотренный в примере 13 раствор сульфата аммония является 2,00 моляльным раствором, поскольку он приготовлен растворением 2,00 моля соли в 1 кг (1 л) воды. Если в качестве растворителя используется не вода, следует воспользоваться данными о плотности жидкости, чтобы перейти от килограммов к литрам. [c.78]

    Для определения повышения температуры кипения раствора по сравнению с темпераурой кипения чистого растворителя необходимо перейти от процентной концентрации раствора к моляльной, т. к. [c.41]

    Величину ионной силы обычно выражают через молярные коние гграиии. Аналогичным образом выражают и активность раствора электролита. В практических работах очень часто в качестве единиц концентрации используется моляльность. Это связано с тем, что взвешивание можно производить более точно, чем измерение объема, с одной стороны, а с другой — моляльность не зависит от температуры [c.233]

    Решение. Моляльность, или мольно-массовая концентрация раствора — это отношение количества вещества растворен- [c.70]

    Пример I. Вычислите молярную, эквивалентную молярную концентрации и моляльность раствора серной кислоты с да (Н2504) = 10% и р= 1,066 г/см  [c.72]

    Выразим концентрацию раствора через моляльность т. Пусть раствор содержит п молей растворенного вещества в 1000 г растворителя. В этом случае = т. Если молекулярная масса растворителя Му, то N2 = т/(1000Ш1 + t ) В разбавленном растворе можно пренебречь величиной т по сравнению с ЮСО/тИ , тогда N2 = тМуИ ОО. Отсюда [c.93]

    Пример. 24%-ный (по массе) раствор карбоната калия (К2СО3) имеет при 20°С плотность р= 1,232 г/мл (или кг/л). Вычислить концентрацию раствора в молях на литр (молярность), в молях на килограмм растворителя (моляльность) и в мольных долях. [c.232]

    Раствором называется однофазная система, образованная не менее чем двумя компонсрпами и способр1ая в известных пределах к непрерывному изменению состава. Состав раствора или его концентрацию чаще всего выражают в молях растворенного вещества на один литр раствора (молярная концентрация), в молях растворенного вещества иа 1000 г растворителя (моляльная концентрация), в молярных долях или в весовых процентах. Для перехода от одного способа выражения концентрации раствора к другому необходимо знать молекулярные веса компонентов и, в некоторых случаях, плотность раствора (при переходе от весовой концентрации к объемной и обратно). [c.180]

    Вычислите для каждого раствора моляльное понижение температуры замерзания. Почему оно зависит от концентрации Вычислите степени диссоциации НСЮ4. Почему степень диссоциации самой сильной неорганической кислоты в водном растворе не равна 100%  [c.190]


chem21.info

Моляльность Википедия

Концентра́ция или до́ля компонента смеси — величина, количественно характеризующая содержание компонента относительно всей смеси. Терминология ИЮПАК под концентрацией компонента понимает четыре величины: соотношение молярного, или численного количества компонента, его массы, или объёма исключительно к объёму раствора[1] (типичные единицы измерения — соответственно моль/л, л−1, г/л, и безразмерная величина). Долей компонента ИЮПАК называет безразмерное соотношение одной из трёх однотипных величин — массы, объёма или количества вещества.[2] Однако в обиходе термин «концентрация» могут применять и для долей, не являющихся объёмными долями, а также к соотношениям, не описанным ИЮПАК. Оба термина могут применяться к любым смесям, включая механические смеси, но наиболее часто применяются к растворам.

Массовая доля[ | ]

Массовая доля компонента — отношение массы данного компонента к сумме масс всех компонентов. По рекомендациям ИЮПАК,[3] обозначается символом w{\displaystyle w}, в русскоязычной литературе чаще встречается обозначение ω{\displaystyle \omega }. Массовая доля — безразмерная величина, как правило выражается в долях единицы или в процентах (для выражения массовой доли в процентах следует умножить указанное выражение на 100 %):

ωB=mBm{\displaystyle \omega _{\mathrm {B} }={\frac {m_{\mathrm {B} }}{m}}}

где:

  • ωB — массовая доля компонента B
  • mB — масса компонента B;
  • m{\displaystyle m} — общая масса всех компонентов смеси.

В бинарных растворах часто существует однозначная (

ru-wiki.ru

Реферат Молярная концентрация

скачать

Реферат на тему:

План:

    Введение
  • 1 Массовая доля (также называют процентной концентрацией)
  • 2 Объёмная доля
  • 3 Молярность (молярная объёмная концентрация)
  • 4 Нормальная концентрация (мольная концентрация эквивалента)
  • 5 Мольная (молярная) доля
  • 6 Моляльность (молярная весовая концентрация)
  • 7 Титр раствора
  • 8 Другие способы выражения концентрации растворов
  • 9 Применимость способов выражения концентрации растворов, их свойства
  • 10 Формулы перехода от одних выражений концентраций растворов к другим
  • 11 Наиболее распространённые единицы

Введение

Концентрация  — величина, характеризующая количественный состав раствора.

Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л), то есть это отношение неоднородных величин.

Те величины, которые являются отношением однотипных величин (отношение массы растворённого вещества к массе раствора, отношение объёма растворённого вещества к объёму раствора) правильно называть долями. Однако на практике для обоих видов выражения состава применяют термин концентрация и говорят о концентрации растворов.

Существует много способов выражения концентрации растворов.


1. Массовая доля (также называют процентной концентрацией)

Массовая доля — отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы.

,

где:

  • m1 — масса растворённого вещества, г ;
  • m — общая масса раствора, г .

Массовое процентное содержание компонента, m%

m%=(mi/Σmi)*100

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят 2 измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в аккумуляторных) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.


2. Объёмная доля

Объёмная доля — отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.

,

где:

  • V1 — объём растворённого вещества, л;
  • V — общий объём раствора, л.

Как было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.


3. Молярность (молярная объёмная концентрация)

Молярная концентрация — количество растворённого вещества (число молей) в единице объёма раствора. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также распространено выражение в «молярности». Возможно другое обозначение молярной концентрации CM , которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным. Примечание: единица «моль» не склоняется по падежам. После цифры пишут «моль», подобно тому, как после цифры пишут «см», «кг» и т. д.

,

где:

  • ν — количество растворённого вещества, моль;
  • V — общий объём раствора, л.

4. Нормальная концентрация (мольная концентрация эквивалента)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

,

где:

  • ν — количество растворённого вещества, моль;
  • V — общий объём раствора, л;
  • z — число эквивалентности.

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата KHSO4, и двухнормальным в реакции с образованием K2SO4.


5. Мольная (молярная) доля

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.

,

где:

  • νi — количество i-го компонента, моль;
  • n — число компонентов;

6. Моляльность (молярная весовая концентрация)

Моляльность — количество растворённого вещества (число молей) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-моляльным.

,

где:

  • ν — количество растворённого вещества, моль;
  • m2 — масса растворителя, кг.

Следует обратить особое внимание, что несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.


7. Титр раствора

Титр раствора — масса растворённого вещества в 1 мл раствора.

,

где:

  • m1 — масса растворённого вещества, г;
  • V — общий объём раствора, мл;

В аналитической химии обычно концентрацию титранта пересчитывают применительно к конкретной реакции титрования таким образом, чтобы объём использованного титранта непосредственного показывал массу определяемого вещества; то есть титр раствора показывает, какой массе определяемого вещества (в граммах) соответствует 1 мл титрованного раствора.


8. Другие способы выражения концентрации растворов

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, в фотометрии часто используют массовую концентрацию, равную массе растворённого вещества в 1 л раствора. При приготовлении растворов кислот часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Концентрация загрязнений в воздухе может выражаться в частях на миллион (ppm). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя.


9. Применимость способов выражения концентрации растворов, их свойства

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.


10. Формулы перехода от одних выражений концентраций растворов к другим

От массовой доли к молярности:

,

где:

  • ρ — плотность раствора, г/л;
  • ω — массовая доля растворенного вещества в долях от 1;
  • M1 — молярная масса растворенного вещества, г/моль.

От молярности к нормальности:

,

где:

  • M — молярность, моль/л;
  • z — число эквивалентности.

От массовой доли к титру:

,

где:

  • ρ — плотность раствора, г/л;
  • ω — массовая доля растворенного вещества в долях от 1;

От молярности к титру:

,

где:

  • M — молярность, моль/л;
  • M1 — молярная масса растворенного вещества, г/моль.

От молярности к моляльности:

,

где:

  • M — молярность, моль/л;
  • ρ — плотность раствора, г/мл;
  • M1 — молярная масса растворенного вещества, г/моль.

От моляльности к мольной доле:

,

где:

  • mi — моляльность, моль/кг;
  • M2 — молярная масса растворителя, г/моль.

11. Наиболее распространённые единицы

wreferat.baza-referat.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *